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Abstract While model checking has often been considered as a practical alternative

to building formal proofs, we argue here that the theory of sequent calculus proofs can

be used to provide an appealing foundation for model checking. Since the emphasis of

model checking is on establishing the truth of a property in a model, we rely on additive

inference rules since these provide a natural description of truth values via inference

rules. Unfortunately, using these rules alone can force the use of inference rules with

an infinite number of premises. In order to accommodate more expressive and finitary

inference rules, we also allow multiplicative rules but limit their use to the construction

of additive synthetic inference rules: such synthetic rules are described using the proof-

theoretic notions of polarization and focused proof systems. This framework provides

a natural, proof-theoretic treatment of reachability and non-reachability problems, as

well as tabled deduction, bisimulation, and winning strategies.

Keywords proof theory, linear logic, fixed points, focused proof systems, model

checking

1 Introduction

Model checking was introduced in the early 1980’s as a way to establish properties

about (concurrent) computer programs that were hard or impossible to do then using

traditional, axiomatic proof techniques of Floyd and Hoare [11]. In this paper, we show

that despite the early opposition to proofs in the genesis of this topic, model checking

can be given a proof-theoretic foundation using the sequent calculus of Gentzen [14]

that was later sharpened by Girard [16] and further extended with a treatment of fixed

points [3,5,24,41]. The main purpose of this paper is foundational and conceptual.

Our presentation will not shed new light on the algorithmic aspects of model checking

but will present a declarative view of model checking in terms of proof theory. As a

consequence, we will show how model checkers can be seen as having a proof search

foundation shared with logic programming and (inductive) theorem proving.

By model checking, we shall mean the general activity of deciding if certain logical

propositions are either true or false in a given, specified model. Various algorithms are
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used to explore the states of such a specification in order to determine reachability

or non-reachability as well as more logically complex properties such as, for example,

simulation and bisimulation. In many circles, model checking is identified with checking

properties of temporal logic formulas, such as LTL and CTL: see the textbook [6] for

an overview of such a perspective to model checking. Here, we focus on an underlying

logic that emphasizes fixed points instead of temporal modalities: it is well known how

to reduce most temporal logic operators directly into logic with fixed points [11].

Since the emphasis of model checking is on establishing the truth of a property in a

model, a natural connection with proof theory is via the use of additive connectives and

inference rules. We illustrate in Section 3 how the proof theory of additive connectives

naturally leads to the usual notion of truth-table evaluation for propositional con-

nectives. Relying only on additive connectives, however, fails to provide an adequate

inference-based approach to model checking since it only rephrases truth-functional

semantic conditions and requires rules with potentially infinite sets of premises.

In addition to the additive connections and inference rules, sequent calculus also

contains the multiplicative connectives and inference rules which can be used to encode

algorithmic aspects used to determine, for example, reachability, simulation, and win-

ning strategies. In order to maintain a close connection between model checking and

truth in models, we shall put additive inference rules back in the center of our frame-

work but this time these rules will be additive synthetic inference rules. The synthe-

sizing process will allow multiplicative connectives and inference rules to appear inside

the construction of synthetic rules while they will not appear outside such synthetic

rules. The construction of synthetic inference rules will be based on the proof-theoretic

notions of polarization and focused proof systems [1,18].

We summarize the results of this paper as follows.

– We provide a declarative treatment of several basic aspects of model checking by

using a proof search semantics of a fragment of multiplicative additive linear logic

(MALL) extended with first-order quantification, equality, and fixed points. The

notion of additive synthetic inference rule and the associated notion of switchable

formula are identified (Section 8).

– Given the faithful encoding of a core aspect of model checking within sequent

calculus proofs, we illustrate how familiar model checking problems such as reach-

ability, non-reachability, simulations, and winning strategies are encoded within

sequent calculus (Sections 7 and 8). This encoding makes it possible to turn ev-

idence generated by a model checker—paths in a graph, bisimulations, winning

strategies—into fully formal sequent calculus proofs (see [20]).

– The sequent calculus also provides for the cut-rule which allows for the invention

and use of lemmas. We illustrate (Section 10) how tables built during state ex-

ploration within a model checker can be captured as part of a sequent calculus

proof.

Finally, this paper reveals interesting applications of aspects of proof theory that

have been uncovered in the study of linear logic: in particular, the additive/multiplica-

tive distinction of proposition connectives, the notion of polarization, and the use of

focusing proof systems to build synthetic inference rules.
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2 The basics of the sequent calculus

Let ∆ and Γ range over multisets of formulas. A sequent is either one-sided, written

`∆, or two-sided, written Γ `∆ (two-sided sequents first appear in Section 5). An in-

ference rule has one sequent as its conclusion and zero or more sequents as its premises.

We divide inference rules into three groups: the identity rules, the structural rules, and

the introduction rules. The following are the two structural rules and two identity rules

we consider.

Structural:
`∆
`B,∆ weaken

`∆,B,B
`∆,B contraction

Identity:
`B,¬B initial

`∆1, B `∆2,¬B
`∆,1∆2

cut

The negation symbol ¬(·) is used here not as a logical connective but as a function that

computes the negation normal form of a formula. The remaining rules of the sequent

calculus are introduction rules: for these rules, a logical connective has an occurrence in

the conclusion and does not have an occurrence in the premises. (We shall see several

different sets of introduction inference rules shortly.)

When a sequent calculus inference rule has two (or more) premises, there are two

natural schemes for managing the side formulas (i.e., the formulas not being introduced)

in that rule. The following rules illustrate these two choices for conjunction.

`B,∆ ` C,∆
`B ∧ C,∆

`B,∆1 ` C,∆2

`B ∧ C,∆1,∆2

The choice on the left is the additive version of the rule: here, the side formulas in the

conclusion are the same in all the premises. The choice on the right is the multiplicative

version of the rule: here, the various side formulas of the premises are accumulated to

be the side formulas of the conclusion. Note that the cut rule above is an example of a

multiplicative inference rule. A logical connective with an additive right-introduction

rule is also classified as additive. In addition, the de Morgan dual and the unit of an

additive connective are also additive connectives. Similarly, a logical connective with

a multiplicative right-introduction rule is called multiplicative; so are its de Morgan

dual and their units.

The multiplicative and additive versions of inference rules are, in fact, inter-ad-

missible if the proof system contains weakening and contraction. In linear logic, where

these structural rules are not available, the conjunction and disjunction have additive

versions & and ⊕ and multiplicative versions ⊗ and `, respectively, and these different

versions of conjunction and disjunction are not provably equivalent. Linear logic pro-

vides two exponentials, namely the ! and ?, that permit limited forms of the structural

rules for suitable formulas. The familiar exponential law xn+m = xnxm extends to the

logical additive and multiplicative connectives: in particular, !(B &C) ≡ !B ⊗ !C and

?(B ⊕ C) ≡ ?B ` ?C.

Since we are interested in model checking as it is practiced, we shall consider it as

taking place within classical logic. One of the surprising things to observe about our

proof-theoretical treatment of model checking is that we can model almost all of model

checking within the proof theory of linear logic, a logic that sits behind classical (and

intuitionistic) logic. As a result, the distinction between additive and multiplicative

connectives remains an important distinction for our framework. Also, weakening and
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contraction will not be eliminated completely but will be available for only certain

formulas and in certain inference steps (echoing the fact that in linear logic, these

structural rules can be applied to formulas annotated with exponentials).

We start with the logic MALL as introduced by Girard in [16] but consider two ma-

jor extensions to it. In Section 5, we extend MALL with first-order quantification (via

the addition of the universal and existential quantifiers) and with logical connectives

for term equality and inequality. To improve the readability of model checking spec-

ifications, we shall also use the linear implication (written here as simply ⊃) instead

of the multiplicative disjunction (written as `): details of this replacement are given

in Section 7.3. The resulting logic, which is called MALL=, is not expressive enough

for use in model checking since it does not allow for the systematic treatment of terms

of arbitrary depth. In order to allow for recursive definition of relations, we add both

the least and greatest fixed points. The resulting extended logic is µMALL= and is

described in Section 6.

The important proof systems of this paper are all focused proof systems, a style

of sequent calculus proof that is first described in Section 7.2. The logic µMALL=

will be given a focused proof system which is revealed in three steps. In Section 7,

the proof system µMALLF=
0 contains just introduction rules and the structural rules

normally associated to focused proof systems (the rules for store, release, and decide).

In particular, the least and greatest fixed points are only unfolded in µMALLF=
0 ,

which means, of course, that there is no difference between the least and greatest fixed

point with respect of that proof system. In Section 9, the proof system µMALLF=
0

is extended with the rules for induction and coinduction to yield the proof system

µMALLF=
1 so now least and greatest fixed points are different logical connectives.

Finally, in Section 10, the proof system µMALLF=
1 is extended to yield the proof

system µMALLF=
2 with the addition of the familiar rules for cut and initial.

3 Additive propositional connectives

Let A be the set of formulas built from the propositional connectives {∧, t,∨, f} (no

propositional constants included). Consider the proof system given by the following

one-sided sequent calculus inference rules.

`B1,∆ `B2,∆

`B1 ∧B2,∆ ` t,∆
`B1,∆

`B1 ∨B2,∆

`B2,∆

`B1 ∨B2,∆

Here, t is the unit of ∧, and f is the unit of ∨. Note that ∨ has two introduction

rules while f has none. Also, t and ∧ are de Morgan duals of f and ∨, respectively.

We say that the multiset ∆ is provable if and only if there is a proof of ` ∆ using

these inference rules. Also, we shall consider no additional inference rules (that is, no

contraction, weakening, initial, or cut rules): in other words, this inference system is

composed only of introduction rules and all of these introduction rules are for additive

logical connectives.

The following theorem identifies an important property of this purely additive

setting. This theorem is proved by an induction on the structure of proofs.

Theorem 1 (Strengthening) Let ∆ be a multiset of A-formulas. If `∆ has a proof,

then there is a B ∈ ∆ such that `B.
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This theorem essentially says that provability of purely additive formulas is inde-

pendent of their context. Note that this theorem immediately proves that the logic is

consistent, in the sense that the empty sequent ` · is not provable. Another immedi-

ate conclusion of this theorem: if A has a classical proof (allowing multiple conclusion

sequents) then it has an intuitionistic proof (allowing only single conclusion sequents).

The following three theorems state that the missing inference rules of weakening,

contraction, initial, and cut are all admissible in this proof system. The first theorem

is an immediate consequence of Theorem 1. The remaining two theorems are proved,

respectively, by induction on the structure of formulas and by induction on the structure

of proofs.

