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Abstract. The new algorithms and complexity estimates

are considered

FFT AS RESIDUES CALCULATION

This structure of FFT ensues from definition of the
Fourier Transform. If we write a given input vector

. n-1 t
ta .2, "u‘aﬂ_l) as a polynomial a(x) = z:=oa1x then

A atady = atximodx - £
Let all elements of the field be written in a random
order b ,b , ...,b , where b # b for i#j, b € GF(q) Then
0’1 q-1 i ] i

]

define b1 as the root of polynomial f:o = (x-bl) at the lowest

level j = 0 of a polynomial tree. Then for any j we calculate

{)+1)

all polynomials fk of the next level of a dichotomic tree

Cy+1y _ .03y (1) _ e
where fk = £, *f2k+1 ., and k = 0,1,...,q%2 . S0 at the

f

level j we have a mutually prime polynomials of degree Ej
expandable over GF(g).

Procedure FFI: Ré”’: atx);
For f:= m to 1 do begin For k=0 o (2" -1y do
. (=13 _ _(§) {1 -1) (3-13 _ 1) (5-1)
begin Rzk = Rk mod fak' R2k+1 = Rk mod f2k+1
end end;
It is clear that R - ab ) =4 . D
k x k

Asymptotic estimates of the complexity of +this Procedure
FFT over any finite field had been given in [1] where had been

used the general idea of residues computation from [2] and fast
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method of multiplication of long integers from [3] and idea of
fast polynomiel multiplication over a surrogate field froem [417.
The complexity of general procedure FFT in binary operations

and aver any finite field of characteristic 2 and for the case

when m = log g is Cb= 0{g (log q)4)

To make the procedure FFT of residue type practicable for
a finite fields of reasanable size it is desirable to find =a
tree of modules witch satisfy to limitations on weights or

values of coeffigients.
THE CASE OF BINARY POLYNOMIAL IREE

If we take cyclotamic classes of the field as roots of
polynemials then the first level of a tree is formed by only
binary irreducible polynomials. Now it is clear how to design
any dichotomic tree of binary polynomials for higher levels. At

zero level of the tree we use nonbinary modulii of degree 1

The procedure of residue calculation :
Fart 1: Recurrent calculation of residues by binary modul:ii
from level m to 1
Part 2: Polynomisl evaluaticn over the points of a cyclotomic
classes

To implement calculations for binary modulii in Part 1
(3} )

we can split all residues Rk

on bit slices. Now we can

calculate next residues in each bit slice separately by using
a fast convoluiions of binary polynomials [1-41,
Let u(x) and v(x) be binary polynomials of degree n or

less. Define the associate integer U over the base 2" as

H=ZT:;2miu1 where u  are binary coefficients of ulx) and the
same for $. Then 3=[U-B] = ZTZ;Eml(Zimoda) is the associate

integer to product [u(x) v(x)] when m » Blog(n)h For large n we
can use the method [3) of multiplying integers of length

> 2nlog(n) with the binary complexity O¢nlog® (nylogclogin)y).

The total binary complexity estimate of Parti1 of the procedure
[21 for m bit slices is
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Ocnlog* cnylogcloginyr)y, ne2®
To estimate the complexity of Part 2 we also use bit
splitting. Let u(x) be a polynomial over GF(2™) of degree less
m. Then ”(X)=z!31u1(x’ where (8 .-B,_,% is the finite field

basis and ui(x) are binary polyromials. [f we calculated ul(?)
o 2-1 2]
for some YEGF(2") then u(?)=zlﬂiul(?) and u(y ’=Z:B;‘u;(?”

