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Introduction
In the 1960’s, in order to prove theWeil conjectures, it was apparent that a cohomology
theory more re�ned than that of Zariski sheaves was necessary. In some sense, the
Zariski topology of algebraic varieties, or schemes, had "too few" open sets. In the end,
instead of �nding a �ner topology to put on schemes, the very notion of topology had to
be re�ned. Étale cohomology was born. The étale cohomology of a scheme X, instead
of being de�ned in terms of sheaves on the topological space X, is de�ned in terms of
sheaves on the site Et(X) of étale morphisms unto X. A site is a category to be thought
as generalizing the category of open subsets of a topological space. The objects of the
category are "generalized open sets", while the morphisms play the role of inclusion.
The additional data of what families of maps {fi ∶ Ui → X} cover an object X is what
makes a category into a site. But a site is just a presentation of a space : di�erent sites
S, S′ can give rise to equivalent categories of sheaves, and should hence be considered
as di�erent presentations for the same space. Spaces that are de�ned by sites are called
(Grothendieck) topoi.

In the present text, instead of introducing topoi as categories of sheaves as is usually
done in the literature, following the approach of [AJ19], we reserve the term logos for
such categories. Logoi form a 2-category. A topos is a mathematical object dual to
a logos : the 2-category of topoi will be de�ned as the opposite 2-category of the 2-
category of logoi.

Because of this, we �rst present general concepts from the theory of categorical
semantics in section 1, in order to properly introduce logoi in section 2 as categories
in which to interpret a certain kind of logic. In section 3, topoi are de�ned as dual
to logoi and their geometrical aspects are explored by comparison with topological
spaces. Finally, as an application of the language of topoi and logoi, we de�ne and
give a construction for a general notion of spectra in algebraic geometry, generalizing
the Zariski and étale spectra of rings.

1 Basics of categorical semantics

1.1 Algebraic theories
In this section, we study algebraic theories, also called equational theories. They are
�rst order theories whose only axioms are of the form s = t, where s and t are well
formed terms of the theory. The speci�cation of how to form terms is given by a sig-
nature.

De�nition 1.1. A signature is a family of sets Σ = {Σk}k∈ℕ. The elements of Σk are
called the k-ary operations. Given a set of variables �, the terms of a signature Σ are
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de�ned inductively as :

• any variable x ∈ � is a term,

• If t1,… , tn are terms and f is an n-ary operation, then f(t1,… , tn) is a term.

We write T(Σ, �) for the set of terms of Σ with variables in �.

De�nition 1.2. An algebraic theory T is the data of a signature ΣT and a set AT of
axioms of the form s = t where t and s are terms of ΣT (formally, AT is a set of pairs of
terms (s, t)).

Example 1.3. The algebraic theory of abelian groups is given by the signature

Σ0 = {0},Σ1 = {−},Σ2 = {+}

Its axioms are

x + 0 = x x + y = y + x

x + (−x) = 0 x + (y + z) = (x + y) + z

Example 1.4. The theories of groups, rings, monoids and semigroups are all examples
of algebraic theories. The theory of categories is not (at least not evidently) an algebraic
theory, since the operation of composing arrows would need to be partially de�ned.

Models of an algebraic theory can be de�ned in any category with �nite products.

De�nition 1.5. An interpretation I of a signature Σ in a category C with �nite prod-
ucts is given by an object |I| in C equipped, for every k-ary operation f in Σ, with a
morphism fI ∶ |I|k → |I|. The object |I| is called the underlying object of I.

The interpretation I can be extended to all terms in the following way. A context Γ
is a �nite list of variables Γ = [x1,… , xn] in �. Given a term t, if all the variables in t
appear in a context Γ, we de�ne the interpretation [Γ | t]I of t in context Γ by induction
on t :

• the interpretation of a variable xi ∈ Γ is the i-th projection |I|n → |I|,

• the interpretation of f(t1,… , tm) is the composition

|I|n

(
[Γ | t1]

I,… , [Γ | tm]
I
)

,,,,,,,,,,,,,,,,,,,,,,,,,→ |I|m
fI

,,→ |I|

De�nition 1.6. Amodel of an algebraic theory T = (Σ, A) in a category Cwith �nite
products is an interpretation I of Σ in C such that, for any axiom s = t in A and any
context Γ containing all the variables appearing in s and t, one has [Γ | s]I = [Γ | t]I.
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De�nition 1.7. Amorphism betweenmodels I, J in C is a morphism g ∶ |I|→ |J|

in C such that, for any k-ary operation f in Σ, the following square commutes.

|I|k |J|k

|I| |J|

fI fJ

(g◦�1,… , g◦�k)

g

Models and their morphisms form the category of C-valued models of T : Mod(T,C).
The category of set-valued models will also be written Mod(T). When the category C
is not indicated, we will always mean Set-valued model.

Example 1.8. The category set-valued models of the theory of groups (resp. abelian
groups, rings, monoids) is the usual category of groups (resp. abelian groups, rings,
monoids). Less trivially, a Group-valued model of the theory of groups is an abelian
group (this follows from the Eckmann-Hilton argument).

Let C, C′ be categories with �nite products, and F ∶ C → C′ a �nite product-
preserving functor. Given an algebraic theory T, the functor F sends models of T in C
to models of T in C′. This makes the assignement

Cat× → Cat

C ↦ Mod(T,C)

into a 2-functor (where Cat× is 2-category of categories with �nite products, �nite
product-preserving functors and natural transformations). We will see that this 2-
functor is representable, by a category called the syntactic category of T.

De�nition 1.9. The syntactic category CT of an algebraic theory T is de�ned to have
:

• as objects the natural numbers [n], n ∈ ℕ.

• as morphisms [m]→ [n], sequences of terms in some context :

[m]
([Γ | t1,… , tn])
,,,,,,,,,,,,,,,,→ [n]

where Γ is a context of exactly m variables and any variable in one of the ti ap-
pears in Γ. Composition of

[l]
([x1,… , xl | s1,… , sm])
,,,,,,,,,,,,,,,,,,,,,,,,,→ [m]

([y1,… , ym | t1,… , tn])
,,,,,,,,,,,,,,,,,,,,,,,,,→ [n]

is given by [x1,… , xl | u1,… , un]where ui is obtained by replacing all occurences
of yj in ti by sj. Morphisms are considered up to equivalence by the congruence
relation generated by :
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– [Γ | s] ∼ [Γ | t] if s = t is an axiom of T.

– [Γ | t] ∼ [Γ� | t�]where� is a permutation of the variables, Γ� is the context
obtained from Γ by replacing xi by �(xi) for all i and t� is the term obtained
by replacing all occurences of xi by �(xi) for all i (�-renaming rule).

Proposition 1.10. The syntactic category ofT is a category with �nite products. By nam-
ingU ∶= [1] in CT, we have for anym ∈ ℕ, [m] = Um.

Proof. Let m, n ∈ ℕ. We show that [m + n] is the product of [m] and [n] in CT. The
projection maps are de�ned by

�1 = [x1,… , xm+n | x1,… , xm] ∶ [m + n]→ [m]

�2 = [x1,… , xm+n | xm+1,… , xm+n] ∶ [m + n]→ [n]

Let k ∈ ℕ, p ∶ [k] → [m], and q ∶ [k] → [n]. Using the �-renaming rule, we may
assume that p = [Γ | t1,… , tm] and q = [Γ | tm+1,… , tm+n] with Γ = (y1,… , yk). We
de�ne ℎ ∶ [k] → [m + n] to be [Γ | t1,… , tm+n]. By construction we have p = �1◦ℎ,
q = �2◦ℎ, and ℎ is indeed unique with such a property.

Proposition 1.11. There is a model U of T in CT, called the universal model of T,
de�ned as follows :

• its underlying object is the object |U| = [1]

• for a k-ary operation f, the interpretation of f is given by

[x1,… , xk | f(x1,… , xk)] ∶ |U|
k → |U|

Proof. The syntactic category is de�ned precisely in away tomake this statement hold.

Theorem 1.12. The universal model of T is universal, in the following sense : given any
category with �nite products C and any modelM of T in C, there exists a unique functor
(up to unique isomorphism) sending the universal model toM.