Theorem 2 (Weakening & contraction admissibility) Let ∆1 and ∆2 be multi-

sets of A-formulas such that (the support set of) ∆1 is a subset of (the support set of)

∆2. If `∆1 is provable then `∆2 is provable.

Theorem 3 (Initial admissibility) Let B be an A-formula. Then `B,¬B is prov-

able.

Theorem 4 (Cut admissibility) Let B be an A-formula and let ∆1 and ∆2 be

multisets of A-formulas. If both `B,∆1 and ` ¬B,∆2 are provable, then there is a

proof of `∆1,∆2.

These theorems lead to the following truth-functional semantics for A formulas:

define v(·) as a mapping from A formulas to booleans such that v(B) is t if ` B is

provable and is f if ` ¬B is provable. Theorem 3 implies that v(·) is always defined

and Theorem 4 implies that v(·) is functional (does not map a formula to two different

booleans). The introduction rules can then be used to show that this function has a

denotational character: e.g., v(A ∧ B) is the truth-functional conjunction of v(A) and

v(B) (similarly for ∨).

While this logic of A-formulas is essentially trivial, we will soon introduce much

more powerful additive inference rules: their connection to truth-functional interpreta-

tions (a la model checking principles) will arise from the fact that their provability is

not dependent on other formulas in a sequent.

4 Additive first-order structures

We move to first-order logic by adding terms, equality on terms, and quantification.

We shall assume that some ranked signature Σ of term constructors is given: such a

signature associates to every constructor a natural number indicating that constructor’s

arity. Term constants are identified with signature items given rank 0. A Σ-term is a

(closed) term built from only constructors in Σ and obeying the rank restrictions. For

example, if Σ is {a/0, b/0, f/1, g/2}, then a, (f a), and (g (f a) b) are all Σ-terms.

Note that there are signatures Σ (e.g., {f/1, g/2}) for which there are no Σ-terms. The

usual symbols ∀ and ∃ will be used for the universal and existential quantification over

terms. We assume that these quantifiers range over Σ-terms for some fixed signature.

The equality and inequality of terms will be treated as (de Morgan dual) logical

connectives in the sense that their meaning is given by the following introduction rules.

` t = t,∆ ` t 6= s,∆
t and s differ
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Here, t and s are Σ-terms for some ranked signature Σ.

Consider (only for the scope of this section) the following two inference rules for

quantification. In these introduction rules, [t/x] denotes capture-avoiding substitution.

`B[t/x],∆

` ∃x.B,∆ ∃
{ `B[t/x],∆ | Σ-term t }

` ∀x.B,∆ ∀-ext

Although ∀ and ∃ form a de Morgan dual pair, the rule for introducing the universal

quantifier is not the standard one used in the sequent calculus (we will introduce the

standard one later). This rule, which is similar to the ω-rule [38], is an extensional

approach to modeling quantification: a universally quantified formula is true if all

instances of it are true.

Consider now the logic built with the (additive) propositional constants of the previ-

ous section and with equality, inequality, and quantifiers. The corresponding versions of

all four theorems in Section 3 holds for this logic. Similarly, we can extend the evaluation

function for A-formulas to work for the quantifiers: in particular, v(∀x.Bx) =
∧
t v(Bt)

and v(∃x.Bx) =
∨
t v(Bt). Such a result is not surprising, of course, since we have

repeated within inference rules the usual semantic conditions. The fact that these the-

orems hold indicates that the proof theory we have presented so far offers nothing

new over truth functional semantics. Similarly, this bit of proof theory offers nothing

appealing to model checking, as illustrated by the following example.

Example 1 Let Σ contain the ranked symbols z/0 and s/1 and let us abbreviate the

terms z, (s z), (s (s z)), (s (s (s z))), etc by 0, 1, 2, 3, etc. Let A and B be the set

of terms {0,1} and {0,1,2}, respectively. These sets can be encoded as the predicate

expressions λx.x = 0∨x = 1 and λx.x = 0∨x = 1∨x = 2. The fact that A is a subset

of B can be denoted by the formula ∀x.Ax ⊃ B x or, equivalently, as

∀x.(x 6= 0 ∧ x 6= 1) ∨ x = 0 ∨ x = 1 ∨ x = 2.

Proving this formula requires an infinite number of premises of the form (t 6= 0 ∧ t 6=
1) ∨ t = 0 ∨ t = 1 ∨ t = 2. Since each of these premises can, of course, be proved, the

original formula is provable, albeit with an “infinite proof”.

While determining the subset relation between two finite sets is a typical example of

a model checking problem, one would not use the above-mentioned inference rule for

∀ except in the extreme cases where there is a finite and small set of Σ-terms. As we

can see, the additive inference rule for ∀-quantification generally leads to “infinitary

proofs” (an oxymoron that we now avoid at all costs).

5 Multiplicative connectives

Our departure from purely additive inference rules now seems forced and we continue

by adding multiplicative inference rules.

5.1 Implication and another conjunction

Our first multiplicative connective is implication. Since the most natural treatment of

implication uses two-sided sequents, we use them now instead of one-sided sequents.
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(We introduce various inference rules incrementally in this section: all of these rules

are accumulated into Figure 1.) The introduction rules for implication are now split

between a left-introduction and a right-introduction rule and are written as follows.

Γ1 `A,∆1 Γ2, B `∆2

Γ1, Γ2, A ⊃ B `∆1,∆2
⊃ L

Γ,A `B,∆
Γ `A ⊃ B,∆ ⊃ R

The left-introduction rule is a multiplicative rule and the right rule is the first rule we

have seen where the components of the introduced formula (here, the two schema vari-

ables A and B) are both in the same sequent. Note that context matters in these rules:

in particular, the right-introduction of implication provides the familiar hypothetical

view of implication: if we can prove a sequent with A assumed on the left and with B

on the right, then we can conclude A ⊃ B.

Note that if we add to these rules the usual initial rule, namely

Γ,A `A,∆ initial,

we have a proof system that violates the strengthening theorem (Section 3): for exam-

ple, the sequent ` p ⊃ q, p is provable while neither ` p ⊃ q nor ` p are provable.

Along with the implication, it is natural to add a conjunction that satisfies the

curry/uncurry equivalence between A ⊃ B ⊃ C and (A ∧ B) ⊃ C. In our setting, the

most natural version of conjunction introduced in this way is not the conjunction sat-

isfying the additive rules (that we have seen in Section 3) but rather the multiplicative

version of conjunction. To this end, we add the multiplicative conjunction ∧+ and its

unit t+ and, for the sake of symmetry, we rename ∧ as ∧− and t to t−. Exactly the

relevance of the plus and minus symbols will be explained in Section 7 when we discuss

polarization. These two conjunctions and two truth symbols are logically equivalent in

classical and intuitionistic logic although they are different in linear logic where it is

more traditional to write &, >, ⊗, 1 for ∧−, t−, ∧+, t+, respectively.

5.2 Eigenvariables

The usual proof-theoretic treatment for introducing universal quantification on the

right uses eigenvariables [14]. Eigenvariables are binders at the sequent level that align

with binders within formulas (i.e., quantifiers). Binders are an intimate and low-level

feature of logic: their addition requires a change to some details about formulas and

proofs. In particular, we need to redefine the notions of term and sequent.

Let the set X denote first-order variables and let Σ(X ) denote all terms built

from constructors in Σ and from the variables in X : in the construction of Σ(X )-

terms, variables act as constructors of arity 0. (We assume that Σ and X are disjoint.)

A Σ(X )-formula is one where all term constructors are taken from Σ and all free

variables are contained in X . Sequents are now written as X ; Γ ` ∆: the intended

meaning of such a sequent is that the variables in the set X are bound over the formulas

in Γ and ∆. We shall also assume that formulas in Γ and ∆ are all Σ(X )-formulas. All

inference rules are modified to account for this additional binding: see Figure 1. The

variable y used in the ∀ introduction rule is called an eigenvariable.
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5.3 Term equality

The left-introduction rule for equality and the right-introduction rule for inequality in

Figure 1 significantly generalize the inference rules involving only closed terms given

in Section 4: they do this by making reference to unifiability and to most general

unifiers. In Figure 1, the domain of the substitution θ is a subset of X , and the set of

variables θX is the result of removing from X all the variables in the domain of θ and

then adding back all those variables free in the range of θ. This treatment of equality

was developed independently by Schroeder-Heister [37] and Girard [19] and has been

extended to permits equality and inequality for simply typed λ-terms [24].

The strengthening theorem does not apply to this logic. In particular, let Σ be

any signature for which there are no ground Σ-terms, e.g., {f/1}. It is the case that

neither ` ∀x.x 6= x nor ` ∃y.t+ is provable: the latter is not provable since there is

no ground Σ-term that can be used to instantiate the existential quantifier. However,

the following sequent does, in fact, have a proof.

x ; · ` t+
t+

x ; · ` x 6= x, t+
6=

x ; · ` x 6= x,∃y.t+
∃

· ; · ` ∀x.x 6= x,∃y.t+
∀

While the use of eigenvariables in proofs allows us to deal with quantifiers using

finite proofs, that treatment is not directly related to model theoretic semantics. In

particular, since the strengthening theorem does not hold for this proof system, the

soundness and completeness theorem for this logic is no longer trivial.

Using the inference rules in Figure 1, we now find a proper proof of the theorem

considered in Example 1.

Example 2 Let Σ and the sets A and B be as in Example 1. Showing that A is a subset

of B requires showing that the formula ∀x.Ax ⊃ Bx is provable. That is, we need to

find a proof of the sequent ` ∀x.(x = 0 ∨ x = 1) ⊃ (x = 0 ∨ x = 1 ∨ x = 2). The

following proof of this sequent uses the rules from Figure 1: a double line means that

two or more inference rules might be chained together.

