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Abstract

The product code of two Reed-Solomon codes can be regarded as an
evaluation codes of bivariate polynomials, whose degrees in each variable
are bounded. We propose to decode these codes with a generalization
of the Guruswami-Sudan interpolation-based list decoding algorithm. A
relative decoding radius of 1 − 6

√
4R is found, where is the rate of the

product code. We also discuss a generalization to the M variables base,
where we get a figure of 1 − M(M+1)

√
R. Finally the Pellikaan and Wu

decoding algorithm is used to improve the decdoing radius.

1 Introduction

The product code C1 ⊗C2 of two codes C1 and C2 is the set of matrices whose
every row belongs to C1 and every column belong to C2. In the case when C1

is a Reed-Solomon code of dimension k1, minimum distance d1 = n − k1 + 1,
defined as an evaluation code over the set A = {α1, . . . , αn1} ⊂ Fq and and
C2 a Reed-Solomon code of dimension k2, minimum distance d2, defined as an
evaluation code over the set B = {β1, . . . , βn2} ⊂ Fq, we get an evaluation code
defined by the evaluation map:

ev2 : Fq[X, Y ] → (Fq)
n1n2

f(X,Y ) 7→ (f(αi, βj), (i, j) ∈ {1 . . . n1} × {1 . . . n2}) .

And the code is defined as

C1 ⊗ C2 = ev2(L)

where
L = {f ∈ Fq[X, Y ],degX f < k1 and degY f < k2} .
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This code has dimension k1k2 and minimum distance d1d2. A polynomial in L
has the form

f =
k′1∑

i=0

k′2∑

j=0

fi,jX
iY j ,

where k′1 = k1 − 1 and k′2 = k2 − 1. We also defines the rates R1 = k1
n1

and
R2 = k2

n2
, and R = R1R2 is the rate of the product code.

It is well known that the half the distance bound is not always attainable
by iteratively decoding the component codes. For example, if the decoding
algorithms for the row and column component codes are capable of correcting
(d1 − 1)/2 and (d2 − 1)/2 errors respectively, and an error rectangular block
of ((d1 − 1)/2 + 1)((d2 − 1)/2 + 1) occurs, iterative decoding fails although the
number of errors is less than or equal to (d1d2−1)/2. Thus it is natural to wonder
wether the algebraic list-decoding algorithms [1] can be generalized to these
codes. This is furthermore motivated by another multivariate generalization,
which gives a very high decoding radius [3, 2]

2 The algorithm and its analysis

We need this preliminary Theorem, stated withour proof, before introducing
the algorithm.

Theorem 1 The number of zeros, counted with multiplicites, of a non zero
polynomial Q = Q(X, Y ) over the set {(αi, βj); (i, j) ∈ {1 . . . n1} × {1 . . . n2}}
is bounded by wdegn2,n1

Q.

Let y = (yi,j)(i,j)∈{1...n1}×{1...n2}, be the word to be decoded. We want to
recover codewords at distance t, or equivalently find those f = f(X,Y ) ∈ L
such that

µ = #{(i, j)|f(αi, βj) = yi,j} ≥ n1n2 − t.

Similarly to the Guruswami-Sudan decoding algorithm, we will look for a poly-
nomial with one more variable Y , Q = Q(X,Y,X) such that

1. Q 6= 0

2. wdegn1,n2,n1k′2+n2k′1
Q < ∆, where d is auxiliary, to be determined

3. mult(Q; (αi, βj , yij)) = m, (i, j) ∈ {1 . . . n1} × {1 . . . n2}, where m a pa-
rameter of the algorithm. Note at this is linear algebra problem, whose
unknowns are the cofficients of Q.

We will show that if f is solution to the decoding problem, then Q(X, Y, f) = 0.
We need three Lemmas to analyse the algorithm.

Lemma 1 Let D be the (n2, n1)-weighted degree of Q(X, Y, f). If mµ > D,
then Q(X,Y, f) = 0.
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Proof Direct consequence of Theorem 1.

Lemma 2 The (n2, n1)-weighted degree of Q(X,Y, f) is less than or equal to
the (n1, n2, k

′
1n2 + k′2n1)-weighted degree of Q(X,Y, Z).

Lemma 3 Let Q = Q(X, Y, Z) be of (n1, n2, n1k
′
2 + n2k

′
1)-weighted degree less

than ∆, than the number N(∆) of monomials of Q satisfies

N(∆) <
1
6

∆3

n1n2(n1k′2 + n2k′1)
(1)

Theorem 2 Assume that the distance between y = yi,j and evf is less than or
equal to t. Then one construct a polynomial Q(X,Y, Z) such that Q(X,Y, f) =
0, provided that

t ≤
⌊
n1n2

(
1− 3

√
(R1 + R2)(1 +

1
m

)(1 +
2
m

)

)
− 1

m

⌋
(2)

Proof On one hand, to ensure that a non zero Q(X,Y, Z), of (n1, n2, n1k
′
2 +

n2k
′
1)-weighted degree ∆, can be found we must have (more unknowns than

equations)
1
6

∆3

n1n2(n1k′2 + n2k′1)
> n1n2

m(m + 1)(m + 2)
6

(3)

On the other, to ensure that Q(X, Y, f) is identically zero, one must have

mµ = m(n1n2 − t) > ∆. (4)

Combining these two inequalities gives (2).

3 The M variables case

One can work out the case of M variables. For simplicity, we assume that all
the codes are the same, that is to say, we take C to be the Reed-Solomon code
with support S = {α1, . . . , αn} ⊂ Fq, and dimension k, and we get

CM = C ⊗ C ⊗ . . . C =
M⊗

i=1

C.

The corresponding evaluation map is

evM : Fq[X1, . . . , XM ] → (Fq)
nM

f(X1, . . . , XM ) 7→ (f(xi1 , . . . , xiM
))(xi1 ...,xiM

)∈Sm

and the space L of polynomials to evaluate is:

L =
{
f ∈ Fq[X1, . . . , XM ], degXi

f < k; i ∈ {1 . . .m}} .

We get

3



Theorem 3 Let the received word be y = yi1,...,iM
∈ FnM

q , and let f = f(X1, . . . , XM )
be such that d(evMf, y) ≤ t, then, provided that

t

nM
≤ 1− M+1

√
MM+1

M !
·R · (1 +

1
m

) · · · (1 +
M

m
)

then one can construct a polynomial Q(X1, . . . , XM , Y ) such that Q(X1, . . . , Xm, f) =
0.

4 Decoding with Pellikaan-Wu interpretation

Let us consider the q-ary Reed-Muller code, with m variables, of order r, with
r < q, denoted RMq(r,m). It is defined by the same evaluation map evM , but
the space L of polynomials to evaluate

L = {f ∈ Fq[X1, . . . , XM ]; deg f ≤ r} ,

where deg denotes the total degree.
We consider the decoding algorithm of Pellikaan and Wu [4], based on the

interpretation of (shortened) Reed-Muller as cyclic codes. They show that it is
possible to decode up to qn

(
1−

√
r
q

)

One can see that, when {α1 . . . , αn1} = {β1, . . . , βn1} = Fq, the code C1⊗C2

is a subcode of RM(k1 + k2, 2). Applying the Pellikaan-Wu algorithm, we get a
decoding radius of

t < q2
(
1−

√
R1 + R2

)
.

For the M -variable case, the code Cm is a subcode of RMq(R1M, m), and
we get a decoding radius of t < qM

(
1−√MR1

)
.
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