Canonical Sequent Proofs via Multi-Focusing

Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin

Abstract The sequent calculus admits many proofs of the same coaonldisat
differ only by trivial permutations of inference rules. In ordeeliminate this “bu-
reaucracy” from sequent proofs, deductive formalisms sscproof nets or natural
deduction are usually used instead of the sequent caldoluthey identify proofs
more abstractly and geometrically. In this paper we recpeemutative canonicity
directly in the cut-free sequent calculus by generalizimgubed sequent proofs to
admit multiple foci, and then considering the restrictegissl ofmaximally multi-
focused proofs. We validate this definition by proving a bijection to the isahown
proof-nets for the unit-free multiplicative linear logend discuss the possibility of
a similar correspondence for larger fragments.

1 Introduction

Sequent calculus proofs are much less proof objects thgratiedraces of the com-
putation of a more abstract proof object. In particular, itifernece rules of the
sequent calculus are minute and there are many choicesandbeof their applica-
tion that seem equivalent although, formally, they resutlifferent sequent proofs.
One way to get a more abstract notion of proof is to declarettimcut-free proofs
areequivalent if it is possible to permute the inference rules in one to betdther.
Such equivalence classes are unsatisfactory for at leastamsons. First, com-
puting permutations of inference rules might require exang and reorganizing
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arbitrary parts of a proof: attempting to move a given infeeerule to the bottom
of a proof could cause changes to many parts of the proof.réesince equiva-
lence classes are not, themselves, inductive structanmedjdr arguments involving
inductive reasoning over proof structures cannot be agm@asily to equivalence
classes. Many people working in proof theory and parti¢uldrose interested in
the problem of thédentity of proofs discard sequent proofs for more abstract proof
structures like natural deduction proofs or proof netshise later objects, a more
geometric structure of proofs requires less sequenttaizaf inference rules and
allows one to work on proofs more abstractly.

We shall argue in this paper that one does not need to dideasktjuent calculus
in order to factor out many of these irrelevant sequentsilins of inference rules.
We shall show that there are, in fact, normal forms of seqpemfs that provide
unigue representatives of their permutative equivaletasses. To be concrete, we
shall assume a setting of the standard cut-free sequentiesiior multiplicative-
additive linear logic (MALL), including units and literal#otivating the construc-
tion of canonical representatives is as follows. A first $sdp consider onlyocused
proofs [2], with a strict alternation of negative (invertible) apdsitive (focused)
phases. Focused proofs systems can be used to distinguisbelmenicro rules,
i.e., introduction rules in the ordinary sequent calculus, dr&ntacro rules that
comprise an entire focusing phases and correspond to tloelirttion ofsynthetic
connectives [5]. A first abstraction is then to consider proofs as builfigm macro
rules introducing synthetic connectives. Unfortunatelis layer of abstraction does
not yield canonical representatives of equivalence ctasisee the selection of foci
is still sequentialized even when the selection order &awmant. Such parallelism
can be captured by the addition of timelti-focus rule that permits focusing on sev-
eral formulas within one phase. If we then require that sudattiffocus inference
rules select a “maximal focus” then, as we show in Section el have achieved
canonical representatives of equivalence classes ofqroof

Proof nets for MLL and MALL have been used also as abstrastairthe class
of cut-free proofs under the equivalence of permuting eriee rules. We show
that maximally multi-focused sequent proofs (modulo thakvéso-polar” equiva-
lence) are in one-to-one correspondence with MLL proof f@tsve show how to
uniguely associate a maximally multi-focused proof to anLMiroof net. We also
discuss proof nets in MALL without units [10, 12] and for otlie|agments of lin-
ear logic: maximal multi-focusing proofs should also beleyyble in various other
richer logics where the nature of proof nets is less well ige or satisfying, such
as linear logic with units and exponentials.

