Directed Algebraic Topology and Concurrency

Emmanuel Haucourt

CEA LIST,
Modeling and Analysing Interaction between Systems Laboratory

Tuesday, the 10th of July 2008
Underlying graph and Category of paths I

graph : 1-dimensional pre-simplicial set

\[
\begin{array}{ccc}
A & \xrightarrow{\phi_1} & A' \\
\downarrow s & & \downarrow t' \\
V & \xrightarrow{\phi_0} & V' \\
\end{array}
\quad \begin{array}{ccc}
A & \xrightarrow{\phi_1} & A' & \xrightarrow{\psi_1} & A'' \\
\downarrow s & & \downarrow t' & & \downarrow t'' \\
V & \xrightarrow{\phi_0} & V' & \xrightarrow{\psi_0} & V'' \\
\end{array}
\]
An example of model of a multi-task program from Edsger Wybe Dijkstra “Pakken/Vrijlaten” language
Another example from Edsger Wybe Dijkstra “Pakken/Vrijlaten” language

18 states and 20 arrows
Path : morphism of graph from \mathbb{I}_n to Γ

Forgetful functor $U : \text{Cat} \rightarrow \text{Grph}$

“Category of paths” functor $F : \text{Grph} \rightarrow \text{Cat}$

$F \dashv U$
A potential execution

program $T_1 = \text{PaPbVaVb} \mid T_2 = \text{PbPaVbVa}$
Anoter potential execution

program $T_1 = PaPbVaVb \mid T_2 = PbPaVbVa$

<table>
<thead>
<tr>
<th>T_1</th>
<th>T_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa</td>
<td>$-$</td>
</tr>
<tr>
<td>Pb</td>
<td>$-$</td>
</tr>
<tr>
<td>Va</td>
<td>$-$</td>
</tr>
<tr>
<td>Vb</td>
<td>$-$</td>
</tr>
<tr>
<td>$-$</td>
<td>Pb</td>
</tr>
<tr>
<td>$-$</td>
<td>Pa</td>
</tr>
<tr>
<td>$-$</td>
<td>Vb</td>
</tr>
<tr>
<td>$-$</td>
<td>Va</td>
</tr>
</tbody>
</table>

Termination
\[F(\Gamma \times \Gamma') \not\cong F(\Gamma) \times F(\Gamma') \]

Transitions Systems, CCS/\(\pi\)-calculus, Mazurkiewicz Traces ...
Partially ordered spaces
The category PoTop

Pospace \overrightarrow{X}:

- X topological space
- \subseteq closed in $X \times X$

Morphism f from \overrightarrow{X} to $\overrightarrow{X'}$: continuous and order preserving maps

Diagram:

$$\begin{align*}
\text{PoTop} & \longrightarrow \text{PoSet} \\
\downarrow & \\
\text{Haus} & \longrightarrow \text{Set}
\end{align*}$$
Categorical properties of PoTop

Theorem

- The directed compact unit segment is exponentiable in PoTop
- PoTop is complete and cocomplete
- PoTop is symmetric monoidal closed
- CGPoTop is a Cartesian closed reflective subcategory of PoTop
- CPoTop is a (complete and cocomplete) Cartesian closed reflective subcategory of CGPoTop cogenerated by the directed compact unit segment
- PoTop has no loop
Partially ordered spaces
examples

- Real line with standard order and topology : \mathbb{R}
- Subset of a pospace (in particular $[0, 1]$)
- Geometric realization of a graph
- Cartesian Product
- Closed subsets of a metric space together with inclusion
Size reduction
Graph $\Gamma_{\vec{X}}$ of paths on a pospace \vec{X}

- paths on \vec{X}: morphisms from $[0,1]$ to \vec{X}
- arrows of $\Gamma_{\vec{X}}$: paths on \vec{X}
- source and target of a path γ on, \vec{X}: $\gamma(0)$ and $\gamma(1)$
The image of a dipath α on a pospace \overrightarrow{X} is either isomorphic (in PoSpc) to $\overrightarrow{[0, 1]}$ or $\{\ast\}$ (hence no directed Peano curve).