In other words, the pair (C, U) represents the 2-functorMod(T,−) ∶ Cat× → Cat. We
say it is the classifying category of the theory T.

Remark 1.13. WhenM is a model of T seen as a functorM ∶ CT → C,M(|U|) = |M|

is the underlying object ofM, whileM(|U|n) = M(|U|)n = |M|n is its n-th power.

Wenow turn our attention to another presentation of the classifying category, which
will bring us to a remarkable duality between syntax and semantics.
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In group theory, there is a notion of free group on n generators, ℤ ∗ ⋯ ∗ ℤ, such
that for any other group G, the data of n elements in G entirely determines a unique
group morphism ℤ ∗ ⋯ ∗ ℤ → G. Similarly, in ring theory, the ring ℤ[X1,… , Xn]

is the free ring on n generators for the same reason : given any ring R and elements
a1,… , an in R, there is a unique morphism ℤ[X1,… , Xn]→ R sending Xi to ai for all i.
Those are particular cases of a general construction that exists in all algebraic theories.

Proposition 1.14. Let T be a theory. The forgetful "underlying set" functor | − | ∶

Mod(T) → Set has a left adjoint F, called the free functor. The image by F of a �nite
set with n elements is called the free T-model on n generators.

Proof. Let Σ be the underlying signature of T. Let X be a set. We de�ne |F(X)| to be
the quotient of the set T(Σ, X) by the equivalence relation ∼ generated by :

(1) if s = t is an axiom of T and � ∶ � → X is any function, then s� ∼ t�,

(2) if f ∈ Σk and t1,… , tn, s1,… , sn ∈ T(Σ, X) with ti ∼ si for all i, then f(t1,… , tn) ∼
f(s1,… , sn).

For every f ∈ Σk, we de�ne an interpretation of f in F(X) as :

fF(X) ∶ |F(X)|k → |F(X)|

(t1,… , tn)→ f(t1,… , tn)

This is well-de�ned because of condition (1), and de�nes a model of T because of con-
dition (2). We moreover have a unit �X ∶ X → |F(X)| sending an element x ∈ X to
the term x ∈ |F(X)| seen as a variable.

Now let R be a model of T and f ∶ X → |R| be a function. We want to de�ne a
morphism f♭ ∶ F(X) → R such that |f♭|◦�X = f, which determines the value of |f♭|
on the variables. Moreover, he condition of f♭ being a morphism imposes the equality

|f♭|(g(t1,… , tk)) = gR(|f♭|(t1),… , |f
♭|(tn))

for all k-ary operation g. By de�nition of |F(X)|, those two conditions entirely deter-
mine a unique function |f♭| ∶ |F(X)| → |R|, which by construction is a morphism of
T-models, hence a unique morphism f♭ ∶ F(X)→ R such that |f♭|◦�X = f.

This construction is natural in R, thus the the assignment X ↦ F(X) extends to a
functor Set → Mod(T), which is a left-adjoint to | − | with unit �.

Now consider the contravariant Yoneda embedding c ↦ Hom(c,−) ∶ C
op

T
→

Fun(C, Set). For all object c in CT, the functor Hom(c,−) preserves all limits that exist
in C, and in particular it preserves �nite products. So the Yoneda embedding factors
through

C
op

T
Fun×(C, Set) Mod(T)

c ↦ Hom(c,−) ≃
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and hence identi�es the opposite of the syntactic category as a full subcategory of the
category of Set-valued models of T. It turns out the image of this embedding consists
exactly of the �nitely generated free models of T.

Theorem 1.15 (Lawvere duality). The Yoneda embedding sends the object Un in CT
to the free model on n generators in Mod(T). It hence induces an anti-equivalence of
categories between CT and the full subcategoryModfgf(T) ofMod(T) spanned by �nitely
generated free models of T, i.e. the image by F of the category of �nite sets.

Proof. Let M ∶ CT → Set be a model of T, seen as a �nite product-preserving func-
tor. Let n be a non-negative integer. The Yoneda lemma states that there is natural a
isomorphism

Hom(HomCT
(Un,−),M) ≃ M(Un)

But by remark 1.13, M(Un) ≃ |M|n. This is exactly the universal property of the the
free model on n generators.

Remark 1.16. This duality can also be proven by directly showing that the category
Modfgf(T)

op contains a universalmodel with underlying object |F(1)|, and hence by 2-
Yoneda this would imply the equivalence CT ≃ Modfgf(T)

op. See for instance [AB20].

Example 1.17. The opposite of the category of rings is equivalent to the category of
a�ne schemes. Hence, by Lawvere duality, the syntactic category of the theory of rings
is equivalent to the category of free a�ne schemes of �nite presentation of Spec ℤ,
that is, the full subcategory of AffSch spanned by the �nite powers of the a�ne line
A0,A1,A2,… .

The fact that the classifying category of T can be described purely in terms of its
models makes it a more intrinsic presentation than the usual presentation by a signa-
ture and a set of axioms. For instance, a group can also be de�ned as a set equipped
with a constant e and a binary operation⊙, satisfying a single axiom [McC93] :

(x ⊙ (((x ⊙ y)⊙ z)⊙ (y ⊙ e)))⊙ (e ⊙ e) = z

Usual multiplication and inversion can be recovered through the de�ning equations

x ⋅ y = (x ⊙ e)⊙ (y ⊙ e), x−1 = x ⊙ e

Both this presentation of group theory and the usual one give rise to equivalent syn-
tactic categories. Because of this, it is convenient to rede�ne the notion of algebraic
theory in a purely categorical context.

De�nition 1.18. A Lawvere theory is a category C with �nite products equipped
with an object c such that any object of C is a �nite power of c.
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Example 1.19. All algebraic theories give rise to Lawvere theories as their syntactic
categories.

Remark 1.20. It can also be useful to consider multi-sorted algebraic theories, which
are like algebraic theories but with the additional datum of a set T of types, and for
which any function symbolf ∈ Σ comes equippedwith a type-signature. For instance,
the theory of monoid morphisms has :

• for types a set with two elements T = {A, B}

• for function symbols :

eA ∶ A, eB ∶ B

∗A∶ A × A → A, ∗B∶ B × B → B

f ∶ A → B

• for axioms, equations such that ∗A, ∗B together with eA, eB satisfy monoid ax-
ioms, together with

f(x ∗A y) = f(x) ∗B f(y)

Models of a multi-sorted algebraic theory may have multiple "underlying sets", one for
each type in T. It is still possible to de�ne the syntactic category CT of multi-sorted
algebraic theory T, and in the same way as in the single-sorted case, Cop

T
will embed

as a full subcategory of Mod(T). But in general there will be no canonical notion of
"�nitely generated free models", since there is no longer a canonical forgetful functor
CT → Set. The categorical notion of multi-sorted algebraic theory, i.e. that of multi-
sorted Lawvere theory, is then just de�ned to be a category with �nite products.

1.2 Essentially algebraic theories
We saw that categories with �nite products are a natural place to de�ne categorical
semantics for algebraic theories. But we could have studied, for instance, categories
with all �nite limits, and functors preserving such limits.

De�nition 1.21. A category with �nite limits is said to be left-exact, or lex for short.
A functor from a left-exact category which preserves all �nite limits is also said to be
left-exact. The 2-category of lex categories, lex functors and natural transformations
is noted Catlex.

The terminology "left-exact" comes from the theory of abelian categories, where
left-exact functors are those functors that preserve short exact sequences of the form
0 → A → B → C. In that context, it is a theorem rather than a de�nition that all
left-exact functors are precisely those that preserve all �nite limits.
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De�nition 1.22. A lex category C is called an essentially algebraic theory. The
category of models of C in a lex category D is Funlex(C,D).

Essentially algebraic theories can be thought of as a generalization of algebraic
theories where operations can be partially de�ned. The most famous example of an
essentially algebraic theory ought to be category theory itself.