· ; · ` 0 = 0

· ; · ` 0 = 0 ∨ 0 = 1 ∨ 0 = 2

x; x = 0 ` x = 0 ∨ x = 1 ∨ x = 2

· ; · ` 1 = 1

· ; · ` 1 = 0 ∨ 1 = 1 ∨ 1 = 2

x; x = 1 ` x = 0 ∨ x = 1 ∨ x = 2

x ; x = 0 ∨ x = 1 ` x = 0 ∨ x = 1 ∨ x = 2

· ; · ` ∀x.(x = 0 ∨ x = 1) ⊃ (x = 0 ∨ x = 1 ∨ x = 2)

Note that the proof in this example is actually able to account for a simple version of

“reachability” in the sense that we only need to consider checking membership in set

B for just those elements “reachable” in A.
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X ; Γ ` A,∆ X ; Γ ` B,∆

X ; Γ ` A ∧− B,∆ X ; Γ ` t−,∆

X ; Γ,A ` ∆

X ; Γ,A ∧− B ` ∆

X ; Γ,B ` ∆

X ; Γ,A ∧− B ` ∆

X ; Γ,A ` ∆ X ; Γ,B ` ∆

X ; Γ,A ∨B ` ∆ X ; Γ, f ` ∆

X ; Γ ` A,∆

X ; Γ ` A ∨B,∆
X ; Γ ` B,∆

X ; Γ ` A ∨B,∆
X ; Γ ` A,∆ X ; Γ ′ ` B,∆′

X ; Γ, Γ ′ ` A ∧+ B,∆,∆′ X ; ` t+,
X ; Γ,A,B ` ∆

X ; Γ,A ∧+ B ` ∆

X ; Γ ` ∆

X ; Γ, t+ ` ∆

X ; Γ,A ` B,∆

X ; Γ ` A ⊃ B,∆
X ; Γ ` A,∆ X ; Γ ′, B ` ∆′

X ; Γ, Γ ′, A ⊃ B ` ∆,∆′

X ; Γ ` B[t/x],∆

X ; Γ ` ∃x.B,∆
X , y ; Γ,B[y/x] ` ∆

X ; Γ, ∃x.B ` ∆

X , y ; Γ ` B[y/x],∆

X ; Γ ` ∀x.B,∆
X ; Γ,B[t/x] ` ∆

X ; Γ, ∀x.B ` ∆

X ; ` t = t X ; t 6= t `

When t and s are not unifiable: X ; Γ, t = s ` ∆ X ; Γ ` t 6= s,∆

Otherwise, set θ = mgu(t, s):

θX ; θΓ ` θ∆

X ; Γ, t = s ` ∆

θX ; θΓ ` θ∆

X ; Γ ` t 6= s,∆

Fig. 1 The proof system MALL=: The introduction rules for MALL are extended with first-
order quantifiers and term equality. The ∃ right-introduction rule and the ∀ left-introduction
rules are restricted so that t is a Σ(X )-term. The ∀ right-introduction rule and the ∃ left-
introduction rules are restricted so that y 6∈ X .

5.4 The units from equality and inequality

Although we have not introduced the “multiplicative false” f− (written as ⊥ in linear

logic), it and the other units can be defined using equality and inequality. In particular,

the positive and negative versions of both true and false can be defined as follow:

f− := (0 6= 0) t+ := (0 = 0) f+ := (0 = 1) t− := (0 6= 1).

Note that equality can sometimes be additive (f+) and multiplicative (t+) and that

inequality can sometimes be additive (t−) and multiplicative (f−).

5.5 Single-conclusion versus multi-conclusion sequents

Given that the inference rules in Figure 1 are two sided, it is natural to ask if we

should restrict the sequents appearing in those rules to be single-conclusion, that is,

restrict the right-hand side of all sequents to contain at most one formula. Such a

restriction was used by Gentzen [14] to separate intuitionistically valid proofs from the

more general (possibly using multiple-conclusion sequents) proofs for classical logic.

Since our target is the development of a proof theory for model checking, we can,

indeed, restrict our attention to single-conclusion sequents in Figure 1. We shall not

impose that restriction, however, since the we shall eventually impose an even stronger

restriction: in Section 8, we introduce a restriction (involving switchable formulas) in

which synthetic inference rules involve sequents that have at most one formula in their

entire sequent (either on the left or the right). Such sequents necessarily are single-

conclusion sequents.
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Fig. 2 A small graph on four nodes.

6 Fixed points

A final step in building a logic that can start to provide a foundation for model checking

is the addition of least and greatest fixed points and their associated rules for unfold-

ing, induction, and coinduction. Given that computational processes generally exhibit

potentially infinite behaviors and that term structures are not generally bounded in

their size, it is important for a logical foundation of model checking to allow for some

treatment of infinity. The logic described by the proof system in Figure 1 is a two-

sided version of MALL= (multiplicative additive linear logic extended with first-order

quantifiers and equality) [3,5]. There appears to be no direct way to encode in MALL=

predicates that can compute with first-order terms that are not bounded in size. For

that, we need to extend this logic.

Girard extended MALL to full linear logic by adding the exponentials !, ? [16].

The standard inference rules for exponentials allows for some forms of the contraction

rule (Section 2) to appear in proofs. A different approach to extending MALL with

the possibility of having unbounded behavior was proposed in [5]: add to MALL= the

least and greatest fixed point operators, written as µ and ν, respectively. The proof

theory of the resulting logic, called µMALL=, has been developed in [3] and exploited

in the design of the Bedwyr model checker [4,42].

The logical constants µ and ν are each parameterized by a list of typed constants

as follows:

µnτ1,...,τn , ν
n
τ1,...,τn : (τ1 → · · · → τn → o)→ τ1 → · · · → τn → o

where n ≥ 0 and τ1, . . . , τn are simply types. (Following Church [8], we use o to denote

the type of formulas.) Expressions of the form µnτ1,...,τnBt1 . . . tn and νnτ1,...,τnBt1 . . . tn
will be abbreviated as simply µBt̄ and νBt̄ (where t̄ denotes the list of terms t1 . . . tn).

We shall also restrict fixed point expressions to use only monotonic higher-order ab-

straction: that is, in the expressions µnτ1,...,τnBt1 . . . tn and νnτ1,...,τnBt1 . . . tn the ex-

pression B is equivalent (via βη-conversion) to

λPτ1→···→τn→o λx
1
τ1 . . . λx

n
τn B

′

and where all occurrences of the variable P in B′ occur to the left of an implication

an even number of times.

In this setting, the unfolding of the fixed point expressions µB t̄ and νB t̄ are

B(µB) t̄ and B(νB) t̄, respectively. In both cases, unfoldings like these yield logically

equivalent expressions.

Horn clauses (in the sense of Prolog) can be encoded as fixed point expressions, as

illustrated by the following example.
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X ; Γ ` B(µB)t̄, ∆

X ; Γ ` µBt̄,∆
µR

X ; Γ, St̄ ` ∆ X , x̄ ; BSx̄ ` Sx̄

X ; Γ, µBt̄ ` ∆
µL

X ; Γ,B(νB)t̄ ` ∆

X ; Γ, νBt̄ ` ∆
νL

X ; Γ ` St̄,∆ x̄ ; Sx̄ ` BSx̄

X ; Γ ` νBt̄,∆
νR

Fig. 3 Introduction rules for least (µ) and greatest (ν) fixed points

Example 3 The adjacency graph in Figure 2 and its transitive closure can be specified

using the Horn clause logic program below. (We use λProlog syntax here: in particular,

the sigma Z\ construction encodes the quantifier ∃Z.)

step a b. step b c. step c b.

path X Y :- step X Y.

path X Y :- sigma Z\ step X Z, path Z Y.

We can translate the step relation (sometimes written as the infix binary predicate

· −→ ·) defined by

µ(λAλxλy. (x = a ∧+ y = b) ∨ (x = b ∧+ y = c) ∨ (x = c ∧+ y = b))

which only uses positive connectives. Likewise, path can be encoded as the fixed point

expression (and binary relation)

µ(λAλxλz. x −→ z ∨ (∃y. x −→ y ∧+ Ay z)).

To illustrate unfolding of the adjacency relation, note that unfolding the expression

a −→ c yields the formula (a = a ∧+ c = b) ∨ (a = b ∧+ c = c) ∨ (a = c ∧+ c = b)

which is not provable. Unfolding the expression path(a, c) yields the expression a −→
c ∨ (∃y. a −→ y ∧+ path y c).

In µMALL=, both µ and ν are treated as logical connectives in the sense that

they will have introduction rules. They are also de Morgan duals of each other. The

inference rules for treating fixed points are given in Figure 3. The rules for induction and

coinduction (µL and νR, respectively) use a higher-order variable S which represents

the invariant and coinvariant in these rules. As a result, it will not be the case that cut-

free proofs will necessarily have the sub-formula property: the invariant and coinvariant

are not generally subformulas of the rule that they conclude. The following unfolding

rules are also admissible since they can be derived using induction and coinduction [5,

24].
X ; Γ,B(µB)t̄ ` ∆

X ; Γ, µBt̄ ` ∆

X ; Γ ` B(νB)t̄, ∆

X ; Γ ` νBt̄,∆
µ

Since µMALL= is based on MALL, it does not contain the contraction rule: that is,

there is no rule that allows replacing a formula B on the left or right of a conclusion with

B,B in a premise. Instead of the contraction rule, the unfolding rules allow replacing

µBt̄ with (B(µB)t̄), thus copying the (λ-abstracted) expression B.

The introduction rules in Figures 1 and 3 are exactly the introduction rules of

µMALL=, except for two shallow differences. The first difference is that the usual

presentation of µMALL= is via one-sided sequents and not two-sided sequents. The

second difference is that we have written many of the connectives differently (hoping

that our set of connectives will feel more comfortable to those not familiar with linear
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logic). To be precise, to uncover the linear logic presentation of formulas, one must

translate ∧−, t−, ∧+, t+, ∨, and ⊃ to &, >, ⊗, 1, ⊕, and −◦ [16].

The following example shows that it is possible to prove some negations using either

unfolding (when there are no cycles in the resulting state exploration) or induction.

Example 4 Below is a proof that the node a is not adjacent to c: the first step of this

proof involves unfolding the definition of the adjacency predicate into its description.

a = a, c = b ` ·
a = a ∧+ c = b ` ·

a = b, c = c ` ·
a = b ∧+ c = c ` ·

a = c, c = b ` ·
a = c ∧+ c = b ` ·

(a = a ∧+ c = b) ∨ (a = b ∧+ c = c) ∨ (a = c ∧+ c = b) ` ·
a −→ c ` ·

A simple proof exists for path(a, c): one simply unfolds the fixed point expression for

path(·, ·) and (following the two step path available from a to c) chooses correctly when

presented with a disjunction and existential on the right of the sequent arrow. Given

the definition of the path predicate, the following rules are clearly admissible. We write

〈t, s〉 ∈ Adj whenever ` t −→ s is provable.

