
University of Pennsylvania
ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

August 1990

A Logic Programming Language With Lambda-
Abstraction, Function Variables, and Simple
Unification
Dale Miller
University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/cis_reports

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-54.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_reports/576
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Dale Miller, "A Logic Programming Language With Lambda-Abstraction, Function Variables, and Simple Unification", . August 1990.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_reports%2F576&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F576&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_reports%2F576&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F576&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports/576
mailto:repository@pobox.upenn.edu

A Logic Programming Language With Lambda-Abstraction, Function
Variables, and Simple Unification

Abstract
It has been argued elsewhere that a logic programming language with function variables and λ-abstractions
within terms makes a good meta-programming language, especially when an object-language contains notions
of bound variables and scope. The λProlog logic programming language and the related Elf and Isabelle
systems provide meta-programs with both function .variables and λ-abstractions by containing
implementations of higher-order unification. This paper presents a logic programming language, called Lλ,
that also contains both function variables and λ-abstractions, although certain restrictions are placed on
occurrences of function variables. As a result of these restrictions, an implementation of Lλ does not need to
implement full higher order unification. Instead, an extension to first-order unification that respects bound
variable names and scopes is all that is required. Such unification problems are shown to be decidable and to
possess most general unifiers when unifiers exist. A unification algorithm and logic programming interpreter
are described and proved correct. Several examples of using Lλ as a meta-programming language are
presented.

Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-90-54.

This technical report is available at ScholarlyCommons: http://repository.upenn.edu/cis_reports/576

http://repository.upenn.edu/cis_reports/576?utm_source=repository.upenn.edu%2Fcis_reports%2F576&utm_medium=PDF&utm_campaign=PDFCoverPages

A Logic Programming Language
with Lambda Abstraction, Function Variables

and Simple Unification

MS-CIS-90-54
LINC LAB 182

Dale Miller

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

August 1990

[[To appear in Extensions of Logic Programming edited by
Peter Schroeder-Heister, Lecture Notes in Artificial
Intelligence, Springer-Verlag. This paper has also

appeared in the Journal of Logic and Computation, 1991.
Supported in part by grants ONR N00014-88-K-0633
NSF CCR-87-05596, and DARPA ~00014-85-K-001811

A Logic Programming Language with Lambda-Abstraction,
Function Variables, and Simple Unification

Dale Miller
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104-6389 USA

Abstract: It has been argued elsewhere that a logic programming language with
function variables and A-abstractions within terms makes a good meta-programming
language, especially when an object-language contains notions of bound variables and
scope. The AProlog logic programming language and the related Elf and Isabelle systems
provide meta-programs with both function .variables and A-abstractions by containing
implementations of higher-order unification. This paper presents a logic programming
language, called LA, that also contains both function variables and A-abstractions, al-
though certain restrictions are placed on occurrences of function variables. As a result
of these restrictions, an implementation of LA does not need to implement full higher-
order unification. Instead, an extension to first-order unification that respects bound
variable names and scopes is all that is required. Such unification problems are shown
to be decidable and to possess most general unifiers when unifiers exist. A unification
algorithm and logic programming interpreter are described and proved correct. Several
examples of using LA as a meta-programming language are presented.

1. Introduction

A meta-programming language should be able to represent and manipulate such
syntactic structures as programs, formulas, types, and proofs. A common characteristic
of all these structures is that they involve notions of abstractions, scope, bound and
free variables, substitution instances, and equality up to alphabetic change of bound
variables. Although the data types available in most computer programming languages
are, of course, rich enough to represent all these kinds of structures, such data types do
not have direct support for these common characteristics. For example, although it is
trivial to represent first-order formulas in Lisp, it is a more complex matter to write Lisp
programs that correctly substitute a term into a formulas (being careful not to capture
bound variables), to test for the equality of formulas up to alphabetic variation, and to
determine if a certain variable's occurrence is free or bound. This situation is the same
when structures like programs or (natural deduction) proofs are to be manipulated or
when other programming languages, such as Pascal, Prolog, and ML, replace Lisp.

It is desirable for a meta-programming language to have language-level support for
these various aspects of object-level syntax. What is a common framework for represent-
ing these structures? Early work by Church, Curry, Howard, Martin-Lof, Scott, S tra-
chey, Tait, and others concluded that typed and untyped A-calculi provide a common

syntactic representation for all these structures. Thus a meta-programming language
that is able to represent terms directly in such A-calculi could be used to represent these
structures using the techniques described by these authors.

One problem with designing a data type for A-terms is that methods for destruc-
turing them should be invariant under the intended notion of equality of A-terms, which
usually includes a-conversion. Thus, destructuring the A-term Ax. f xx into its bound
variable x and body f xx is not invariant under a-conversion: this term is a-convertible
to Ay. fyy but the results of destructuring this equal term do not yield equal answers.
Although the use of nameless dummies [2] can help simplify this one problem since both
of these terms are represented by the same structure A(f 11), that representation still re-
quires fairly complex manipulations to represent the full range of desired operations on
A-terms. A more high-level approach to the manipulation of A-terms modulo a and P-
conversion has been the use of unification of simply typed A-terms [13, 20, 33, 341. Huet
and Lang [14] described how such an approach, when restricted to second-order match-
ing, can be used to analyze and manipulate simple functional and imperative programs.
Their reliance on unification modulo a, P, and ?-conversion made their meta-programs
elegant, simple to write, and easy to prove correct. They chose second-order match-
ing because it is strong enough to implement a certain collection of template matching
program transformations and it is decidable. The general problem of the unification of
simply typed A-terms of order 2 and higher is undecidable [8].

The use of A-term unification in meta-programming has been extended in several
recent papers and computer systems. In [6, 9, 10, 211 various meta-programs, including
theorem provers and program transformers, were written in the logic programming
language AProlog [24], which performs unification of simply typed A-terms. Paulson
[28, 291 exploited such unification in the theorem proving system Isabelle. Pfenning and
Elliot [32] argued that product types are also of use. Elliot [4] studied unification in a
dependent type framework and Pfenning [30] developed a logic programming language
Elf, which incorporates that unification process. Elf can be used to provide a direct
implementation of signatures written in the LF type specification language [Il l .

This paper presents a logic programming language, called LA, which is completely
contained within XProlog and admits a very natural implementation of the data type of
A-terms. The term language of LA is the simply typed A-calculus with equality modulo
a, p, and 7-conversion. The "P-aspects" of LA are, however, greatly restricted and, as a
result, unification in this language resembles first-order unification - the main difference
being that A-abstractions are handled directly.

The structure of LA is motivated in Section 2 and formally defined in Section 4
after some formal preliminaries are covered in Section 3. An interpreter and unification
algorithm for LA are presented in Sections 5 and 6, respectively. The unification algo-
rithm is proved correct in Section 7 and the interpreter is proved correct in Section 8.
Various comments about unification and interpretation are made in Section 9. Finally,
several examples of LA programs are presented in Section 10.

This paper is an expanded, reorganized, and corrected version of the paper [18].

2. Two motivations

There are at least two motivations for studying the logic LA. The first is based
on experience with using stronger logics for the specification of meta-programs. The
second is based on seeing how LA can be thought of as a kind of "closure" of a first-order
logic programming language.

2.1. Past experience. Both the Isabelle theorem prover and AProlog contain sim-
ply typed A-terms, p~-conversion, and quantification of variables at all functional or-
ders. These systems have been used to specify and implement a large number of meta-
programming tasks, including theorem proving', type checking, and program transfor-
mation, interpretation, and compilation. An examination of the structure of those
specifications and implementations revealed two interesting facts. First, free or "logic"
variables of functional type were often applied only to distinct A-bound variables. For
example, the free functional variable M may appear in the following context:

Ax.. . Ay . . . (Myx). . . .

When such free variables are instantiated, the only new p-redexes that arise are those
involving distinct A-bound variables. For example, if M above is instantiated with a
A-term, say AuAv.t, then the only new P-redex formed is ((AuAv.t)yx). This is reduced
to normal form simply by renaming in t the variables u and v to y and x - a very
simple computation. Second, in the cases where free variables of functional type were
applied to general terms, meta-level' P-reduction was invoked simply to perform object-
level substitution. For example, an object-level universal quantifier can be specified
using the symbol all of second-order type (term + formula) + formula. The binary
predicate that relates a universally quantified formula to the result of instantiating it
with some term can be coded simply by the following meta-level axiom

VBVT(instan (all B) (B T)),

where B and T are typed as term + formula and term, respectively. At the object-
level, this predicate relates the formulas Vx. B and [x ++ TI B: object-level substitution
is expressed at the meta-level using p-conversion.

The logic LA is designed to permit the first kind of p-redex but not the second. As
a result, implementations of this logic can make use of a very simple kind of unification.
Although object-level substitution is not automatically available, it can be specified
naturally as an LA program. We illustrate this for a simple, first-order, object-logic in
Section 10. Thus, LA requires that some of the functionality of p-conversion be moved
from the term level to the logic level. The result can be more complex logic programs
but with simpler unification problems. This seems like a trade-off worth investigating.

Another characteristic of most meta-programs written in Isabelle and AProlog is
that they quantify over at most second-order functional types. Despite this observation,
the w-order version of LA is presented here since, as is shown in Section 9, the unification
procedure of LA is not dependent on types and, hence, not on order.

2.2. Discharging constants from terms. Consider a first-order logic whose logical
connectives are A (conjunction), 2 (implication), and V (universal quantification). Let
A be a syntactic variable that ranges over atomic formulas, and let D and G range over
formulas defined by the following grammar:

It has been argued in various places (for example, [17, 221) that the intuitionistic theory
of these formulas provides a foundation for logic programming if programs are identified
with collections of D-formulas and goals or queries with G-formulas. As a logic pro-
gramming language, it forms a rich extension to Horn clauses and still retains several
import ant properties that malie it suit able for program specification and implementa-
tion.

One of those important properties is that a simple operational interpretation of
the logical connectives is sound and non-deterministically complete with respect to
intuitionistic logic. This operational interpretation can be described as follows. Let C
be a first-order signature (set of constants), let P be a finite set of closed D-formulas,
and let G be a closed G-formula, both over C (i .e. , all of whose non-logical constants
are from C). Intuitionistic provability of G from C and P, written as C; P F I G, can be
characterized using the following search operations:
AND: C ; P tI GI A G2 if C; P F I G1 and C; P Gz.
AUGMENT: C; P F I D > G if C; P U {D} k I G.
GENERIC: C; P tr Vx.G if C U {c}; P F I [x - c]G, provided that c is not in C.
BACKCHAIN: C; P F I A if there is a formula D E P whose universal instantiation
with closed terms over C is A or is G > A and C; P F I G.

Clearly, this characterization of intuitionistic provability can be shaped into a sim-
ple theorem proving mechanism. Such a mechanism using unification and a depth-first
searching discipline can be used to give a Prolog-style implementation of this logic. No-
tice that both components to the left of the turnstile may vary within the search for a
proof. For example, the terms used to instantiate the universal quantifiers mentioned
in the BACKCHAIN rule can be taken from different signatures at different parts of a
proof.