Indeed, one can de�ne a (small) category internal to a lex category C (also called a
category object in C)to consist of

• an "objects" object Ob ∈ C

• a "morphisms" objectMor ∈ C

• morphisms
dom ∶ Mor → Ob,

cod ∶ Mor → Ob,

id ∶ Ob → Mor,

comp ∶ 2Mor → Mor

in C, where 2Mor is the "pair of composable arrows"-object de�ned by the pull-
back square

2Mor Mor

Mor Ob

�1

cod

dom

�2

⌟

• satisfying the identities :

dom ◦ id = idOb
cod ◦ id = idOb

dom ◦ comp = dom ◦ �1
cod ◦ comp = cod ◦ �2

comp ◦ (idMor, id ◦ cod) = idMor (right-composition with the identity is the identity)
comp ◦ (id ◦ dom, idMor) = idMor (same for left-composition)

alongwith an additional identity expressing the associativity of composition (which
is rather cumbersome to write down).

We can also de�nemorphisms of internal categories to bemorphisms of the underlying
Ob andMor objects that are natural with respect to dom, cod, id and comp.

In summary, for any lex category C, we just de�ned a categoryMod(TCat,C) of cat-
egories internal to C. Moreover, any lex functor F ∶ C → D sends any category object
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in C to a category object in D. Hence the construction C ↦ Mod(TCat,C) is actually a
2-functor

Mod(TCat,−) ∶ Cat
lex → Cat

Saying that category theory is an essentially algebraic theory amounts to saying that
this functor is 2-representable, i.e. there exists a lex category CCat and equivalences

Mod(TCat,C) ≃ Funlex(CCat,C)

for any lex category C, 2-natural in C. This is indeed the case, but a proof would go
beyong the scope of this text. The idea is to take the "free lex category with 2 objects
Ob andMor, morphisms dom, cod, id, comp and satisfying the above identities".

Given a lex category D and a (possibly multisorted) Lawvere theory C, we can con-
sider D-valued models of C. There is a forgetful 2-functor

U ∶ Catlex → Cat×

from the 2-category of left-exact categories to the 2-category of categories with �nite
products and �nite-product-preserving functors. This functor admits a left 2-adjoint
FC (for Finite Completion). . The adjunction tells us that given a category Cwith �nite
products and a lex category D, there is an equivalence of categories

Fun×(C,D) ≃ Funlex(FC(C),D)

In terms of models, this precisely states that the D-valuedmodels of C seen as a (multi-
sorted) Lawvere theory are the same as theD-valuedmodels of FC(C) seen as an essen-
tially algebraic theory. So the 2-functor FC "preserves models". Hence it allows us to
say that "every algebraic theory is also essentially algebraic", in that FC identi�es Cat×
as a sub-2-category of Catlex in a model-preserving way.

Example 1.23. The Lawvere theory of rings is the opposite of the category of free rings
of �nite presentation over ℤ. To get the corresponding essentially algebraic theory, it
su�ces to freely add equalizers toRingop

pf,free
while preserving the already existing�nite

products. It turns out the resulting category is equivalent to the opposite of Ring
pf
, the

category of rings of �nite presentation over ℤ. Alternatively, the essentially algebraic
theory of rings is equivalent to the category of a�ne schemes of �nite type over Specℤ
: AffSchpf.

Categorical semantics can be further developped by considering categories with
even more internal constructions, allowing an internal interpretation of logical con-
junction, disjunction, or even existential/universal quanti�cation and higher order
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logic. Every additional logical notionwe’d like to interpretwill give rise to a new type of
category : �nite product categories (allows the interpretation of equality = and logical
conjuction ∧), regular categories (=,∧,∃), coherent categories (=,∧,∨,∃), etc.

The categories we study in the next section are logoi. Logoi are categories in which
there is a natural interpretation for, among other things :

• �nite logical conjuction ∧,

• in�nite logical disjunction
⋁
,

• existential quanti�cation ∃.

It turns out that in�nite conjunction anduniversal quanti�cation can also be expressed
in logoi, but they need not be preserved by morphisms of logoi.

2 Logoi and logic
De�nition 2.1. A logos (plural logoi) is a left-exact localization (see de�nition A.3) of
a presheaf category Pr(C) for some small category C. Amorphism of logoi between
C and D is a left exact cocontinuous functor F ∶ C → D (i.e. F preserves �nite limits
and arbitrary (small) colimits). The category of suchmorphisms is written Funlexcc (C,D).
The 2-category of logoi, logoimorphisms and natural transformations is written Logos.

Given a small category C, the identity functor id ∶ Pr(C) → Pr(C) is always a left-
exact localization. Hence every presheaf category is a logos. The Yoneda embedding
identi�es Pr(C) as the free cocompletion of C, and is the �rst step towards characteriz-
ing logos morphisms from the presheaf logos Pr(C) to an arbitrary logos D.

Theorem 2.2 (Yoneda lemma). Given a small category C, a cocomplete category D and
a functor F ∶ C → D, there is a unique cocontinuous functor F̂ ∶ Pr(C) → D up to
natural isomorphism, such that F̂ extends F along the Yoneda embedding y, i.e. such that
the following diagram commutes. F̂ is called the Yoneda extension of F.

C D

Pr(C)

y

F

F̂

Theorem 2.3. Given a small lex category C, a logos L and a lex functor F ∶ C → L, the
Yoneda extension F̂ ∶ Pr(C) → L is left-exact. Since it is cocontinuous, it is a morphism
of logoi.
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By restricting along y, we furthermore get an equivalence of categories :

Funlex(C, L) ⇄ Funlexcc (Pr(C), L)

F ↦ F̂

G◦y ↤ G

Remark 2.4. Logoi can actually be characterised as those categories L such that for any
small lex catgegory C and lex functor F ∶ C → L, the yoneda extension F̂ stays lex
[GL12].

Similarly to the relation between �nite product categories and lex categories, this
theorem lets us identify Catlex as a sub-2-category of Logos in a model-preserving way.

2.1 Examples of logoi
Theorem 2.5. Given a topological space X, the category Sh(X) of sheaves of sets over X
is a logos.

This theorem will be a corollary of a more general fact about categories of sheaves
on a site (see theorem 2.13).

De�nition 2.6. Given a small lex category C, a Grothendieck pretopology on C

is the data, for any object c in C, of a collection K(c) of families of morphisms with
codomain c, satisfying the following conditions :

(i) for any isomorphism f ∶ c → c′ in C, {f ∶ c → c′} ∈ K(c′),

(ii) if {fi ∶ ci → c | i ∈ I} ∈ K(c) and g ∶ d → c is any morphism in C, then the
family obtained by pullbacks along g, i.e. {ci ×c d → d | i ∈ I}, is in K(d),

(iii) given a family {fi ∶ ci → c | i ∈ I} ∈ K(c) and for every i ∈ I, a family {gij ∶ dij →
ci | j ∈ Ji} ∈ K(ci), then the family of composites {fi◦gij ∶ dij → c | i ∈ I, j ∈ Ji}

is in K(c).

The elements R of K(c) are called covers or covering families of c. The data (C, K) of a
small lex category C together with a Grothendieck pretopology K is called a site.

Remark 2.7. In general, sites are not required to be left-exact categories. But all the
examples we will consider are left-exact, and it turns out that any logos admits a pre-
sentation by a left-exact site (see for instance the appendix of [MM92]), so we do not
lose too much generality with that additional assumption.
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Remark 2.8. Asite is usually de�ned as a small categoryC equippedwith aGrothendieck
topology (de�ned in terms of sieves on C) rather than a Grothendieck pretopology, the
latter being a non-canonical presentation for the former. But since sites are themselves
non-canonical presentations for logoi (at least for our purposes), we stickwith this def-
inition.

Example 2.9. Given a topological spaceX, its set of open subsetsO(X) is a poset under
inclusion, hence a category. Open subsets are closed under �nite intersection, hence
the category O(X) is left-exact. A family of morphisms {fi ∶ Ui → U | i ∈ I} with
same codomain U in O(x) is just a set of open subsets of U. Let K(U) be the set of
families {Ui ⊆ U | i ∈ I} of open subsets of U such that

⋃

i∈I
Ui = U. This de�nes

a Grothendieck pretopology on O(X). Covering families are then covering families in
the usual sense of topology.