X ; Γ ` ∆

X ; Γ,path(t, s) ` ∆
〈t, s〉 ∈ Adj

{X ; Γ, path(s, y) ` ∆ | 〈t, s〉 ∈ Adj}
X ; Γ,path(t, y) ` ∆

The second rule has a premise for every pair 〈t, s〉 of adjacent nodes: if t is adjacent to

no nodes, then this rule has no premises and the conclusion is immediately proved. (We

describe in Section 8 how these two inference rules are actually synthetic inference rules

that are computed directly from the definition of the path and adjacency expressions.)

A naive attempt to prove that there is no path from c to a gets into a loop (using

these admissible rules): an attempt to prove path(c, a)` · leads to an attempt to prove

path(b, a) ` · which again leads to an attempt to prove path(c, a) ` ·. Such a cycle can

be examined to yield an invariant that makes it possible to prove the end-sequent. In

particular, the set of nodes reachable from c is {b, c} (a subset of N = {a, b, c, d}). The

invariant S can be described as the set which is the complement (with respect to N×N)

of the set {b, c}×{a}, or equivalently as the predicate λxλy.
∨
〈u,v〉∈S(x = u∧+ y = v).

With this invariant, the induction rule (µL) yields two premises. The left premise

simply needs to confirm that the pair 〈c, a〉 is not a member of S. The right premise

sequent x̄ ; BSx̄ ` Sx̄ establishes that S is an invariant for the µB predicate. In the

present case, the argument list x̄ is just a pair of variables, say, x, z, and B is the body

of the path predicate: the right premise is the sequent x, z ; x −→ z ∨ (∃y. x −→
y ∧+ S y z) ` S x z. A formal proof of this follows easily by blindly applying applicable

inference rules.

While the induction and coinduction rules for fixed points are strong enough to

prove non-reachability and (bi)simulation assertions in the presence of cyclic behaviors,

these rules are not strong enough to prove other simple truths about inductive and

coinductive predicates. Consider, for example, the following two named fixed point

expressions used for identifying natural numbers and computing the ternary relation

of addition.

nat =µλNλn(n = z ∨ ∃n′(n = s n′ ∧+ N n′))

plus =µλPλnλmλp((n = z ∧+ m = p) ∨ ∃n′∃p′(n = s n′ ∧+ p = s p′ ∧+ P n′ m p′))
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The following formula, stating that the addition of two numbers is commutative,

∀n∀m∀p.nat n ⊃ nat m ⊃ plus n m p ⊃ plus m n p,

is not provable using the inference rules we have described. This failure is not because

the induction rule (µL in Figure 3) is not strong enough or that we are actually situated

close to a weak logic such as MALL: it is because an essential feature of inductive

arguments is missing. To motivate that missing feature, consider attempting a proof by

induction that the property P holds for all natural numbers. Besides needing to prove

that P holds of zero, we must also introduce an arbitrary integer j (corresponding to

the eigenvariables of the right premise in µL) and show that the statement P (j + 1)

reduces to the statement P (j). That is, after manipulating the formulas describing

P (j+ 1) we must be able to find in the resulting proof state, formulas describing P (j).

Up until now, we have only “performed” formulas (by applying introduction rules)

instead of checking them for equality. More specifically, while we do have a logical

primitive for checking equality of terms, the proof system described so far does not

have an equality for comparing formulas. As a result, many basic theorems are not

provable in this system. For example, there is no proof of ∀n.(nat n ⊃ nat n). The full

proof system for µMALL= contains the following two initial rules

X ; µBt̄ ` µBt̄
µ init

X ; νBt̄ ` νBt̄
ν init

as well as the cut rule. For now, we shall concentrate on using only the introduction

rules of µMALL=.

Example 5 With its emphasis on state exploration, model checking is not the place

where proofs involving arbitrary infinite domains should be attempted. If we restrict

to finite domains, however, proofs appear. For example, consider the less-than binary

relation defined as

lt = µλLλxλy((x = z ∧+ ∃y′.y = s y′) ∨ (∃x′∃y′.x = s x′ ∧+ y = s y′ ∧+ L x′ y′))

The formula (∀n.lt n 10 ⊃ lt n 10) has a proof that involves generating all numbers

less than 10 and then showing that they are, in fact, all less than 10. Similarly, a proof

of the formula ∀n∀m∀p(lt n 10 ⊃ lt m 10 ⊃ plus n m p ⊃ plus m n p) exists and

consists of enumerating all pairs of numbers 〈n,m〉 with n and m less than 10 and

checking that the result of adding n+m yields the same value as adding m+ n.

7 Synthetic inference rules

As we have illustrated, the additive treatment of connectives yields a direct connec-

tion to the intended model-theoretic semantics of specifications. When reading such

additive inference rules proof theoretically, however, the resulting implied proof search

algorithms are either unacceptable (infinitary) or naive (try every element of the do-

main even if they are not related to the specification). The multiplicative treatments

of connectives are, however, more “intensional” and they make it possible to encode

reachability aspects of model checking search directly into a proof.

We now need to balance these two aspects of proofs if we wish to provide a foun-

dation for model checking. We propose to do this by allowing both additive and mul-

tiplicative inference rules to be used to build synthetic inference rules and to require
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that these synthetic inference rules be essentially additive in character. Furthermore,

we will be able to build rich and expressive inference rules that can be tailored to

capture directly rules that are used to specify a given model.

Proof theory has a well developed method for building synthetic inference rules and

these use the notions of polarization and focused proof systems that were introduced

by Andreoli [1] and Girard [18] shortly after the introduction of linear logic [16].

7.1 Polarization

All logical connectives are assigned a polarity : that is, they are either negative or

positive. The connectives of MALL= whose right-introduction rule is invertible are

classified as negative. The polarity of the least and greatest fixed point connectives is

actually ambiguous [3] but we follow the usual convention of treating the least fixed

point operator as positive and the greatest fixed point operator as negative [29]. In

all cases, the de Morgan dual of a negative connective is positive and vice versa. In

summary, the negative logical connectives of µMALL= are 6=, ∧−, t−, ⊃, ∀, and ν,

while the positive connectives are =, ∧+, t+, ∨, ∃, and µ. Furthermore, a formula is

positive or negative depending only on the polarity of the top-level connective of that

formula.

A formula is purely positive (purely negative) if every occurrence of logical con-

nectives in it are positive (respectively, negative). Horn clause specifications provide

natural examples of purely positive formulas. For example, assume that one has several

Horn clauses defining a binary predicate p (as in Example 3). A standard transforma-

tion of such clauses leads to a single clause of the form

∀x∀y.(B p x y) ⊃ (p x y)

where the expression (B p x y) contains only positive connectives as well as possible

recursive calls (via reference to the bound variable p). If we now mutate this implication

to an equivalence (following, for example, the Clark completion [9]) then we have

∀x∀y.(B p x y) ≡ (p x y)

or more simply the equality between the binary relations (B p) and p. Using this

motivation, we shall write the predicate denoting p not via a (Horn clause) theory but

as a single fixed point expression, in this case, (µλpλxλy.B p x y). (In this way, our

approach to model checking does not use sets of axioms, i.e., theories.) If one applies

such a translation to the Horn clauses (Prolog clauses in Example 3) one gets the fixed

point expressions for both the step and path predicates. It is in this sense that we are

able to capture arbitrary Horn clause specifications using purely positive expressions.

As is well-known (see [5], for example), if B is a purely positive formula then one

can prove (in linear logic) that !B is equivalent to B and, therefore, that B ∧+ B is

equivalent to B.

7.2 A focused proof system

Figure 4 provides a two-sided version of part of the µ-focused proof system for µMALL=

that is given in [5]. Here, y stands for a fresh eigenvariable, s and t for terms, N for a
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Asynchronous connective introductions

Xθ :N θ ⇑ Γθ `∆θ ⇑ Pθ
X :N ⇑ s = t, Γ `∆ ⇑ P

†
Xθ :N θ ⇑ Γθ `∆θ ⇑ Pθ
X :N ⇑ Γ ` s 6= t,∆ ⇑ P

†
X :N ⇑ s = t, Γ `∆ ⇑ P

‡

X :N ⇑ Γ ` s 6= t,∆ ⇑ P
‡

X :N ⇑ Γ `∆ ⇑ P
X :N ⇑ t+, Γ `∆ ⇑ P

X :N ⇑A1, Γ `∆ ⇑ P X :N ⇑A2, Γ `∆ ⇑ P
X :N ⇑A1 ∨A2, Γ `∆ ⇑ P

X :N ⇑ Γ `A1 ⇑ P X :N ⇑ Γ `A2 ⇑ P
X :N ⇑ Γ `A1 ∧−A2 ⇑ P

X :N ⇑A1, A2, Γ `∆ ⇑ P
X :N ⇑A1 ∧+ A2, Γ `∆ ⇑ P

X :N ⇑A1, Γ `A2,∆ ⇑ P
X :N ⇑ Γ `A1 ⊃ A2,∆ ⇑ P X :N ⇑ f+, Γ `∆ ⇑ P

X :N ⇑ Γ ` t−,∆ ⇑ P
X , yτ :N ⇑ C y, Γ `∆ ⇑ P
X :N ⇑ ∃xτ . C x, Γ `∆ ⇑ P

X , yτ :N ⇑ Γ ` C y ⇑ P
X :N ⇑ Γ ` ∀xτ . C x ⇑ P

X :N ⇑B(µB)t̄, Γ `∆ ⇑ P
X :N ⇑ µB t̄, Γ `∆ ⇑ P

X :N ⇑ Γ `B(νB)t̄, ∆ ⇑ P
X :N ⇑ Γ ` νB t̄,∆ ⇑ P

Synchronous connective introductions

X : N ⇓ t 6= t ` P X : N ` t = t ⇓ P X : N ⇓ f− ` P X : N ` t+ ⇓ P

X : N1 `A1 ⇓ P1 X : N2 ⇓A2 ` P2

X : N1,N2 ⇓A1 ⊃ A2 ` P1,P2

X : N1 `A1 ⇓ P1 X : N2 `A2 ⇓ P2

X : N1,N2 `A1 ∧−A2 ⇓ P1,P2

X : N ⇓Ai ` P
X : N ⇓A1 ∧−A2 ` P

X : N `Ai ⇓ P
X : N `A1 ∨A2 ⇓ P

X : N ⇓ C t ` P
X : N ⇓ ∀xτ . C x ` P

X : N ` C t ⇓ P
X : N ` ∃xτ . C x ⇓ P

X : N ⇓B(νB)t̄ ` P
X : N ⇓ νB t̄ ` P

X : N `B(µB)t̄ ⇓ P
X : N ` µB t̄ ⇓ P

Structural rules

X :N , N ⇑ Γ `∆ ⇑ P
X :N ⇑N,Γ `∆ ⇑ P

storeL
X :N ⇑ P ` · ⇑ P
X : N ⇓ P ` P releaseL

X : N ⇓N ` P
X :N , N ⇑ · ` · ⇑ P decideL

X :N ⇑ · `∆ ⇑ P,P
X :N ⇑ · ` P,∆ ⇑ P

storeR
X :N ⇑ · `N ⇑ P
X : N `N ⇓ P releaseR

X : N ` P ⇓ P
X :N ⇑ · ` · ⇑ P,P decideR

Fig. 4 The µMALLF=
0 proof system: A subset of the two sided version of part of the µ-focused

proof system from [3]. This proof system does not contain rules for cut, initial, induction, and
coinduction.

negative formula, P for a positive formula, C for the abstraction of a variable over a

formula, and B the abstraction of a predicate over a predicate. The † proviso requires

that θ is the mgu (most general unifier) of s and t, and the ‡ proviso requires that s

and t are not unifiable. This collection of inference rules may appear complex but that

complexity comes from the need to establish a particular protocol in how µMALL=

synthetic inference rules are assembled.