While this logic has its uses (for example, see [15, 16, 17]), there is a kind of
incompleteness in its space of values. Consider the following example. Let Co be a
signature containing at least the constants append, cons, nil, a, b and let Po contain
just the two formulas

VxVlVkVm(append I k m > append (cons x E) I; (cons x m))

Vk(append nil k k).

Now, consider the problem of finding a substitution term over Co for the variable X so
that the goal formula Vy(append (cons a (cons b nil)) y X) is provable. Proving this

goal can be reduced to finding an instantiation of X so that

(append (cons a (cons b nil)) k X)

is provable, where k is not a member of Co. Using BACKCHAIN twice, this goal
is provable if and only if X can be instantiated with (cons a (cons b k)) . This is not
possible, however, since X can be instantiated with terms over Co but not over Co U {k} .
Such a failure here is quite sensible since the value of X should be independent of the
choice of the constant used to instantiate Vy. It might be desirable, however, to have
this computation succeed if this particular choice of constant could be abstracted away.
That is, an interesting value is computed here, but it cannot be used since it is not
well defined. Admitting A-abstraction into this logic provides a representation of such
a value.

Consider, for example, proving the goal Vy (append (cons a (cons b nil)) y (H y))
where H is a functional variable that may be.instantiated with a A-term whose constants
are again from the set Co. Assume that Vy is again instantiated with the constant
k. This time, (H k) must equal (cons a (cons b k)). There are two simply-typed
A-terms (up to A-conversion) that when substituted for H into (H k) and then A-
normalized yield (cons a (cons b k)), namely, the terms Aw (cons a (cons b k)) and
Aw (cons a (cons b w)). Since H cannot contain k free, only the second of these
possible substitutions will succeed in being a legal solution for this goal. In a sense,
the A-term Aw (cons a (cons b w)) is the result of discharging the constant k from the
term (cons a (cons b k)). Notice, however, that discharging a first-order constant from
a first-order term is now a "second-order" term: it can be used to instantiate a function
variable.

The higher-order variable H in the above example is restricted in such a way that
when it is involved in a solvable unification problem, there is a single, most general
unifier for it. We shall define LA in such a way that this is the only kind of "higher-
order" unification problem that can occur. All such uses of a higher-order variable will
be associated with discharging a constant from a term. Term models for P-reduction of
the simply typed A-calculus interpret a A-term, say Ax.t of type T t a, as a mapping
from A-equivalence classes of type T to such equivalence classes of type a. In LA, this
functional interpretation must be restricted greatly: Ax.t can be thought of as a function
that carries an increment in a signature to a term over that increment.

The reader who is comfortable with the above discussion may wish to read Sec-
tion 10 next where several examples of LA programs are given and discussed.

3. Logical Preliminaries

We assume that the reader is familiar with the basic properties of X-terms, X-
conversion, and logic built on top of simply typed X-terms. Some definitions and prop-
erties are reviewed below. See [l, 3, 121 for more complete presentations.

Untyped X-terms are built up from a set of tokens and from application and ab-
straction in the usual way. Occurrence of tokens in terms are classified as either free or
bound occurrences. Expressions of the form Xx (t x) are called 7-redexes (provided x
is not free in t) while expressions of the form (Ax t)s are called P-redexes. A term is
X-normal if it contains no ,f3 or 77-redexes. The expression t = s means that t and s are
a-convertible. The term r P-reduces to the term r' if r has an occurrence of a O-redex,
say (Ax t)s, and r' is the result of replacing that redex with the result of substituting
s for x in t (changing bound variable names to avoid variable capture). The term r
7-reduces to the term r' if r has an occurrence of an 77-redex, say Ax (t x), and r' is the
result of replacing that redex with t. The binary relation Xconv, denoting X-conversion,
is defined so that t Xconv s if there is a list of terms t l , . . . , t,, with n > 1, t equal to
t l , s equal to t,, and for i = 1 , . . . , n - 1, either ti relates to ti+1 or ti+1 relates to t i
by a-conversion or by by ,B or q-reduction. If a term can be converted to a X-normal
term, that normal term is unique up to the name of bound variables. If t is a X-term
then Xnorm(t) denotes its X-normal form. Since not all untyped X-terms have X-normal
forms, this function is partial. When applied to simply typed versions of X-terms (as
below), X-normal forms always exist, and this function is then total. A X-normal term
that is not a top-level abstraction is of the form (htl . . . t,) where h is a token. This
token is the head of this term.

Substitutions are finite association lists written as [xl I+ sl , . . . , x, I+ s,], where
the variables xl , . . . , x, are all distinct. The list xl , . . . , x, is the domain of this sub-
stitution. If n = 0, this substitution is the empty substitution. When a substitution is
applied to a term, it denotes the operation of simultaneous substitution, systematically
changing bound variables in order to avoid variable capture. If T is a set of terms and q
is a substitution, then yT = {qt I t E T}. Two substitutions, cp and $, are equal if their
domains are equal and if whenever x H t E cp and x H s E $ then s Xconv t. The nota-
tion cp o li, denotes the composition of two substitutions. Functionally (9 o +)(t) = $I(@)
and as an association list, z H t E 9 o $ if z is in the domain of cp and t is $(pz) or z
is in the domain of 1C, and not in the domain of cp and t is $2.

Let S be a fixed, finite set of primitive types (also called sorts). The set of types
is the smallest set of expressions that contains the primitive types and is closed under
the construction of function types, built using the binary, infix symbol -+. This arrow
associates to the right: read TI + TZ + TS as 71 + (T2 + T ~) . The Greek letters T and
a are used as syntactic variables ranging over types.

Let T be the type TI + - - . + T, --+ TO where TO E S and n > 0. (By convention, if
n = 0 then T is simply the type TO.) The types 71,. . . , T, are the argument types of T

while the type TO is the target type of T. The order of a type T is defined as follows: If
T E S then r has order 0; otherwise, the order of r is one greater than the maximum
order of the argument types of r . Thus, T has order 1 exactly when T is of the form
71 + + T, + TO where n > 1 and { T ~ , T ~ , . . .,T,) S.

A signature (over S) is a finite set C of pairs of tokens and types that satisfies the
usual functionality condition: a given token is associated with at most one type in a
given signature. Signatures are often presented by listing their pairs as a : T. A signature
is of order n if all its tokens have types of order n or less and at least one token has a
type of order n. The expression C + c : T is legal if c is not assigned by C, in which case,
it is equal to C U { c : 7).

Signatures can be used as type assignments in the following way. Let C be a
signature. A A-normal, untyped A-term t is a C-term of type T if all free tokens in t are
members of C .and if the term t can be .given the type T using the type assignment C.
We shall think of signatures as "local declaration" of which tokens should be considered
constants. Tokens in t are thus either bound variables or free tokens that appear in
C, in which case we shall call them constants. It is very natural, however, for bound
variables to change status to constants by a change in signature. For example, if x is
not a token in C then Ax.t is a C-term of type T + o if and only if t is a C U { x : 7)-term
of type a.

As in [3], logic over terms is introduced by assuming that the primitive type o,
meant to denote propositions, is always given as a member of S. Predicate types are
type expressions of the form TI + . . + T, 4 o (n 2 0) where the type expressions
TI, . . . , T, do not contain o. Signatures are constrained so that if a type in it contains
o, that type must be a predicate type. If C assigns a token a predicate type, that token
is called a predicate (via C). The following defines the class of C-formulas.

o If A is a C-term of type o then. A is an atomic C-formula.
o If B and C are C-formulas then B A C and B > C are C-formulas.
o If [x H yJB is a C + y : T-formula then V,x.B is a C-formula (x and y are tokens).

This paper assumes the additional restriction that if a quantified variable is of type
T then T does not contain the primitive type o. Thus, predicate quantification is not
permitted in this logic. There are various ways to allow forms of predicate quantification
in this setting: one approach is described in [22, 251 and another is described in [16].
The kinds of meta-programs that we discuss here do not require any forms of predicate
quantification.

A sequent calculus is used to define intuitionistic provability over these formulas. A
sequent is a triple, written C ; I' + B, where C is a signature, r is a finite (possibly
empty) set of C-formulas, and B is a C-formula. The set I? is the antecedent and B is the
succedent of this sequent. Intuitionistic provability is given by the sequent proof system
Z displayed in Figure 1. Since antecedents are sets of formulas, the structural rules of
contraction and weakening are not needed. The notation r, B is short for I' U { B) and
the notation I?, A is short for I? U A . The two universal introduction rules have the
following provisos: in Q-L t must be a C-term of type T; in Q-R y must be a token that
is not in C. A rule that permits formulas in the premise sequent to be replaced with
a-convertible formulas in the conclusion is implicitly assumed to be available whenever'
it is needed. We write C; r !- B to mean that the sequent C ; r 4 B has a sequent
proof.

C ; B , C , A - E
A-L

C ; B A C , A 4 E C ; r ---+ B A C

C ; Xnorm([x H t] B), r ---t C CU { y : ~ } ; -+ [x H y]B
V- L V- R

C ; r t B C ; B , A --+ E
cut initial

Figure 1: 2: Inference rules for intuitionistic provability

Gentzen's cut-elimination theorem [7] can be used on Z to prove that if a sequent
is provable then it is provable without the cut rule. The rest of this paper considers
only cut- free proofs.

4. Logic Programming

The proof system Z can be used as the basis of a logic programming language since
a goal-directed style of theorem proving is complete for it. Goal-directed provability
can be formalized within general sequent calculus proof systems using the notion of
uniform proof [22]: a cut-free sequent proof is uniform if whenever the succedent in
an occurrence of a sequent is not atomic, that sequent occurrence is the conclusion of
a right-introduction rule. Within Z, this means that if the occurrence of a sequent
has a succedent that is a conjunction, implication, or universal quantifier, that sequent
occurrence is the result of the A-R, >-R, or V-R rules, respectively. The following
proposition follows from considering permutations of inference rules in cut-free proofs.
Stronger results are established in [22].

Proposition 4.1. If the sequent C ; ---t B has a proof in 2, it has a uniform
proof. In other words, the following equivalences hold.

o C ; r t B1 AB2 i f a n d o n l y i f C ; r t Bl a n d C ; I ' t B2.
o C ; r t B 1 >B2 i f andon ly i fC ; I ' ~{B1} l -B2 .
o C; r t- V,X.B if and only if C U {y : r } ; r t [x H y]B, where y is a token that is

not in C.
The structure of proofs in Z of sequents that have atomic succedent can be char-

acterized by using a notion of backchaining. In Section 2 we considered backchaining
in the simple setting where program formulas are of the form V5.A and VS.(G > A),

where A is atomic and VZ is some list of universally quantified variables. Backchain-
ing will be described below in a setting where this restriction on program formulas is
not assumed. This is not problematic because formulas built freely from A, >, and
V can be related directly to conjunctions of restricted clauses via the following simple
intuitionistic equivalences:

Bi 3 (B2 A B3) (Bi > B2) A (Bi > B3)

Bi > (B2 > B3) - (BI A B2) > B3

Bi > V,xBz - V,x(B1 > BZ)

(provided in the last case that x is not free in B1). The following definitions are a simple
way to capture these equivalences and incorporate them into a sequent proof system.

