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Abstract

A Group Key Agreement (GKA) protocol is a mecha-
nism to establish a cryptographic key for a group of par-
ticipants, based on each one’s contribution, over a public
network. The key, thus derived, can be used to establish a
secure channel between the participants. When the group
composition changes (or otherwise), one can employ sup-
plementary GKA protocols to derive a new key. Thus, they
are well-suited to the key establishment needs of dynamic
peer-to-peer networks as in ad hoc networks. While many
of the proposed GKA protocols are too expensive to be em-
ployed by the constrained devices often present in ad hoc
networks, others lack a formal security analysis. In this pa-
per, we present a simple, secure and efficient GKA protocol
well suited to dynamic ad hoc networks. We also present
results of our implementation of the protocol in a prototype
application.

1. Introduction

Ad hoc networks are networks composed of constrained
devices communicating over wireless channels in the (par-
tial) absence of any fixed infrastructure. Moreover, network
composition is highly dynamic with devices leaving/joining
the network quite frequently. Securing such networks be-
comes a more difficult task with additional challenges in
the form of: lack of trusted third parties, expensive com-
munication, ease of interception of messages and limited
computational capabilities of the devices. Key establish-
ment is a vital step in securing in any network. In ad hoc
networks, key distribution techniques are not useful as there
is not enough trust in the network so as to agree on a key
decided by one member or some central authority. Group
Key Agreement (GKA) [8] protocols, which enable the par-
ticipants to agree on a common secret value, based on each
participant’s public contribution, seem to provide a good so-
lution. They don’t require the presence of a central author-

ity. Also, when the group composition changes (as in case
of merger or partition of groups), one can employ supple-
mentary key agreement protocols to get a new group key.
Thus a transient secure channel can be constructed during
the lifetime of one session of a group.

1.1. Related Work

Many GKA protocols [5, 11, 7, 4, 6, 3] have been pro-
posed in literature, most being derived from the two-party
Diffie-Hellman (DH) key agreement protocol. While some
are secure against passive adversaries only, others do not
have a rigorous security proof. A security proof typically
involves showing that an attack on a protocol can be used
to solve a well-known hard problem under some standard
assumptions. Provably secure protocols in a well-defined
model of security were first provided by Bresson et al. [4].
Their security model extended the earlier work of Bellare et
al. [1]. The number of rounds in these protocols is linear
in the number of participants, thus making them unsuitable
for large ad hoc networks.

Yung et al. [6] proposed the first provably-secure con-
stant round GKA protocol inspired from the works of
Burmester et al. [5]. In the same work, they also pro-
posed a scalable “compiler” to transform a GKA protocol,
secure against a passive adversary, into one which is secure
against an active adversary. But one round in their proto-
col consists of 1 broadcast and n− 1 simultaneous receives
by each user. Achieving this is not possible in most net-
works. Also it lacks procedures to handle group dynamism.
Boyd et al. [3] proposed an efficient constant round pro-
tocol where the bulk of the computation is done by one
participant, thus making it efficient for heterogeneous ad
hoc networks. It is provably secure in the Random Oracle
model [1] but lacks perfect forward secrecy (i.e., compro-
mise of long-term key compromises all past session1 keys).
We propose a provably secure and efficient protocol which

1A session refers to one instance of GKA protocol execution in some
group.



Protocol Expo per Ui Rounds PS
(Max Expo) (Messages)

[11] 3 (m) m + 1 (2m− 3) No
[7] log2 m + 1 log2 m (m) No
[4] i + 1 m (m) Yes
[6] 3 2? (2m) Yes
[9] 2 (2m??) 2? (m) Yes
Ours 2 (m) 2? (m) Yes

m: Number of participants
?: 3 rounds for authenticated GKA
??: m inverse calculations or O(m2) multiplications apart from m exponentia-

tions

Table 1. Efficiency Comparison of GKA proto-
cols (PS: Provably Secure)

achieves perfect forward secrecy as well. Subsequent to our
work, Won et al. [9] also solve this problem but their propo-
sition turns out to be expensive computationally. In table 1,
the number of exponentiations per member for our protocol
are compared with some well-known protocols (including
maximum number of exponentiations by any member for
asymmetric protocols). Also the number of rounds (multi-
ple independent messages can be sent in a round) and total
number of messages are provided.

1.2. Outline

The paper is organized as follows: In Section 2, we
present a new key agreement protocol for ad hoc environ-
ments. It is efficient both in communication and computa-
tion terms. Also, most of the exchanged messages are in-
dependent of each other, thus making it possible to collect
them before the group is defined. In Section 3 we present a
security analysis of the same and convert it into an authenti-
cated key agreement protocol. In Section 4, we present our
implementation results. Finally, we conclude in Section 5.