Example 2.10. The motivating example of a site that does not come frome a topologi-
cal space comes from algebraic geometry, where the Zariski topology on schemes had
"too few" open sets for the purposes of cohomology. In the 1960’s, Grothendieck had
the idea of considering not only coverings by open subsets U ↪ X, but by arbitrary
étale maps Y → X. This idea is what actually gave birth to the theory of sites and
Grothendieck topoi, and eventually led to the resolution of the Weil conjectures.

De�nition 2.11. Given a site (C, K), a presheaf F ∶ Cop → Set is called a sheaf if, for
every object c in C and every covering family {fi ∶ ci → c | i ∈ I} ∈ K(c), the following
diagram is an equalizer in Set :

F(c)
∏

i∈I
F(ci)

∏

i,j∈I
F(ci ×c cj)

�2

�1
∏

F(fi)

In other words, given any family (xi)i∈I with xi ∈ F(ci) for all i and such that for all
i, j ∈ I, the images of xi and xj in F(ci ×c cj) coincide, there exists a unique x ∈ F(c)

such that for all i ∈ I, F(fi)(x) = xi.
The full subcategory of Pr(C) spanned by sheaves forK is noted Sh(C, K), or simply

Sh(C) if K is evident from the context.

Example 2.12. In the case where (O(X), K) is the site associated to a topological space
X, then a sheaf for K is just a sheaf of sets on X in the usual sense.

Theorem 2.13. Given a site (C, K), the category Sh(C, K) is a left-exact localization of
Pr(C), and hence a logos.

Proof. See [AGV71][II.3].
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The left adjoint to the inclusion i ∶ Sh(C, K)↪ Pr(C)will bewritten a, and is called
the shea��cation functor, or associated sheaf functor.
Remark 2.14. The converse is also true : for any logos L, there exists a small site (C, K)
such that L is equivalent to Sh(C, K) [MM92].

The shea��cation functor a ∶ Pr(C) → Sh(C, K) preserves �nite limits, and as
a left adjoint, it also preserves small colimits. Hence it is a morphism of logoi. Pre-
composition with a thus induces a functor

−◦a ∶ Logos(Sh(C, K),E)→ Logos(Pr(C),E)

for any logos E. Since Sh(C, K) is a re�ective localization of Pr(C) (see proposition A.2),
we have the following.

Proposition 2.15. For all logos E, pre-composition with a identi�es Logos(Sh(C, K),E)
as the full subcategory of Logos(Pr(C),E) spanned by functors that factor through i ∶
Sh(C, K)↪ Pr(C).

Theorem 2.3 characterizes morphisms of logoi Pr(C) → E as left kan extensions
of lex functors C → E. This equivalence can somewhat be extended to morphisms
Sh(C, K)→ E, by taking into account the pretopology K.

De�nition 2.16. A lex functor F ∶ C → E is said to be continuous with respect
to the pretopology K if, for every cover {fi ∶ Ui → U} in K, the induced morphism
∐

i
F(Ui)→ F(U) is an e�ective epimorphism (see de�nition A.5) in E.

Theorem 2.17. A morphism of logoi F ∶ Pr(C) → E factors through the re�ection
Pr(C)→ Sh(C, K) if and only if its restriction along the Yoneda embedding F◦y ∶ C → E

is a lex functor continuous with respect to K.

Proof. See [MM92].

2.2 General properties of logoi
In this section, we prove general properties about logoi that will be useful later on. The
rule of thumb here is that logoi "behave like Set" in many di�erent ways, especially
regarding the behaviour of �nite limits and small colimits.

Proposition 2.18 (Stability of colimits). Let E be a logos, D a small category, and F ∶

D → E a diagram in E. Then, for every pullback diagram,

colimDF ×X Y colimDF

Y X
g

f
⌟
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the canonical map ℎ ∶ colimd∈D(F(d) ×X Y) → (colimDF) ×X Y is an isomorphism. In
other words, colimits in a logos are stable under pullback.

Proof. 1. First we consider the case E = Set. If the colimit is a disjoint union (i.e. if D
is discrete), we have colimDF = {(d, x) | d ∈ D, x ∈ F(d)}, and the canonical map ℎ is
the obvious rearranging of triplets

{(d, (x, y)) | d ∈ D, x ∈ F(d), y ∈ Y, fd(x) = g(y)}

{((d, x), y) | d ∈ D, x ∈ F(d), y ∈ Y, fd(x) = g(y)}

ℎ

which is clearly an isomorphism (where fd is the the composite of F(d)→ colimDF →

Y). The case of quotients by equivalence relations is similar. Coproducts and quotients
(coequalizers) generate all colimits, so the result is true in Set.
2. Let C be a small category. The limits and colimits in Pr(C) are computed objectwise
in Set, hence the result is also true in any presheaf category.
3. Now letE be a logos. By de�nition, E is a left-exact localization of a presheaf category
Pr(C) for some small C, so we have

E Pr(C)

i

r

⊣

where r is left-exact and r◦i ≃ id. Hence colimits and �nite limits are computed in E
by taking the image by r of their computation in Pr(C). Since the result holds in Pr(C),
it then also holds in E.

Corollary 2.19. In any logos, e�ective epimorphisms are stable under pullbacks.

Proof. Ane�ective epimorphism is amorphism that is the coequalizer of its kernel pair
(A.5). Kernel pairs are stable under pullback, and by proposition 2.18, coequalizers are
too.

Proposition 2.20. In any logos, all epimorphisms are e�ective epimorphisms.

Proof. First, notice that all epimorphisms in Set are e�ective. Since limits and colimits
in presheaf categories are computed objectwise, this is also the case in any presheaf
category. The result extends to any logos analogously to the proof of proposition 2.18.

Proposition 2.21. In a logos E, a morphism f that is a monomorphism and an epimor-
phism is also an isomorphism.
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Proof. By proposition 2.20, any epimorphism is e�ective, and hence is a coequalizer.
We show that, more generally, any monic coequalizer is an isomorphism. Let A, B be
objects of E, f, g ∶ A → B morphisms in E, and ℎ ∶ B → C be a coequalizer of f
and g, such that ℎ is a monomorphism. Then since ℎ◦f = ℎ◦g, we have f = g, and
id ∶ B → B is a coequalizer of f and g. Hence ℎ is an isomorphism.

2.3 The Zariski logos
We have seen that the lex category AffSchpf is the essentially algebraic theory of rings
: for any lex category C, a ring-object in C is the same as the data of a lex functor
F ∶ AffSchpf → C. Because of theorem 2.3, if E is a logos, we can also see ring-objects
in E as morphisms of logoi F ∶ Pr(AffSchpf) → E. We say that the logos Pr(AffSchpf)
classi�es ring-objects, or is the classifying logos for the theory of rings. Classifying
logoi will be written with the letter B followed by the name of the theory they classify.
For instance we write BRing ∶= Pr(AffSchpf).

Of particular interest in algebraic geometry is the notion of local rings : a local ring
is a ring A with a unique maximal idealm, or equivalently, such that for every x ∈ A,
one has

∃y ∈ A, (x ⋆ y = 1) ∨ ((1 − x) ⋆ y = 1).

This last characterization has the advantage of beingwritten as a �rst order formula us-
ing only existential quanti�cation and logical disjunction. Hence it can be interpreted
in any logos. We will not enter the details of how to interpret any such �rst-order
formula in a logos, but we will do it for this particular example.

Let’s consider a logos E and a ring object R in E. The formulas x ⋆ y = 1 and
(1−x)⋆y = 1 can be interpreted as subobjectsU and V of |R|× |R| by the pullbacks :

U ∗ V ∗

|R| × |R| |R| |R| × |R| |R|

1R

u

⌟

v

1R

⌟

where

• ∗ is a terminal element of E,

• 1R ∶∗↪ R de�nes the "neutral element" for the multiplication of R,

• u is the multiplication of R,

• v is de�ned by v(x, y) = (1 − x) ⋆ y (see de�nition 1.5 on how to interpret this
formula as a morphism in E).

16



In the case E = Set, U would be the subset {(x, y) ∈ |R| × |R| | x ⋆ y = 1} of |R| × |R|,
and similarly, V would be {(x, y) ∈ |R| × |R| | (1 − x) ⋆ y = 1}.