This paper is organized as follows: in Sec. 2 we recall theisegcalculus for
MALL. In Sec. 3 we present our multi-focal generalizationAsfdreoli’'s focusing
calculus. In Sec. 4 we define the notionrodiximality and prove the key canonic-
ity result (Theorem 7). In Sec. 5 we exhibit a one-to-oneespondence between
maximally multi-focused proofs and proof-nets for MLL wtlit units.
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Fig. 1 Sequent calculus for MALL. In the; rule,i € {1, 2}.
2 Sequent calculus for MALL
MALL formulas are defined by the following grammar:
AB,...:=al a‘'| AeB| 1| A¥B| L| A&B| T| Ae@B| 0

A literal is either an atomic formula, written using minuscule schemeables
(& b,...), oritis a negated atomat,b*,...). As usual, MALL formulas are as-
sumed to be in negation-normal form, and the paisy), (1, 1), (&, ®), and (7, 0)
are de Morgan dualsg, (A® B)* = A % B*, etc. The sequent calculus for MALL
uses one-sided sequents of the ferii, where the context is a multiset of formu-
las. Figure 1 contains the standard proof rules for suchesggU9].

Script majuscule letter®, Z, ... are used to denote proofs and the expression
D+ I signifies thatp is a proof oft I'. It is well-known that the following cut and
(non-atomic) initial rules are admissible.

A kA, At
[ V|

I*

c and L AAf

Local permutations of inference rules form a natural retatbetween cut-free
proofs [13]. For example, in a proof of the form

E+4,B,C F+r4,B,D

DA F4,B.C&D & )
+FI,L4,A®B,C&D '
the order of thes and & rules may be locally switched to yield the proof
D+ T,A ‘ZI—A,B,C@ DrT,A TI—A,B,D@
+I,4,A® B,C FI,4,A® B,D 2 2)

+rI,LA,A®B,C& D

This switching causes the progf to be duplicated in (2), but does not alter the
constituent sub-proof®, £ and F. We denote a site of a local permutatior,,

a pair of neighbouring inference rulesfollowed byr, asry/ry; for example, (1)
ends with a &® along the right branch of the final rule.



Consider, instead, the following proof figures.
DrI,A FA4,B, T T

TAiAeBT  ©° rTAA®BT " ®)

Moving from left-to-right can be seen as moving tineinference rule below the

® rule: in the process the entire proofis deleted. Since we wish to establish an
equivalence based on permutations, moving from righefbdan be seen as “cre-
ating” the proofD. While deletion of proofs can be seen as problematic when one
is attempting to capture the “essence” of proofs, creatocertainly problematic

in this sense. Thus, we introduce the following restricbhorpermutations to avoid
this kind of proof creation within equivalent proofs.

Definition 1 Two proofs © and £ + I' are iso-initial, written © ~ £, if each can
be rewritten to the other using local permutations andthe set of initial sequentsin
both » and £ are the same. The sets under consideration are of pairs of formula
OCCUrrences.

The additional restriction on the sets of initial sequetitsas the deletion and
creation of subproofs during permutation only when suctofsrare without initial
rules. For ther-free fragment of MALL, this restriction is trivial, as alepmutations
preserve the set of initial sequents. However, becausan arbitrarily rewrite a
branch of a proof, allowing all permutations withwould identify too many proofs.
This restriction is further motivated by the observatiamfrunit-free multiplicative
proof nets, where the axiom links (which correspond to tlitéairsequents) contain
the essential dynamics of a proof. These dynamics shouldbe&cuppressed by
trivial permutations. Note that because we don'’t allow elimutations ofr, we are
decidedly not equating all proofs that are equated in thedstal categorical model
of MALL proofs; i.e, T is no longer a terminal object in a suitableautonomous
category where & is the Cartesian product.

3 Multi-focusing for MALL

In the remainder of this paper, we shall consider only ceg-foroofs.

The formulas of MALL can be classified, based on their pertiwgafinities or
polarity, into the following two classes.

(positive) PQ,... == al AeB| 1| AeB| 0

(negative) N,M,... == a'| A®B| L| A&B| T
A logical rule that applies to a positive (resp. negative)rfola will henceforth
be called a positive (resp. negative) rulerifis a positive rule and; is a nega-
tive rule, therry/r; is an instance of the local permutation class/peg; similarly
for pogpos, negneg, and nefpos. All pogpos and nefmeg permutations are valid.
Furthermore, nggos permutations are also valid since the negative rulesnare
vertible and, hence, may be applied arbitrarily early (negudbottom-up). From a
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Fig. 2 Multi-focusing sequent calculugr. The contexts on the left gfandff contain only positive
formulas or negated atoms. In the [MF] rulecontains at least one positive formula. In thef]R
rule, Ais positive or a negated atom. In the|[Rule, 4 is all negative. Ingi], i € {1,2}.

proof-search perspective, the negative rules are, thesefgynchronous since their
application does not depend on the structure of the sidextmtThe positive rules,
on the other hand, are non-invertible and, therefgpachronous: their application
depends on the structure of the remaining context and theeseg of rules that
have been applied lower in the proof.