2. A New Group Key Agreement Protocol

We propose a new GKA protocol in this section. This
protocol is unauthenticated and secure against passive ad-
versaries only. We first introduce the notations used, il-
lustrate the basic principle of key exchange, followed by
detailed explanation of how it is employed to derive Ini-
tial Key Agreement (IKA), Join/Merge and Delete/Partition
procedures for ad hoc groups.

2.1. Notation

G: A subgroup (of prime order q with generator g) of some
mathematical group.

Mi: ith participant in the current session.
Ml: The group leader: A member that is elected to coor-
dinate group-level computation such as group-membership
and group key management. Can be chosen randomly or by
some application specific criteria.
ri: A random number (from [1, q − 1]) generated by mem-
ber Mi for each session. Also called the secret for Mi.
gri : The blinded secret for Mi, which is a public quantity.
M: The set of indices of the participants in the current ses-
sion (the session being considered).
J : The set of indices of the joining participants (joining the
current session).
D: The set of indices of the leaving participants (leaving the
current session).
x← y: x is assigned y.
x

r
← S: x is randomly drawn from the uniform distribution

S.
Mi −→ Mj : {M}: Mi sends message M to participant
Mj .

Mi
B
−→ M : {M}: Mi broadcasts message M to all par-

ticipants indexed byM.

2.2. A Two Round Protocol

Protocol Steps:
Round 1: Each Mi responds to the initial request, INIT ,
with its blinded secret gri to the initiator.
Round 2: The group composition is calculated and the
group leader Ml is elected and passed all the received data2.
Ml raises each joining member’s blinded secret to its se-
cret (rl) and broadcasts them along with the original con-
tributions to the group, i.e., it sends {gri , grirl} for all
i ∈M \ {l}.
Key Calculation: Each Mi checks if its contribution is in-
cluded correctly and then removes its secret ri from grirl to
get grl . The group key is

Key = grl ∗Πi∈M\{l}g
rirl = g

rl(1+
∑

i∈M\{l}
ri)

.

Note:
1) The original contributions gri are included in the last
message as they are required for key calculation in case of
group modifications (see below).
2) Even though Πi∈M\{l}g

rirl is publicly known, it is in-
cluded in key computation, to derive a key composed of
everyone’s contribution.
The protocol is formally defined in table 2. We now see
how this protocol can be used to derive IKA, Join/Merge
and Delete/Partition procedures for ad hoc networks.

IKA: Secure ad hoc group formation procedures typically
involve peer discovery and connectivity checks before a

2Note this is part of the group management protocol.



Round 0

∃j ∈M,Mj
B
−→M : {INIT}

Round 1

∀i ∈M \ {j}, ri
r
← [1, q − 1],Mi −→Mj : {gri}

Round 2

l
r
←M, rl

r
← [1, q − 1]

Ml
B
−→M : {gri , grirl}i∈M\{l}

Key = g
rl(1+

∑
i∈M\{l}

ri)

Table 2. IKA

group key is derived. Thus, a discovery request is issued
by a member (possibly multiple members) and all interested
peers respond. The responses are collected and connectiv-
ity checks are carried out to ensure that all members can
listen/broadcast to the group (see for instance [2, 10]). Af-
ter the group membership is defined, GKA procedures are
implemented to derive a group key. Such an approach is
quite a drain on the limited resources of ad hoc network de-
vices. Thus an approach which integrates the two separate
procedures of group formation and group key agreement is
required. The above protocol fits well with this approach.
Round 0 and Round 1 of the above protocol can take place
in the discovery stage as the exchanged messages are inde-
pendent of each other. In this way, blinded secrets, gri ’s, of
all potential members, Mi’s, are collected before the group
composition is defined. When the fully connected ad hoc
group is defined, a single message (Round 2 in table 2) from
the group leader, Ml, (using contributions of only the join-
ing members) helps every member to compute the group
key. Note that if in the group management protocol, the ini-
tiator and the leader are different entities, the leader will be
passed on all the blinded secrets (along with other manage-
ment data) during the group management stage. An exam-
ple is provided below.

Suppose M1 initiates the group discovery and initially
5 members express interest and send gr2 , gr3 , gr4 , gr5 and
gr6 respectively. Finally only 3 join because of connectivity
constraints. Suppose the members who finally join are M2,
M4 and M5. Then the group leader, say M1, broadcasts the
following message:{gr2 , gr4 , gr5 , (gr2)r1 , (gr4)r1 , (gr5)r1}

On receiving this message, each member can derive gr1

using his respective secret. Thus the key gr1(1+r2+r4+r5)

can be computed.

