
How to explain a counterexample

Dale Miller

Inria Saclay &
LIX, École Polytechnique
Palaiseau, France

PHILMATH Seminar
14 December 2021

1 / 27



A modern issue with using proof assistants

In many modern proof assistants, when the user proposes a
theorem to prove, the assistant often searches for a
counterexample to that proposed theorem.

I Maybe the empty set was not considered properly or the
existence of an even prime number was overlooked.

If the machine finds a counterexample, the natural question is:
How can the machine help the user understand what is
wrong with their proposed theorem?

I Revealing a term—such as the empty set or the prime number
2—might be sufficient.

I Sometimes much more sophistication is needed.

2 / 27



Useful automated tools

Systems that search for counterexamples to proposed theorems.

I Refute and Nitpick are available in Isabelle/HOL.

I QuickChick is implemented in Coq.

Property based testing systems are closely related.

∀L,K ∈ list. {true} K = SortProg(L) {sorted K ∧ perm L K}
I Quickcheck: tests code with lots of (well selected) examples

and checks various proscribed properties of them.

I Originally developed within the Haskell setting, similar tools
have been built for ACL2, Agda, Isabelle, and PVS.

In these cases, the machine has a proof that the user is motivated
to learn some aspects of it.

3 / 27



How can a user learn from a formal proof?

Print a LaTeX document? Naive for several reasons.

I The result could be very long and difficult to read.

I The line between computation (not needing explanation) and
deduction (needing explanation) is often ad hoc.

I Different readers might need different levels of detail.

I The reader might need to consider only small parts of a proof.

Proof browsing? Seems less naive.

I The user chooses the parts of the proof of interest.

I If more details are needed, they can be selectively unfolded.

An interaction between the user and the proof seems best.

4 / 27



Two assumptions underlying this talk

1. The human user has proposed a conjecture and the machine
has found a counterexample.
I The explanation is provided to a motivated user and someone

familiar with the proof assistant.

2. The theorems and conjectures will be based on items of
computational interest instead of general mathematical
interest.
I This explains the kinds of examples I will be using.

We shall refer to the human as the user and the machine holding
the proof as the oracle.

This project is only getting started.

I Many technical issues remain.

I Lifting this project to a broader setting is certainly of interest.

5 / 27



Proof evidence as sequent calculus proofs

Some proof assistants build natural deduction style proofs, often
encoded as dependently typed λ-terms.

Proof evidence appears in many other formats: resolution
refutations, Herbrand disjunctions, tableaux proofs, etc.

Most proof evidence can be presented as sequent calculus proofs.

For example, Foundational Proof Certificates can be used to
translate a wide range of proof evidence into sequent calculus
proofs [Chihani, M, and Renaud, 2017].

6 / 27



Sequents and the search for proofs

Assume that I have a several assumptions H1, . . . ,Hn written at
the top of sheet of paper and one conclusion B at the bottom of
the proof.

In the middle of the sheet is blank space that needs to be filled
with a proof.

This state of affairs is encoded in sequent calculus as:

...

H1, . . . ,Hn ` B

The sheet of paper is encoded as the sequent H1, . . . ,Hn ` B and

the empty space corresponds to
... .

We usually read inference rules from conclusion to premises.

7 / 27



Sequent calculus inference rules

Structural rules: weakening and contraction

Γ ` ∆
Γ,B ` ∆

wL
Γ ` ∆

Γ ` ∆,B
wR

Γ,B,B ` ∆

Γ,B ` ∆
cL

Γ ` ∆,B,B

Γ ` ∆,B
cR

Identity rules: initial and cut

B ` B
initial

Γ ` ∆,B B, Γ′ ` ∆′

Γ, Γ′ ` ∆,∆′
cut

Introduction rules: collections of left and right rules for every
logical connective

We introduce these as we need them.

8 / 27



Cut-elimination and consistency

The central result in proof theory is cut-elimination: a sequent
provable using the cut rule can be proved without the cut rule.

This result is usually proved by permuting cut rules up into the
proof until they disappear.

Consistency of the underlying logic follows immediately:
Assume that Ξ1 is a proof of ` B and Ξ2 is a proof of ` ¬B
(equivalently, B ` ). Thus, we have the following proof.

Ξ1

· ` B
Ξ2

B ` ·
· ` · cut

This empty sequent must also have a cut-free proof, but this is
impossible.

9 / 27



A partial proof of the empty sequent

Assume that the user is convinced that sequent ` B is provable
(in, say, first-order intuitionistic or classical arithmetic).

Also assume that the proof assistant (the oracle) has constructed a
proof Ξ of the negation of B, i.e., of the sequent B ` · .

We can write the partial proof structure

· ` B
Ξ

B ` ·
· ` · cut

Thus, there can be no proof of the left premise.

Main design choice: If the user is still convinced of the
provability of B, we take advantage of that state of mind and allow
the user to continue building a proof of B.

