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Over a decade ago, the POPLmark challenge [2] suggested that the theorem proving commu-
nity had tools that were close to being usable by programming language researchers to formally
prove properties of their designs and implementations. The authors of the POPLmark challenge
looked at existing practices and systems and urged the developers of proof assistants to make
improvements to existing systems.

Our conclusion from these experiments is that the relevant technology has developed
almost to the point where it can be widely used by language researchers. We seek
to push it over the threshold, making the use of proof tools common practice in
programming language research—mechanized metatheory for the masses. [2]

In fact, a number of research teams have used proof assistants to formally proved significant
properties of entire programming languages. Such properties include type preservation, deter-
minancy of evaluation, and the correctness of an OS microkernel and of various compilers: see,
for example, [9, 10, 11, 15].

As noted in [2], the poor support for binders in syntax was one problem that held back
proof assistants from achieving even more widespread use by programming language researchers
and practitioners. In recent years, a number of extensions to programming languages and
to proof assistants have been developed for treating bindings. These go by names such as
locally nameless [4, 18], nominal reasoning [1, 5, 17, 19], and parametric higher-order abstract
syntax [6]. Some of these approaches involve extending underlying programming language
implementations while the others do not extend the proof assistant or programming language
but provide packages, libraries, and/or abstract datatypes that attempt to hide and orchestrate
various issues surrounding the syntax of bindings. In the end, nothing canonical seems to have
appeared since the POPLmark challenge was made: we are left with a simple grid that rates
different approaches on various attributes [16].

Clearly, mature and extensible proof assistants, such as, say, Coq, HOL, and Isabelle/HOL
can be extended to deal with syntactic challenges (such as bindings in syntax) that they were
not originally designed to handle. At the same time, it seems plausible and desirable to pursue
approaches to the problem of bindings in syntax and metatheory more generally.

In this talk, I will argue that bindings are such an intimate aspect of the structure of
expressions that they should be accounted for directly in the underlying programming language
support for proof assistants. High-level and semantically elegant programming language support
can be found in rather old and familiar concepts. In particular, Church’s Simple Theory of
Types [7] has long ago provided answers to how bindings interact with logical connectives and
quantifiers. Similarly, the proof search interpretation [13] of Gentzen’s proof theory [8] provides
a rich model of computation that supports bindings. I outline several principles for dealing
computationally with bindings that follow from their treatments in quantificational logic and
sequent calculus. One of the most central principles about bindings is that bound variables never
become free: instead bindings can move from term-level bindings (λ-abstractions) to formula-
level bindings (quantifiers) to proof-level bindings (eigenvariables and nominal constants) [12,
14] I will also describe some implementations [3, 12] of these principles that have helped to
validate their effectiveness as computational principles.
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