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Invertible rules and the negative phase

Some inference rules are invertible, e.g.,

A, Γ −→ B

Γ −→ A ⊃ B
Γ −→ A Γ −→ B

Γ −→ A ∧ B

Γ −→ B[y/x ]

Γ −→ ∀x .B

First focusing principle: when proving a sequent, apply invertible
rules exhaustively and in any order.

This is the negative phase of proof search: if formulas are
“processes” in an “environment,” then these formulas “evolve”
without communications (“asynchronously”) with the environment.
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Non-invertible rules and the positive phase

Some inference rules are not generally invertible, e.g.,

Γ1 −→ A Γ2 −→ B
Γ1, Γ2 −→ A ∧ B

Γ −→ B[t/x ]

Γ −→ ∃x .B

Some backtracking is generally necessary within proof search using
these inference rules.

Second focusing principle: non-invertible rules are applied in a
“chain-like” fashion.

This is the positive phase of proof search.
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Extending the neg/pos distinction to atoms

Focusing proof systems generally extend the neg/pos distinction to
atoms.

We shall assume that somehow all atoms are given a bias, that is,
they are either positive or negative.

A positive formula is either a positive atom or has a top-level
connective whose right-introduction rule is not invertible.

A negative formula is either a negative atom or has a top-level
connective whose right-introduction rules is invertible.
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Various focusing-like proof system

Uniform proofs [M, Nadathur, Scedrov, 1987] describes
goal-directed search and backchaining (in higher-order logic).

LLF: [Andreoli, 1992]: a focused proof system for linear logic.

LKT/LKQ/LKη: focusing systems for classical logic [Danos,
Joinet, Schellinx,1993]

LJQ [Herbelin, 1995] permits forward-chaining proof. LJQ′

[Dyckhoff & Lengrand, 2007] extends it.

λRCC [Jagadeesan, Nadathur, Saraswat, 2005] mixes forward
chaining and backward chaining (in a subset of intuitionistic logic).

LJF [Liang & M, 2009] allows forward and backward proof in all of
intuitionistic logic. LJT, LJQ, λRCC, and LJ are subsystems.

LKF (following) provides focusing for all of classical logic.
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The full picture behind focusing

Andreoli (1992) was the first to give a focused proof system for a
full logic (linear logic).

The proof system for MALL (multiplicative-additive linear logic) is
remarkably elegant and unambiguous.

Some complexity arises from using the exponentials (!, ?): in
particular, exponentials terminate focusing phases.

We now present two comprehensive focused proof systems for
classical logic.

LKF for classical logic

LKF for classical logic with fixed points and equality
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Classical logic and one-sided sequents

Two conventions for dealing with classical logic.

• Formulas are in negation normal form.

B ⊃ C is replaced with ¬B ∨ C ,

negations are pushed to the atoms

• Sequents will be one-sided. In particular, the two sided sequent

Σ : B1, . . . ,Bn − C1, . . . ,Cm

will be converted to

Σ : − ¬B1, . . . ,¬Bn,C1, . . . ,Cm.

We also drop the “Σ: ” prefix on sequents.
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LKF: Focusing for Classical Logic

Formulas are polarized as follows.

atoms are assigned bias (either + or −), and

∧ ∨, t, and f are annotated with either + or −.
Thus: ∧−, ∧+, ∨−, ∨+, t−, t+, f −, f +.

LKF is a focused, one-sided sequent calculus with the sequents

` Θ ⇑ Γ and ` Θ ⇓ B

Here, Θ is a multiset of positive formulas and negative literals, Γ is
a multiset of formulas, and B is a formula.
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LKF : focused proof systems for classical logic

` Θ ⇑ Γ, t−
` Θ ⇑ Γ,A ` Θ ⇑ Γ,B

` Θ ⇑ Γ,A ∧− B

` Θ ⇑ Γ

` Θ ⇑ Γ, f −
` Θ ⇑ Γ,A,B

` Θ ⇑ Γ,A ∨− B

` Θ ⇑ Γ,A[y/x ]

` Θ ⇑ Γ, ∀xA

` Θ ⇓ t+
` Θ ⇓ A ` Θ ⇓ B

` Θ ⇓ A ∧+ B

` Θ ⇓ Ai

` Θ ⇓ A1 ∨+ A2

` Θ ⇓ A[t/x ]

` Θ ⇓ ∃xA

Init

` ¬Pa,Θ ⇓ Pa

Store

` Θ,C ⇑ Γ

` Θ ⇑ Γ,C

Release

` Θ ⇑ N

` Θ ⇓ N

Decide

` P,Θ ⇓ P

` P,Θ ⇑ ·

P positive; Pa positive literal; N negative;
C positive formula or negative literal.
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About the structural rules in LKF

The only form of contraction is in the Decide rule

` P,Θ ⇓ P

` P,Θ ⇑ ·

The only occurrence of weakening is in the Init rule.