Let I? be a finite set of C-formulas. The set of pairs (I'Jc is defined to be the smallest
set such that

o if D E then (0, D) E II'lc,
0 if (I', Dl A D2) E II'lc then lrlc E (r , Dl) and lrlc E (I', D2),
o if (r , G 3 D) E lI'lc then (I ' U {G), D) E JI'Jc, and
o if (I?, V,x D) E lrlc and t is a C-term, then (I', Anorm([x H t]D)) E II'lc.

Notice that in general, lrlc is an infinite set of pairs. Referring to lrlc within a sequent
calculus eliminates the need to have all three left-introduction rules, V-L, A-L, >-L, as
well as the initial rule. Thus, consider the proof system 1' that is the result of deleting
the cut and initial rules and the three left-introduction rules from 2 and replacing
them with the BC rule (for backchaining) given in Figure 2. It is worth noting that,
in general, applicability of BC is difficult to check: it is equivalent to doing "higher-
order matching," which is not known to be decidable. We shall only be interested in
using this inference rule in the restricted setting of LA, and there (as a consequence of
Proposition 7.3) determining the applicability of BC will be decidable. The following
proposition follows from results in [22].

{C ; -+ G)GEA provided that A is atomic and (A, A) E II'lc.
BC If A is empty, then no premises appear and the

C ; r ---t A sequent is treated as an initial sequent.

Figure 2: Backchaining as an inference rule

Proposition 4.2. Let C be a signature, a set of closed C-formulas, and B a closed
C-formula. Then C ; r k B if and only if the sequent C ; I? 4 B is provable in 2'.

This proposition can be used to describe a non-deterministic interpreter that first
decomposes goal formulas using right-introduction rules and then attempts to backchain
to prove atomic goals. Moving from this style of non-deterministic interpreter to an ac-
tual deterministic interpreter is a difficult task. Various aspects of implementing such
an interpreter are considered in [5, 24, 261. In order to motivate the introduction of
the restrictions defining LA, it is important to note that the above non-deterministic

interpreter will need to perform P-reductions while looking for proofs. That is, although
programs and goals start out in A-normal form (by the definition of C-formulas), substi-
tutions may cause them to become non-normal. Thus, the use of the Anorm() function
in the definition of IF(c is necessary in general. Unification in this setting is complex
because p-conversion can cause significant changes to a term. LA will be restricted in
such a way that only a very simple fragment of general p-conversion is required in the
interpreter. As a result, unification in that language will be much simpler than for the
full, unrestricted logic.

As we motivated in Section 2, we wish to restrict P-reductions that need to be
performed within a theorem prover for this logic. The only place where Anorm() is
used in the description of the proof system 2' is within the definition of lFlc used in
backchaining. In order to restrict the formation of P-redexes in proofs, we need to
restrict occurrences of those universally quantified variables for formulas that can be
instantiated in the definition of IF(c. Such quantifier instances are those that can appear
at the top-level of a formula in the antecedent. A universal quantifiers that can appear
at the top-level of the succedent do not need to be restricted since they are instantiated
by only new constants and not general terms. Thus we must make a distinction between
formulas that can occur in antecedents and those that can occur in succedents. Using
the operational reading of such formulas in logic programming, we shall informally refer
to formulas that can appear in the antecedent as program formulas, definite formulas, or
just D-formulas. Formulas that can appear in succedents will be called queries, goals,
or G-formulas. We now motivate our eventual definitions of both G and D-formulas.

Let C be a signature and let B be a C-formula. If B is to be considered a G-formula,
then we classify bound variables in B as follows: A bound variable occurrence in B is
essentially universal if it is bound by a positive occurrence of a universal quantifier or
by a (term-level) A-abstraction in B; otherwise, it is essentially existential; that is, it
is bound by a negative universal quantifier in G. Dually, if B is to be considered a
D-formula, then a bound variable occurrence in B is essentially universal if it is bound
by a negative occurrence of a universal quantifier or by a (term-level) A-abstraction in
B; otherwise, it is essentially existential; that is, it is bound by a positive universal
quantifier in G.

The central restriction in LA is that for every subterm in B of the form (x yl . . . y,)
(n > 0) where x is essentially existentially quantified in B, it must be the case that
yl, . . . , y, is a list of distinct variables that are essentially universally quantified within
the scope of the binding for x. This restriction ensures that if x is ever instantiated
by some term, say t , then the only P-redexes that appear after that substitution are
of the form (tyl . . . y,) where the variables yl,. . . , y, are not free in t . Using a and
q-conversions, we can assume that t is of the form Xyl . . . Ayn.tl. Thus, P-reduction

I simply reduces (Ayl . . . Xyn.tl)yl . . . y, to t . Let Po-conversion be that subcase of P-
conversion that relates redexes of the form (Ax.s)x to s. As is mentioned in Section 9,
the equational theory of LA is only that of a , Po, and 7-conversions.

This restriction on G and D-formulas can be described more formally using the
proof system in Figure 3. Let & denote a quantifier prefix, that is, a list of universal
and existential quantifiers in which the quantified variables are all distinct. Quantifier in

prefixes are slightly richer than those in C-formulas; in particular, universal quantifiers
of predicate types and existential quantifiers (of non-predicate types) are allowed. We

0
write Q ko t : T if the sequent Q --+ t : T is provable, Q t-- B if the sequent Q L B is
provable, and Q k+ B if the sequent Q 2 B is provable. This proof system has four
provisos. The first two, (a) and (I), deal with only bound variable names and hence are
not significant restrictions. The remaining two restrictions are of more consequence.
(a) The term t (resp., the formula G, D) is a-convertible to t' (G', Dl).
(t) The variable x does not occur in Q.
(1) Q contains V h where the type on the quantifier is TI + . - -+ Tn + T (n > 0).
(fl) The variable x is existentially quantified in Q to the left of where the distinct

variables yl, . . . , y, (n > 0) are universally quantified. The quantifier for x has
type TI + . . --t T, t T while the quantifiers for yl,. . . , y, have type 71,. . . , Tn,
respectively.

Q3,x 2 D Q L D l & 2 D 2 Q - L G Q - D 0

t
Q 4 A : o

Q 2 V,X.D Q Dl A D2 Q G G > D & L A

Figure 3: Proof rules for the syntax of LA

Let C be a signature and let Qc be the prefix that is an enumeration of the
quantifiers V,x, for each pair x : T E C, in some arbitrary but fixed order. A goal
formula or G-formula of LA is a C-formula G so that Qc k+ G. A definite formula or
D-formula of LA is a C-formula D so that Qc t-- D.

All first-order positive Horn clauses are both G and D-formulas. If the constant p
has type i + o and f has type i --t i then the formula

is an example of a G-formula but not a D-formula. As a D-formula of LA, it has a
subterm occurrence (x y) where both x and y are essentially existential, and this is
ruled out by proviso (#). Section 10 contains several examples of G and D-formulas.

5. An interpreter for LA

Interpretation of LA can be described as a bottom-up search for goal-directed proofs.
The BACKCHAIN step is, of course, the most difficult to implement since it requires
chosing a D-formula and terms to substitute into that formula. The interpreter de-
scribed below uses unification to discover what instances of D-formulas lead to successful
BACKCHAINing steps.

In such an interpreter, it is necessary to keep track of notions such as the "current
goal," the "current program," the "current signature," and restrictions on free variables.
Interpreters for Horn clauses need to keep track of only the first of these: there the
current program and signature remain unchanged during a computation, and restrictions
on free variables do not need to be made. In the description of an interpreter for LA given
below, explicit meta-level quantification is used to encode both the current signature
and the restrictions on free variables, and sequents are used to connect programs to
goals.

Consider the simple meta-logic that contains the logical constants A, T (true), I
(false), V, (7 ranges over all types, including predicate types), and 3, (T ranges over all
non-predicate types). The reuse of the object-level logical constants V, and A should not
lead to confusion. Meta-level atomic propositions, called judgements, are of four kinds:
the two constants, T and I, the equality judgement t A s, and the sequent judgement
P 4 G. A formula of the meta-logic denotes a state formula if (a) all tokens that are
not bound in object-level formulas are bound by meta-level quantifiers and (b) names
of all meta-level bound variables within a given state formula are distinct. The first
condition implies that state formulas are closed; the second condition is a convenience.
No separate signature is assumed: instead of having a signature C and a state formula
S, consider only the state formula QcS.

Let S be a state formula. A substitution 6' is an S-substitution if the domain of 6'
does not contain any meta-level, universally quantified variables but does contain all of
the meta-level, existentially quantified variables of S . Also, let 3,x occur in S and let C
be the set of typed universally quantified variables in which 3,x is in the scope. Then
cpx must be a C-term of type T. In this sense, an S-substitution is a closed substitution;
that is, its substitution terms do not contain existentially quantified variables. It is for
convenience that variables other than existentially quantified variables are permit in
the domain of such S-substitutions: since such variables are neither free nor quantified
in the meta-level of S, they shall play no role in the interpreter. Two S-substitutions,
say p and $, are equal if for each 3,x in S, yx = +x. In that case, we write 9 = $
(mod S) .

It is possible that for a given S, there may not be any S-substitutions. For example,

if E is the signature { f : i 3 i, g : i + i + i) and S is QE3;x(x x), there is no S-
substitution since there is no A-term of type i whose only free tokens are f and g. That

is, the type i is, in a sense, empty. Since the problem of determining if there is an
S-substitution for a given S reduces to proving theorems in the implicational fragment
of intuitionistic logic, this problem is decidable [35].

An S-substitution cp satisfies S if (i) S does not contain I, (ii) for every equation
t s in S, cpt Xconv cps, and (iii) for every sequent judgement P --+ G in S, the
sequent

C ; Xnorm(cpP) ---+ Xnorm(9G)

has a proof in 2' (where C is the set of typed universal variables in which this sequent
is in the scope). A solution to S is an S-substitution that satisfies S. By definition, a
state formula containing I has no solutions. The purpose of an interpreter is to search
for solutions to a state formula. Checking satisfiability is, of course, not decidable in
general.

The BACKCHAIN transition below requires the following elaboration function,
which is related to the function defined.in Section 4 except that it does not choose
substitution terms. Let S be a state formula and let P be a finite set of D-formulas.
Then elab(S, P) is defined to be the smallest set of triples such that

o if D E P then (() , 8 , D) E elab(S, P) (() denotes the empty list of quantifiers),
0 if (Q, 6, Dl A Dz) E elab(S, P) then (Q, 6, Dl) E elab(S, P) and (Q, 6 , D2) E

elab(S, P).
o if (Q, 6, G > D) E elab(S, P) then (Q, 6 U {G), D) E elab(S, P) , and
o if (Q, 6,V,x D) E elab(S, P) and y is the first token (in some ordering of tokens)

that is not bound in S, then (Q3,y, 6, ([x I+ y]D)) E elab(S, P).
If (Q, 6, D) E elab(S, P) , then P can be used to show that for suitable substitutions cp,
if each of the formulas G E 96 is provable, then cpD is provable. The BACKCHAIN
step below uses members of this elaboration only when D is atomic.