Andreoli [2] presented #ocused proof system (for all of first-order linear logic)
in which proofs have two phases. When reading proofs from dnelasion to the
premises, docal phase begins by granting focus to a positive formula from the
available positive formulas: this focus can be indicateglieitly in the sequents
by writing them as- I" | A whereA is under focus. Once the focused formula be-
comes negative,e., the sequent is of the formI" || N, the focus iseleased and
the search enters the negative (asynchronous) phase wkaredative connectives
are decomposed; this phase is indicated in sequents ofrtime-fd ) 4. This phase
separation is complete for cut-free proafs,, every provable sequent has a focused
proof [2, 16].

In this paper, we generalize this usual focusing strateghéu in the following
way: when deciding to focus, we may focus on more than ondipagormula at
a time,i.e., our positive sequents are now of the formt || 4 (with 4 non-empty).
All the formulas under focus are decomposed until only negdbrmulas remain
in focus; then, the focus is released and the negative fasnale decomposed in
the negative phase. The rules of this calculumolfti-focused proofs are presented
in Figure 2.

Definition2 If D+ ' 4 or D+ I' | 4, then we write | D] for that proof of + I', 4
that replaces every sequent of the form+ " 4" or + I J A’ in D with v I, 4’,
elides all instances of [Rf)], [RU] and [MF], and renames all other rules to their
unbracketed forms ([®] to ®, etc).

Theorem 3 (Correctness of multi-focusing)

L Iforrdorif D+ T\ 4,then | D]+ I, 4 (soundness).
2. If v ', thent+ - ) I” (completeness).

Proof. Soundness isimmediate. Completeness follows by obsetivaitd\ndreoli’s
focusing calculus for MALL is recovered mar by restricting the context in [MF]



to a singleton, and then using the analogous completeneseeth there [2, 16].
Note that the proof in [2] is for full first-order, multiplitiae-additive-exponential
linear logic. O

Given the phase separation induced by focusing, we definfollogring prim-
itive equivalence on proofs that identifies proofs thdtedifrom each other only
inside a phase.

Definition 4 Two proofs ® and 2’ + I' § 4 areiso-polag written O ~ 2, if they are
equal up to permutations restricted to the pos/jpos and neg/neg types.

This equivalence seems natural because the interchandee gbagpos and
negneg inference rules are truly parallel and non-interactindeed, two iso-polar
proofs have the same synthetic inference rules,the derived rules where the de-
tails of the positive and negative phases are elided, aryd grdnd the phase transi-
tions[R|}] and[MF] are noted. For example, one proofad*,a® (b& c),de T 7 -
using only synthetic rules is:

F-Tb&c T

— e = [RU]
F-Ub&ec T [MF]

Fatla (1]
rat,a® (b&c),do T (-

The instance ofMF] focuses ora® (b & ¢) andd @ T, but the instances ¢&] and
[®] above it are elided, as are a#] and[T] rules used above the instancqd Bf}].

A single representative of the-classes can be constructed by treating the con-
texts4 to the right offf and|} in mr as ordered contexts, similar to Andreoli’s original
focusing proof system [2]. This order on the context inducésed but arbitrary or-
der of the pofos and nefpeg rules.

4 Maximality and canonicity

We now revisit the question of permutations of the synthitference rules in-
duced by focusing. In the unfocused calculus, it is easy ¢éotBat the synthetic
rule for a negative synthetic connective, which is a seqeaimegative rules for
the constituents of the synthetic connective, permutds tivdt of another synthetic
negative connective: it is a simple matter of sequencingpéations. Similarly, the
positive synthetic rules commute with other positive setithrules, and likewise
for a negpos permutation of synthetic rules. As before, the onlylttiseed permu-
tations in general are the posg permutations.

DI 4

Definition 5 Suppose D = FLAT -

[MF]. Then, 4 are called the roots of D,
written roots).

We intend to show that every member of an iso-initial clasproffs of+ I
is equivalent to a unique proof (upto iso-polarity)tof f} I'. In fact, we shall call
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Fig. 3 Rules of the pre-emptive multi-focusing calculegr. All side conditions fromume (Fig. 2)
are carried over; in particular, for [PMFand [PMFR;], the context is non-empty.

these representatives of the iso-initial equivalencesdtaamaxi mally multi-focused
proofs.