De�nition 2.22. A ring object R in a logos E is said to be local if the pair of morphisms

U |R|2 |R|

V |R|2 |R|

�1

�1

(1)

previously de�ned form an epimorphic family in E.

Remark 2.23. In the case of E = Set, this de�nition recovers the usual notion of local
ring.

Proposition 2.24. A ring object R in a logos E, de�ned by a left-exact functor �R ∶

AffSchpf → E, is local if and only if the pair of morphisms

ℤ[X] → ℤ[X,Y]∕(X ⋆ Y − 1)

ℤ[X] → ℤ[X,Y]∕((1 − X) ⋆ Y − 1)
(2)

is sent to an epimorphic family in E (with codomain �R(A) = |R|).

Proof. The functor �R is left exact, hence given any a�ne scheme of �nite presentation
X = Spec ℤ[X1,… , Xn]∕(P1,… , Pk), �R(X) can be de�ned as the following de�ned as
the following equalizer in E :

�R(X) |R|k |R|
(P1,… , Pk)

(0,… , 0)

The previous monomorphisms U ↪ |R|2 and V ↪ |R|2 can also be de�ned as the
following equalizers :

U |R|2 |R|

V |R|2 |R|

X ⋆ Y − 1

0

(1 − X) ⋆ Y − 1

0

Hence the morphisms (1) are just the image by the functor �R of the morphisms
(2).
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De�nition 2.25. The Zariski pretopology Zar on AffSchpf is de�ned by

Zar(Spec A) = {{Spec A[a−1
i
]→ Spec A | 1 ≤ i ≤ n} | a1,… , an ∈ A,

the (ai)i generate the unit ideal of A}

i.e. covers for the Zarisky pretopology are covers by open a�ne subschemes in the
usual sense of algebraic geometry. Zar de�nes aGrothendieck pretopology onAffSchpf,
and (AffSchpf, Zar) is called the Zariski site.

Proposition 2.26. Let R be a ring object in a logos E, characterized by a left exact functor
�R ∶ AffSchpf → E. Then �R sends Zariski coverings to epimorphic families in E if and
only if it sends the pair of morphisms (2) to an epimorphic family.

Proof. ⟹ The pair of morphisms (2) is a Zariski covering.
⟸ Now suppose �R sends the pair of morphisms (2) to an epimorphic family in E.
Let A be a ring in Ring

pf
and a1,… , an elements of A such that the (ai)i generate the

unit ideal of A. We show by induction on n that �R sends the family

{A → A[a−1
i
] | 1 ≤ i ≤ n}

to an epimorphic family.
The case n = 1 is the case where a1 is invertible, so the morphism A → A[a−1

1
] is

an isomorphism and is thus sent to an epimorphism.
Now suppose n ≥ 2 and for all k < n, all A′ in Ring

pf
, and all a′

1
,… a′

k
∈ A′ such

that the (a′
i
)i generate the unit ideal in A′, �R sends {A′ → A′[(a′

i
)−1] | 1 ≤ i ≤ k} to an

epimorphic family in E.
Let b1,… , bn ∈ A such that

∑n

i=1
aibi = 1A. Consider the following pushout dia-

grams in Ring
pf
.

Z[X,Y]∕(XY − 1) ℤ[X] Z[X,Y]∕((1 − X)Y − 1)

A[(anbn)
−1] A A[(

∑

i<n
aibi)

−1]

X ↦ anbn⌟ ⌟

(3)

Their image by �R are hence two pullbacks in E. Since �R sends (2) to an epimorphic
family, and epimorphisms are stable under pullbacks in a logos (corollary 2.19 and
proposition 2.20), �R sends the bottom line of the diagram (3) to an epimorphic family
in E.

Write b =
∑

i<n
aibi. Using the induction hypothesis with A′ = A[b−1] and a′

i
= ai

for i < n, we deduce that the following family is sent to an epimorphic family in E.
{
A → A

[
b−1, (aibi)

−1
]
| i < n

}
∪
{
A → A

[
(anbn)

−1
]}
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But this family of morphisms factors through the family

{A → A[a−1
i
] | 1 ≤ i ≤ n}

Hence this last family is also sent to an epimorphic family in E.

Theorem 2.27. The logos of sheaves on the Zariski site classi�es local rings. We write
BLocRing ∶= Sh(AffSchpf, Zar).

Proof. Combine theorem 2.17 with propositions 2.24 and 2.26.

3 Topoi and logoi
As we have seen in section 2, logoi are categories in which one can interpret some
fragments of �rst-order logic. Their structure is rather algebraic (construction of limits,
colimits, etc. and functors that preserve such constructions). In this section however,
we will explore geometric aspects of logoi, or rather objects of the 2-category opposite
to Logos.

De�nition 3.1. The 2-category Topos is the opposite of the 2-catgory Logos. A topos
is an object of Topos.

3.1 Frames and locales
In order to understand the geometric aspects of topoi, we �rst take a detour through
the realm of topology.

The topological spaces of algebraic geometry are sober spaces : any irreducible
closed subset admits a unique generic point. This is also the case of any Hausdor�
(T2) space. Sober spaces have the nice property that they are entirely determined by
their algebras of open sets. More precisely, given any topological spaceX, its set of open
subsets O(X) equipped with the operations of arbitrary union and �nite intersection
forms a frame.

De�nition 3.2. A frame is a poset O with arbitrary joins
⋁
and �nite meets ∧, satis-

fying the following in�nite distributive law : for any x, (yi)i ∈ O,

x ∧ (
⋁

i

yi) =
⋁

i

(x ∧ yi)

Amorphism of frames is an order-preserving map that furthermore preserves �nite
meets and arbitrary joins.

19



Given topological spaces X,Y and a continuous map f ∶ X → Y, we get a frame
homomorphism f−1 ∶ O(Y) → O(X). We hence have a contravariant functor from
topological spaces to frames O ∶ Top

op
→ Frames. The previous statement that sober

spaces are entirely determined by their algebras of open spaces can now be reformu-
lated as follows :

Proposition 3.3. The induced functor from sober topological spaces to frames

Sober
op
↪ Top

op O
,→ Frames

is fully faithful.

The contravariance of the functor O motivates the de�nition of locales, which are
just frames viewed in their opposite category.

De�nition 3.4. The category of locales is de�ned to be the opposite of the category
of frames.

Locales ∶= Frames
op

Locales should be thought of as spaces that might not have enough points. More
precisely, one can de�ne a point x of a locale X to be a morphism from the terminal
locale to X (the terminal locale being the image of the singleton space by the inclusion
Sober ↪ Locales). Given a localeX, there is always a canonicalmorphism Pts(X)→ X,
where Pts(X) is the discrete locale of points of X. X comes from a topological space if
and only if that map is an epimorphism, in which case, X is said to have enough
points, and its set of points as a topological space is precisely Pts(X).
Remark 3.5. Any locale in the essential image of Top → Locales is also in the essential
image of Sober ↪ Locales. This is because any topological X space admits a soberi�ca-
tionXsob with the same underlying frame of open sets (furthermore, the soberi�cation
operation actually makes Sober into a re�exive subcategory of Top).

Remark 3.6. The category of topological spaces can actually be recovered from the cat-
egory of locales. Indeed, a topological space X can be described as a set E together
with a subframe of its power set : O(X) ⊂ P(E). Frames of the form P(E) for some set
E are said to be discrete, since they come from the discrete topology on E. With this
de�nition, one can prove (basically by de�nition) that Top is equivalent to the full sub-
category of Locales→ spanned by the epimorphisms O ↠ O′ whose domain is discrete
(where C→ is the arrow category of C).

Remark 3.7. Here we already start to see an analogy with logoi and topoi. Logoi, like
frames, are algebraic structures. The existence of �nite limits and small colimits can be
seen as a generalization of the existence of �nitemeets and arbitrary joins. The in�nite
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distributive law of frames generalize to proposition 2.18 in logoi. The fact that topoi
can be understood geometrically is motivated by the relationship between frames and
topological spaces, or rather, locales. Actually, topoi are categori�ed locales.

Let X be a topological space. Any open subset U of X is uniquely determined by
its characteristic function with values into the Sierpinski space S ∶= {0, 1} where 0 is
a closed point and 1 is an open point.