Sequents in our focused proof system come in the following three formats. The

asynchronous sequents are written as X :N ⇑ Γ `∆ ⇑ P. The left asynchronous zone

of this sequent is Γ while the right asynchronous zone of this sequent is ∆. There are

two kinds of focused sequents. A left-focused sequent is of the form X : N ⇓B`P while

a right-focused sequent is of the form X : N ` B ⇓ P. In all three of these kinds of

sequents, the zone marked by N is a multiset of negative formulas, the zone marked

by P is a multiset of positive formulas, ∆ and Γ are multisets of formulas, and X is

a signature of eigenvariable as we have seen before. Focused sequents are also referred
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to as synchronous sequents. The use of the terms asynchronous and synchronous goes

back to Andreoli [1].

Note that the number of formulas in a sequent remains the same as one moves from

the conclusion to a premise within synchronous rules but can change when one moves

from the conclusion to a premise within asynchronous rules.

We shall now make a distinction between the term proof and derivation. A proof

is the familiar notion of a tree of inference rules in which there are no open premises,

while derivations are trees of inference rules with possibly open premises (these could

also be called incomplete proofs). A proof is a derivation but not conversely. One of the

applications of focused proof systems is the introduction of interesting derivations that

may not be completed proofs. As we shall see, synthetic inference rules are examples

of such derivations.

Sequents of the general form X :N ⇑·` ·⇑P are called border sequents. A synthetic

inference rule (also called a bipole) is a derivation of a border sequent that has only

border sequents as premises and is such that no ⇑-sequent occurrence is below a ⇓-

sequent occurrence: that is, a bipole contains only one alternation of synchronous to

asynchronous phases. We shall use polarization and a focused proof system in order to

design inference rules (the synthetic ones) from the (low-level) inference rules of the

sequent calculus. We shall usually view synthetic inference rules as simply inference

rules between border premises and a concluding sequent: that is, the internal structure

of synthetic inference rules are not part of their identity.

The construction of the asynchronous phase is functional in the following sense.

Theorem 5 (Confluence) We say that a purely asynchronous derivation is one built

using only the store and the asynchronous rules of µMALLF=
0 (Figure 4). Let Ξ1 and

Ξ2 be two such derivations that have X :N ⇑ Γ `∆ ⇑P as their end-sequents and that

have only border sequents as their premises. Then the multiset of premises of Ξ1 and

of Ξ2 are the same (up to alphabetic changes in bound variables).

Proof Although there are many different orders in which one can select inference rules

for introduction within the asynchronous phase, all such inference rules permute over

each other (they are, in fact, invertible inference rules). Thus, any two derivations Ξ1

and Ξ2 can be transformed into each other without changing the final list of premises.

Thus, as is common, computing with “don’t care nondeterminism” is confluent and,

hence, it can yield (partial) functional computations.

In various focused proof systems for various logics without fixed points (for example,

[1,22]), the left and right asynchronous zones (written using Γ and ∆ in Figure 4) are

sometimes lists instead of multisets. In this case, proving the analogy of Theorem 5

is immediate. As the following example illustrates, when there are fixed points, the

function that maps the sequent X : N ⇑ Γ ` ∆ ⇑ P to a list of border premises can

be partial: the use of multisets of formulas instead of lists allows more proofs to be

completed.

Example 6 Recall the definition of the natural number predicate nat from Section 6,

namely,

nat = µλNλn(n = z ∨ ∃n′(n = s n′ ∧+ N n′))

Any attempt to build a purely asynchronous derivation with endsequent

· : · ⇑ · ` ∀xnat(nat x ⊃ x = x) ⇑ ·
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will lead to a repeating (hence, unbounded) attempt. As a result, the implied computa-

tion based on this sequent is partial. On the other hand, there is a purely asynchronous

derivation of

· : · ⇑ · ` ∀xnat(nat x ⊃ 2 = 3 ⊃ x = x) ⇑ ·

that maps this sequent to the empty list of border sequents. If a list structure in used

in the Γ zone and only the first formula in such lists were selected for introduction,

then this computation of border sequents would not terminate.

Many of the inference rules in the synchronous phase require, however, making

choices. In particular, there are three kinds of choices that are made in the construction

of this phase.

1. The ∧− left-introduction rules and the ∨ right-introduction rule require the proper

selection of the index i ∈ {1, 2}.
2. The right-introduction of ∃ and left-introduction of ∀ both require the proper se-

lection of a term.

3. The multiplicative nature of both the ⊃ left-introduction rules and ∧+ right-

introduction rules requires the multiset of side formulas to be split into two parts.

With our emphasis on the proof theory behind model checking, we are not generally

concerned with the particular algorithms that are used to search for proofs (which is,

of course, a primary concern in the model checking community). Having said that,

we comment briefly on how the nondeterminism of the synchronous phase can be

addressed in implementations. Generally, the first choice above is implemented using

backtracking search: for example, try setting i = 1 and if that does not lead eventually

to a proof, try the setting i = 2. The second choice is often resolved using the notion

of “logic variable” and unification: that is, when implementing the right-introduction

of ∃ and left-introduction of ∀, instantiate the quantifier with a new variable (not an

eigenvariable) and later hope that unification will discover the correct term to have used

in these introduction rules. Finally, the splitting of multisets can be very expensive:

a multiset of n distinct formulas can have 2n splits. In the model checking setting,

however, where singleton border sequents dominate our concerns, the number of side

formulas is often just 0 so splitting is trivial.

7.3 Two-sided versus one-sided sequent proof system

At the start of Section 7.2, we claimed that Figure 4 provides a two-sided version of

part of the µ-focused proof system for µMALL= that is given in [2,5]. That claim

needs some justification since the logic given in [2,5] does not contain implications and

its proof system uses one-sided sequents. Consider the two mutually-recursive mapping

function given in Figure 5. These functions translate from formulas using ` to formulas

using ⊃ instead. The familiar presentation of MALL has a negation symbol that can

be used only with atomic scope: since µMALL= does not contain atomic formulas, it

is possible to remove all occurrences of negation by using de Morgan dualities. Thus,

if we set B̄ to be the de Morgan dual of B, the we can translation B ` C to B̄ ⊃ C.

Note that since all fixed point expressions are monotone (see [5] and Section 6), the

translation of recursive calls within fixed point definitions are actually equal and not

de Morgan duals (or negations): [[pt̄]]+ = [[pt̄]]− = pt̄. This apparent inconsistency is
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[[⊥]]+ = f− [[1]]+ = t+ [[0]]+ = f [[>]]+ = t−

[[⊥]]− = t+ [[1]]− = f− [[0]]− = t− [[>]]− = f

[[A&B]]+ = [[A]]+ ∧− [[B]]+ [[A⊕B]]+ = [[A]]+ ∨ [[B]]+
[[A⊗B]]+ = [[A]]+ ∧+ [[B]]+ [[A`B]]+ = [[A]]− ⊃ [[B]]+

[[A&B]]− = [[A]]− ∨ [[B]]− [[A⊕B]]− = [[A]]− ∧− [[B]]−
[[A⊗B]]− = [[A]]+ ⊃ [[B]]− [[A`B]]− = [[A]]− ∧+ [[B]]−

[[T = S]]+ = (T = S) [[T 6= S]]+ = (T 6= S)
[[T = S]]− = (T 6= S) [[T 6= S]]− = (T = S)

[[∀x.B]]+ = ∀x.[[B]]+ [[∃x.B]]+ = ∃x.[[B]]+
[[∀x.B]]− = ∃x.[[B]]− [[∃x.B]]− = ∀x.[[B]]−

[[(µ(λpλx̄B))t̄]]+ = (µ(λpλx̄[[B]]+))t̄ [[(ν(λpλx̄B))t̄]]+ = (ν(λpλx̄[[B]]+))t̄
[[(µ(λpλx̄B))t̄]]− = (ν(λpλx̄[[B]]−))t̄ [[(ν(λpλx̄B))t̄]]− = (µ(λpλx̄[[B]]−))t̄

In addition, [[pt̄]]+ = pt̄ and [[pt̄]]− = pt̄ when p is a predicate variable (required in translating
the body of µ and ν expressions).

Fig. 5 Translating formulas of µMALL= possibly containing ` into formulas containing ⊃
instead.

not a problem since recursively defined variables have only positive (and not negative)

occurrences within a recursive definition.

Returning to the proof system for µMALLF=
0 , it is now easy to observe that the

two-sided sequents can be translated to one-side sequents using the inverse of the

mapping defined in Figure 5.

X :N ⇑ Γ `∆ ⇑ P X ` [[N ]]−1− , [[P]]−1+ ⇑ [[Γ ]]−1− , [[∆]]−1+

X : N ⇓B ` P X ` [[N ]]−1− , [[P]]−1+ ⇓ [[B]]−1−
X : N `B ⇓ P X ` [[N ]]−1− , [[P]]−1+ ⇓ [[B]]−1+

This mapping will also cause two inference rules in Figure 4 to collapse to one infer-

ence rules from the original one-sided proof system. While the one-sided presentation of

proof for linear logic, especially MALL, is far more commonly used among those study-

ing proofs for linear logic, the presentation using implication and two-sided sequents

seems more appropriate for an application involving model checking. The price of us-

ing a presentation of linear logic that contains implication is the doubling of inference

rules.