Definition 6 A proof D of + I" § A4 ismaximalif for every sub-proof £ + I f - of D,
itisthecasefor any £ ~ £ + I'” f} - that roots(E’) C roots(E).

Our goal with maximal proofs is the following canonicity vits
Theorem 7 (canonicity) If D~ £ + I' ff - are both maximal, then » ~ .

The proof of this theorem will require considering permigtas of entire syn-
thetic connectives. Following Andreoli [2], we call a nefigluring pair of phases,
with the bottom phase having a positive synthetic conned its principal for-
mula, and the top phase being its corresponding negatibetym rules, ipole.
Consider two neighbouring bipoles: if the positive phastheftop bipole permutes
with the negative phase of the bottom bipole, then in an urfed form we can
perform the permutation and merge the two bipoles by unitivegr positive and
negative phases, obtaining another (multi-)focused proof

The mr rules are, however, too rigid to express any but the finaltpaih the
permutation. Thus, in this section we shall consider a caitively more relaxed
focusing calculus where a negative phase (of the bottomlé)iman be “carried
through” the positive phase (of the top bipole). The bottegative phase is first
(temporarily) pre-empted by the top positive phase; fos,thve use sequents of
the formr I" | 4 ; =5 where4 is under focus, and is a suspended context. Later,
when the positive phase has permuted down, the negativephas awakened into
active sequents of the form7" 0 4. The rules of thigpre-emptive multi-focusing
calculus, calledwr, are in Figure 3. A straightforward injectior) from mr to pmr
derivations is assumed.

Fact 8 The following are seen by straightforward induction.
1. |f|—MFFUA,thenl-pMFrlA;'.

2. frppr I L4 5, thenryg I 4, 5.

3 tvr M4 if and Onlylf Fpme I M 4.



Because both positive and negative phases can be pre-engiedthe] PMF]
rules, we can explicitly sequence two positive phases bigdinicing new instances
of [PMF;]. Note that focus, once granted, cannot be removed untilaimeuia be-
comes negative; thusyir does not destroy synthetic positive connectives, which are
the essential innovation of focusing. After the positivexpd of the top bipole has
permuted through the negative phase of the bottom bipatesulpended negative
phases are awakened, which might give rise to a numbeffefeint sub-derivations
(due to &). If D is this multiset of sub-derivations, then we indicate théinishes
with the negative phase f& asD / &.

Definition 9
1. (D/&)rT | 4;Z, whereD isamultiset of derivations, has one of the follow-
ing forms:
D/NEYFT|A4;N,E O/EYrIr& DO/EYrT AN E _
FTLAN 2 R =717 W Triiaea z @
(D/E)FFllALA:E fl—Fz,LAz,B, [®] (D/E)’-F‘LA’A/’E [PMFZ]

FI1,0 1 41,42,A® B = A A E

(And the symmetric case for [®].)
2. (D/E)r I 04,5 whereD isamultiset of derivations, has one of the following
forms:

D1/ &,AN-T 4,5, A D2/ &,B)+rT'14,5",B

...andD = D;,D
FI4,5,A&B [&] and B2
FTi4.E.T [T] ...andD = -
(/2 AB)FI145AB 0 (D5 T4
FIN4,5,A%B FINA,E, L

(D/E)FLPN4E
FIN 4,5, P

[Rn]

with=Z = =" F for F being A® B, A& B, T, L, or P. Additionally, (» / -) = D.

We define the merge operation in terms of a rewrite betweeremr proofs such
that in each case of the rewrite at least one root[6dF;] is permuted lower in the
derivation. Eventually, this will bring two instances[#fMF] next to each other, at
which point they are merged. All negative rules encountei@ihg the rewrite are
immediately suspended, causing them to permute above 8igvpghase rooted
at the[PMK] being permuted. To obtain confluence globally, we must fipéit s
the roots to obtain the subset that can merge with the roatiseobottom bipole;
otherwise, we might merge bipoles in the wrong order andipassible merges.

Definition 10 The rewrite — between pmr proofs has the following rules.

DrIlA,4 ;5
= li,— [PMF;]
LG Iy
FLALTE ! FLAL T E !
D/E)rTPLAE
O/ LPLAE by ] o
FLPANE [R(] ., (/EZPrriaips PMFY
FLANEP FLANE, P !



