
Applying a linear logic perspective to arithmetic

Dale Miller

Inria Saclay & LIX, École Polytechnique
Palaiseau, France

Proof-Theoretic Semantics, Tübingen 29 March 2019

Goals of this talk:

1. Describe what we have learned from linear logic that has been
useful in the proof theory of classical and intuitionistic logics.

2. Describe our first steps in applying those lessons to
arithmetic. (Work in progress. Joint with Matteo Manighetti.)



Under the Proof-Theoretic Semantics (PTS) umbrella

What formal devices and techniques can we identify, apply, and
teach?

Kahle quotes Schroeder-Heister: “PTS has an intuitionistic bias.”

PTS also has a natural deduction bias. My perspective:

I The sequent calculus is a more general setting for PTS.

I Linear logic is a useful tool for exploiting the sequent calculus.



Linear Logic

Girard proposed linear logic in 1987. Broadly speaking, it has had
two kinds of impact.

As a new logic, it provided

I the λ-calculus (and functional programs) with new types;

I logic programming with new programs; and

I new proof structures, such as proof nets.

As the “logic behind (computational) logic”, it introduced into
classical and intuitionistic proof systems

I polarization,

I focused proofs, and

I new controls on contraction and weakening.



My PTS tool box

Notation: 1, ⊗, 0, ⊕, >, &, ⊥, `, −◦, !, ?, (−)⊥

Terminology:

I additive connectives: 0, ⊕, >, &

I multiplicative connectives: 1, ⊗, ⊥, `, −◦
I exponentials: !, ?

I negative polarity: >, &, ⊥, `, −◦, ?, ∀
I positive polarity: 1, ⊗, 0, ⊕, !, ∃

Consider the right introduction rule of a logical connective.

I If it is invertible, the connective has negative polarity.

I If it is not invertible, the connective has positive polarity.

Linear logic negation flips polarities!



Example: Linear logic behind the LK vs LJ distinction

Gentzen accounted for intuitionistic logic by restricting sequents to
have at most one formula on the right:

Γ ` ∆ where ∆ has zero or one formula.

This restriction is equivalence to the following 2 conditions.

1. No contraction on the right.

2. In the (multiplicative) implication-left rule,

Γ1 ` A Γ2,B ` C

Γ1, Γ2,A ⊃ B ` C
⊃ L

the formula occurrence C cannot appear in the left premise.

In linear logic terms, Γ is encoded as ! Γ and A ⊃ B is encoded
using two connectives (!A)−◦ B.



Example: Different information content in proofs

Classical, propositional logic with atoms, negated atoms, ∨, and ∧.

Invertible rules

` ∆,B1,B2

` ∆,B1 ∨ B2
` ` ∆,B1 ` ∆,B2

` ∆,B1 ∧ B2
&

Proof search proceeds by expanding into conjunctive normal form.

I Straightforward computation.

I Order of inference rules is not important.

I No contractions appear in proof.

I Weakening at leaves (only of literals).

I Exponential procedure.



Example: Different information content in proofs (con’t)

Non-invertible rules

` ∆,B1

` ∆,B1 ∨ B2
⊕1

` ∆,B2

` ∆,B1 ∨ B2
⊕2

` ∆1,B1 ` ∆2,B2

` ∆1,∆2,B1 ∧ B2
⊗†

The search for a proof of ` B generates sequents of the form
` B,C ,L where C is a subformula of B and L is a collection of
literals.

I † In classical logic, we can take ∆ = ∆1 = ∆2 = ∆1,∆2.

I Contraction is needed but only on B.

I Proof construction consumes an external bit to decide ⊕i .

Proofs can be short since an oracle might contains some “clever”
information.



Example: A short proof consuming three bits

Let C have several alternations of conjunction and disjunction
and let B = (p ∨ C ) ∨ ¬p.

` B, p ,¬p init

` B, p ∨ C ,¬p ∗

` B, (p ∨ C ) ∨ ¬p ,¬p
∗

` B,¬p contract

` B, (p ∨ C ) ∨ ¬p
∗

` B
contract

The subformula C is avoided. Clever choices ∗ are injected at
these points: right, left, left.



Focusing simply explained: proof search for Γ ` ∆
• Do invertible introductions in any order, to exhaustion:
positive connective on left; negative connective on right.

• Use the decide rule to pick a focus (includes the only case of
contraction in intuitionistic logic).

Γ ⇓ N ` ∆

Γ,N ` ∆

Γ,N ⇓ N ` ∆

Γ,N ` ∆

Γ ` P ⇓
Γ ` P

• If the polarity flips in the focus, then use the release rule.