` ¬Pa,Θ ⇓ Pa

Thus negative non-atomic formulas are treated linearly (in the
sense of linear logic).

Only positive formulas are contracted.
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The abstraction behind focused proofs

We can ignore the internal structure of phases and consider only
their boundaries.

We can now move from micro-rules (introduction rules) to
macro-rules (pos or neg phases).

The decide depth of an LKF proofs is the maximum number of
Decide rules along any path starting from the end-sequent.

This measures counts “bi-poles”: one positive phase followed by a
negative phase.
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Results about LKF

Let B be a first-order logic formula and let B̂ result from B by
placing + or − on t, f , ∧, and ∨ (there are exponentially many
such placements).

Theorem. B is a first-order theorem if and only if B̂ has an LKF
proof. [Liang & M, TCS 2009]

Thus the different polarizations do not change provability but can
radically change the proofs.

Recall the Fibonacci series example: one specification yielded an
exponential time algorithm or a linear time algorithm depending
only on bias assignment.
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An example

Let a, b, c be positive atoms and let Θ contain the formula
a ∧+ b ∧+ ¬c .

` Θ ⇓ a
Init ` Θ ⇓ b

Init

` Θ,¬c ⇑ ·
` Θ ⇑ ¬c

` Θ ⇓ ¬c
Release

` Θ ⇓ a ∧+ b ∧+ ¬c
and

` Θ ⇑ · Decide

This derivation is possible iff Θ is of the form ¬a,¬b,Θ′. Thus,
the “macro-rule” is

` ¬a,¬b,¬c ,Θ′ ⇑ ·
` ¬a,¬b,Θ′ ⇑ ·
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Two certificates for propositional logic: negative

Use ∧− and ∨−. Their introduction rules are invertible. The initial
“macro-rule” is huge, having all the clauses in the conjunctive
normal form of B as premises.

. . .

` L1, . . . , Ln ⇓ Li
Init

` L1, . . . , Ln ⇑ · Decide
. . .

...

` · ⇑ B

The proof “certificate” can specify the complementary literals for
each premise or it can ask the checker to search for such pairs.

Proof certificates can be tiny but require exponential time for
checking.
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Two certificates for propositional logic: positive

Use ∧+ and ∨+. Sequents are of the form ` B,L ⇑ · and
` B,L ⇓ P, where B is the original formula to prove, P is positive,
and L is a set of negative literals.

Macro rules are in one-to-one correspondence with φ ∈ DNF (B).
Divide φ into φ− (negative literals) and φ+ (positive literals).

{` B,L,N ⇑ · | N ∈ φ−}
` B,L ⇓ B

provided ¬φ+ ∈ L

` B,L ⇑ · Decide

Proof certificates are sequences of members of DNF (B). Size and
processing time can be reduced (in response to “cleverness”).
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Positives allow “clever” choices

To illustrate the trade-off between proof-size and proof-checking
time consider the following simple example.

Let B be a propositional formula with a large conjunctive normal
form. Let B− (respectively, B+) be the result of annotating all the
connectives in B negative (respectively, positively).

Consider the tautology C = (p ∨ B) ∨ ¬p.

A negative focused proof results from computing the conjunctive
normal form of C and then observing that each disjunct is trivial.

There are many positive focused proof but one has decide depth 2:
first move through C to pick ¬p and then move again through C
to pick p.
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Herbrand’s Theorem proved

Herbrand’s Theorem.
Let B be a quantifier-free first-order formula. ∃x̄ .B is a
theorem if and only if there is an n ≥ 1 and substitutions
θ1, . . . , θn such that Bθ1 ∨ · · · ∨ Bθn is tautologous.

This theorem is easily proved by the completeness of LKF.
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Arithmetic via equality and fixed points

We shall add

first-order term equality
following Girard [1992] and Schroeder-Heister [1993], and

fixed points (for recursive definitions)
following Baelde, McDowell, M, Tiu [1996-2008].

They will both be logical connectives: that is, they are defined by
introduction rules.
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Equality as logical connective

Introductions in an unfocused setting.

− Θ, t = t − Θ, s 6= t
‡ − Θσ

− Θ, s 6= t
†

‡ s and t are not unifiable.
† s and t to be unifiable and σ to be their mgu

Introductions in a focused setting.

` Θ ⇓ t = t ` Θ ⇑ Γ, s 6= t
‡ ` Θσ ⇑ Γσ

` Θ ⇑ Γ, s 6= t
†

N.B. Unification was used before to implement inference rules:
here, unification is in the definition of the rule.
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Some theorems about equality

Equality is an equivalence relation...