O(X)⇄ C(X, S)

U ↦ (x ↦ {
1 if x ∈ U

0 otherwise
)

{x ∈ X∕f(x) = 1}↤ f

Now more generally, given a locale X, we write O(X) for the frame corresponding
to X. O(X) needs to be understood as the frame of "opens" of the locale X. Just like in
the case of topological spaces, an "open"U ∈ O(X) of a locale X is entirely determined
by its characteristic function �U ∶ X → S. Indeed, O(S) is the frame {∅, {1}, {0, 1}}.
Hence any frame morphism O(S) → O(X) is entirely determined by the image of {1},
which can be any element of O(X).

This apparent tautology tells us that the Sierpinski space classi�es frames of open
sets : the contravariant identity functor from locales to frames is represented by S, i.e.
there is a natural isomorphism of functors

O(−) ≃ HomLocales(−, S). (4)

The frame structure onHomLocales(X, S) comes from the fact that Shas a frame structure
internal to the category of locales. It is said to be a dualizing object in the categories of
frames and locales.

The frame associated to a localeX is interpreted as the structure of open subspaces
of X. We now need to understand how to interpret the logos associated to a topos X.

3.2 Topoi and sheaves
Let X, Y be a topological spaces, and f ∶ Y → X a continuous map. From f, we can
construct a sheaf onX : the sheaf Γf of local sections of f. It is de�ned by Γf(U) = {s ∶

U → Y | f◦s = idU}. A function s ∶ U → Y such that f◦s = idU is called a section of
f on U.

Reciprocally, given any sheaf F on X, it is possible to construct a space ΛF and a
function ΛF → X such that its sheaf of local sections is isomorphic to F.
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De�nition 3.8. Let X be a topological space, F a sheaf of sets on X and x a point of
X. The �ber of F at x, written Fx is de�ned to be

colimU∕x∈UF(U)

If F is the sheaf of local sections of a continuous map f ∶ Y → X, then for every
x ∈ X, one has Fx ≃ f−1(x). This suggests the de�nitionΛF = {(x, s) | x ∈ X, s ∈ Fx}.
It is indeed possible to give a topology on ΛF such that the �rst projection ΛF → X is
continuous and ΓΛF ≃ F [MM92].

The topology on ΛF makes the projection unto X a local homeomorphism : for
every y ∈ ΛF, there exists an open neighbourhoodU of xmapped homeomorphically
unto an open subset of X. Local homeomorphisms are also called étale spaces : one
says that ΛF is étale over X.

Proposition 3.9. The functors Γ and Λ induce an equivalence of categories between the
category of sheaves of sets on X and the category of étale spaces over X.

Proof. See [MM92].

Because of this, the logos Sh(X) can be understood as the "algebra of étale spaces
over X".

Proposition 3.10. LetX be a topological space andU an open subset ofX. The inclusion
U ↪ X is an étale space over X.

Proof. Open inclusions are homeomorphisms unto their image.

Even more precisely, an étale space f ∶ Y → X is the inclusion of an open subset
of X if and only if the �ber of f at every point of X contains at most one element.
In some sense, open sets of X are "continuous at-most-singletons over X", while étale
spaces over X are "continuous sets over X".

It is in this regard that topoi generalize topological spaces and locales : instead of
being characterized by their frames of open sets, they are de�ned by their logoi of étale
maps (or equivalenty, logoi of sheaves). Because of this, for every topos X, we write
Sh(X) for its associated logos.

3.3 Points of a topos, examples of topoi
The logos Set is initial in the 2-category of logoi. Its corresponding topos is thus the
initial topos, and will be written 1 (notice that Set is indeed the category of sheaves on
the one-point space, even in the case of topological spaces).
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De�nition 3.11. A point of a topos X is a morphism of topoi 1 → X. The 2-category
structure of Toposmakes the points of X into a category, written Pts(X).

Example 3.12. Let X be a sober topological space (or a locale), and X the topos corre-
sponding to the logos Sh(X). Then the category of points of X is equivalent to the set
of points of X, ordered under the specialization relation.

Let T be a logos seen as a theory (i.e. logoi morphisms from T to a logos E are seen
as models of T in E), and T its corresponding topos. Then Pts(T) is by de�nition the
category of Set-valued models of T.

Example 3.13. The theory of sets is the �rst-order algebraic theory with empty sig-
nature and no axioms. As a Lawvere theory, it is the subcategory of Set spanned by
�nite sets. As an essentially algebraic theory, it’s also the category FinSet of �nite sets.
Hence, as a logos, by theorem 2.3, it’s the category Pr(FinSet). Models of Pr(FinSet) in
Set are sets with no structure, i.e., sets. We write Set for the corresponding topos. The
category of points of Set is Set, hence Set is the "space of sets", which makes sense in
the context of topoi, but not in topology.

Given any topos X, a morphism of topoi X → Set corresponds to an element of
Sh(X). Because of this, in the category of topoi, the idea that "a sheaf of sets on X

is a set varying continuously over X" is made precise by the following equivalence of
categories.

Sh(X) ≃ HomTopos(X, Set) (5)

Remark 3.14. Notice that equation (5) is very similar to equation (4). Indeed, Set plays
the same role in topoi as the Sierpinski space S played in the theory of locales and
frames : it is a dualizing object in topoi and logoi. The notion of dualizing object is
very natural in algebraic geometry, the simplest example being the a�ne line A =

Specℤ[X]. Indeed, the global sections functor Γ ∶ Schemes → Ring is represented by
A. The ring structure on Hom(X,A) for a scheme X comes from the ring structure on
the scheme A, or, dually, from the co-ring structure on ℤ[X] given by

+ ∶ ℤ[X]→ ℤ[Y, Z]

X ↦ Y + Z

× ∶ ℤ[X]→ ℤ[Y, Z]

X ↦ Y × Z

Example 3.15. Let Ring be the topos corresponding to the logos Pr(AffSchpf), and
LocRing be the topos corresponding to the logos Sh(AffSchpf, Zar). Then Pts(Ring)
is the category Ring of rings, and Pts(LocRing) is the full subcategory of Ring spanned
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by local rings. The left-exact localization Pr(AffSchpf)→ Sh(AffSchpf, Zar) induces a
morphism of topoiLocRing ↪ Ring, identifying the space of local rings as a subspace
of the space of rings.

Let X be a topos. A ring-object in the logos Sh(X) is the same thing as a morphism
of topoiX → Ring. By analogy with example 3.13, such amorphism is called a sheaf of
rings on X. More generally, when a topos T is thought of as classifying some algebraic
structures, a morphism X → T is said to be a T-valued sheaf on X, or a sheaf of T-
models (e.g. sheaf of groups, sheaf of rings, sheaf of local rings). This notion of sheaf
generalizes the notion of C-valued sheaf in ordinary topology (where C is a category of
algebraic objects).

4 Topoi in geometry and logic
In this section, we consider structured topoi. A structured topos is a topos equipped
with aK-valued sheaf for a toposK. The topos T is equipped with an additional struc-
ture that allows to distinguish a certain class of morphisms between structured topoi.
Think of standard algebraic geometry, where we consider topological spaces equipped
with sheaf of local rings, but are only interested in local morphisms, i.e. morphisms
that preserve the maximal ideals of the stalks. The notion of structured topoi gener-
alizes this in two ways : replacing ordinary topological spaces by arbitrary topoi, and
rings by a general notion of geometric structure.

De�nition 4.1 ([Lur11]). Given a (small) category C, an admissibility structure on C
is the data of :

• a Grothendieck pretopology � on C.

• a class A of morphisms of C, elements of which will be called admissible mor-
phisms.

satisfying the following conditions :

(i) for every object c in C and every cover {fi ∶ ci → c | i ∈ I} ∈ �(c), every fi is in
A.

(ii) for every commutative triangle

Y

X Z

f g

ℎ

in C where g is in A, then f ∈ A ⟺ ℎ ∈ A.
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(iii) for every admissible morphism f ∶ U → X and any morphism g ∶ X′ → X in C,
there exists a pullback square

U′ U

X′ X

f′

g

f

such that f′ is admissible.