Γ,P ` ∆

Γ ⇓ P ` ∆
Γ ` N

Γ ` N ⇓

• Chose an introduction rule for non-atomic focus. Ask an oracle
for help or consider backtracking. All premises are marked with ⇓.

• The remaining cases are the initial rules.

Γ ⇓ Na ` Na
Na neg atom

Γ,Pa ` Pa ⇓
Pa pos atom



Atoms can have a (non-canonical) polarity
Polarity can be assigned to atoms in a fixed but arbitrary fashion.

Ξ1

Γ ` Rab ⇓

Ξ2

Γ ` Rbc ⇓
Ξ3

Γ ⇓ Rac ` ∆

Γ ⇓ Rbc ⊃ Rac ` ∆
⊃ L

Γ ⇓ Rab ⊃ Rbc ⊃ Rac ` ∆
⊃ L

Γ ⇓ ∀x∀y∀z(Rxy ⊃ Ryz ⊃ Rxz) ` ∆
∀L× 3

If R-atoms have neg polarity, then Ξ3 is initial and ∆ is Rac . Also,
Ξ1 and Ξ2 are release. The synthetic rules is back-chaining.

Γ ` Rab Γ ` Rbc
Γ ` Rac

If R-atoms have pos polarity, then Ξ3 is release and Ξ1, Ξ2 are
initial and Γ is Rab,Rbc, Γ′. The synthetic rules is
forward-chaining.

Γ′,Rab,Rbc,Rac ` ∆

Γ′,Rab,Rbc ` ∆



Synthetic inference rules

In this way, geometric formulas yield inference rules that mention
only atomic formulas: no logical connectives are visible in the rule.

See, for example, Negri’s “from axioms to inference rules”.

Synthetic rules built using focusing automatically satisfy
cut-elimination.

Focused proofs provide a means for taking Gentzen’s “atoms of
inference rules” and building macro-level / synthetic inference rules
(“molecules of inference”).



Carry these PTS tools to arithmetic

By arithmetic, I mean, more generally, both induction and
co-induction (least and greatest fixed points) for general inductive
definitions.

In this talk, I will not consider co-induction.

The logic and much of the proof theory described here is part of
the Abella theorem prover.

http://abella-prover.org/

http://abella-prover.org/tutorial/try/

runs in your browser



Arithmetic as a theory in logic

Peano’s axioms fall into three groups.

I Equality is an equivalence relation.

I Zero and successors are constructors.

I Induction scheme

Peano Arithmetic is the classical logic treatment of these axioms.

Heyting Arithmetic is the intuitionistic logic treatment of these
axioms.

Before we consider a linear logic treatment of arithmetic, it seems
best to update this perspective on arithmetic more generally.

We first move away from Frege/Hilbert proofs to sequent calculus.



Arithmetic as a sequent calculus

We shall consider equality as a logical connectives with left and
right introduction rules.

Similarly, the least-fixed point operator µ will also have left and
right introduction rules.

A fixed point operator was (in principle) also considered by J-YG
and PS-H, but they only considered the unfolding of fixed points
(unfolding using the definition).

To capture least fixed points, an induction scheme is needed.

Various intuitionistic logics involving least and greatest fixed points
have been consider in several papers during 1997-2011 by Gacek,
McDowell, Miller, Momigliano, Nadathur, and Tiu.

Baelde and Miller have considered a linear logic variant as well.



Three ways to move beyond MALL

A quick synopsis for the expert in linear logic:

MALL is a propositional logic without contraction and weakening:
⊗, 1,⊕, 0, ℘,⊥,&,>. It is decidable.

1. Girard [1987] added the exponentials (!, ?) to get linear logic.

2. Liang and M [2009] added classical and intuitionistic
connectives to get LKU. (Exponentials are behind this design.)

3. Baelde and M [2007] added fixed points to get µMALL.

Our examples will illustrate how µMALL seems better suited for
model checking and (co)inductive theorem proving than linear
logic. Note:

I Fixed point unfolding resembles contraction: µBt̄ = B(µB)t̄.

I If B is purely positive, then B ≡ !B. In MALL: no interesting
such formulas. In µMALL: a rich collection of such formulas.



Equality as a logical connective

When t and s are not unifiable:

X ; Γ, t = s ` ∆

Here, X is the set of eigenvariables. Otherwise, set θ = mgu(t, s):

θX ; θΓ ` θ∆
X ; Γ, t = s ` ∆

Here, θX is the result of removing from X variables in the domain
of θ and then adding the variables free in the codomain of θ.

This treatment of equality was developed independently by
Schroeder-Heister and Girard in [1991/92].