7.4 Deterministic and nondeterministic computations within rules

Let µBt̄ be a purely positive fixed point. As we have noted earlier, such a formula

can denote a predicate defined by an arbitrary Horn clause (in the sense of Prolog).

Attempting a proof of the sequent X : · `µBt̄⇓ will only lead to a sequence of right

synchronous inference rules to be attempted. Thus, this style of inference models com-

pletely (and abstractly) captures Horn clause based computations. The construction

of such proofs are, in general, nondeterministic (often implemented using backtracking

search and unification). On the other hand, a sequent of the form X : · ⇑ µBt̄ ` · ⇑ P
yields a deterministic computation and phase.
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Example 7 Let move be a purely positive least fixed point expression that defines a

binary relation encoding legal moves in a board game (think to tic-tac-toe). Let wins

denote the following greatest fixed point expression.

(νλWλx.∀y. move(x, y) ⊃ ∃u. move(y, u) ∧+ (W u))

Attempting a proof of · : · ⇑ · ` wins(b0) ⇑ · leads to attempting a proof of

y : · ⇑move(b0, y) ` ∃u.move(y, u) ∧+ wins(u) ⇑ ·.

The asynchronous phase with this as it root will explore all possible moves of this

game, generating a new premise of the form · : · ⇑ · ` ∃u.move(bi, u) ∧+ wins(u) ⇑ · for

every board bi that can arise from a move from board b0. Note that computing all legal

moves is a purely deterministic (functional) process. The only rules that can be used to

prove this sequent are the release and decide rules, which then enters the synchronous

phase. Note that this reading of winning strategies exactly corresponds to the usual

notion: the player has a winning strategy if for every move of the opponent, the player

has a move that leaves the player in a winning position. Note also that if the opponent

has no move then the player wins.

This example illustrates that synthetic inference rules can encode both determin-

istic and nondeterministic computations. The expressiveness of the abstraction behind

synthetic inference rules is strong enough that their application is not, in fact, decid-

able. We see this observation as being no problem for our intended application to model

checking: if the model checking specification uses primitives (such as move) that are

not decidable, then the entire exercise of model checking with them is questionable.

8 Additive synthetic connectives

As we illustrated in Section 3, a key feature of additive inference rules is the strength-

ening theorem (Theorem 1): that is, additive rules and the proofs built from them only

need to involve sequents containing exactly one formula. As was also mentioned in

Section 3, the strengthening feature, along with the initial and cut admissibility rules,

makes it possible to provide a simple model-theoretic treatment of validity for each

such inference rules. In this section, we generalization the notion of additive inference

rules to additive synthetic inference rule.

A border sequent X :N ⇑ · ` · ⇑ P in which X is empty and P ∪ N is a singleton

multiset is called a singleton border sequent. Such a sequent is of the form · :N ⇑·` ·⇑ ·
or · : · ⇑ ·` ·⇑P : in other words, these sequents represent proving the negation of N (for

a negative formula N) or proving P for a positive formula P . The only inference rule in

Figure 4 that has a singleton sequent as its conclusion is either the decide left or decide

right rule: in both cases, the formula that is selected is, in fact, the unique formula

listed in the sequent. An additive synthetic inference rule is a synthetic inference rule

in which the conclusion and the premises are singleton border sequents.

Our goal now is to identify a sufficient condition that guarantees that when a decide

rule is applied (that is, a synthetic inference rule is initiated), the bipole that arises

must be an additive synthetic inference rule. Our sufficient condition requires using

two notions which we present next: switchable formulas and predicate-typing.
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8.1 Switchable formulas

In order to restrict the multiplicative structure of formulas so that we will be build-

ing only additive synthetic connectives, we need to restrict some of the occurrences

of the multiplicative connectives ⊃ and ∧+. The following definition achieves such a

restriction.

Definition 1 A µMALL= formula is switchable if

– whenever a subformula C ∧+ D occurs negatively (to the left of an odd number of

implications), either C or D is purely positive;

– whenever a subformula C ⊃ D occurs positively (to the left of an even number of

implications), either C is purely positive or D is purely negative.

An occurrence of a formula B in a sequent is switchable if it appears on the right-hand

side (resp. left-hand side) and B (resp. B ⊃ f−) is switchable.

Note that both purely positive formulas and purely negative formulas are switchable.

Example 8 Let P be a set of processes, let A be a set of actions, and let · ·−→ · be a

ternary relation defined via a purely positive expression (that is, equivalently as the

least fixed point of a Horn clause theory). If p, q ∈ P and a ∈ A then both p
a−→ q

and p
a−→ q ⊃ f− are switchable formulas. The following two greatest fixed point

expressions define the simulation and bisimulation relations for this label transition

systems.

ν
(
λSλpλq.∀a∀p′. p a−→ p′ ⊃ ∃q′. q a−→ q′ ∧+ S p′ q′

)
ν
(
λBλpλq. (∀a∀p′. p a−→ p′ ⊃ ∃q′. q a−→ q′ ∧+ B p′ q′)

∧−(∀a∀q′. q a−→ q′ ⊃ ∃p′. p a−→ p′ ∧+ B q′ p′)
)

Let sim denote the first of these expressions and let bisim denote the second and let p

and q be processes (members of P ). The expressions sim(p, q) and bisim(p, q) as well

as the expressions sim(p, q) ⊃ f− and bisim(p, q) ⊃ f− are switchable.

Note that the bisimulation expression contains both the positive and the negative

conjunction: this choice of polarization gives focused proofs involving bisimulation a

natural and useful structure (see Example 10).

The following example illustrates that deciding on a switchable formula in a sequent

may not necessarily lead to additive synthetic inference rules since eigenvariables may

“escape” into premise sequents.

Example 9 Let bool be a primitive type containing the two constructors tt and ff. Also

assume that N is a binary relation on two arguments of type bool that is given by a

purely negative formula. For example, N(u, v) can be u 6= v. The following derivation

of the singleton border sequent · : ∀xbool ∃ybool Nxy ⇑ · ` · ⇑ · has a premise that is not

a singleton sequent.

ybool :N(tt, y) ⇑ · ` · ⇑ ·
ybool : · ⇑N(tt, y) ` · ⇑ ·

storeL

· : · ⇑ ∃ybool N(tt, y) ` · ⇑ ·
· : · ⇓∃ybool N(tt, y) ` ·

releaseL

· : · ⇓∀xbool ∃ybool N(x, y) ` ·
· : ∀xbool ∃ybool N(x, y) ⇑ · ` · ⇑ ·

decideL
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Let B be the expression λx.x = tt∨x = ff which encodes the set of booleans {tt,ff }. If

we double up on the typing of the bound variable ybool by using the B predicate, then

the above derivation changes to the following derivation which has singleton border

sequents as premises.

· :N(tt, tt) ⇑ · ` · ⇑ ·
· : · ⇑N(tt, tt) ` · ⇑ ·

storeL

ybool : · ⇑ y = tt, N(tt, y) ` · ⇑ ·

· :N(tt,ff) ⇑ · ` · ⇑ ·
· : · ⇑N(tt,ff) ` · ⇑ ·

storeL

ybool : · ⇑ y = ff, N(tt, y) ` · ⇑ ·
ybool : · ⇑ y = tt ∨ y = ff, N(tt, y) ` · ⇑ ·

· : · ⇑ ∃ybool (By ∧+ N(tt, y)) ` · ⇑ ·
· : · ⇓∃ybool (By ∧+ N(tt, y)) ` ·

releaseL

· : · ⇓∀xbool ∃ybool (By ∧+ N(x, y)) ` ·
· : ∀xbool ∃ybool (By ∧+ N(x, y)) ⇑ · ` · ⇑ ·

decideL

This latter derivation justified the following additive synthetic inference rule.

· :N(tt, tt) ⇑ · ` · ⇑ · · :N(tt,ff) ⇑ · ` · ⇑ ·
· : ∀xbool ∃ybool (By ∧+ N(x, y)) ⇑ · ` · ⇑ ·

8.2 Predicate-typed formulas

As Example 9 suggests, it is easy to introduce defined predicates that capture the

structure of terms of primitive type and then exploit those predicates in the construc-

tion of synthetic inference rules. We now describe the general mechanism for capturing

primitive types as µ-expressions for a first-order signature (we follow here the approach

described in [25, Section 3]).

Assume that we are given a fixed set S of primitive types and a first-order signature

Σ describing the types of constructors over those primitive types. For the sake of

simplifying our presentation, we assume that the pair S and Σ are stratified in the

sense that we can order the primitive types S as a list such that whenever f : τ1 →
· · · → τn → τ0 is a member of Σ, every primitive types τ1, . . . , τn is either equal to τ0
or come before τ0 in that list. Such stratification of typing occurs commonly in, say,

many functional programming languages where the order of introducing datatypes and

their associated constructors is, in fact, a stratification of types.

For every primitive type τ ∈ S, we next introduce a new predicate τ̂ : τ → o. These

predicates are axiomatized by the theory C(Σ) that is defined to be the collection of

Horn clauses C(f) such that

C(f) := ∀x1.τ̂1 x1 ⊃ · · · ∀xn.τ̂1 xn ⊃ τ̂0(fx1 . . . xn),

where f has type τ1 → · · · → τn → τ0. As described in Section 7.1, such a set of

Horn clauses can be converted to µ-expressions that formally define the predicates τ̂

for every τ in S. Stratification of types is needed for this particular way of defining

such predicates.

Finally, we define the function (B)o by recursion on the structure of the formula

B: this function leaves all propositional constants unchanged by mapping quantified

expressions as follow.

(∀xτ .B)o = ∀xτ .τ̂ x ⊃ (B)o (∃xτ .B)o = ∃xτ .τ̂ x ∧+ (B)o
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We note that the restriction to first-order types and to stratified definitions of types

can be removed by making use of simple devices that have been developed in the work

surrounding the two-level logic approach to reasoning about computation [13,25]. Using

the terminology of [13], predicates denoting primitive types would be introduced into

the specification logic along with the logic programs (as hereditary Harrop formulas)

that describes the typing judgment. The encoding of (·)o, which translates among

reasoning logic formulas would then be written as follows:

(∀xτ .B)o = ∀xτ .{` τ̂ x} ⊃ (B)o (∃xτ .B)o = ∃xτ .{` τ̂ x} ∧+ (B)o

Here, the curly brackets are a reasoning-level predicate used to encode object-level

provability. Note also that the ∇ quantifier [12,30] would be invoked in the reasoning

logic in order to treat any type containing terms with bound variables: such a type

would involve constructors of higher-order type.