(iv) every retract of an admissible morphism is admissible.

Remark 4.2. Let (C, �,A) be a category with an admissibility structure. Let f ∶ c′
∼

,→

c be an isomorphism in C. Since {f} cover of c, then because of (i), f is admissible.
Now if f ∶ e → d and g ∶ d → c are admissible, then by (ii), g◦f is admissible.
Hence, admissible morphisms form a subcategory Cad of C. The pretopology � is also
automatically a pretopology on Cad by virtue of (i).

Remark 4.3. Condition (iii) states that every admissible morphism f ∶ U → X admits
an admissible pullback f′ ∶ U′ → X′ along any g ∶ X′ → X. If f′′ is another such
pullback, then it is a retract of f′, and hence by (iv) is admissible. So any pullback of
an admissible morphism is admissible.

De�nition 4.4 ([Lur11]). A geometry is a small lex category G together with an ad-
missibility structure.

Example 4.5. The category AffSchpf together with the Zariski pretopology, and as
admissible morphisms the open immersions Spec R[a−1] → Spec R, is a geometry. It
will be written GZar.

Proposition 4.6. LetG be a small lex category. We can de�ne a trivial admissiblity struc-
ture onG, as follows : The Grothendieck pretopology onG is the trivial pretopology, where
the covers of every element c are the isomorphismsf ∶ c′

∼

,→ c. The admissiblemorphisms
are the isomorphisms. This makesG into a geometry, called the discrete geometry onG.

De�nition 4.7. Let G and G′ be geometries. A functor f ∶ G → G′ is said to be a
transformation of geometries if :

• f is left exact.

• f sends admissible morphisms in G to admissible morphisms in G′.

• f sends covering families in G to covering families in G′.
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Example 4.8. Let G be a geometry. The underlying category of G can be endowed
with the discrete geometry, making another geometry Gdisc. Then the identity functor
id ∶ Gdisc → G is a transformation of geometries.

Example 4.9. Let G be a geometry with A its set of admissible morphisms. The un-
derlying category of G together with the discrete pretopology and the set of admissible
morphisms A form a geometry Gmix. The identity functor then gives a chain of trans-
formations of geometries :

Gdisc → Gmix → G

De�nition 4.10. Given a geometry G and a topos X, a G-structure on X is a logos
morphism O ∶ Sh(G) → Sh(X) (where G is seen as a site). Given G-structures O and
O′ on X, a natural transformation � ∶ O → O′ is said to be a conservative (or local)
transformation of G-structures if, for every admissible morphism f ∶ V → U in G,
the induced diagram

O(V) O′(V)

O(U) O′(U)

�U

O′(f)O(f)

�X

is a pullback square.
The category of G-structures on X and natural transformations is written StrG(X).

Its subcategory whose natural transformations are conservative is written StrconsG (X).

Remark 4.11. What we call conservative morphisms are more often called local mor-
phisms by analogy with the case of the Zariski geometry (see example 4.12). The term
"conservative" is chosen by analogy with conservative functors, i.e. functors F such
that F(f) is an isomorphism if and only if f is an isomorphism. We prefer the term
"conservative" and the abbrevation cons over the term "local" and its abbreviation loc,
which can be confused with localizing morphisms (i.e. morphisms that are localiza-
tions).

Example 4.12. Given a topological space X, a GZar-structure on X is precisely a sheaf
of local rings on X, i.e. a sheaf of rings OX whose stalks OX,x are local rings for every
x ∈ X. A morphism of sheaves of local rings � ∶ OX → O′

x is local (i.e. conservative)
precisely when the induced morphism on stalks �x ∶ OX,x → O′

X,x
is a local morphism

of local rings (in the usual sense) for every x ∈ X.

Remark 4.13. By theorem 2.17, a G-structure on a topos X can equivalently be de�ned
as a lex functor O ∶ G → Sh(X) such that for every covering family {fi ∶ Ui → U}

in G, the induced map
∐

i
O(Ui)→ O(U) is an e�ective epimorphism in Sh(X). From

this point of view, a Gdisc-structure is a just a lex functor O ∶ G → Sh(X). G-structures
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are then just Gdisc-structures satisfying an additional property. Hence StrG(X) can be
seen as a full subcategory of StrGdisc . A similar idea identi�es StrconsG (X) with the full
subcategory of StrconsGmix

(X) whose objects are G-structures. We even have the following
pullback diagram :

Str
cons

G (X) Str
cons

Gmix
(X)

StrG(X) StrGmix (X) StrGdisc(X)

⌟

Theorem 4.14. (1) Let G be a geometry and X a topos. There exists a factorization sys-
tem (SX

L
, SX

R
) on StrG(X), where SXR is precisely the class of conservative morphisms.

Morphisms in SX
L
are called localizations.

(2) This factorization system is functorial in X. In other words, given a geometric mor-
phism f ∶ X → Y, the induced functor f∗◦− ∶ StrG(Y) → StrG(X) carries SYL to S

X
L

and SY
R
to SX

R
.

We write StrlocG (X) for the subcategory of StrG(X) whose morphisms are localizations.

Remark 4.15. A class of morphisms in a category C can be seen as a full subcategory
of C→. When seen this way, S−

L
and S−

R
de�ne sub-2-functors of the 2-functor

Topos
op
→ Cat

X ↦ StrG(X)

Example 4.16. Taking G to be the Zariski geometry and X = 1 to be the one-point
topos, this recovers the usual (localization,local) factorization system on LocRing.

De�nition 4.17. Let G be a geometry. We de�ne a 2-category Top(G) as follows.

• Objects of Top(G) are pairs (X,OX) where X is a topos and OX ∶ Sh(G)→ Sh(X)

is a G-structure on X.

• A morphism (X,OX) → (Y,OY) is the data of a topos morphisms f ∶ X → Y

together with a local transformation � ∶ f∗OY → OX of G-structures on X.

• A 2-isomorphism

(X,OX) (Y,OY)

(f, �)

(g, �)

∼
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is a natural isomorphism  ∶ f∗ → g∗ such that horizontal composition with 
induces a commutative triangle :

f∗OY g∗OY

OX

OY

∼

� �

Proposition 4.18. Let G and G′ be geometries, and f ∶ G → G′ be a transformation of
geometries. Then f induces a functor Top(G′)→ Top(G) by taking (X,OX) to (X,OX◦f).

Remark 4.19. The pullback diagram of remark 4.13 also holds when replacing cons by
loc.

Example 4.20. Take G′ = GZar and G to be the discrete geometry on AffSchpf. Then
the identity id ∶ G → G′ induces the forgetful functor from locally ringed topoi to
ringed topoi. We will show that it admits a right adjoint, which will generalize the
usual notion of spectrum from algebraic geometry.

Theorem 4.21. Let G be a geometry, and Gdisc its discrete counterpart. The induced
functor Top(Gdisc)→ Top(G) admits a right adjoint, called the spectrum functor.

Spec ∶ Top(Gdisc)→ Top(G)

Before proving this theorem, we prove a few results about geometries and factor-
ization systems.

Lemma 4.22. Let G be a geometry, X a topos, O ∶ Gmix → Sh(X) a Gmix-structure,
O′ ∶ G → Sh(X) a G-structure, and � ∶ O → O′ a conservative morphism (of Gmix-
structures). Then O is in fact a G-structure.

Proof. Let {fi ∶ Ui → U} be a covering family in G. We must show that the induced
map

∐

i
O(Ui) → O(U) is an e�ective epimorphism in Sh(X). We know that � is

conservative, and by proposition 2.18, coproducts are stable under pullbacks in the
logos Sh(X), hence the following square is cartesian.

∐

i
O(Ui)

∐

i
O′(Ui)

O(U) O′(U)

∐

i
O(fi)

∐

i
O′(fi)

∐

i
�Ui

�U

SinceO′ is aG-structure, the arrow
∐

i
O′(fi) is an e�ective epimorphism. But e�ective

epimorphisms are also stable under pullbacks in Sh(X) (by corollary 2.19). Hence O is
a G-structure.
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De�nition 4.23. A 2-functor F ∶ Topos
op

→ Cat is said to be representable if it is
equivalent to a 2-functor of the form Geo(−,K) for some topos K. That is, there are
equivalences of categories F(X) ≃ Geo(X,K) for all topos X, natural in X.