Interpretation and unification are presented as collections of non-deterministic, la-
beled transitions S & S' where S and S' are state formulas and p is a substitution.
Generally, p is neither an S nor an Sf-substitution: instead, composing it with an
S1-substitution yields an S-substitution.

The following four transition rules describe the heart of a non-deterministic inter-
preter. Each of these transitions describes how to make a labeled transition, where
the label p is the empty substitution. In each case, S' is built by replacing a sequent
judgement in S by a formula.

AND step. Replace a sequent of the form P --, G1 A Gp with the conjunction

A UGMENT step. Replace a sequent of the form P + D > G with the sequent
D U P + G.

GENERIC step. Replace a sequent of the form P ---r V,x.G with the quantified
formula V,y(P --+ [x H y]G), where y is a token not in S .

BACKCHAIN step. Replace a sequent of the form P + A with

Q (A A' A (P GI) A . .. A (P ---r G,)),

where A and ,4' are atomic formulas, (Q, {GI , . . . , G,), A') E elab(S, P), and n 2 0.
If n = 0 then the above displayed formula is simply Q(A A'). If there is no such
member of elab(S, 'P) (that is, P is empty), then replace that sequent with I.

If D-formulas were restricted to Horn clauses and G-formulas to conjunctions of
atoms, then the structure of these transitions could be greatly simplified. In particular,
the GENERIC and AUGMENT transition steps would not be needed; the antecedent
of all sequents in state formulas would be the same; and meta-level quantification would
simply be outermost universal variables and inner-most existential quantifiers (no quan-
tifier alternations), in which case the notion of S-substitution simplifies to the notion
of substitution.

6. A unification algorithm for LA

Let t 5 s be an equational judgement in the state formula S. If t is not a top-
level abstraction, then t is flexible if its head is existentially quantified in S and is rigid
otherwise; that is, its head is universally quantified in S . Flexible and rigid can similarly
be applied to s. The head of a rigid term is invariant under S-substitutions.

To illustrate some of the features of unifying A-terms in state formulas, consider
the example

Q~,-,~,~,u~~+~~v~Y[~(Ax.~(uxY)) A ~ (X W . V Y) I ,

where the quantifier V(,,,),,f occurs in the quantifier list Q. This problem can be
simplified to the formula

(dropping types from quantifiers). Such transitions are done by the rigid-rigid step
below. Using the equivalence between Az.t = Xx.s and the quantified equation Vx.t = s
(via the (inference rule [12]), this formula can be simplified to

Q3u3vVyVx[f (uxy) A vy].

Such transitions are done by the (step below. At this point, the substitution [v H

Xy. f (uxy)] could be suggested except that quantification rules out substituting v with a
term that contains x free. It is possible, however, to solve this state formula if the x can
be removed from the left-hand of the equation: this is possible only if u is vacuous in its
first argument. Thus, apply the substitution [u w A X A ~ . U ' ~] and make the transition
to the state formula

Q ~ U ' ~ V V ~ V X [f (u'y) A vy] ,
wl -.re u' has type L --t L --t L. Such transitions are done by the pruning step below. This
st :e formula can be solved by substituting [v H Ay. f (u'y)] and making the transition
to the formula

Q3u1vyvx [TI.
This last transition is done by the flexible-rigid step below. This final formula arises
from the original state formula .via the substitution [u H AaXy.u'y,v H Ay. f(ufy)].

Thus, composing this substitution with one for u' (that is, a Q3u'VyVx[~]-substitution)
yields solutions to the original state formula.

Let S be a state formula that contains at least one equation, say t s. Each of
the following steps produces a transition S &- S' by describing how to compute p and
S'. In those cases when p is applied to the judgements in S to form judgements in S',
the resulting judgements are assumed to be placed in A-normal form. For convenience
we shall stop writing type information explicitly in quantifiers and in equational judge-
ments. In all cases, the type information is easy to determine and insert. Also, types
do not play a critical role in unification: in Section 9 an untyped version of unification
is outlined.

Raising step. Let u be an existentially quantified variable free in t and let v be
a different existentially quantified variable free in s. One of these variables must be
quantified in the scope of the other. Assume that the scope of v contains the scope of u
(otherwise switch the role of u and v below). Let w be the list of universally quantified
variables that are quantified in the scope of 3v and that contain the scope of 321. If
the list w is empty then the raising step is not'applicable to this pair of variables. Set
p = [u H 21'203, where u' is not bound in S. Build S' from S by dropping the quantifier
31.4, replacing the one quantifier 3v with the two quantifiers 3v3u1, and applying p to all
the judgements in S. The fact that the tokens in w may appear in substitution terms
for u is made explicit by replacing u with a "higher-type" token u', which may not be
instantiated with a term containing those tokens, applied explicitly to w.

[step. Assume that t is of the form AZ.tl and s is of the form Aij.sl, where t'
and s' are not themselves abstractions and where at least one of the lists of variables,
Z or y, is not empty. If the lists of binders AZ and X i j are not of equal length, then
use 77-expansions to increase the length of the shorter binder until they are of the same
length. Using a-conversion, we may assume that these two binders are the same; that
is, t = s can be written as Aw.tl' = Aw.sl' where the variables in w are not bound in S.
Then replace the equation t = s in S with Vw[tl' = s"] to form S'. The substitution p
is empty.

Rigid-rigid step. If the equation t = s has the form htl . . . t, = hsl . . . s,, where n 2
0 and h is universally quantified in S, replace the equation t = s with the conjunction
t 1 = sl A . . . A t, = s, to form S' . If n = 0 then simply replace with T. If the equation
t = s has the form htl . . . t, = ksl . . . s,, where h and k are different universally
quantified variables in S, then replace the equation with I. In either case, p is empty.

Pruning step. Given an equation of the form vyl . . . y, = r, let z be a meta-
level, universally bound variable of S that has a free occurrence in r, is bound in the
scope of 3v, and is not in the list ij. If no such z occurs, then the pruning step is
not applicable. Otherwise, if z has an occurrence in r that is not in the scope of
an existentially quantified variable, then replace that equation with I and let p be
the empty substitution. Otherwise, z occurs in a subterm uGlzG2 of r where u is
existentially quantified in S and wl and w2 are lists of either A-bound variables or
universally quantified variables bound in the scope of 321. The dependency of u on the
argument occupied by z is removed by setting p = [u Awl AzA~~.u 'w~wz] , where u'

is not bound in S. The formula S' is the result of replacing 3u with 3u1 and applying
p to all judgements in S.

Flexible-flexible step. Assume that the equation t = s is flexible-flexible; that is, it
is of the form vyl . . . y, = uz1 . . . Z, where n , p 2 0, yl, . . . , y, are distinct universally
quantified variables bound in the scope of 3v, and 21,. . . , zp are distinct universally
quantified variables bound in the scope of 321. There are two cases.

C a s e 1. Assume that v and u are different and that there is no universal variable
bound between the binding occurrences of v and u (otherwise the raising step can be
first performed). We may also assume that the lists 3 and y are permutations of each
other (otherwise the pruning step can be first performed). Set p = [TI H Xy.u~] and
form S' by replacing t = s with T, by deleting 3v, and by applying p to all remaining
judgements in S.

C a s e 2. Assume that v and u are equal; that is, the pair is of the form vyl . . . y, =
vzl . . . 2,. Let 6 be the enumeration of the set {y; I yi = zi, i E (1, . . . , n)) that orders
variables the same way as they are ordered in ij (the choice of this particular ordering
is not important). Set p = [v H A~.V'G] (notice that this is the same via a-conversion
to [v H XZ.V'W]), where v t is not quantified in S. Form St by replacing t = s with T
and 3v with 3v1 and by applying p to all remaining judgements in S.

Flexible-rigid step. Assume that the flexible-rigid equation t = s in S is of the form
vyl . . . y, = r . (Of course, if s is flexible and t is rigid, then switch this equation around
first.) Given that the raising and pruning steps are available, we can also assume that (a)
if an existentially quantified variable, say u, appears free in r then there is no universally
quantified variable in the scope of 3v that also contains the scope of 321, and (b) if a
universally quantified variable is free in r and is bound in the scope of 3v , then that
variable is in the list yl . . . y,. Given these constraints, all that remains in addressing
this equation is to do the occurrence-check: if v is free in r then replace this equation
by I and set p to the empty substitution. Otherwise, set p = [v H Xyl . . . Xyn.r] and
build S' by replacing this equation with T, dropping 3v, and applying p to all remaining
judgements in S .

These transitions are organized into a deterministic algorithm below. We shall
leave unspecified those choices that could give rise to a-convertible state formulas or
to different orderings on existential (or universal) variables in a sequence of existential
(or universal) variables. Such differences are inconsequential and can be fixed largely
arbitrarily.
Unification Algorithm. To solve the equations in a given initial state formula So,
order the choice of transitions using the following three steps. These choices are made
until there are no equations left or until I appears in a state formula. This gives rise
to a series of transitions

So . . . SS, (n 2 0).

The result of the unification algorithm is the pair (p l o . . . o p,, S,).
(1) Apply either the (or the rigid-rigid step to the first applicable equation found in a

left-to-right transversal of the state formula. If neither of these steps applies, move
to the next step.

(2) Select the first flexible-flexible or flexible-rigid equation in a left- to-right order.
Apply the raising and then the pruning steps to that equation and its converse
until these transitions can no longer be applied: then move on to the next step.
The exact order in which the various raising steps or various pruning steps are
applied can be specified arbitrarily.

(3) Apply as appropriate either the flexible-flexible or flexible-rigid step to the resulting
selected equation.
Several optimizations of this algorithm are, of course, possible. For example, it is

not necessary to prune and raise prior to applying the second flexible-flexible step as
this algorithm would do. I

The substitutions, named p above, generated by individual transitions are of two
kinds. Those generated by the flexible-rigid step are of the form [v H Ay. t] where
t can be a complex term. All the other substitutions have the much simpler form
[v H Xij .v1~], where v' is a "new" or existing existentially quantified variable. The
application of p and A-normalization to a state formula returns another state formula;
that is, occurrences of existentially quantified variables in the resulting state formula
are properly restricted.

7. Correctness of the unification transitions

We first show that there can be no infinite series of unification transitions. For
this, we need a measure on equations in state formulas. If t is a A-normal term all
of whose free tokens are quantified at the meta-level in S , the measure It 1 counts the
number of occurrences of abstractions and applications in t that are not in the scope of
existentially quantified variables of S . That is, It 1 is defined by

h existentially quantified in S
/Axl . . . Xxk(htl . . . tn)I =

k + n + C:=l Iti 1 h universally quantified in S (k, n > 0).

(Of course, It 1 also has S as an argument, but its value will always be clear from context.)
The weight of a meta-level, universal quantifier is the number of occurrences of meta-
level, existential quantifiers in its scope. A universally quantified variable r of S is
possibly prunable from an equational judgement t = s of S if z occurs free in either t or
s but not both and if all existentially quantified variables of S that are free in the term
in which z is not free contain Vz in their scope. Thus if z is possibly prunable from
t = s and z occurs free in s then no S-substitution instance of t contains z free.