Join/Merge: Join is quite similar to IKA. Each joining
member, Mi(i ∈ J ), sends a JOIN request along with its
blinded secret, gri to the existing group. The group leader
(Ml) chooses a new random secret, rl, and sends all the
blinded secrets to the new group leader3, Ml′ . The new

3For each session, one may want to elect a new leader.

Round 0

∀i ∈ J , ri
r
← [1, q − 1],

Mi
B
−→M : {JOIN, gri}

Round 1

rl
r
← [1, q − 1],M =M∪J , l′

r
←M

Ml −→Ml′ : {gri}i∈M\{l′}

Round 2

l← l′, rl
r
← [1, q − 1]

Ml
B
−→M : {gri , grirl}i∈M\{l}

Key = g
rl(1+

∑
i∈M\{l}

ri)

Table 3. Join/Merge

group leader broadcasts a message similar to the round 2
message in IKA, i.e., all the blinded secrets and the blinded
secrets raised to his (new) secret. It is worth noting that
when a member, whose blinded secret is public, is chosen
as the group leader, he chooses a new pair of secret and
blinded secret. See table 3 for formal specification and be-
low for an example.

Suppose new members, M9 and M10 join the group
of M1, M2, M4 and M5 with their contributions gr9 and
gr10 respectively. Then the previous group leader (M1)
changes its secret to r∗1 and sends gr∗

1 , gr2 , gr4 , gr5 , gr9

to M10 (say the new group leader). M10 generates a new
secret r∗10 and broadcasts the following message to the
group: {gr∗

1 , gr2 , gr4 , gr5 , gr9 , gr∗
10

r∗
1 , gr∗

10
r2 , gr∗

10
r4 , gr∗

10
r5 ,

gr∗
10

r9}. And the new key is gr∗
10

(1+r∗
1
+r2+r4+r5+r9).

Delete/Partition: Delete is quite similar to Join. When
members leave the group, a new group leader is randomly
chosen from the remaining members and he changes his se-
cret contribution and sends an IKA Round 2 like message
to the group, omitting the leaving members’ contributions.
We omit the details.

3. Security Result

The protocol presented in the earlier section is provably
secure against passive adversaries in the model of [4], from
where the notations and definitions are taken.

Theorem 1: Let P be the protocol as defined above. Let A
be a passive adversary making qex = (qika+qjoin+qdelete)
Execute queries to the parties and running in time t. Then
Protocol P is a secure GKA protocol. Namely:

AdvA
P (t, qex) ≤ 2qex ∗ SuccDDH(t′)

where t′ ≤ t + qex|P|texp, texp is the time to perform an
exponentiation in G and |P| being the maximum number of
participants in the protocol.



Proof: Due to lack of space, we only give a sketch of the
proof. The complete proof will appear in the full version4.
We show that an adversary who achieves an advantage in
calculating the session key, can be used to build an attacker
∆ which gains an advantage in solving an instance of the
Decisional Diffie-Hellman (DDH) Problem. The Send and
Corrupt queries are not applicable as we are dealing with a
passive adversary and there are no long-term secrets. Thus
the only relevant queries are the Execute, Reveal and Test
queries. Assume the adversary A distinguishes the session
key with a probability non-negligibly greater than 0.5. We
construct from A a DDH attacker ∆ that receives as in-
put an instance D = {g, g1, g2, g3} and predicts if it is an
instance from (g, gra , grb , grarb) or (g, gra , grb , grc) with a
non-negligible advantage.

The Attacker ∆ feeds A with elements derived from the
instance D in the reply to the Execute query of the session
for whichAwill make the Test query. So ∆ picks at random
ctest from [1, qex] which is its guess for the number of the
Execute query, corresponding to the session, for which A
makes the Test query. For all other sessions, ∆ responds to
Execute queries with randomly generated data.

∆ replies to the Test query with a session key, sk, con-
structed using data from the instance D. sk is a valid ses-
sion key only if the instance D is a DH tuple. Thus, if the
adversary A correctly identifies sk as the session key, the
tuple (g, g1, g2, g3) is indeed a DH tuple otherwise it is a
random tuple. The success probability of ∆ is the probabil-
ity that it correctly guesses the session for which A makes
the Test query (1/qex), multiplied by the success probabil-
ity ofA. Thus if we denote by p the probability of adversary
A distinguishing the session key, the probability of success
of ∆ is: SuccDDH(t′) ≥ p/qex.

The running time of ∆ is bounded by the running time
of A and the time to perform at most |P| exponentiations
during qex queries.