Theorem 4.24. Let G be a geometry. The 2-functors

X ↦ StrG(X)
→

X ↦ SX
L

X ↦ SX
R

are representable. IfK denotes the topos associated to Sh(G), the notations for represen-
tants of the previous three 2-functors are respectivelyK→,Kloc andKcons.

Proposition 4.25. The functors dom, codom ∶ StrG(X)
→ → StrG(X) are represented by

geometric morphisms dom, codom ∶ K→ → K (and similarly forKloc andKcons).
Similarly, the functors sending an arrow in StrG(X) respectively to the left and right part
of its unique (SX

L
, SX

R
) factorization are represented by functors

locFact ∶ K→ → Kloc

consFact ∶ K→ → Kcons

Proof. This is a consequence of the Yoneda lemma for 2-categories. Or more precisely,
of the fact that the 2-Yoneda embedding is fully faithful.

Proposition 4.26. With thenotations of theorem4.24, the following square is 2-cartesian.

K→ Kcons

Kloc K

factLoc

factCons

codom

dom

Proof. We have the following equivalences :

Geo(X,K→) ≃ StrG(X)
→ (by theorem 4.24)

≃ SX
L

×
StrG(X)

SX
R

(∗)

≃ Geo(X,Kloc) ×
Geo(X,K)

Geo(X,Kcons) (by theorem 4.24)

Where the equivalence (∗) is precisely the statement that (SX
L
, SX

R
) is a functorial unique

factorization system.
All these equivalences are natural in X, hence K→ veri�es the universal property of
the pullback.

29



Proof of Theorem 4.21. Let G be a geometry andK,Kmix,Kdisc the topoi associated re-
spectively to Sh(G), Sh(Gmix) and Sh(Gdisc).

Let (X,OX) a Gdisc-structured topos. We de�ne (SpecX,OSpecX) by the following
2-limit diagram in Topos :

K SpecX

Kdisc Kloc

mix

Kdisc X

dom

cod

OX

OSpecX

"X

eX (6)

Now we show that (SpecX,OSpecX) represents the following 2-functor :

Top(G)op → Cat

(Y,OY)↦ HomTop(Gdisc)
((Y,OY), (X,OX))

The fact that Spec extends to a fully de�ned 2-functor Top(Gdisc) → Top(G), and that
the induced equivalences natural in (Y,OY)

HomTop(Gdisc)
((Y,OY), (X,OX)) ≃ HomTop(G)((Y,OY), (SpecX,OSpecX))

are also natural in (X,OX), will then be the consequence of a general lemma on the
construction of 2-adjoints (see proposition 4.3.4 of [Rie17] for the 1-categorical case).
Let (Y,OY) be a G-structured topos.

We �rst construct a 2-functor :

HomTop(Gdisc)
((Y,OY), (X,OX))→ HomTop(G)((Y,OY), (SpecX,OSpecX))

Let (f, �) ∶ (Y,OY)→ (X,OX) be a morphism of Gdisc-structured topoi. � factors as :

f∗OX O′

Y
OY

�l �c

where�l is a localization ofGmix-structures and�c is a conservativemorphisms ofGmix-
structures.

Since OY is a G-structure and �c is conservative, by lemma 4.22, O′

Y
is also a G-

structure, and hence factors through K ↪ Kdisc. Thus, O′

Y
, �l and f form a cone for
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the diagram (6). Hencewe have amorphism f̂ ∶ Y → Xmaking the following diagram
commute up to isomorphism.

Y

K SpecX

Kdisc Kloc

mix

Kdisc X

cod

dom

"X

OSpecX

f̂

O′

Y

�l

OX

eX

f (7)

In particular, we have an isomorphism � ∶ g∗OSpecX → O′

Y
. Since isomorphisms are

conservative, we have a conservative morphism �c◦� ∶ f∗OX → OY, and hence a
morphism (f̂, �c◦�) ∶ (Y,OY)→ (SpecX,OSpecX) in Top(G).

Now, let (g, �) ∶ (Y,OY) → (SpecX,OSpecX) be a morphism of G-structured topoi.
Composition with (eX, "X) induces a morphism of Gdisc-structures

(eX◦g, �◦g
∗"X) ∶ (Y,OY)→ (X,OX).

Wemust now show that these constructions are reciprocal to each other. Let (f, �) ∶
(Y,OY) → (X,OX) be a morphism of Gdisc-structured topoi. Diagram (7) gives isomor-
phisms f ≃ eX◦f̂ and �l ≃ f̂∗"X, hence � ≃ �c◦�l ≃ �c◦f̂

∗"X.
Reciprocally, let (g, �) ∶ (Y,OY)→ (SpecX,OSpecX) be a morphism of G-structured

topoi. Let f ∶= eX◦g and � ∶= �◦g∗"X. We have the following commutative (up to
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isomorphism) diagram :

K Y

Kdisc Kcons

mix
K→

mix

K SpecX

Kdisc Kloc

mix

Kdisc X

dom

"X

OSpecX

g

OX

eX

f

cod

�

OY

factLoc

factCons

�

dom

cod

Proposition 4.26 (speci�cally, the uniqueness of the factorization) implies that � ≃

�c.

Conclusion
In the end, the most important results used for the construction of the spectrum were
theorem 4.14 and lemma 4.22. The representability of the factorization system (theo-
rem4.24) is actually not necessary to construct the spectrum (see for instance [Joh77][Th
6.58]), but it allows for a more diagrammatic proof, so we decided to include it in this
text. The treatement of spectra given in [Joh77] actually relies on a minimalistic ax-
iomatization, whichmore or less reduces to those fewproperties. The theory of geome-
tries presented here (due to Lurie) is one example of how to generate a wide varieties
of examples. Another approach has been given in [Ane09].

The main example we used throughout this text is that of the Zariski site (based on
localizations of rings), but we could also have used the étale site (based on henselian
maps of rings). In contrary to the Zariski case, the étale spectrum of a ring is generally
not a topological space.

Both the approaches of [Lur11] and [Ane09] recover the Zariski and étale pretopol-
ogy as special cases, among many others.
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A Reminders from category theory

A.1 Re�ective subcategories, localizations
De�nition A.1. A full subcategory C of a category D is said to be a re�ective subcat-
egory if the inclusion functor i ∶ C ↪ D admits a left adjoint r ∶ D → C, called the
re�ector. More generally, any fully faithfull functor i ∶ C ↪ D is said to exhibit C as
a full subcategory of D if it admits a left adjoint.

Proposition A.2. Let i ∶ C ↪ D be a re�ective subcategory with re�ector r. Then r
is a localization functor. More precisely, let W be the class of morphisms in D sent to
isomorphisms in C by r. Then r identi�es C as D[W−1]. Because of this, one also calls C
a re�ective localization of D.

Proof. See proposition 3.1 at https://ncatlab.org/nlab/show/reflective+localization
(visited 12 september 2021).

De�nitionA.3. A re�ective localization r ∶ D → C is called a left-exact localization
if it preserves �nite limits.

A.2 Equivalence relations, kernels, epimorphisms
De�nition A.4. Let C be a category with �nite limits and f ∶ X → Y a morphism in
C. The kernel pair of f is the pair (p1, p2) de�ned by the following pullback square.

X ×Y X X

X Y
f

f

p2

p1
⌟

De�nition A.5. Let C be a category with �nite limits and f ∶ X → Y be a morphism
in C. f is said to be an e�ective epimorphism in C if it is the quotient of its own
kernal pair, or in other words, if the following diagram is a coequalizer in C.

X ×Y X X Y
p1 f

p2

Proposition A.6. Any e�ective epimorphism is an epimorphism in the usual sense.

Proof. Let f ∶ X → Y be an epimorphism in a category C with �nite limits. Let
g, ℎ ∶ Y → Z be morphisms in C such that g◦f = ℎ◦f. We have g◦f◦p1 = g◦f◦p2 =

ℎ◦f◦p1 = ℎ◦f◦p2. Since f is the coequalizer of (p1, p2), it follows that g = ℎ.
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