Let t l = sl , . . . , tn = s, be the list of equations that occur in S and let m be the
number of existentially quantified variables in S . The measure associated to S is defined
by the quintuple

n

where w is the sum of the weights of all meta-level, universal quantifiers in S, and p
is the total number of occurrences of variables in the equations t l = sl, . . . , t , = s,

that are possibly prunable from the equation containing that occurrence. Quintuples
are ordered lexicographically.

Theorem 7.1. There is no infinite series of unification transitions.
Proof. Let S & St via a unification transition step. We sl~ould that for each unifi-
cation step ISfI < J S J .

If the transition is the raising step, then the weight of at least one meta-level,
universal quantifier in S decreases in S t . Although the number of applications in the
state formula may have increased, all new applications are in the scope of existentially
quantified variables and are therefore not counted by the I /-measure. Since the number
of equations and number of existentially quantified variables have not changed, IStl <
I s l e

If the transition is the < step, the number of abstractions in equations decreases.
If the transition is the rigid-rigid step, then either the number of applications decreases
or the number of equations decreases. Thus in either of these cases, IS1(< ISI.

If the transition is the pruning step, either the number of equations is reduced by
one or all components of the measure are unchanged except for the last, which gets
strictly smaller. Thus JSII < ISJ.

In the first case of the flexible-flexible step, the number of existentially quantified
variables decreases by one. Hence, the overall measure decreases. In the second case,
the number of existentially quantified variables and the number of occurrences of appli-
cations not in the scope of existentially quantified variables remain the same. Since the
number of equations decreases, the overall measure decreases.

Finally, if St arises from S by applying the flexible-rigid case, the number of equa-
tions reduces by one and an existentially quantified variable from S may also be deleted.
Thus, again IS1[< IS(. 8

The following lemma and propositions show that the unification transitions can be
used to determine whether or not solutions exist and to characterize all of them if they
do exist.

Lemma 7.2. Assume that S =% St is a unification transition. The solutions to S
can be put into one-to-one correspondence with the solution to Sf so that if the solution
y for S corresponds to the solution y f for St then p o y' = y (m0d.S).
Proof. Assume that the transition is the raising step. That is, the state formula
changed by lifting 3u up over the universally quantified variables in 6 to get the quanti-
fier 3u' and p = [u H ulw] is applied to all judgements. The correspondence of solutions
is given by either letting vf be the result of replacing u I+ s in y with u' I+ Xw.s, or
conversely, letting y be the result of replacing u' H r in with u I-+ Xnorm(r6). Since
y and y1 differ only on u and uf and since (p o v')u = yt(u '6) = (Xw.s)6 Xconv s = yu,
it follows that p o v1 = v (mod S) . Notice that raising is a general transition for
unification problems: it is dependent only on the scope of quantifiers and not on the
judgements of the state formula. A fuller description of this transition is presented in
P O I .

If the transition is the [step, the result follows immediately since p is the empty
substitution and the set of solutions does not change.

Assume that the transition is the rigid-rigid step. If the equation replaced with
this step is htl . . . t, = hsl . . . s,, a substitution makes these terms X-convertible if and
only if it makes t; X-convertible s; , for i = 1, . . . , n. Thus, S and St have the same
solutions. If the equation replaced with this step is htl . . . t, = ks l . . . s,, where h and
k are different universally quantified variables in S, then this equation cannot be made
equal and S has no solutions. Neither does St since it contains I.

Assume that the transition is the pruning of the equation vyl . . . y, = r. Let z
be a universal variable of S that occurs free in r , is not in the list yl, . . . , y,, and is
bound in the scope of 3v. Assume that the occurrence of z in r is not in the scope
of an existentially quantified variable. Thus all instances of r contain z free. Since no
S-substitution instance of vyl . . . y, contains z free, S has no solution. In this case,
neither does St since it contains I. Assume that the occurrence of z in r is in the
scope of an existentially quantified variable, say in the expression uwlzw2. A solution
cp for S must substitute for u a term of the form XWIXzXtij2.t where z is not free in
t . The corresponding substitution cp' for S' is given by substituting Awl Xw2.t for u'.
Conversely, let cp be the result of replacing u' ~+'Xw~Xw~.t in cp' with u H Awl XzXw2.t in
cp. Given that (p o cpl)u = cpl(Xwl XzXw2 .u1wlw2) = Awl XzXw2 .(Awl Aw2.t)wlw2 Xconv
XtijlXzXw2.t = cpv, we again have p o cp' = cp (mod S) .

Assume that the transition is the first case of the flexible-flexible step. That is, the
equation vy = U Z in S is replaced with T and p = [v H Xij.ut-1. Let cp be a solution
to the unification problem in the first state. Thus, modulo cr and 7-conversions, cpv is
Xy.t and cpu is X2.t for some t. Let v' be the result of deleting the substitution pair for
v from cp. (Conversely, given cp', we can insert the substitution term Xy.t for v given
that cp'u is X2.t.) Since (p o cpl)v = cpt(Xy.u~) = Xy.(Xz.t)z Xconv Xy.t = cpv, we have
p o cp' = (mod S).

Assume that the transition is the second case of the flexible-flexible step. That
is, the equation vjj = vz in S is replaced with T, p = [v H Xy.v'w], and G is an
enumeration of the set {y, I yi = z;, i = 1, . . . , n). Let cp be a solution to the unification
problem in the first state and let cpv be Xy.t, for some term t. Thus, applying cp to the
first equation, we have t = (Xy . t) ~ . It is easy to show by induction on the structure
of t that if y, and z, are not the same token, then yi cannot be free in t. Thus, only
the variables in tij can be free in t. Hence, set cp' to the result of replacing v H Xy.t
with v' H XW.t. (The reverse construction of cp from cp' is immediate.) Given that
(p o cp1)v = cpl(Xy.v'w) = Xg.(Xtij.t)w Xconv Xg.t = cpv, we again have p o cp' = cp
(mod S).

The final case to consider is the flexible-rigid step; that is, either the equation
vy = r is replaced with I and p is empty or it is replaced with T and p = [v H Xy.r].
The first case arises if v has a free occurrence in r. Assume that S has a solution cp. Let
#(s) be the number of occurrences in s of meta-level, universally quantified variables
of S that contain 3v in their scope. Thus, #(Xnorm(cp(vij))) < #(Xnorm(cpr)) since the
latter count includes #(r) and the occurrence of the head of Xnorm(cpr), which is also
the head of the rigid term r. Thus, S has no solution. In this case, neither does St since
it contains I. On the other hand, assume that the above equation is replaced with T
and p = [v H Xy.r]. Let cp be a solution to the unification problem in the first state.

Thus, q v is some term Xy.s where s is cpr. Let cpt be the substitution resulting from
deleting the substitution term for v in cp (cp arises from qt by adding that substitution
term). Then (p o y t) v = cpt(Xij.r). Since v is not free in r , this latter term is also
equal to cp(Xij.r). As a result of raising, cp does not substitute into any existentially
quantified tokens in r terms containing tokens in y. Thus, cp(Xij.r) is also equal to
Xij.cpr = Xij.s = yv. Again we have p o yt = 9 (mod S) . 1

Proposition 7.3. I f the unification algorithm is applied to the state formula S ,
it terminates with a result, say (8, S t) . If St contains 1, then S has no solutions.
Otherwise, St contains no equational judgements and the solutions t o S and St can be
placed in one-to-one correspondence so that if the solution q for S corresponds to the
solution cpt for St then 8 o yt = cp (mod S) .
Proof. The fact that the unification algorithm terminates is an immediate conse-
quence of Theorem 7.1. Assume that the unification algorithm makes the series of
transitions

S = S 0 % . . - $ ~ , = ~ ' (n > O) ,

where 8 = pl o . . . o p, (if n = 0 then 8 is the empty substitution). Now St either
contains I or contains no equations (that is, there is a unification transition available
for every possible equation). In the first case, it follows immediately from Lemma 7.2
that none of the state formulas So, . . . , S , can have a solution. In the second case,
again using Lemma 7.2, it is possible to place solutions of S , (i = 0,. . . , n) in one-
to-one correspondence so that, if c p ; as a solution for Si (i = 0,. . . , n) is in such a
correspondence, we have

P I 0 91 = 90 (mod S O) , . . . , pn 0 Pn = 9,-I (mod Sn).

Thus, pl o . . o p, o y , = cpo (mod S) . Therefore, solutions yt to St can be placed in
one-to-one correspondence with solutions cp of S so that 8 o q~' = y (mod S) . 1

A unif icat ion problem is a state formula that does not contain any sequent judge-
ments. The following theorem follows immediately from the previous proposition.

Theorem 7.4. Let S be a unification problem without the I judgement. Assume
that the unification algorithm returns (8, S t) when applied t o S . Then S has no solution
(2.e. unifier) i f and only i f St contains I or there are no St-substitutions. I f S t does not
contain I , the substitution 8 represents the m o s t general unifier of S in the sense that
the set o f solutions to S is exactly the set o f substitutions 8 o cpt where cpt ranges over
St-substitutions.

8. Correctness of interpretation

We can now prove the correctness of the interpreter described in Section 5.

Lemma 8.1. I f the interpreter makes a single transition S St and i f cp satisfies
S' then p o cp satisfies S.
Proof. We proceed by considering the cases that can cause a transition in the inter-
preter. The cases when this transition is a unification transition follow from Lemma 7.2.
In all the other cases, p is empty so we simply need to show that a solution cp to St is
a solution to S. To do this, we need to show that if J is a judgement in S , then either
cpJ is T , an equation between A-convertible terms, or a sequent that has an Z'-proof.
Since St arises from changing one judgement of S, we simply need to show that that
one judgement has this property. Let + be defined as +t = Anorm(cpt).

Assume that the transition is caused by the BACKCHAIN step. That is, the state
changed by replacing a sequent P + A with the conjunction

where A and A' are atomic formulas, (Q, {GI, . . . , G,) , A') E elab(S, P), and n 2 0. Let
cp satisfy S' and let C be the set of universally quantified variables of S with P + A
in their scope. To show that cp also satisfies S, it is necessary to show that if @ A = +A1
and for every i = 1,. . . , n , C ; +P d +G, has an 1'-proof, then C ; $7) 4 +G
has an Z'-proof. This follows immediately if it is the case that ({+GI,. . . , @G,), @A1) E
I+Plc, which follows by a simple induction on the definition of elab given the fact that
(Q, {GI 7 . - - , Gn), A') E elab(S, P) .

Assume that the transition is caused by the GENERIC step. That is, St arises
by replacing a sequent occurrence P - Vrx.G in S with V,y(P 4 [x H y]G),
where y is not bound in S. Assume that cp satisfies St. If C is the set of meta-
level, universally quantified variables of S in which this sequent is in the scope, then
C, y : T ; +P + +[x H y] G has an Z'-proof and since y $ C, the inference rule V-R
yields a proof of C ; +P 4 V,y.+[x H y]G. Since no term in the range of cp contains
y free, this sequent is the same as C ; @P 4 +(Vry.[x H y]G), which is a-convertible
to the sequent C ; +P --t +(VTx.G). Thus, cp satisfies S.