The total binary complexity estimate for Part 2 of +the
procedure is O(nlogs(n))”

Theorem: over any given finite field GF(2™) there exists a
FFT(n) procedure of binary complexity Cb=0(nm4) where n<z2".
The considered FFT method is close to [5] but has betier

asymptotic behavior.
THE CASE OF AFFINE POLYNOMIAL IREE

One eof important examples of sparse polynomials is the
class of affine polynomials. An affine polynomial over GF(qm)is

defined as the sum of linearized polynomial [(x) and field
1
element 8 where L(x)=}, " 1. x% , 1 € 6F(q"). The roots of L(x)

form a linear space denoted as 6 When n<m then 6 is a subspace

of GF(qm) cf dimensien n. If EGGF(qm)\G ther shift 6 by £ is an
affine subspace of GF(qm) and its characteristic polynomial is
Blx)= [(x+£)=L(x)+L(£). Now we see that the characteristic
polynomials of all cosets of a 6 have L(x) as the linearized
part. HNow we can construct a tree of affine polynomials over
the given finite field

The method: Let us teke any basis of the given GF{q) and

delete any one element from this basis. It is the basis 31 ef =&

subspace of GF(q" ). All elements of the subspace are roots of a
linearized polynomial I® %’ at the (m-1)-st level of the tree.
Now we can compute this polynomial and its affine shifts.

To bild a nested structure of subspaces we take B1 and
delete any one element from. Now we have the basis 52 and can

compute the polynomial L<m_2) and all its affine shifts.

We continue this procedure up to the zero level of the
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iree. The similar procedure may be realized from lower levels

to the upper levels of the tree

Calculation of L', Let us denote as Bij the elements of
the basis B8 . The dimension of Bl is m-i. As all Blj are roots
of I(m_l] by definition then we have the system of linear

equations of order m-1i

L(m—l)Bqu_‘_‘[‘(m—l)ﬁql+I."_H_(m—l}qu_l-‘l (m—l)qu_‘= 0

4] 1) 1 1] m-1-1"11} m-1 14 !
for j=1,m-1

with unknown values L;m-i),L;m—‘),.“.lifzii and L;T;i)= 1 by

definition
The affine shifts of L
Bi is an element of expansion Bt to 81-1 and o € GF(g). The

(m-4) are L(m—l)+ d*L(m-—l) (Bi) where

affine shifts of I(mFL) in other subtrees are

1
I‘m—lJi-E dj*'[(m_l’(ﬁj)
j=1
In the most importent case of GF(2®) when m is any

integer we have a dichotomic tree of affine polynomials,

Theorem. For any GF(2™) there exist a dichotomic tree of
affine polinomials of the height = with identical 1linearized
part of degree 2! at i-th level, i=0,...,m-1 The upper bound
of the number additions and multiplications aver GF(eg™) in FFT
procedure generated by this tree is zmnz(m2+m—4)+1”

Note that this estimate is close to the estimate in (8]
but in [61 there is no constructive procedure of a affine

tree design.

Mow consider the special case of m = 2. In this case all.

linearized paris are binary polynomials. The design of the
linearized part is connected very close with sguaring of the

field as expanded field generation procedure. For GF(2) we have

[0 02 and 1997 cx. For 6F(2%) we have 1'%’ = x*«x. For 6F(2h
we have 1(4)= L(z’(L(a)) = x15+x, 1(3’= xa+x“+xz+x . Let us
denote as {L(J)} the sequence L(j),“h., L(D}h Now we see that

1+1 i 1 1+1 1 i
cetth e ey g 1[L(z )} _ N et us

name this procedure as tree generation by sgquaring. To cumpleté

the tree design we c¢alculate all affine shifts as in the
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general procedure.
At f-th level of the tree the affine polinomials adjacent

to one of them with free member £ at the (i-1)-th level have a

free members as the roots of the equation x2+x+E. Because sum

of this roots is equal 1 only one residue has to be calculated

with multiplications over finite field from the couple of

residues connected with this roots. Note that the total set of
m-1 1

free members of the tree are roots of 1(1’(x)=zl_o x° and

therefore has zero trace. So the number of multiplications over
the field for this case is less than 2" '{m-1). This estimate
is also very close to the estimate in [6]

The number of additions is proportional to the weight of
linearized part of the tree. As it follows from the tree design

1°q(3)‘ So number of additions is less

the weight is equal m

than 2 p'°9¢3),
Theorem : For m=p-2* there exist a dichotomic tree

expanded from affine tree over GF(2") by squaring procedure

The FFT procedure over this tree has multiplicative complexity

less than 2m(m+M$3k) and additive complexity less than
am(m+M;3k) where Mp and Ma are multiplicative and additive

complexities over GF(2P).
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