3.1. An authentication compiler

In [6], Yung et al. introduced a scalable compiler which
transforms any GKA protocol P , secure against passive
adversary, to an authenticated GKA protocol P ′, secure
against an active adversary. It achieves this by enhancing
the protocol to include a (pre-)round where everyone broad-
casts its identity and a random nonce. Thereafter each mes-
sage is accompanied by a signature on the message, identi-
ties of the participants and their nonces (see [6] for details).
Then if P is a secure GKA protocol, then the protocol P ′ is
a secure Authenticated GKA protocol. Namely,

Theorem 2: AdvA′

P ′ (t, qex, qs) ≤ qs

2 ∗ AdvA
P (t′, 1) +

AdvA
P (t′, qex) + |P| ∗ SuccΣ(t′) +

q2

s
+qexqs

2k

4http://www.inria.fr/rrrt/index.en.html

where:
qex and qs are the number of Execute and Send queries
respectively.
t′ = t + (|P|qex + qs).tP ′ , tP ′ is the time to execute P ′.
AdvA′

P ′ (t, qex, qs): Advantage of an active adversary (A′)
against the authenticated protocol P ′, making qex Execute
queries and qs Send queries in time t.
AdvA

P (t′, 1): Advantage of a passive adversary (A) against
the protocol P , making 1 Execute query in time t′.
AdvA

P (t, qex): Advantage of a passive adversary (A) against
the protocol P , making qex Execute queries in time t′.
SuccDDH(t′): Success probability of an adversary against
an instance of the DDH problem in time t′.
SuccΣ(t′): Success probability of an adversary against the
signature scheme Σ in time t′.
and k is the security parameter.

3.2. Authenticated protocol

Thus applying the above compiler to our protocol yields
a 3-round authenticated GKA protocol, P ′ with the follow-
ing security reduction:

Theorem 3: AdvA′

P ′ (t, qex, qs) ≤ (qs + 2qex) ∗ SuccDDH

(t′) + |P| ∗ SuccΣ(t′) +
q2

s
+qexqs

2k

4. Implementation

To test the performance of this new GKA protocol, we
incorporated it in the group management protocol of [2].
The group management of [2] consists of three communi-
cation rounds: DISC, JOIN and GROUP . The DISC
stage initiates the group formation by calling for interested
participants. Each interested participant responds with a
JOIN message. The group membership is defined and
announced by the group leader (chosen randomly) by the
GROUP message. The design of the new GKA protocol
allowed us to piggy-back GKA data on group management
messages, thus member contributions towards the group key
are collected during JOIN messages while the GROUP
message carries the message from the group leader which
enables everyone to compute the group key. Thus no ad-
ditional communication round is required to derive a group
key, irrespective of the group size. It is worth mentioning
that it would not have been possible with most of the pro-
tocols presented in table 1, as the messages sent by group
members are dependent on messages sent by other mem-
bers. A comparison of the computation times on a device in
the absence and presence of GKA procedures is plotted in
table 4. The data shown is for an experimental setup con-
sisting of laptops (Compaq 500 Mhz running Linux) and
palmtops (Compaq ipaq 400MHz running Linux familiar
0.7). All random contributions for the group key were cho-
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sen from a Diffie-Hellman group of prime order of 1024
bits. The code was written in Java except the exponentia-
tion function which was implemented in native code with
the GMP library 5. The graphs in table 4 plot computation
time (in milliseconds on Y axis) against group-size with and
without GKA. There are separate plots for the cases when
the device was a leader/non-leader. Leader for group man-
agement was randomly chosen. As expected, the time for
non-leader members increases (when employing GKA pro-
tocol) by an almost constant factor (order of time to per-
form two 1024 bit exponentiations) , while for a leader it
increases linearly as the group size increases. As most ad
hoc networks are expected to be composed of devices of
unequal computing power, more powerful devices (like lap-
tops) can assume the role of a leader more often.

5. Conclusion

We have proposed a new group key agreement proto-
col, particularly well suited to ad hoc networks, and secure
against a passive adversary. It is efficient in the number of
rounds (only two rounds, the first round may be executed

5http://www.swox.com/gmp/

along with group management procedures), and also effi-
cient in computational terms. It can be, using Yung et al.
compiler, transformed into a three round protocol secure
against an active adversary. This adds to the cost of the
protocol, by adding one round of broadcasts.
The protocol is simple and we have provided a security
proof in the framework of [4], using the standard model
and the Decisional Diffie-Hellman assumption in any group.
Experimental results show that our protocol results in a
reasonable computational overhead during group formation
with hardly any communication burden. Further reductions
in terms of computation overhead can be made by using El-
liptic curve groups.
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