10 / 27



A conjunctive conjecture: the additive case
If B is B1 ∧ B2, the user is convinced that B1 and B2 are provable.

If the oracle’s proof uses the additive rule for conjunction, then it
knows that one of these cases has a counterexample.

· ` B1 · ` B2

· ` B1 ∧ B2

Ξi

Bi ` ·
B1 ∧ B2 ` ·

· ` · cut.

Permute the cut rule upward in this partial proof.

· ` Bi

Ξi

Bi ` ·
· ` · cut

Thus the oracle should instruct the user to try to prove Bi .

The user is informed which of these two cases should be pursued
to discover a problem in the formulation of the theorem.

11 / 27



A disjunctive conjecture

If B is B1 ∨ B2, the user is convinced that B1 or B2 is provable.

· ` Bi

· ` B1 ∨ B2

Ξ1

B1 ` ·
Ξ2

B2 ` ·
B1 ∨ B2 ` ·

· ` · cut.

Permute the cut rule upward in this partial proof.

· ` Bi

Ξi

Bi ` ·
· ` · cut

Thus the oracle is prepared to respond to either case that the user
wants to explore.

12 / 27



A universally quantified conjecture
If the B is the universally quantified formula ∀x .B ′, the interaction
would provide an actual instance of that quantifier that would lead
to a dead-end in the proof attempt.

· ` B ′x
· ` ∀x .B ′x

Ξ

B ′t ` ·
∀x .B ′x ` ·

· ` · cut

In this case, permuting the cut rule upwards causes the term t to
be substituted for the eigenvariable x , yielding

· ` B ′t

Ξ

B ′t ` ·
· ` · cut.

The user is asked to focus on one particular instance of the
universal quantifier they believe should be true.

13 / 27



A conjunctive conjecture: the multiplicative case

If the oracle’s proof uses the multiplicative rule for conjunction,
then it knows only that both conjunctions cannot be proved.

· ` B1 · ` B2

· ` B1 ∧ B2

Ξ
B1,B2 ` ·
B1 ∧ B2 ` ·

· ` · cut.

Permute the cut rule upward in this partial proof.

· ` B1 · ` B2

Ξ
B1,B2 ` ·

· ` · multicut

The oracle can claim that if one of B1 or B2 can be proved then
the other one cannot be proved.

The user should attempt to prove the easier of these two first.

14 / 27



Three disciplines: Game theory, ludics, proof theory

I There seems to be a strong connection here between dialogue
games for proofs [Hintikka, Lorenzen, etc]. In the interaction
between the user and the oracle, the oracle has a winning
strategy that is derived from its a formal proof.

I We use cut-elimination on non-proof objects: they necessarily
have open premises. Such objects have been called
paraproofs. This observation suggests connections also with
Ludics [Girard 2001].

I Proof theory, especially, the theory of focused proof systems,
can be used to extend these examples.

15 / 27



Focused Proof Systems

Andreoli gave a focused proof system for linear logic in 1991.

Focusing is ambiguous when applied to classical and intuitionistic
logics. Liang & M [2009, 2011] have described a general
framework for obtaining focused proof systems for those two logics.

Proofs are constructed using phases of inference rules: the
invertible (negative) phase and the non-invertible (positive) phase.

These two phases can be related to the moves in a two players
game. A precise connection between the cut-free proofs in MALL
and winning strategies is given in [Delande, M, & Saurin, 2010].

16 / 27



Synthetic inference rules

Focused proof systems can be used to build synthetic inference
rules. Cut-elimination automatically holds for such synthetic
inference rules [Marin, M, Pimentel, Volpe 2020].

Consider defining a path in graph with adjacency give by adj(·, ·).

∀x [path(x , x)]

∀x , y , z [adj(x , y) ∧ path(y , z) ⊃ path(x , z)]

· ` path(x , x)

· ` adj(x , y) · ` path(y , z)

· ` path(x , z)

These right-rules are justified using focusing within, say, Gentzen’s
LK or LJ proof systems.

To provide left-rules, we move beyond logic towards arithmetic.

17 / 27



Unfolding fixed points

The predicate path(·, ·) can be defined as a fixed point using
techniques described by Schroeder-Heister (definitional reflection)
[1993] and Girard [1992]. In that setting, there is no least or
greatest fixed points: this is arithmetic without induction.

When the underlying graph is a finite DAG (directed acyclic
graph), the least and greatest fixed points coincide.

If we make equality and adj(·, ·) into side conditions, we have the
following right and left introduction rules for path(·, ·).

· ` path(x , x)

· ` path(y , z)

· ` path(x , z)
provided adj(x , y)

{ path(y , z) ` · | adj(x , y) }
path(x , z) ` · provided x 6= z

18 / 27



Path or no path in a DAG

Assume that the oracle and user agree on equality of nodes and
adjacency in the graph.

Assume that a, w , b1, . . . , bn (n ≥ 0) are all distinct nodes and
that a is adjacent to exactly b1, . . . , bn.