• ∀x [x = x ]
• ∀x , y [x = y ⊃ y = x ]
• ∀x , y , z [x = y ∧ y = z ⊃ x = z ]

and a congruence.

• ∀x , y [x = y ⊃ (f x) = (f y)]
• ∀x , y [x = y ⊃ (p x) ⊃ (p y)]

Let 0 denote zero and s denote successor.

• ∀x [0 6= (s x)]
• ∀x , y [(s x) = (s y) ⊃ x = y ]
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A hint of model checking

Encode a non-empty set of first order terms S = {s1, . . . , sn}
(n ≥ 1) as the one-place predicate

Ŝ = [λx . x = s1 ∨+ · · · ∨+ x = sn]

If S is empty, then define Ŝ to be [λx . f +]. Notice that

s ∈ S if and only if ` Ŝ s.

The statement

∀x ∈ {s1, . . . , sn}.P(x) becomes ∀x .[Ŝx ⊃ Px ].

` P(s1) ⇑ ·
` P(x) ⇑ x 6= s1 · · ·

` P(sn) ⇑ ·
` P(x) ⇑ x 6= sn

` · ⇑ ∀x .[x 6= s1 ∧− · · · ∧− x 6= sn] ∨− P(x)
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Fixed Points as connectives

The fixed points operators µ and ν are De Morgan duals and
simply unfold.

` Θ ⇑ Γ,B(νB)t̄

` Θ ⇑ Γ, νBt̄

` Θ ⇓ B(µB)t̄

` Θ ⇓ µBt̄

B is a formula with n ≥ 0 variables abstracted; t̄ is a list of n
terms.

Here, µ denotes neither the least nor the greatest fixed point.
That distinction arises if we add induction and co-induction.
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Examples of fixed points

Natural numbers: terms over 0 for zero and s for successor. Two
ways to define predicates over numbers.

nat 0 :- true.

nat (s X ) :- nat X .

leq 0 Y :- true.

leq (s X ) (s Y ) :- leq X Y .

These logic programs can be given as fixed point expressions.

nat = µ(λpλx .(x = 0) ∨+ ∃y .(s y) = x ∧+ p y)

leq = µ(λqλxλy .(x = 0)∨+∃u∃v .(s u) = x ∧+ (s v) = y ∧+ q u v).

Horn clauses can be made into fixed point specifications (mutual
recursions requires standard encoding techniques).
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Putting computation into an inference rule

Consider proving the positive focused sequent

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2),

where m, n are natural numbers and N1,N2 are negative formulas.
There are exactly two possible macro rules:

` Θ ⇓ N1

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2)
for m ≤ n

` Θ ⇓ N2

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2)
for n ≤ m

A macro inference rule can contain an entire Prolog-style
computation.
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One step transitions in CCS

As inference rules in SOS (structured operational semantics):

A.P
A−→ P

P
A−→ R

P + Q
A−→ R

Q
A−→ R

P + Q
A−→ R

P
A−→ P ′

P|Q A−→ P ′|Q
Q

A−→ Q ′

P|Q A−→ P|Q ′

These can easily be written as Prolog clauses and as a fixed point
definition.
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The engineering of proof systems (cont)

Consider proofs involving simulation.

sim P Q ≡ ∀P ′∀A[ P
A−→ P ′ ⊃ ∃Q ′ [Q

A−→ Q ′ ∧ sim P ′ Q ′]].

Typically, P
A−→ P ′ is given as a table or as a recursion on syntax

(e.g., CCS): hence, as a fixed point.
The body of this expression is exactly two “macro connectives”.

• ∀P ′∀A[P
A−→ P ′ ⊃ · ] is a negative “macro connective”. There

are no choices in expanding this macro rule.

• ∃Q ′[Q
A−→ Q ′ ∧+ · ] is a positive “macro connective”. There

can be choices for continuation Q ′.
These macro-rules now match exactly the sense of simulation.
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Future work: Broad spectrum proof certificates

Sequent calculus and focusing proof systems provide:
• The atoms of inference (the introduction rules)
• The structure of focusing provides us with the rules of

chemistry: which atoms stick together and which do not.
• Engineered proofs system made form the molecules of inference.

An approach to a general notion of proof certificate:
• The world’s provers print their proof evidence using

appropriately engineered molecules of inference.
• A universal proof checker implements only the atoms of

inference and the rules of chemistry.

See the two recent draft submissions:
• “Communicating and trusting proofs: The case for broad

spectrum proof certificates”
• “A proposal for broad spectrum proof certificates”
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