If the transition is the result of the AND step, the result is immediate: simply use
A-R to put the two proofs guaranteed by induction together. If the transition is the
result of the AUGMENT step, build the new proof using the >-R rule. I

The notation S =% S' means that there exists a series of transitions

where 0 is pl o . - . o p, if n > 0 and empty if n = 0.

Theorem 8.2. The state formula S has a solution cp i f and only i f S % St where
the only judgements in St are occurrences of T and where there is a S1-substitution cp'
so that 9 o cp' = cp (mod S).
Proof. The only-if part of this theorem follows by induction and Lemma 8.1. Assume
that cp satisfies S . Thus, for every judgement J of S,either J is T , cp J is an equation

between A-convertible terms, or p J specifies a sequent with an 2'-proof. Define the
measure llSll to be the pair (n, m) where m is the number of equational judgements in
S and n is the sum of the number of inference rules in minimal 2t-proofs proving all the
sequent judgements in S . Here, "minimal" is with respect to the number of occurrences
of inference rules in a proof. These pairs are ordered lexicographically. The proof is
completed by induction on the measure 1ISII.

If S contains any equality judgements, apply the unification algorithm of Section 7

and make the transition S 2 S t . By Proposition 7.3, there is a solution 9' for St
so that 8' o 9' = 9 (mod S) . Since /IS1 1 1 < IISII, the inductive hypothesis provides a

, 6"
transition S 2 S" where the only judgements in St' are T and an S"-substitution

9" so that 0' o y" = 9' (mod S t) . Thus, setting 9 to 0' o 0It, we have S % S" and
0 0 9 " = 9 (mod S) .

If S has some sequent judgement, say P + G, then let C be the list of typed,
universally quantified variables in which this sequent is in the scope. The structure of
a minimal Zt-proof of C ; qP ---+ yG dictates which transition can be performed. In
particular, if the last inference rule in such a proof is A-R, use the AND step; if it is
>-R, use the AUGMENT step; if it is V-R, use the GENERIC step; if it is BC, use the
BACKCHAIN step. We illustrate this final case in more detail since it is the hardest.
Again, let 9 be defined as $t = Anorm(9t).

Since the last rule is BC, G is atomic and there is a (A,@G) E I@Plc such that
for every H E A, C ; cpP ---+ H has an 2'-proof. By induction on the definition of
elaboration, there is a triple (3x1 . . . 3xm, {GI, . . . , G,), A) E elab(S, P) (m, n > 0) and
a substitution II, = [xl H t l , . . . , xm H tm], where for i = 1,. . . , m, t i is a C-term, so
that (9 o ~) A = @G and (9 o II,){G1,. . . , G,) = A. Use the BACKCHAIN step to yield
the state formula Sf where P + G is replaced with

Clearly, IIStII < l[Sll and 13 o $ is a solution to S". The proof of this case now follows
by induction. g

The non-deterministic interpreter for LA described in Section 5 can be thought
of doing computation in the following fashion. Let S be Qc35(P + G), for some
signature C. Here, P is considered to be a logic program and G a query to be proved.
The existential variables 3 are logic variables that the interpreter can instantiate as
it needs in order to find a proof. Theorem 8.2 states that if the interpreter makes

a transition S 2 St where all of the judgements of St are T, then for every S1-
substitution cp', the substitution 8 o 9' restricted to the variables in f is a solution or
a n s w e r subs t i t u t i on to this computation. Theorem 8.2 also states that if there is a
solution to the initial state then there is a series of transitions in the interpreter that
yields a state formula whose only judgements are T.

A simple, depth-first, deterministic interpreter for LA can be described as follows.
First, we must consider the antecedent of sequents as lists instead of sets. The AUG-
MENT step concatenates formulas to the front of an antecedent. Elaboration, elab,

must take a state formula and a list of D-formulas and return a list of triples in which
the second component is a list. The only backtrack points that must be remembered
are those arising from the BACKCHAIN step. When given a state containing I, back-
track in a depth-first manner. When given a state containing an equational judgement,
apply the unification algorithm. Otherwise, the given state formula contains only T
and sequent judgements. If there are no sequent judgements, then make no further
transitions: this represents a success. If there are a sequent judgements, select the first
such judgement in a left-to-right order. If the succedent of that sequent is a conjunction,
implication, or universal quantifier, then apply the AND, AUGMENT, or GENERIC
step, respectively. If the succedent is an atomic ibrmula, then select the first triple in the
elaboration of the antecedent on which to backchain, leaving all the other members of
the elaboration for subsequent backtracking. This style of search, although incomplete,
is similar to the ones used in Prolog and AProlog.

9. Some Observations

Below are a few observations about unification and interpretation in LA.

9.1. Restricted /?-conversion. When forming the transition S S t , p is applied
to some of the judgements in S and the resulting A-normal judgements are placed in
S'. Given the restrictions on meta-level existentially quantified variables within terms
and formulas, only very weak instances of p-conversion are needed to compute these A-
normal forms. In particular, the only new ,f3-redexes are those of the form (Ax.t)y where
y is a token that is not free in Ax.t and is either universally quantified or A-bound. Let
@o-conversion be the restriction to p-conversion where the only redexes considered are
of the form (Ax.t)x. The restrictions on terms in LA are such that the equality theory
that is being considered is only that of a, Po, and q. For this reason, we shall refer to
unification in LA as /?oq-unification.

A state formula is a V3V-state formula if there are no meta-level, universal quanti-
fiers that are in the scope of an existential quantifier and themselves contain an existen-
tial quantifier in their scope. Huet's unification procedure [13] deals with pq-unification,
sometimes called "higher-order" unification, for V3V-unification problems. As the au-
thor shows in [20], Huet's procedure can be extended to the case where the meta-level
quantification is not so restricted. Applying this extended version to the unification
problems considered in this paper results in the reduction of the unification problem to
problems that contain only flexible-flexible equational judgements. In the general, unre-
stricted setting, computing unifiers for flexible-flexible equations is very unconstrained
and undirected, so it is often best avoided. In the LA case, however, flexible-flexible
equations are simple enough that their solutions can be completely characterized. Gen-
eralizations of the raising, pruning, and flexible-flexible steps described in Section 6
to /?q-unification can be found in [20]. The algorithm presented here can be derived
directly from that paper.

While Poq-unification is much weaker than pq-unification, it is possible to specify
declaratively Pq-unification problems as logic programs within LA. Section 10 presents
aspects of this specification and [I91 describes the full translation.

9.2. V3V-Quant ification. If a unification problem has the V3V-quantification struc-
ture, then any transition on such a problem yields a problem which is also V3V. On such
problems, the raising step is never applicable although raising can be used to transform
any unification problem into a V3V-unification problem. Thus, for the considerations of
just unification, only V3V-unification problems are needed. Nipkow in [27] presents a
version of the LA unification algorithm that works essentially on unification problems
with V3V quantification only. When considering the problem of interpreting LA, how-
ever, a transition from a state formula that has the V3V form does not necessarily yield
a similarly restricted state formula. Thus, after applying a BACKCHAINING step to
a V3V-state formula, it might be necessary to apply the raising step several times to
yield a V3V-state formula. Pairing of the raising step with backchaining is essentially
the same as V-lifting in [29].

Let S be a unification problem and let S % S1 and S %= S2 where S1 and S2
contain neither equations nor I. Is it possible to compare and 02? As is shown
in Section 7, these substitutions correspond to most general unifiers. In the first-order
setting, two such most general unifiers differ only in the name of (existentially bound)
variables. Given that the meta-level, quantificational structure of S1 and S2 can differ,
it is not possible to so simply characterize such a relation between O1 and 02. If, however,
S is a V3V-unification problem, then so too are S1 and S2. In this case, we can describe
a simple relationship between O1 and 82. We first need the following lemma that holds
for general state formulas. Its proof is immediate.

Lernrna9.1. L e t s beaunificationproblemandlet S%St .
(i) The solutions to S can be put into one-to-one correspondence with the solutions

to St so that if the solution q for S corresponds to the solution yt for S' then
0 o y t = y.

(ii) Let x H t E 0 where x is existentially bound in S. If an existentially quantified
variable u of St has an occurrence in t, then that occurrence is in a su bterm of the
form uw where 2Zj is a list of distinct variables that are either A- bound in t or are
universally quantified in St in the scope of 321. If S is a V3V-state formula, then
the list w consists of only A- bound variables of t .

(iii) If u is not bound in S, S', nor any state formula involved in this transition then

V,uS 2. VV,uS1.
Let S and S' be two V3V-state formulas each with n > 0 existentially quantified

variables, namely XI , . . . , x, in S and yl, . . . , y, in St. A variable renaming substitution
from S to St is a substitution q such that for i = 1,. . . , n, qx, = Aw.yKiG, where K

is a permutation of (1,. . . , n), w is some list of tokens (not including yKi), and is
a permutation of w. The inverse of cp is the substitution q-' = {y I+ AG.zwl x t+

Aw.yfi E y) and it is a variable renaming substitution from S' to S.

Proposition 9.2. Let S be a V3V-unification problem and let S % SS1 and S 2 S2
where S1 and S2 contain neither equations nor I. Then there is a variable renaming
substitution p such that 81 = 82 o p.
Proof. Let the existentially quantified variables of S1 be 5 = X I , . . . , x, (n 2 0) and
let the existentially quantified variables of S2 be y = yl , . . . , y, (m 2 0). There are

sequences of transitions from S to both S1 and S2. A new variable in this context is a
variable that is not bound in S, S1, S2, nor any state formula in either of these sequences.
Let E = cl, . . . , c, be a list of distinct new variables and let VE be V,,cl . . . V,,c, where

r; is the type given to xi in S1 (i = 1, . . . , n). ' By Lemma 9.1 (iii), VTS % VTSl

and VTS % VTS2. Since [Z I+ E] = [xl I+ cl, . . . , x, I+ c,] is VTSl-substitution that
satisfies V S 1 , 81 o [5 H E] satisfies VTS, by Lemma 9.1 (i). By the same lemma, there
is a VTS2-substitution cp so that el o [F I+ E] = 82 o c p (mod S). By applying [E H Z] to
both sides of this equation and setting pl = cp o [E H F], we get dl = 82 o pl. A dual
argument yields a substitution p2 so that 82 = o p2. Since o p2 = 82 o p1 0 p2, the
substitution pl o p2 is the identity on the variables y. A similar argument establishes
p2 o p1 as the identity on the variables 2 .