The following theorem is proved by an induction on the structure of first-order

formulas.

Theorem 6 Let S be a set of primitive types, let Σ be a first-order signature, and let

B be a first-order formulas all of whose non-logical constants are in Σ. If the formula

B is switchable then so is (B)o.

While it is the case that B and (B)o may not be equivalent formulas, there is a

sense that the formula (B)o is, in fact, the formula intended when one writes B. It is

always the case, however, that the formulas (B)o and ((B)o)o are logically equivalent

since all expressions of the form τ̂ t are purely positive and, hence, τ̂ t and τ̂ t ∧+ τ̂ t

are logically equivalent (see the end of Section 7.1).

8.3 Sufficient condition for building additive synthetic inference rules

The following theorem implies that switchable formulas and predicate-typing leads to

proofs using only additive synthetic rules.

Theorem 7 Let Π be a µMALLF=
0 derivation of either X : (B)o ⇑ · ` · ⇑ · or X : · ⇑ · `

· ⇑ (B)o where the occurrence of (B)o is switchable. Then every sequent in Π that is

the conclusion of a rule that switches phases (either a decide or a release rule) contains

exactly one occurrence of a formula and that occurrence is switchable.

Proof This proof proceeds by induction on the structure of µMALLF=
0 focused proofs.

A key invariant dealing with predicate-typing is given as follows: in any asynchronous

sequent with a variable x : τ in the signature, there must be a formula in the left asyn-

chronous context of the form τ̂ t in which x is free in t. Thus, if the left asynchronous

context is empty, the signature is empty.

It is interesting to note that the structure of focused proofs based on switchable for-

mulas is similar to the structure of proofs that arises from examining winning strategies

using the simple games from [10, Section 4].
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Example 10 Consider attempting a proof of sim(p0, q0), where p0, q0 ∈ P . This proof

must have the structure displayed here.

· · ·

· : · ⇑ · ` sim(pi, qi) ⇑ ·
· : · `sim(pi, qi) ⇓ ·

· : · `∃Q′. q0
ai−→ Q′ ∧+ sim(pi, Q

′) ⇓ ·
C

· : · ⇑ · ` · ⇑ ∃Q′. q0
ai−→ Q′ ∧+ sim(pi, Q

′)

· : · ⇑ · ` ∃Q′. q0
ai−→ Q′ ∧+ sim(pi, Q

′) ⇑ · · · ·

P ′, A : · ⇑ p0
A−→ P ′ ` ∃Q′. q0

A−→ Q′ ∧+ sim(P ′, Q′) ⇑ ·
B

· : · ⇑ · ` sim(p0, q0) ⇑ · A

Double lines denote (possibly) multiple inference rules. In particular, the group of

rules labeled by A contain exactly two introduction rules for ∀ and one for ⊃. The

group labeled by B consists entirely of asynchronous rules that completely generates

all possible labeled transitions from the process p0. In general, there can be any number

of pairs 〈ai, pi〉 such that p0
ai−→ pi: if that number is zero, then this proof succeeds at

this stage (if p0 can make no transitions then it is simulated by any other process). (We

shall make the common assumption that the transition is finitely branching in order

to guarantee that the number of premises at stage B is finite.) Above B is the storeR
and decideR rules. The group of rules labeled by C is a sequence of right-synchronous

rules that prove that pi
ai−→ qi. Finally, the top-most inference rule is a release rule.

(See [26] for a similar project on encoding simulation in the sequent calculus.)

As this example illustrates, the specification of sim as a greatest fixed point ex-

pression (see Example 8) generates singleton sequents at every change of phase. In

particular, the focused derivation with conclusion sim(p0, q0) leads to a derivation with

premises sim(p1, q1), . . . , sim(pn, qn), where the complex side conditions regarding the

relationships between p0, . . . , pn, q0, . . . , qn are all internalized into the phases. The fo-

cused proof rules for simulation are so natural that if one takes a µMALLF=
0 proof of

· : ·⇑ ·`sim(p0, q0)⇑· and collects into a set all the pairs 〈p′, q′〉 such that sim(p′, q′) ap-

pears in that proof (hence, as the right side of the singleton border sequents) then the

resulting set of pairs is a simulation in the sense of Milner [32]. Furthermore, if one has

a proof of the negation of a simulation, that is, a proof of · : ·⇑sim(p0, q0)`·⇑· then one

can easily extract from the sequence of synthetic rules in that proof a Hennessy-Milner

formulas that satisfies p0 but not q0 [20].

One of the values of using model checkers is they are often able to discover counter-

examples to proposed theorems. Just as a formula can be either true or false, we can

attempt to find a proof of a given formula or of its negation. In the latter case, we can

have proofs of counterexamples. For example, the formula ∀n. nat n ⊃ prime n ⊃ odd n

(for suitable definitions of primality and odd as purely positive fixed point expressions)

is not true. There is, in fact, a proof in µMALLF=
0 of the formula

∃n. nat n ∧+ prime n ∧+ (odd n ⊃ f−).

Such a proof would need to choose, of course, 2 as the existential witness.
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X :N ⇑ S t̄, Γ `∆ ⇑ P ȳ : · ⇑B S ȳ ` S ȳ ⇑ ·
X :N ⇑ µB t̄, Γ `∆ ⇑ P

X :N ⇑ Γ ` S t̄,∆ ⇑ P ȳ : · ⇑ S ȳ `B S ȳ ⇑ ·
X :N ⇑ Γ ` νB t̄,∆ ⇑ P

Fig. 6 Proof rules for induction and coinduction.

9 Induction and coinduction

As the previous examples and results suggest, the proof theory of µMALL= allows us to

build familiar inference rules that both allow us to explore a model (given by a collection

of fixed point definitions) as well as retain a traditional truth-functional interpretation

since the synthetic inference rules are additive. The logic µMALL= allows for more

that just state exploration. In this section and the next, we add to µMALLF=
0 more

inference rules and illustrate the possibilities for model checking.

There appears to be two natural ways to add to sequent calculus rules for induction.

One approach uses an induction rule similar to the one used by Gentzen in [15], namely,

Γ, P (j) −→ P (j + 1)

Γ, P (0) −→ P (t)
.

This rule is not an introduction rule since there is no logical symbol appearing in the

conclusion that does not also appear in the premise.

A second approach captures the induction rule as a left-introduction rule for µ-

expressions and the coinduction rule as a right-introduction rule for ν-expressions (as

in Figure 3). The right-introduction rule for µ-expressions and the left-introduction

rule for ν-expressions will remain unchanged: that is, they are simply unfolding rules.

This approach to induction and coinduction was developed in [3,24,41]. In particular,

the proof system µMALLF=
1 results from accumulating the inference rules in Figures 4

and 6. Such induction principles are expressive and require insights to apply since they

involve picking the instantiation of the higher-order relational variable S which acts as

an invariant and coinvariant.

In the following example, we illustrate how to formally prove the non-existence of

a path within the µMALLF=
1 proof system.

Example 11 Consider again the graph in Figure 2 and the related encoding of it in

Example 3. The µMALLF=
1 proof system is strong enough to provide a formal proof

that there is no path from node b to node d. Let the invariant S be the complement

of the set {b, c} × {d}: that is, S is the binary relation λxλy. ((x = b ∧+ y = d) ∨ (x =

c ∧+ y = d)) ⊃ f−. The proof of unreachability can be written as follows.

Ξ1

· : · `(b = b ∧+ d = d) ∨ (b = c ∧+ d = d) ⇓ · · : · ⇓f− ` ·
· : · ⇓S b d ` ·
· : S b d ⇑ · ` · ⇑ ·
· : · ⇑ S b d ` · ⇑ ·

Ξ2
x, y : · ⇑B S x y ` S x y ⇑ ·

· : · ⇑ path(b, d) ` · ⇑ ·

Here, the proof Ξ1 simply requires a use of the right introduction rules for disjunction,

(positive) conjunction, and equality. By expanding abbreviations, the proof Ξ2 has the
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r0

r1

ab

s0

s1

s2ab

c

Fig. 7 Non-noetherian labeled transition systems

following shape.

Ξ3
x, y : · ⇑ x −→ y ` S x y ⇑ ·

Ξ4

x, y : · ⇑ ∃z. x −→ z ∧+ S z y ` S x y ⇑ ·
x, y : · ⇑ x −→ y ∨ (∃z. x −→ z ∧+ S z y) ` S x y ⇑ ·

The proofs Ξ3 and Ξ4 involve only asynchronous inference rules and are left to the

reader to complete. (This example has not needed to use predicate-types.)

As this example illustrates, if a model checker is capable of computing the strongly

connected component containing, say, node b, (in this case the set {b, c}), then it is an

easy matter to produce the invariant that allows proving non-reachability.

The following example, taken from [20], illustrates a proof using a coinduction.

Example 12 According to Figure 7, the set {(r0, s0), (r1, s1)} is a simulation and, there-

fore, the process r0 is simulated by the process s0. In a formal proof of sim(r0, s0), the

binary relation written as λxλy. (x = r0 ∧+ y = s0) ∨ (x = r1 ∧+ y = s1) can be used

as the coinvariant to complete the proof.

While the two examples in this section illustrate the role of invariants and coinvari-

ants in building proofs, these examples were simple and require only small invariants

and coinvariants. In general, invariants and coinvariants are difficult of discover and

to write down. Even when some clever model checking algorithm has established some

inductive or coinductive property, it might be difficult to extract from the results of

that algorithm’s execution an actual invariant or coinvariant that could allow for the

completion of a formal (sequent calculus) proof. Of course, considerable interest has

been applied to the problem of extracting invariants from model checking procedures:

see, for example, [23, Chapter 1]. Various bisimulation-up-to techniques have been de-

signed to make it possible to prove various coinvariant-like properties that are easier

to discover and write down than attempting to discover an actual coinvariant for the

bisimulation definition itself that is required by the coinduction rule (Figure 6). For ex-

ample, it is often much easier to exhibit an actual bisimulation-up-to-contexts than to

exhibit an actual bisimulation (i.e., a coinvariant): considerable meta-theory is required

to justify the fact that, for example, a bisimulation-up-to-contexts actually implies the

existence of a bisimulation [32,35,36]. In general, invariants and coinvariants are not

always given explicitly: instead, various meta-theoretic properties are usually used to

show that certain kinds of surrogate relations are both easier to extract from model

checkers and guarantee the existence of the needed invariants and coinvariants.
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10 Tabled deduction

An important aspect of model checking is the incorporation of previously proved state-

ments and possible consequences of those statements. For example, the process of proof

search might create the same goal to prove multiple times: obviously, once a subgoal

is proved, it does not need to be re-proved. One proof search technique used to avoid

reproving subgoals is tabled deduction (see, for example, [33,34]). The implementer of

tabled deduction, when given a new subgoal to prove, first checks to see if that subgoal

already appears in the table: if it is found in the table then the goal is marked as

proved. If the goal is not in the table, then the attempt to find a proof continues. If

that attempt is eventually successful, the goal is then added to the table.