(D1/EC)rI'l4;5,C (Do/E,D)rIL4;5,D

FLATEC [PMF] FLATED (8] [PMF]
FLATEC&D
(D1,D,/Z,C& D)+ | 4;5,C&D
FLANEC&D [PMF]
(D/E,C,D)+I|4;5,CD
FLANECD [PMF] D/E,C®D)rT|4;5,C®D
— o 7] [PMF4]
FLANE,C®D FLANE,C®D !
O/EYrT|4;5
FOANE [PMF] (D/E,1)rT14;5,1
—— [4] — [PMFy]
FLANE, L FLANE, L
D/NE T A P:NE D/NEFTLAY:NE
(B/N2) [PMF] (O/N2) [R]
FLALY . N_[ : FFLAS”N,_,[PMF]
FTALP.N E R - FLALV N E 1
D/E)rT 45
—ragz 0V (/5142
[R] — ————————— [PMF;]
FLAL-E FLAL-E
DrI1l ¥, 41,A 5
FI, YL 4LA 5 [PMF] ErI1142,B;5 ]
FI1,02, ¥ 41,4, A®B; 51, 5>
Dkl’llWAl,A;:l 'El—rlldz, ;52[]
FI, T2 ¥, 41,42, A® B 51, 5>
- T T2 7 LAy 0 AB B 2y 2, L2
DT P ANE DrT VAN E
FLYLAAE [PZ'FZ] FTLP A MDA E [P"\]AF
i —
FLY LAAOAE [&] FLY LA A®A L E [PMF]
Dkfl?’l,%,d,_
POV LAY E [FED“QF]Z] DRI diE o
LA E ., DrriNh ¥4 %
FLYLY 1455 2 FLYLY LA E 2
DI |V, V4,5
FLYL W B [PIE/IPFM]Fz] DrT | VY,V 5 [PMF]
PPl Y2 ., DIl %=
FLYL YN E : FLPL YN E '

The symmetric cases for [PMF,] / [®] and [PMF,] / [@]; are elided.

The rewrite in defn. 10 is a permutation e derivations modulo the injec-
tion into pmr. The intermediate points of the permutation after the tigacare not
interesting, but the reflexive-transitive closure of the rewrite also defines the

following mr rewrite.
Definition 11 If D, £ +yr I’ § 4, and 0¥ —* £# then D — .

We shall show that this rewrite onr derivations will generate the maximal
proofs. The proof itself will be a trivial consequence of tdecomposition lemmas.
The left-decomposition lemma below shows that the maxin@dfs are—-normal
upto iso-polarity.



Lemma 12 (left decomposition)
IfDrI'§4ismaximal and D — £, then D~ E.

Proof. Note that in every case of the rewrite> on pmr derivations, an instance of
[PMF,] is brought closer to the root of the derivation. Therefdne,iewrite— on
mr proofs can only enlarge the lowermost root¥inBut, O is already maximal. So
Z has the same instances[MF] as?, i.e, D~ E. O

The second key lemma is a right-decomposition that estasithat the maximal
proofs are reachable by-.

Lemma 13 (right decomposition)
fD~Erye I’ § 4 and £ ismaximal, then © — .

Proof (Sketch). We have to show that all ways of permuting a root downwards in a
proof can be generated by-. But this is easily seen because the is allowed to
divide the roots and permute only the necessary fragmenbwavds. For a repre-
sentative example, suppose the following is a sub-deoinaif D*:

.‘T"’raPlA’Q;'
FILPQ, A1
FLANPQ [E;ﬂlz
FLATP®Q (%]

[PMF1]
F =

Of the roots4, Q, only 4 can possibly permute beloR % Q, because&) is one of
its sub-formulas. According to the rewrite rules, we firshowe Q from the roots of
the[PMF] rule by inserting anothdiPMF]. The permutation can now proceed (for
someF /P, Q= #"):

R N )
FERQLAL oy
FLPQAf o (F/PQrIrid;PQ o
FLLANP.Q [[Fg}] . FLATP.Q [79][ d
FLANP®Q FLATP®Q
(F/P®Q+I14;P®Q
FLANTP®Q [PMF]

The instance ofPMF,] that permutes down is free of the disallowed rQot O

Proof (of theorem 7). Let D ~ E +yr I' § 4 be given such that bott» and £ are
maximal. By lemma 13D — E; hence, by lemma 12)~ £. O
5 Multi-focusing and proof nets