Unification is a black box attached to sequent calculus. A failure
(of unification) can be turn into a success.



Proving the subset relation for two finite sets

Abbreviate z , (s z), (s (s z)), (s (s (s z))), etc by 0, 1, 2, 3, etc.

Let the sets A = {0, 1} and B = {0, 1, 2} be encoded as

λx . x = 0 ∨ x = 1 and λx . x = 0 ∨ x = 1 ∨ x = 2.

To prove that A is a subset of B requires proving the formula
∀x .Ax ⊃ Bx is provable.

· ; · ` 0 = 0

· ; · ` 0 = 0 ∨ 0 = 1 ∨ 0 = 2
x ; x = 0 ` x = 0 ∨ x = 1 ∨ x = 2

· ; · ` 1 = 1

· ; · ` 1 = 0 ∨ 1 = 1 ∨ 1 = 2
x ; x = 1 ` x = 0 ∨ x = 1 ∨ x = 2

x ; x = 0 ∨ x = 1 ` x = 0 ∨ x = 1 ∨ x = 2

· ; · ` ∀x .(x = 0 ∨ x = 1)⊃ (x = 0 ∨ x = 1 ∨ x = 2)

Exercise: Prove ¬∀x .Bx ⊃ Ax .



Fixed points

The least fixed point µ is a series of operators indexed by their
arity. We leave this arity implicit. Unfolding µBt1 . . . tn yields
B(µB)t1 . . . tn. Also, µ has positive bias.

Γ ` B(µB)t̄,∆

Γ ` µBt̄,∆ µR
Γ,B(µB)t̄ ` ∆

Γ, µBt̄ ` ∆
µL

The induction rule scheme (S is a higher-order variable).

Γ,St̄ ` ∆ BSx̄ ` Sx̄

Γ, µBt̄ ` ∆
Ind

The rule for µL rule is admissible given the Ind rule.

Baelde [ToCL 2012] proved that µMALL satisfies cut-elimination
and has a focused proof system µMALLF.

We set aside the induction rule (Ind) until the very end.



Examples of fixed point definitions

As a Horn clause theory
nat z.

nat (s X) :- nat X.

plus z X X.

plus (s X) Y (s Z) :- plus X Y Z.

These can be seen as definitions in the Hallnäs & Schroeder-Heister
sense. However, we convert them into the following µ-expressions.

As fixed point definitions

nat = µλNλn(n = 0⊕ ∃n′(n = s n′ ⊗ N n′))

plus =µλPλnλmλp.(n = 0⊗m = p) ⊕
∃n′∃p′(n = s n′ ⊗ p = s p′ ⊗ P n′ m p′)

Note that µ and = are positive, as are ⊗, ⊕, and ∃. These are
purely positive expressions.



Example: computing during the invertible phase

Consider searching for a proof of Γ, plus 2 3 x ` (Q x).

Using µL yields

Γ, ((2 = 0⊗ 3 = x)⊕ ∃n′∃x ′(2 = s n′ ⊗ x = s x ′ ⊗ plus n′ 3 x ′)) ` (Q x).

The disjunction introduction rule yields two premises:
(1) Γ, (2 = 0⊗ 3 = x) ` (Q x) is proved immediately.

(2)
Γ, plus 1 3 x ′ ` (Q (s x ′))

Γ, (2 = s n′ ⊗ x = s x ′ ⊗ plus n′ 3 x ′) ` (Q x)

Γ, (∃n′∃x ′(2 = s n′ ⊗ x = s x ′ ⊗ plus n′ 3 x ′)) ` (Q x)

The invertible phase terminates with the premise

Γ ` (Q 5)



Abstracting away the invertible phase, we obtain the following
synthetic rule:

` Q(5)

plus 2 3 x ` Q(x)



The polarity ambiguity of singleton sets

Let P be a predicate of one argument such that

` (∃x .P(x)) ∧ (∀x∀y .P(x) ⊃ P(y) ⊃ x = y)

Thus, ∃x .P(x)⊗ Q(x) ≡ ∀x .P(x)−◦ Q(x) ≡ Q(ιP).

Assume that P is a purely positive formula.

A proof of Γ ` ∃x .(P(x)⊗ Q(x)) ⇓ guesses a term t and then
proves Γ ` P(t) ⇓ and Γ ` Q(t) ⇓.

A proof of Γ ` ∀x .P(x)−◦ Q(x) computes the value that satisfies
P, starting with proving Γ,P(y) ` Q(y). The completed phase has
the premise Γ ` Q(t).



When relations denote functions, we have singletons

For example, the predicate (plus 2 3) denotes the singleton set
containing only 5.