Let j E (1, . . . , m) . The only variables that can be free in pl y j are either the ii
variables or outer-most, universally quantified variables of S . The latter case is not
possible, however, since such a variable would also need to appear free in p2(pl y j), but
this is simply yj. By Lemma9.1 (ii), if x, occurs in plyj, for some i = 1,. . . , n , then that
occurrence of xi is such that it is applied to only A-bound variables of plyj. Thus, the
only possible structure for plyj is a term of the form AG.xiG for some i = 1,. . . , n and
where ti is a list of distinct variables taken from the list G. A similar observation holds
for the term p2xi for i E (1,. . . , n). Finally, yj = p2(plyj) = p2(AzE.xi6) = AG.(pzxi)6
which is only possible if p 2 ~ i Aconv AC.yjG. Thus, 6 and G are permutations of each
other. Since the converse relation between xi and yj must also hold, the list 2 and
must be of equal lengths (n = m) and the connection between index i and index j is a
permutation. Thus, both pl and p2 are variable renaming substitutions. 1

9.3. Untyped versions of unification and interpretation.
Type information was used in very few places in the description of the unification

and interpreter transitions. It is possible, in fact, to describe an untyped version of
LA and of the unification and interpreter transitions. The fact that Poq-unification is
independent of types means that it can be used in various different typed A-calculi.
For example, Pfenning in [31] uses a variation of LA-unification in the Calculus of
Constructions. This situation is different from that of the full pq-theory of equality:
types play a significant role in the search for solutions in the procedures given in [13]
and in [19].

An untyped version of terms and G and D-formulas arises by simply deleting the
typing information from inference rules in Figure 3. In that system, essentially exis-
tential variables can occur in predicate positions. Logic programming languages with
such possibilities have been analyzed elsewhere [22, 251. Here we shall assume that the
two inference rules that permit the inference of an atomic D-formula and of an atomic
G-formula are modified as in Figure 4. There the proviso (5) is that Q contains Vh
and that n 2 0. This restriction ensures that the resulting language is first-order in
the sense that predicate substitutions never need to be considered. Notice that in this

Figure 4: Two modified proof rules for the syntax of an untyped of version of LA

language, it is possible for the self-application of essentially universal variables but not
for essentially existential variables.

To obtain the untyped version of the unification transitions requires only a small
change to the rigid-rigid step and to the second case of the flexible-flexible step. In
the rigid-rigid step, it is possible to have an equation of the form htl . . . t , = h s l . . . sp
where n # p. Similarly, in the second case of the flexible-flexible step, it is possible to
have the equation vyl . . . y, = vzl . . . z p where n # p. In both of these cases, replace
this equation with I. These transitions are correct since no substitution instance of
these equations contain A-convertible terms.

It should be noticed that the (step uses 7-expansion, and that 7-expansion can
differ between the typed calculus (where it can only be used on terms of functional type)
and the untyped calculus (where there is no such restriction). As this step is described,
however, 7-expansion is only used on terms which, if typed, must have functional type.
Hence, no modification to this step is necessary.

The results in Section 7 and 8 can be established for the untyped case. As was
mentioned in Section 5, there may be no S-substitutions in the typed setting for a given
S: in the typed case the fact that the unification algorithm returns a state formula
not containing I is not enough to guarantee that there exist solutions. In the untyped
case, there are always S-substitutions for every untyped state formula S. Thus, in the
untyped setting, a unification problem has no solutions if and only if the unification
algorithm returns a state formula containing I.

10. Examples of LA programs

The logic programming language XProlog [24] fully implements LA as well as the
more general class of higher-order hereditary Harrop formulas [22]: the author has no
experience in using an interpreter designed only to handle the LA subset. See [5] for a
functional programming implementations of interpreters for languages such as LA and
XProlog; see [23, 261 for discussions concerning the compilation of these languages.

Below we present several examples of LA programs written using the syntax of
XProlog. The symbol => denotes >, :- denotes its converse, a comma denotes con-
j: -tion, an infix occurrence of backslash \ denotes A-abstraction, and p i along with a
A-<<.,straction denotes universal quantification. Tokens with an upper case initial letter
are assumed to be universally quantified variables with outermost scope. The piece of
syntax

kind i type.

type s t e r i l e i -> o .

type bug i -> 0 .
type i n i -> i -> 0 .

type dead i -> 0 .

s t e r i l e J :- p i b\((bug b , i n b J) => dead b) .

declares i to be a primitive type, declares the type for four predicate constants (the
type of propositions is the built-in type o), and presents one D-formula, which could be
written as

VJ(Vb((bug b A in b J) 3 dead b) 3 sterile J) .

In all the examples given in this section, once types are given for constants, the type of
bound variables can easily be inferred from their context.

Much of the formal and technical detail of the preceding several sections was caused
by the difficulty of keeping track of bound variable names and scope. Since all these
details have now formally been incorporated .inside LA, programs written using LA
should be relieved of some of the need to deal with these details. The following examples
attempt to illustrate this point.

10.1. Specifying an object-logic.
Three meta-programs - substitution, Horn clause interpretation, and the compu-

tation of prenex normal forms - are presented in this section and all compute with
the same first-order, object-logic. This object-logic contains universal and existential
quantification and implication and conjunction. These are declared by the syntax

kind term type.
kind form type .

type a l l (term -> form) -> form.

type some (term -> form) -> form.

type and f o r m - > f o r m - > f o r m .

type imp form -> form -> form.

The first two lines declare the tokens term and form as primitive types.
The object-logic contains just five non-logical constants: an individual constant,

a function symbol of one argument and another of two arguments, and a predicate
symbol of one argument and another of two arguments. Their types are declared with
the following lines.

type a term.

type f term -> term.

type g term -> term -> term.

tYPe P term -> form.

type q term -> term -> form.

Terms over this signature of type form denote object-logic formulas and of type term

denote object-logic terms. We shall need to lift this typing information more directly into
the meta-language by introducing the following two meta-level predicates and formulas.
These formulas are obviously derived directly from the above signature. (The token
term is used as both predicate symbol and type symbol.)

type term term -> o.

type atom form -> o.

term a .

term (f X) :- term X .

term (g X Y) :- term X, term Y .

atom (p X) : - term X .

atom (q X Y) :- term X , term Y .

Various other meta-predicates over ob ject-logic formulas are easy to write. For example,
the following defines a predicate that determines whether or not its argument is a
quantifier-free object-level formula.

type quant-f r ee form -> o.

quant-free A : - atom A .

quant-free (and B C) :- quant-free B , quant-free C .

quant-free (imp B C) :- quant-free B, quant-free C.

This predicate is used in the Horn clause interpreter and in the computation of prenex
normal formulas below. The following code describes how to determine if a term of type
form encodes a Horn clause or a conjunction of atomic formulas.

type hornc form -> o .

type conj form -> o.

hornc (a l l C) :- p i x\(term x => hornc (C x)) .

hornc (imp G A) :- atom A, conj G .

hornc A : - atom A .

conj (and B C) :- conj B, conj C .

conj A :- atom A .

The first D-formula above is not a (meta-level) first-order Horn clause since it
involves a variable c of functional type term -> form and since its body contains an
implication and universal quantifier. The variable c will get bound to an abstraction
over an object-level formula. For example, if the goal

hornc (a l l u \ (a l l v\(imp (and (q v a) (q a u)) (p u))))

is attempted, the variable c will get bound to the A-abstraction

u \ (a l l v\(imp (and (4 v a) (q a u)) (p u))) .

The intended processing of this A-abstraction can be described by the following set of
operations. Via the universally quantified goal, a new constants is picked (modeled as
a new universal quantifier in a state formula). This new constant will play the role
of a name for the bound variable x. Since this new constant is now temporarily part
of the object-logic, D-formulas that were determined from the signature of the object-
logic may need to be extended. Thus, the definition of the term predicate needs to be
extended with the fact that this new constant is a term. Thus, when hornc subsequently
calls atom, the latter predicate will succeed for formulas containing this new constant.
Finally, the application (C x) represents the body of the object-level abstraction with
the new constant substituted (via Po-reduction) for the abstracted variable. Thus, if
the new constant picked by an LA interpreter is d, then the next goal to be attempted
will be

hornc (a l l v \ (imp (and (q v a) (q a d l) (p d l))

with the additional assumption (term d) added to the program.

10.2. Implementing object-level substitution.
Equality and substitution at the object-level can be implemented by first specifying

the following copy-clauses.

type copyterm term-> term-> o.

type copyform f o r m - > f o r m - > o .

copyterm a a.
copyterm (f XI (f U) : - copyterm X U.

copyterm (g X Y) (g U V) :- copyterm X U, copyterm Y V .

copyform (p X) (p U) :- copyterm X U.

copyform (q X Y) (q U V) :- copyterm X U, copyterm Y V .

copyform (and X Y) (and U V) :- copyform X U, copyform Y V .

copyform (imp X Y) (imp U V) :- copyform X U, copyform Y V .

copyform (a l l X) (a l l U) . -
pi y\(pi z\(copyterm y z => copyform (X y) (U z))) .

copyform (some X) (some U) :-

p i ~ \ (p i z\(copyterm y z => copyf orm (X y) (U z))) .
These clauses can be derived directly from the object-level signature using the following
function. Let It, s : be a formula defined by recursion on the structure of the type T ,

which is assumed to be built only from the base types term and form, with the following
clauses:

it, s : t e d = copyterm t s

[It, s : f om] = copyf orm t s

[It, s : T -> a] = VxVy([Ix, y : T] > [t x, s y : u])

The copy-clauses displayed above are essentially those clauses that are equal to [[c, c : TI
where the signature for representing the object-logic contains c : T .

The extension of these copy-clauses is exactly the same as that for equality. That
is, (copyterm t s) is provable from these'clauses if and only if t and s are the same term.

A similar statement is true for copyform. Now consider adding a new constant, say c,

of type term, and adding the formula (copyterm c (f a)) . Given this extended set of
copy-clauses, (copyterm t s) is provable if and only if s is the result of replacing every
occurrence of c in t with (f a) ; that is, s is [c H (f a)]t. This can be formalized using
the following code.

type subst (term -> form) -> term -> form -> o.

subst M T N :- p i c\(copyterm c T => copyform (M c) N) .

Here, the first argument of subs t is an abstraction over formulas. The second argument
is then substituted into that abstraction to get the third argument. To instantiate a
universal quantifier with a given term, the following code could be used.

type uni-instan form -> term -> form -> o.

uni-instan (a l l B) T C :- subst B T C .

Consider the somewhat simpler formula for implementing subst :

subst M T (M T) .

This formula is not a legal LA D-formula since the second occurrence of M is applied
to another positively quantified universal variable. This formula correctly specifies sub-
stitution if the meta-level contains the full theory of ,&conversion for simply typed A-
terms. Such a D-formula is available in XProlog and the higher-order logic programming
languages described in [22] and [25]. These languages have a much richer unification
problem than LA.

Similarly, consider the following AProlog code that makes use of full P-conversion.

type double (term -> term) -> term -> term -> o.
double F X (F (F X)) .

kind termlist t ype .

type n i l termlis t .

type cons term -> termlist -> termlist .
type mapfun (term -> term) -> termlist -> te rmlis t -> o.

mapfun F n i l n i l
mapfun F (cons X L) (cons (F X) K) :- mapfun F L K .

Such specifications cannot be written so directly in LA, but it is easy to see how they
can be translated into LA: namely, find all instances of where an essentially existential
variable is applied to arguments that are not distinct essentially universal variables and
use a call to a subst-like predicate. In both of the examples above, we need to substitute
at the type term -> term, so we need to introduce a substitution predicate at this type.
The code below is the specification of that substitution predicate and the rewriting of
two clauses above.

type substterm (term -> term) -> term -> term -> o.
substterm M T N :- p i c\(copyterm c T => copyterm (M c) N).

double F X S :- substterm F X T , substterm F T S.

mapfun F (cons X L) (cons T K) :- substterm F X T, mapfun F L K .