10.1 Tabling as unfocused proof

Once a proof using tabled deduction is successful, the table must be considered as part

of the proof. A description of how to transform a table built into an actual proof is

provided in [28,31], which we repeat here briefly in a non-focused fashion.

A proof-theoretic approach to tabled deduction will make use of both instances of

the initial rule and the cut rule. Assume that the formula B is proved with respect to

a table containing the formulas A1, . . . , An, where we assume that this enumeration of

the table follows the order in which those formulas are proved: that is, when i < j the

Ai entered the table before Aj , and, as a result, the proof of Aj may have depended

on the proof of Ai. Given this ordering of the table, we can build the following proof

(in, say, a standard single conclusion sequent calculus for intuitionistic logic).

Ξ1
` A1

Ξ2
A1 ` A2

Ξn+1

A1, . . . , An ` C
...

A1, A2 ` C
cut

A1 ` C
cut

` C cut

Here, Ξ1 is a (cut-free) proof of A1 while Ξ2 is a (cut-free) proof of A1 ` A2. That is,

this proof of A2 may or may not use the assumption A1, reflecting the fact that A1

was entered into the table before the attempt to proof A2. Proceeding in this fashion,

the entire table can be “loaded” into the assumption of the sequent used to prove B

by means of the cut inference rule. The final proof of B can now make use of all the

items in the table directly and without the need to reprove them.

We cannot, however, view tables-as-proofs in µMALL= since entailments such as

A1 ` A2 and A1, . . . , An ` B are not intended to be linear in the sense that all

assumption must be accounted for exactly once. The items placed in the table are

intended to be used any number of times (including not being used at all). What is

needed here (also for the first time in this paper) is the linear logic exponential !: that

is, the deduction that we intend is !A1, . . . , !An ` B (from which we can conclude
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X :N ⇑ · `D ⇑ P X :N ⇑D ` · ⇑ P
X :N ⇑ · ` · ⇑ P cut

X : µBt̄,Nµ ⇑ Γ `∆ ⇑ P
X :Nµ ⇑ µBt̄, Γ `∆ ⇑ P

freezeL
X :N ⇑ Γ `∆ ⇑ Pν , νBt̄
X :N ⇑ Γ `∆, νBt̄ ⇑ Pν

freezeR

X : · ⇓νBt̄ ` νBt̄,N
initL X : P, µBt̄ ` µBt̄⇓

initR

Fig. 8 The cut, freeze, and initial rules.

!A1, . . . , !An ` !B using the promotion rule of linear logic).

Ξ1
` A1

` !A1

Ξ2
!A1 ` A2

!A1 ` !A2

Ξn+1

!A1, . . . , !An ` C
...

!A1, !A2 ` C
cut

!A1 ` C
cut

` C cut

Of course, for the proofs Ξ2, . . . , Ξn+1 to actually use the additional assumptions

available to them from the table, the initial rule must also be added to the proof system.

Both the initial and cut rules are multiplicative rules since they express relationships

between elements within a sequent.

Since we have mentioned explicitly in this section the linear logic exponential !, it

is worth noting that one can prove (by induction) that ` (µBt̄) ≡ !(µBt̄) whenever the

expression µBt̄ is purely positive [5]. Thus, in this case, the implication P ⊃ C, where

P is purely positive, can be seen as either linear (as is the default in this paper) or as

intuitionistic. Thus, the distinction between linear and intuitionistic logics diminishes

in this situation.

10.2 Tabling as focused proof

We will illustrate here how it is possible to use the techniques just presented within

the setting of µMALL=. As we motivated above, a table can be converted to a proof

if we allow for both the initial and the cut rules. Figure 8 contains a version of these

two inference rules for a focused proof system. This figure also contains a left and

right version of the freeze rule. The schematic variable Nµ ranges over multisets of

formulas which can be either negative or (positive) µ-expressions. Dually, the schematic

variable Pν ranges over multisets of formulas which can be either positive or (negative)

ν-expressions. In the initial rule, the P variable will range only over multisets of µ-

formulas and the N variable will range only over multisets of ν-formulas.

The proof system µMALLF=
2 results from accumulating the inference rules in Fig-

ures 4, 6, and 8. Up to this point in our story about inference in µMALL=, a fixed

point expression in a sequent was either unfolded or used in an induction or coinduc-

tion. The treatment of tables, however, requires the third option of using a fixed point

expression as simply an expression that might be equal to another such expression.

For example, if we have an assumption of the form path(a, d) (there is a path from

node a to d), then we wish to prove the µ-expression path(a, d) without doing either an
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Ξ1

· : · ⇑ · ` · ⇑A1

· : · ⇑ · `A1 ⇑ ·
store

Ξ2

· :A1 ⇑ · ` · ⇑A2

· :A1 ⇑ · `A2 ⇑ ·
store

Ξn+1

· :A1, . . . , An ⇑ · ` · ⇑ C
...

· :A1, A2 ⇑ · ` · ⇑ C
· :A1 ⇑A2 ` · ⇑ C

freeze

· :A1 ⇑ · ` · ⇑ C
cut

· : · ⇑A1 ` · ⇑ C
freeze

· : · ⇑ · ` · ⇑ C cut

Fig. 9 Tabling in the focused proof setting.

unfolding or an induction. The usual initial inference rule (in their two versions within

the focused proof system in Figure 8) will achieve this as is witnessed by the derivation

in Figure 9: if in the proof Ξn+1 there is an attempt to prove Aj (1 ≤ j ≤ n), that

proof can simply be justified using the initR rule.

11 Conclusions

Linear logic is usually understood as being an intensional logic whose semantic treat-

ments are remote from the simple model theory considerations of first-order logic and

arithmetic. Thus, we draw the possibly surprising conclusion that the proof theory of

linear logic provides a suitable framework for certifying some of the results of model

checking. Many of the salient features of linear logic—lack of structural rules, polariza-

tion, and two conjunctions—play important roles in this framework. The role of linear

logic here seems completely different and removed from, say, the use of linear logic to

encode multiset rewriting and Petri nets [21] or to provide a new analysis of computa-

tion as is done with the Geometry of Interactions [17]. These wide ranging applications

of linear logic illustrate the status of linear logic as the logic behind computational

logic, especially when linear logic embraces fixed points and term equality.

The use of fixed points also allows for the direct and natural application of the

induction and coinduction principles. The work by Baelde in [2,5] illustrated that sev-

eral model checking examples can be described well using µMALL=. In this paper,

we extend that observation by exploiting the interplay between additive and multi-

plicative rules in order to provide a proof theory for model checking. After identifying

additive rules as the main inferences used to build proofs from model specifications,

we systematically allow aspects of multiplicative inference to enter the broader frame-

work in order to capture more aspects of deduction in model checking. In particular,

we first allow multiplicative linear logic inferences within synthetic additive rules (via

the restriction to switchable formulas) and then we added the multiplicative initial

and cut rules so that we can build and use tables. A natural next step in this process

would be to capture constraints: these would naturally be assumptions which are not

treated within one phase but are delayed for treatment in some later phase. Thus, bor-

der sequents would contain one switchable formula plus some collection of constraint

formulas.

The ability to tightly link aspects of model checking to proof theory can have

an impact on both of these topics. For example, this link helps to bolster the claims

that linear logic is the logic behind computational logic since model checking is such
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a successful and popular instance of computational logic. Similarly, because model

checking is a mature and often implemented task, the underlying algorithms for search

and invariant generation that are implemented in model checkers should be transferable

to the domain of proof search.

Conversely, there should be some impacts on the general framework of model check-

ing. We conclude with a list of four such possible and known impacts.

1. Given that there can be a common proof theory for both model checking and

inductive theorem proving, using these two tools together can be natural (and

certified). For example, consider proving that fib(n), the nth Fibonacci number, is

equal to n2 if and only if n ∈ {0, 1, 12}. An attempt at proving this theorem could

invoke the automatic search features of a model checker to search for solutions to

fib(n) = n2 where n ≤ 12 while using standard inductive techniques to prove that

n > 12 implies that fib(n) > n2. For another example, consider using a model

checker to prove that there is no winning strategy in tic-tac-toe starting from the

empty board. An inductive theorem prover could be used to prove that if two board

positions are symmetric then one admits a winning strategy if and only if the other

admits a winning strategy. Such a theorem could be used (say, within the tabling

mechanism) by a model checker to greatly reduce its search space.

2. This proof-theoretic framework for model checking can lead to the design of proof

certificates for some of the conclusions made by a model checking system and these

certificates can be independently checked by theorem provers and proof assistants

which might be interested in having model checkers as untrusted subsystem. The

authors have taken the foundational proof certificate (FPC) framework from [7,27]

and have extended it to this setting with fixed point expressions: in particular, they

have defined proof certificates for reachability, non-reachability, bisimulation, and

non-bisimulation [20].

3. There are a number of other computational logic topics—for example, logic pro-

gramming, databases, modal logics, and type theories—that can use proof theory

to describe at least parts of their foundations. As a result, the links between these

topics and model checking should be facilitated by the encodings used in this paper.

Also, some applications to which model checking might be applied are sensitive to

the differences between classical and intuitionistic logic: a proof theoretic founda-

tions should greatly help in justifying when a model checking result can be viewed

as intuitionistically valid.

4. Proof theory supports rich abstractions, including term-level abstractions, such as

bindings in terms. As a result, lifting model checking from using first-order terms to

using simply typed λ-terms is natural in a proof-theoretical setting. In particular,

the Bedwyr model checker [4] has been built on using proof theory principles [12,

30] and, as a result, it is capable of performing model checking tasks with linguistic

structures including binders. Various model checking problems related to the π-

calculus have particularly clean and elegant treatments within proof theory and

using the Bedwyr system [39,40].
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