· ` path(bj ,w)

· ` path(a,w)

{ path(bi ,w) ` · }ni=1

path(a,w) ` ·
· ` · cut

· ` path(bj ,w) path(bj ,w) ` ·
· ` · cut

If the oracle has a proof of path(a,w) ` ·, it seems to have no
useful information to give to the user.

19 / 27



“You can’t prove a negative”

The meaning of this questionable expression might be rephrased:

You claim that there is no treasure in this maze. Since I
don’t trust you, I will conduct my own search.

In the finite DAG situation, this means that interacting with the
oracle provides no information to convince the skeptic.

20 / 27



Information content of focused proofs

A collection of invertible rules (called a negative or asynchronous
phase) contains no useful proof information beyond the direct
computation of its premises from its conclusion.

E.g. the left-introduction rule for path(·, ·) is invertible.

A collection of non-invertible rules (called a positive or
synchronous phase) contains useful proof information that an
oracle can communicate.

E.g. the right-introduction rule for path(·, ·) is not invertible.

21 / 27



Least and greatest fixed points

The proof theory of “generic fixed points” has been extended to
include least fixed points (induction) and greatest fixed points
(co-induction) within intuitionistic and linear logics [Baelde,
McDowell, M, Momigliano, Tiu 2000-2012].

These extensions yield Heyting arithmetic and “linearized”
arithmetic.

Γ, St ` C BSx ` Sx

Γ, µBt ` C
Induction

I µBt is the least fixed point of the predicate operator B
applied then to term t.

I S is the invariant of this rule.

I While this rule breaks the subformula property, cut-elimination
results can still be proved.

22 / 27



No-path example

One way to prove that there is no path from a to b is to find a
collection C of nodes such that

· ` a ∈ C x ∈ C ∧ adj(x , y) ` y ∈ C b ∈ C ` ·
path(a, b) ` ·

The skeptical user can attempt a proof.

...

· ` path(a2, b)

· ` path(a1, b)
adj(a1, a2)

· ` path(a, b)
adj(a, a1,)

Continuing in this way, we have {a, a1, a2, . . .} ⊆ C.

But there is no information to guide the skeptic user.

23 / 27



Generalizations: Simulation and Bisimulation

In the study of concurrent processes, simulation and bisimulation
are defined using greatest fixed points.

sim P Q := ∀A,P ′ [P
A−→ P ′ ⊃ ∃Q ′[Q A−→ Q ′∧ sim P ′ Q ′]]

This is a bipole, flipping from negative and positive polarity.

The game that arises from examining the winning strategies
associated to focused proofs of this formula match exactly
Stirling’s games for simulation.

When the transition system (the · ·−→ · relation) is a finite DAG,
then the interaction between the user and oracle can proceed as
expected.

· ` sim P Q sim P Q ` ·
· ` ·

24 / 27



Further directions

I Better treatment of multiplicative inference rules and of
induction.

I What if the oracle also has a partial proof? Maybe that has
value if it has enough proof evidence to convince the user.

I More generally, if someone proposes to pay anyone for a proof
of B, there should also be a value for a proof of ¬B.

I Possible implementations
I Abella: a small proof system that does not yet have a fixed

notion of proof-as-a -value: it only has proof scripts.
I Coq: with the addition of a plugin that implements λProlog,

rather sophisticated interactions should be natural to write.

25 / 27



References

Andreoli 1992. Logic programming with focusing proofs in linear logic. J. of Logic and Computation, 2(3).

Baelde 2012. Least and greatest fixed points in linear logic. Trans. on Computational Logic, 13(1).

Chihani, Miller, & Renaud, 2017. A semantic framework for proof evidence. J. of Automated Reasoning 59(3).

Delande, Miller, & Saurin, 2010. Proof and refutation in MALL as a game. A. of Pure and Applied Logic.

Girard, 1992. A Fixpoint Theorem in Linear Logic. An email posted on Types mailinglist.

Girard, 2001. Locus solum. Mathematical Structures in Computer Science, 11(3).

Heath & Miller 2019. A proof theory for model checking. J. of Automated Reasoning, 63(4).

Liang & Miller 2009. Focusing and polarization in linear, intuitionistic, & classical logics. TCS 410(46).

Liang & Miller 2011. A Focused Approach to Combining Logics. A. of Pure and Applied Logic, 9(162).

Marin, Miller, Pimentel, & Volpe 2020. Synthetic inference rules for geometric theories. Submitted.

McDowell & Miller 2000. Cut-elimination for a logic with definitions and induction. TCS 232.

Momigliano & Tiu, 2012. Induction and Co-induction in Sequent Calculus. J. of Applied Logic, 10.

Schroeder-Heister, 1993. Rules of Definitional Reflection. LICS.

26 / 27



Thank you for
your attention

Art by Nadia Miller

27 / 27

https://nadiaamiller.wixsite.com/website