The usual approach to the proof identity problem in linegiddand to providing
a canonical representation of proofs) consists in usingfpmets which were first

10
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Fig. 4 Unit-free cut-free MLL proof netdni is restricted to the atomic formulas.

introduced by Girard [9]. Since we proved that maximally thfdcused proofs also
provide such a canonical approach to proofs it is naturabtopgare our approach
with proof nets. This is the aim of the present section whexelgal with a restricted
fragment of MALL proofs, the unit-free cut-free multiplibee fragment, MLL, for
which proof nets are especially well-behaved: we shall jol@a direct proof that
maximally multi-focused proofs in MLL are in a one-to-one correspondence with
cut-free MLL™ proof nets.

The previous results of the paper already ensure that sue$ult s true but we
shall now give a direct evidence of this fact by actually #im) the class of iso-polar
maximally multi-focused proofs corresponding to a giveagimet. The converse,
namely that two iso-polar maximally multi-focused prootsrespond to the same
proof nets is trivial.

Proof nets are structures that do not retain all the unnagessdering informa-
tion contained in a sequent proof. A MELproof structure is thus a graph structure
consisting in the formula tree of the sequert together with some more structure
representing the initial rules:

Definition 14 (MLL ~ proof structure) A MLL™ proof structureon+ I" is a graph
made of cells represented in Figure 4 which are linked by edges labeled with MLL~
formulas. Thereis one pending edge for each formula F in+ I which islabeled with
F and which is called a conclusion.

Additional conditions are imposed in order to ensure thittoof structure is
actually a logical object and represents a proof:

Definition 15 (MLL ~ proof net) AMLL"™ proof net on+ I" isa proof structure that
results from the desequentialization of a sequent proof 7 of + I" by forgetting the
inference rule ordering?.

The previous definition does not provide a convenient ¢oitethat can be helpful
to check that a given proof structure is indeed a proof netyMaore satisfying
criteria have been provided to characterize proof nety, alidhave in common not
to be inductive but geometric criteria (they deal with theisture as a whole, not as
made of elementary components). In the following, we shaly aonsider cut-free
MLL ~ proof structures.

As already mentioned, we shall now be interested in progidimirect proof of
the following theorem:

1 AMLL -~ inference rule is turned to the corresponding cell of Figuaad the cells are combined
by tracing the formulas occurrences in the sequent proof.

11



Theorem 16 Two maximally multi-focused MLL™ proofs of + - {f I" are iso-polar iff
they have the same MLL™ proof net.

The theorem will be proved by showing that for every proofthete is a unique
maximally multi-focused proof (up to iso-polarity) assateid with it. We first recall
two definitions from [1] which develops a focused sequeiziion algorithm for
MLL ~ proof nets:

Definition 17 (split(r), foc(xr), from [1]) Let s bean MLL™ proof net.

1. split(r) isthe set of positive conclusions P of 7 such that removing the con-
cluding ®-link of P disconnects r in two proof nets 7; and 5.

2. foc(n) isthe set of conclusions F of 7 such that F is a positive atom and r is
just anini link; or F € split(r) and its premisses A and B are conclusions of
the two sub-nets 1 and 7, where A (resp. B) is negative or A € foc(ry) (resp.
B € foc(m)).

Proof (of Theorem 16). Let = be a MLL™ proof net of conclusiong. We outline a

sequentialization algorithm producing a maximally médttused proof of conclu-

sion+ - I'if I contains some negative non-atomic formula @i\ foc(r) || foc(r)

otherwise. We reason by induction on the size of

Case [ contains at least one negative formula. We remove all negative cells (that
is, the® cells) of # up to reaching a positive cell or an initial cell. The re-
sulting proof structure is a proof net and its conclusiong” are positive. By
induction hypothesis, we can sequentialize it into a maktjnmaulti-focused
proof 2’ of conclusion- I'" \ foc(n’) || foc(n’) by sequentializing in an arbi-
trary order (the dferent possibilities give rise to iso-polar proofs) the riega
rules that have been removed in the previous step, we obtainch 2 of the
form:

D'+ I\ foc(n’) || foc(n’)
I 9]

[¥]

[MF]