Thus, unlike Church and Hilbert who used choice operators (ε, ι)
to convert some predicates to functions, proof search during the
invertible fashion computes functions.

For more, see [Gérard & M, CSL 2017].



More examples: paths in graph

Horn clauses (Prolog) can be encoded as purely positive fixed
point expressions. For example, for specifying a (tiny) graph and
its transitive closure:

step a b. step b c. step c b.

path X Z :- step X Z.

path X Z :- step X Y, path Y Z.

Write the step as the least fixed point expression

µ(λAλxλy . (x = a⊗ y = b)⊕(x = b ⊗ y = c)⊕ (x = c ⊗ y = b))

Likewise, path can be encoded as the relation path(·, ·):

µ(λAλxλz . step x z ⊕ (∃y . step x y ⊗ Ay z)).

These expressions use only positive connectives and no non-logical
predicates.



Examples: reachability

There is no proof that there is a step from a to c .

fail
` (a = a ∧+ c = b) ∨ (a = b ∧+ c = c) ∨ (a = c ∧+ c = b)

` step a c

There is a proof that there is a path from a to c .

` step a b ` path b c

` step a b ∧+ path b c

` ∃y . step a y ∧+ path y c

` step a c ∨ (∃y . step a y ∧+ path y c)

` path(a, c)



Examples: reachability (con’t)

Below is a proof that the node a is not adjacent to c .

a = a, c = b ` ·
a = a ∧+ c = b ` ·

a = b, c = c ` ·
a = b ∧+ c = c ` ·

a = c , c = b ` ·
a = c ∧+ c = b ` ·

(a = a ∧+ c = b) ∨ (a = b ∧+ c = c) ∨ (a = c ∧+ c = b) ` ·
step a c ` ·

In general, proofs by negation-as-finite-failure yield sequent
calculus proofs in this setting. (Hallnäs & S-H, 1990)



Example: simulation

Let P
A−→ Q be a labeled transition system between processes and

actions. Assume it is defined as a purely positive expression.

Let ν be the de Morgan dual of µ. Since we are only unfolding
fixed points, µ and ν are extensionally the same although the
polarity of ν is negative.

The following expressions denote simulation and bisimulation for
this label transition systems.

ν
(
λSλpλq. ∀a∀p′. p a−→ p′ −◦ ∃q′. q a−→ q′ ⊗ S p′ q′

)
ν(λBλpλq. (∀a∀p′. p a−→ p′ −◦ ∃q′. q a−→ q′ ⊗ B p′ q′)

& (∀a∀q′. q a−→ q′ −◦ ∃p′. p a−→ p′ ⊗ B q′ p′))

Note that bisimulation has both conjunctions. Stirling’s games for
bisimulation [1996] are directly encoded in these focused proofs.



An example of a synthetic inference rules

· · ·

` sim(pi , qi )

` sim(pi , qi ) ⇓

` ∃Q ′.q0
ai−→ Q ′ ⊗ sim(pi ,Q

′) ⇓
C

` ∃Q ′.q0
ai−→ Q ′ ⊗ sim(pi ,Q

′) · · ·

P ′,A : p0
A−→ P ′ ` ∃Q ′.q0

A−→ Q ′ ⊗ sim(P ′,Q ′)
B

` sim(p0, q0)
A

A contain introduction rules for ∀ and −◦.

B consists of left invertible rules which generate all ai and pi such
that p0

ai−→ pi .

C is a sequence of ⇓ rules that proves that q0
ai−→ qi .

Finally, the top-most inference rule is a release rule.



A proof theory for model checking

µMALL can provide a proof theory for model checking.

See [Heath & M, J. Automated Reasoning 2018].

Focusing can be used to design proof certificates for some common
model checking problems.

I A path in a graph can be proof certificate for reachability.

I Connected components can be a proof certificate for
non-reachability.

I A bisimulation can be a proof certificate for bisimilarity.

I A Hennessy-Milner modal formula can be a proof certificate
for non-bisimilarity.



Next steps

Turing machines are easy to code in (pure) Prolog. Thus, we can
define predicates as purely positive expression which capture
general notions of computability.
The next challenges involve the induction scheme.

I What predicates can be proved total?

I Relate the arithmetic hierarchy (involving quantifier
alternations) to focusing polarity.

I Design µLJ and µLJF and prove cut-elimination and
completeness of focusing (mostly done).

I Design µLK and µLKF and establish cut-elimination and
completeness (maybe impossible). In the most natural
settings, completeness of focusing for µLKF would provide a
simple method for extracting computational content of
classical proofs of Π0

2 formulas (something we do not expect).