Two dipaths sharing the same image are dihomotopic.
Some paths around a cubic hole

$P(a).V(a) \mid P(a).V(a) \mid P(a).V(a)$ with $\alpha_a = 3$
Two “concatenations”
paths on $\Gamma \vec{X}$ vs paths on \vec{X}

- Composition on $F(\Gamma \vec{X})$ denoted by \circ

- Given $\gamma = (\gamma_n, \ldots, \gamma_1)$ a path on $\Gamma \vec{X}$, we define the following path on \vec{X}

$$ (\nu(\gamma))(t) = \begin{cases}
\gamma_k(nt - k) & \text{si } t \in \left[\frac{k}{n}, \frac{k+1}{n}\right] \text{ et } k < n-1 \\
\gamma_n(nt - n + 1) & \text{si } t \in \left[\frac{n-1}{n}, 1\right]
\end{cases} $$
Directed homotopy
what it is and looks like

Morphism h from $[0, 1]^2$ to \overrightarrow{X} such that $U(h)$ is a homotopy from γ to δ
Directed homotopy
an example

T1 gets a and b before T2 => a=2 and b=4

T2 gets b and a before T1 => a=2 and b=3

Each of T1 and T2 gets a ressource
=> Deadlock with a=2 and b=1
A subtlety

directed homotopy is not classical homotopy
Loop-Free category or small categories without loops (LfCat):
\[C[x, x] = \{\text{id}_x\} \text{ and } (C[x, y] \times C[y, x] \neq \emptyset \implies x = y) \]

One-Way category (OwCat):
\[C[x, x] = \{\text{id}_x\} \]

\(C \) one-way \iff sk(\(C \)) is loop-free

\(\text{LfCat} \xrightarrow{\subset} \text{OwCat} \xrightarrow{\subset} \text{Cat} \)
Let \sim be the congruence over $F(\Gamma_{\overrightarrow{X}})$ generated by

$$\left\{ ((\gamma_n, \ldots, \gamma_1), (\delta_p, \ldots, \delta_1)) \mid \text{there is a dihomotopy from } \nu(\gamma) \text{ to } \nu(\delta) \right\}$$

The fundamental category $\overrightarrow{\pi_1(\overrightarrow{X})}$ is $F(\Gamma_{\overrightarrow{X}})/\sim$ and we have

$$\overrightarrow{\pi_1(\overrightarrow{X} \times \overrightarrow{Y})} \cong \overrightarrow{\pi_1(\overrightarrow{X})} \times \overrightarrow{\pi_1(\overrightarrow{Y})}$$

$\overrightarrow{\pi_1(\overrightarrow{X})}$ is loop-free

van Kampen theorem
A detailed example
A detailed example
square with centered hole

<table>
<thead>
<tr>
<th>x ∈</th>
<th>y ∈</th>
<th>$\overrightarrow{\pi_1(X)}[x,y]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>${\sigma_{x,y}}$</td>
</tr>
<tr>
<td>B_1</td>
<td>B_1</td>
<td>${\sigma_{x,y}}$</td>
</tr>
<tr>
<td>B_2</td>
<td>B_2</td>
<td>${\sigma_{x,y}}$</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>${\sigma_{x,y}}$</td>
</tr>
<tr>
<td>A</td>
<td>B_1</td>
<td>${r_{x,y}}$</td>
</tr>
<tr>
<td>A</td>
<td>B_2</td>
<td>${h_{x,y}}$</td>
</tr>
<tr>
<td>B_1</td>
<td>C</td>
<td>${h'_{x,y}}$</td>
</tr>
<tr>
<td>B_2</td>
<td>C</td>
<td>${r'_{x,y}}$</td>
</tr>
<tr>
<td>B_1</td>
<td>B_2</td>
<td>\emptyset</td>
</tr>
<tr>
<td>B_2</td>
<td>B_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>${u_{x,y}, d_{x,y}}$</td>
</tr>
</tbody>
</table>

