
Mechanized metatheory revisited (abstract)

Dale Miller

Inria & LIX/École polytechnique
dale.miller@inria.fr

Over a decade ago, the POPLmark challenge [2] suggested that the theorem proving commu-
nity had tools that were close to being usable by programming language researchers to formally
prove properties of their designs and implementations. The authors of the POPLmark challenge
looked at existing practices and systems and urged the developers of proof assistants to make
improvements to existing systems.

Our conclusion from these experiments is that the relevant technology has developed
almost to the point where it can be widely used by language researchers. We seek
to push it over the threshold, making the use of proof tools common practice in
programming language research—mechanized metatheory for the masses. [2]

In fact, a number of research teams have used proof assistants to formally proved significant
properties of entire programming languages. Such properties include type preservation, deter-
minancy of evaluation, and the correctness of an OS microkernel and of various compilers: see,
for example, [9, 10, 11, 15].

As noted in [2], the poor support for binders in syntax was one problem that held back
proof assistants from achieving even more widespread use by programming language researchers
and practitioners. In recent years, a number of extensions to programming languages and
to proof assistants have been developed for treating bindings. These go by names such as
locally nameless [4, 18], nominal reasoning [1, 5, 17, 19], and parametric higher-order abstract
syntax [6]. Some of these approaches involve extending underlying programming language
implementations while the others do not extend the proof assistant or programming language
but provide packages, libraries, and/or abstract datatypes that attempt to hide and orchestrate
various issues surrounding the syntax of bindings. In the end, nothing canonical seems to have
appeared since the POPLmark challenge was made: we are left with a simple grid that rates
different approaches on various attributes [16].

Clearly, mature and extensible proof assistants, such as, say, Coq, HOL, and Isabelle/HOL
can be extended to deal with syntactic challenges (such as bindings in syntax) that they were
not originally designed to handle. At the same time, it seems plausible and desirable to pursue
approaches to the problem of bindings in syntax and metatheory more generally.

In this talk, I will argue that bindings are such an intimate aspect of the structure of
expressions that they should be accounted for directly in the underlying programming language
support for proof assistants. High-level and semantically elegant programming language support
can be found in rather old and familiar concepts. In particular, Church’s Simple Theory of
Types [7] has long ago provided answers to how bindings interact with logical connectives and
quantifiers. Similarly, the proof search interpretation [13] of Gentzen’s proof theory [8] provides
a rich model of computation that supports bindings. I outline several principles for dealing
computationally with bindings that follow from their treatments in quantificational logic and
sequent calculus. One of the most central principles about bindings is that bound variables never
become free: instead bindings can move from term-level bindings (λ-abstractions) to formula-
level bindings (quantifiers) to proof-level bindings (eigenvariables and nominal constants) [12,
14] I will also describe some implementations [3, 12] of these principles that have helped to
validate their effectiveness as computational principles.

1



Mechanized metatheory revisited D. Miller

Acknowledgments. This work has been funded by the ERC Advanced Grant ProofCert.

References

[1] Brian Aydemir, Aaron Bohannon, and Stephanie Weirich. Nominal reasoning techniques in
Coq. In International Workshop on Logical Frameworks and Meta-Languages:Theory and Practice
(LFMTP), pages 69–77, Seattle, WA, USA, August 2006.

[2] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C. Pierce,
Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve Zdancewic.
Mechanized metatheory for the masses: The POPLmark challenge. In Theorem Proving in Higher
Order Logics: 18th International Conference, number 3603 in LNCS, pages 50–65. Springer, 2005.

[3] David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Nadathur, Alwen Tiu,
and Yuting Wang. Abella: A system for reasoning about relational specifications. Journal of
Formalized Reasoning, 7(2), 2014.

[4] Arthur Charguéraud. The locally nameless representation. Journal of Automated Reasoning, pages
1–46, May 2011.

[5] James Cheney and Christian Urban. Nominal logic programming. ACM Trans. Program. Lang.
Syst., 30(5):1–47, 2008.

[6] Adam Chlipala. Parametric higher-order abstract syntax for mechanized semantics. In James Hook
and Peter Thiemann, editors, Proceeding of the 13th ACM SIGPLAN international conference on
Functional programming, ICFP 2008, Victoria, BC, Canada, September 20-28, 2008, pages 143–
156. ACM, 2008.

[7] Alonzo Church. A formulation of the Simple Theory of Types. J. of Symbolic Logic, 5:56–68, 1940.

[8] Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The Collected
Papers of Gerhard Gentzen, pages 68–131. North-Holland, Amsterdam, 1935.

[9] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey
Tuch, and Simon Winwood. seL4: Formal verification of an OS kernel. In Proceedings of the 22nd
Symposium on Operating Systems Principles (22nd SOSP’09), Operating Systems Review (OSR),
pages 207–220, Big Sky, MT, October 2009. ACM SIGOPS.

[10] Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115, 2009.

[11] Donald MacKenzie. Mechanizing Proof. MIT Press, 2001.

[12] Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cambridge University
Press, June 2012.

[13] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a foun-
dation for logic programming. Annals of Pure and Applied Logic, 51:125–157, 1991.

[14] Dale Miller and Alwen Tiu. A proof theory for generic judgments. ACM Trans. on Computational
Logic, 6(4):749–783, October 2005.

[15] J. Strother Moore. A mechanically verified language implementation. J. of Automated Reasoning,
5(4):461–492, 1989.

[16] The POPLmark Challenge webpage. http://www.seas.upenn.edu/~plclub/poplmark/, 2015.

[17] François Pottier. An overview of Cαml. In ACM Workshop on ML, ENTCS, pages 27–51, Septem-
ber 2005.

[18] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar, and Rok Strnǐsa. Ott: Effective tool support for the working semanticist. Journal of
Functional Programming, 20(01):71–122, 2010.

[19] Christian Urban. Nominal reasoning techniques in Isabelle/HOL. Journal of Automated Reasoning,
40(4):327–356, 2008.

2