Dr-OT

Case I contains only positive formulas. Sincer is a proof netfoc(r) # 0. Con-
sider the formulas ifi(] 7) and remove the top-most positive connectives of
everyF € foc(n). The resulting proof structure is not a proof net since it is
not connected; however, each of its connected componentgtithem be
m,...,m. FOr 1< i < n, mj has conclusiong; which has at least one neg-
ative formula or which is reduced to an axiom link. In the frase, one can
inductively sequentialize it into of maximally multi-fosad proofn,. In order
to conclude, we only need to show that one can obtain a praof fl" from
the?, and the positive cells of the formulas fidc (), which follows from the
fact that the formulas ifoc(r) are hereditarily splitting: applying these for-
mulas in any order (as long as the sub-formula priority isnteaned), gives
rise to a way to sequentialize

12



We finally need to check that the proof obtained with this pesds indeed max-
imal, but this is done very easily: I& be a formula that could potentially enlarge
the set of foci and let us consider a pragf that witnesses this factg focuses on
F). By desequentializing)s, we get a proof net and sinceDr is a sequentializa-
tion of = that focuses o which is positive, therf is hereditarily splitting, that is
F € foc(r), sofoc(r) is maximal.

The process considered in this proof is non-deterministith{n a negative or
positive phase, we sequentializeany order) and we can check that thefidirent
proofs that can result from this process are exactly allsbegpiolar maximally multi-
focused proofs of the iso-polarity class correspondingt@pnetr. 0O

We showed in this section that there is a bijection between. Mproof nets
and classes of iso-polar maximally multi-focused proofd.LM proof nets are
certainly the most concise canonical structures for thagrfient. There are can-
didates to extend MLL proof nets to broader fragments (MLL with units [14],
MALL [12] or MELL) but they are not as satisfactory as for MELThe analysis
we just made could be carried to MALL proof nets as introdubgdHughes and
van Glabbeek [12] for the appropriate extension of definitld (in particular to
take into account the fact that with MALL proof nets there @& anly one linking
but a set of linkings corresponding to the additive slicethefproof net).

The problem of proof-nets for MALL with units is still openet, these fragments
have standard sequent calculi with well understood focusistems. We expect
that an analysis of the maximally multi-focused sequentfsravould yield a better
understanding of proof net-like structures for such fragise

6 Conclusion

The contributions of this paper are three-fdijd:we extend Andreoli’s definition of
focused proofs to multi-focused proofs, for which we defimoton of maximality;
(if) we show that the maximally multi-focused proofs are represg@es of their
~-equivalence class upto a trivial iso-polar equivalenoel(&i) we prove that unit-
free multiplicative proof nets are in bijective correspende with maximal multi-
focused proofs for unit-free multiplicative linear logic.

The notion of multi-focusing in this paper was first conseteby Saurin and
Miller [16] as naturally arising in the structure fidcalization graphs to prove the
focalization theorem. Multi-focusing was subsequentioalised by Delande and
Miller [7] as a necessary generalization of Andreoli's asyetric treatment of the
positive formulas. Andreoli studied focusing in proof ndts3] and defined a notion
of “multi-focus” [3] with a different meaning: there, it refers to a part of the context
which is needed in order to apply the decide rule. He alsostiyates the use of
focusing to construct proof nets for a restricted fragmémiioL ~.

Faggianet al [8, 6] introduced L-nets as a generalizationdskigns from Gi-
rard’s ludics [11]: L-nets can be seen as designs with a fiexibgree of sequen-
tiality, falling between sequent proofs and proof netssTppears similar to multi-
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focusing which covers the spectrum from singly focused fsrammaximally multi-
focused proofs, and thus exhibits some flexibility aboutdbgree of sequentiality.
This flexibility is also observed in [7] which presents tharsd for proofs and refu-
tations as a pair of mutually normalizing interpretatiofig® meutral procedure for
the cut and atom-free MALL. Relating these diverse appresdh an important
matter for future work.

Several other open questions remain about multi-focuseafgrFirstly, we lack
a cut-elimination theorem for multi-focused proofs thatgelizes similar theorems
for singly focused proofs (seeg. [4, 15]). Moreover, it is considerably unclear
how maximality interacts with cut-elimination, for the stiard procedure would
not preserve maximality. In terms of larger fragments addinlogic, multi-focusing
generalizes easily to admit the exponentials and firstraydentification; however,
the respective notions of maximality remain to be develdpethese fragments.
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