With $r'_{y,z} \circ h_{x,y} = u_{x,z}$, $h'_{y,z} \circ r_{x,y} = d_{x,z}$ and 3 points x, y, z of the square such that $x \sqsubseteq y \sqsubseteq z$; if $x \not\sqsubseteq y$ then $\overrightarrow{\pi_1(X)}[x,y] = \emptyset$.
future if $C[y, z] \neq \emptyset$, then $C[y, z] \to C[x, z]$ is a bijection and
$$\gamma \downarrow \to \gamma \circ \sigma$$
past if $C[z, x] \neq \emptyset$, then $C[z, x] \to C[z, y]$ is a bijection
$$\delta \downarrow \to \sigma \circ \delta$$
Yoneda system \(\Sigma \) of a small category \(\mathcal{C} \) preserving the past and the future II

1. \(\Sigma \) is stable under composition,
2. \(\Sigma \) contains all the isomorphisms of \(\mathcal{C} \),
3. all the elements of \(\Sigma \) are Yoneda morphisms and
4. \(\Sigma \) is stable under change and cochange of base.
Yoneda systems

Example
Structure of Σ-components

\mathcal{C} loop-free category and Σ Yoneda system over \mathcal{C}

Theorem

1. $\exists z \, \Sigma[x, z] \times \Sigma[y, z] \neq \emptyset$ iff $\exists z \, \Sigma[z, x] \times \Sigma[z, y] \neq \emptyset$

2. “$\exists z \, \Sigma[x, z] \times \Sigma[y, z] \neq \emptyset$” defines an equivalence relation \sim

3. Given any \sim-equivalence class K, the full subcategory of \mathcal{C} whose set of objects is K is a non empty lattice

4. If $a \sim b$, then the following square is both a pullback and a pushout in \mathcal{C}.

$$
\begin{array}{ccc}
\Sigma & \xrightarrow{\Sigma} & z \\
\uparrow & & \uparrow \\
\Sigma & \xrightarrow{\Sigma} & y \\
\end{array}
\quad
\begin{array}{ccc}
x & \xrightarrow{\Sigma} & z \\
\uparrow & & \uparrow \\
x & \xrightarrow{\Sigma} & y \\
\end{array}
\quad
\begin{array}{ccc}
a & \longrightarrow & a \lor b \\
\uparrow & & \uparrow \\
a \land b & \longrightarrow & b \\
\end{array}
$$
Theorem

The collection, ordered by inclusion, of the Yoneda systems of a one-way category, forms a locale whose maximum is denoted Σ. Beside, its minimum is the collection of all isomorphisms of C.
The category of components of a loop-free category \mathcal{C} is the quotient \mathcal{C}/Σ.

Theorem

A loop-free category \mathcal{C} is a non empty lattice iff its category of components is $\{\ast\}$.
Theorem

1. the collection Σ is pure in C ($\beta \circ \alpha \in \Sigma \Rightarrow \beta, \alpha \in \Sigma$),
2. the category C/Σ is loop-free and the category $C[\Sigma^{-1}]$ is one-way
3. the categories $C[\Sigma^{-1}]$ and C/Σ are equivalent and
4. the category $C[\Sigma^{-1}]$ is fibered over the base C/Σ.
The category of components of the Swiss flag
The category of components

Menger sponge first iteration: \(P(a).V(a) \mid P(a).V(a) \mid P(a).V(a) \) with \(\alpha_a = 2 \)

- Interior of the pospace
- Category of components
- Flattened
The components category
of a 2-semaphore: $P(a).V(a) \mid P(a).V(a) \mid P(a).V(a)$ avec $\alpha_a = 3$

the pospace
its category of components
The monoid of (isomorphism classes of) non empty, connected, finite, loop-free categories is countable and free
Example of product
parallel "independent" composition
The Directed Circle

Objects: S^1
Morphisms: $S^1 \times \mathbb{N} \times S^1$
Identities: $(x,0,x)$ for $x \in S^1$