Of course, the notions of doubling and mapping can be applied to more than just the
type term: if difference types are used, simply use the appropriate copy-clauses and
subst-predicate at those types.

10.3. Implementing a si.mple higher-order unification problem.
The restriction on functional variables in LA ensures that it is never the case that

a term, such as (F a) (for function variable F) is unified with a term such as (g a a>
(here, g and a are as declared in Subsection 10.1). Such a unification problem, however,
is permitted in the more general setting explored in [13]. While this is not a permissible
unification problem in LA, it is very easy to solve this problem in LA using the substterm
program written above. In particular, the set of substitutions for F that unifies (F a>
and (g a a) is exactly the set of substitutions for F that makes the goal

substterm F a . (g a a)

provable. In particular, an LA interpreter should return the following four substitutions
for F:

w \ (g w w) w \ (g w a) w\(gaw) w \ (g a a) .

These are exactly the unifiers for this more general unification problem. Arbitrary
higher-order unification problems can be encoded into LA using various calls to pred-
icates like subst and substterm defined above, although the translation is often more
complex than the simple example illustrated here (see [19]).

10.4. Interpretation of first-order Horn clauses.
Object-level logic programs are represented by lists of formulas. The data type of

formula lists and a simple membership program are specified by the following code.

kind formlis t t ype .

type n i l fo rml i s t .

type cons form -> formlist -> f o r m l i s t .

type memb form -> forml is t -> o.

memb X (cons X L) .

memb X (cons Y L) :- memb X L .

The declarations above for cons and n i l are intended to replace the declarations for them
given in Subsection 10.2. It is possible in XProlog to specify lists and list operations
that are polymorphic; in that case, one declaration could have been used in both of
these settings.

The following code describes an interpreter for Horn clauses.

type in terp formlist -> form -> o.
type instan form -> form -> o .

type backchain f o r m l i s t - > f o r m - > f o r m - > o.

i n t e r p C s (and B C) :- i n t e r p C s B , i n t e r p C s C .

i n t e r p C s A :- atom A , memb D C s , i n s t a n D E, backchain C s E A .

i n s t a n (a l l A) B :- p i x\(term x => copyterm x T => i n s t a n (A x) B).

i n s t a n B C :- quant-free B , copyform B C.

backchain C s A A .

backchain C s (imp G A) A :- i n t e r p C s G .

The backchain formula performs operations similar to those done by the BACKCHAIN
transition presented in Section 5. The in s t an predicate implements substitution as de-
scribe above. Operationally, its function can be thought of as stripping off the universal
quantifiers on a Horn clause by instantiating them with unspecified terms. Subsequent
actions of the i n t e r p program and meta-level unification will further specify those terms.

10.5. Computing prenex-normal forms.
Our last example of a meta-program on our small object-logic is the computation

of prenex-normal forms. Our goal is to write a set of D-formulas so that the goal
(prenex B C) is provable from them if and only if C is a prenex-normal form of B. This
relationship is not functional: there are possibly many prenex-normal formulas that
can arise from moving embedded quantifiers into a prefix. The following code correctly
captures this full relation. To define prenex, an auxiliary predicate merge is used.

type prenex form -> form -> o .

type merge form -> form -> o .

prenex B B :- atom B .

prenex (and B C) D :- prenex B U , prenex C V , merge (and U V) D .

prenex (imp B C) D :- prenex B U , prenex C V , merge (imp U V) D .

prenex (a l l B) (a l l D) :- p i x\(term x => prenex (B x) (D X I) .

prenex (some B) (some D) :- p i x\(term x => prenex (B x) (D x)) .

merge (and (a l l B) (a l l C)) (a l l D) :-

p i ~ \ (t e r m x => merge (and (B x) (C x)) (D x)) .

merge (and (a l l B) C) (a l l D) :-

p i ~ \ (t e r m x => merge (and (B x) C) (D x)) .

merge (and B (a l l C)) (a l l D) :-

p i ~ \ (t e r m x => merge (and B (C x)) (D x)) .

merge (and (some B) C) (some D) :-

p i ~ \ (t e r m x => merge (and (B x) C) (D x)) .

merge (and B (some C)) (some D) :-

p i ~ \ (t e r m x => merge (and B (C x)) (D x)) .
merge (imp (a l l B) (some C)) (some D) :-

p i ~ \ (t e r m x => merge (imp (B x) (C x)) (D x)) .

merge (imp (a l l B) C) (some D) :-

p i ~ \ (t e r m x => merge (imp (B x) C) (D x)) .

merge (imp B (some C)) (some D) :-

p i x\(term x => merge (imp B (C x)) (D X I) .

merge (imp (some B) C) (a l l D) : -
p i x\(term x => merge (imp (B x) C) (D x)) .

merge (imp B (a l l C)) (a l l D) :-

p i ~ \ (t e r m x => merge (imp B (C x)) (D x)) .

merge B B :- quant-free B .

The merge predicate is used to bring together two prenex normal formulas into a single
prenex normal formula. Notice the non-determinism in merge: there are three ways to
solve a merge-goal whose first argument is of the form (and (a l l B) (a l l C) 1. These
formulas represent the fact that the universal quantifiers can be jointly moved into the
prefix or that one can be moved out before the other.

Given these formulas, there is a unique prenex-normal form for the formula

imp (a l l x\(and (p x) (and (a l l y\(q x y) (p (f x) 1) 1) (p a) ,

which is the formula

some x\(some y\(imp (and (p x) (and (q x y) (p (f X I))) (p a))) .

The formula (and (a l l x\ (q x x) (a l l z \ (a l l y\ (q z y) I) 1, however, has the following
five prenex-normal forms:

a l l z \ (a l l y\(and (q z z) (q z y)))

a l l x \ (a l l z \ (a l l y\(and (q x x) (q z y))))

a l l z \ (a l l x\(and (q x x) (q z x)))
a l l z \ (a l l x \ (a l l y\(and (q x x) (q z y))))

a l l z \ (a l l y \ (a l l x\(and (q x x) (q z y)))) .

These results can be computed by a depth-first implementation of LA, such as XProlog,
in the following fashion. Given the specification of prenex presented above, XProlog can
be asked to search for substitution instances of the variable P so that the atom

prenex (and (a l l x\(q x x)) (a l l z \ (a l l y\ (q z y)))) P

is provable. Using its depth-first search strategy, XProlog will find five different proofs
of this atom, each with a different instance of P (the five terms listed above, in that
order). As written, however, the depth-first interpretation of this code cannot be used
to determine the converse relation, namely, compute those formulas which have a given
prenex-normal form, since it would start to generate object-level formulas in an undi-
rected fashion and would not, in general, terminate. A breadth-first search could,
however, compute this converse.

11. Conclusion

Meta-programming systems need to be able to treat structures that contain no-
tions of scope and bound variable. Conventional programming languages do not have
language-level support for such structures. Computation systems such as XProlog, Elf,
and Isabelle do have such support since they contain typed A-terms and implement the
equations of a, p, and 7. Such a treatment of A-terms is, however, a complex operation
since the unification of A-terms modulo those equations is undecidable in general. Many
uses of function variables and A-terms in meta-programs can, however, be restricted to
the point where unification over these same equations is a simple extension of first-order
unification. This restriction on functional variables is integrated into logic programming
yielding a language called LA. Unification for LA is decidable and generalizes first-order
unification. A non-deterministic interpretation of LA is described by merging unification
with a sequent-style theorem prover. Several examples of LA programs are presented to
show how it can be used to do simple meta-programming tasks.

Acknowledgements. I am grateful to Amy Felty, Elsa Gunter, John Hannan, Eva
Ma, Daniel Nesmith, Tobias Nipkow, and Frank Pfenning for discussions and comments
on this paper. The Journal reviewers also made several very helpful comments for
improving the readability of this paper. The work reported here has been supported in
part by grants ONR N00014-88-K-0633, NSF CCR-87-05596, and DARPA N00014-85-
K-0018. The final draft of this paper was prepared while I was visiting LFCS, University
of Edinburgh where I have been supported by SERC Grant No. GR/E 78487 "The
Logical Framework" and ESPRIT Basic Research Action No. 3245 "Logical Frameworks:
Design, Implementation, and Experiment ."

12. References

[I] P. Andrews (1986). An Introduction t o Mathematical Logic and Type Theory, Aca-
demic Press.

[2] N. de Bruijn (1972). Lambda Calculus Notation with Nameless Dummies, a Tool
for Automatic Foimula '~ani~ula t ion , with Application to the Church-Rosser The-
orem, Indag. Math . 34 (5), 381 - 392.

[3] A. Church (1940). A Formulation of the Simple Theory of Types, Journal of
Symbolic Logic 5 , 56 - 68.

[4] C. Elliott (1989). Higher-Order Unification with Dependent Types, Proceedings of
the 1989 Rewriting Techniques and Applications, Springer-Verlag Lecture Notes in
Computer Science, Vol. 355, 121 - 136.

[5] C. Elliott and F. Pfenning (1991). A Semi-Functional Implementation of a Higher-
Order Logic Programming Language, in Topics in Advanced Language Implemen-
ta t ion , edited by Peter Lee, MIT Press.

[6] A. Felty and D. Miller (1988). Specifying Theorem Provers in a Higher-Order Logic
Programming Language, Ninth International Conference on Automated Deduction,
Argonne, IL, 23 - 26, edited by E. Lusk and R. Overbeek, Springer-Verlag Lecture
Notes in Computer Science;\'ol. 310, 61 - 80.

[7] G. Gentzen (1935). Investigations into Logical Deductions, in T h e Collected Papers
of Gerhard Gentzen, edited by M. E. Szabo, North-Holland Publishing Co., 1969,
68 - 131.

[8] W. Goldfarb (1981). The Undecidability of the Second-Order Unification Problem,
Theoretical Computer Science 13, 225 - 230.

[9] J. Hannan and D. Miller (1988). Uses of Higher-Order Unification for Implementing
Program Transformers, Fifth International Conference and Symposium on Logic
Programming, edited by K. Bowen and R. Kowalski, MIT Press, 942 - 959.

[lo] J. Hannan and D. Miller (1989). A Meta Language for Functional Programs, Chap-
ter 24 of Meta-Programming in Logic Programming, edited by H. Rogers and H.
Abramson, MIT Press, 453 - 476.

[ll] R. Harper, F. Honsell, and G. Plotkin (1987). A Framework for Defining Logics,
Second Annual Symposium on Logic in Computer Science, Ithaca, NY, edited by
D. Gries, 194 - 204.

(121 J. Hindley and J. Seldin (1986). Introductaon t o Combanators and X-calculus, Cam-
bridge University Press.

[13] G. Huet (1975). A Unification Algorithm for Typed X-Calculus, Theoretical C o m -
puter Science 1, 27 - 57.

[14] G. Huet and B. Lang (1978). Proving and Applying Program Transformations
Expressed with Second-Order Logic, Acta Inforrnatica 11, 31 - 55.

[15] D. Miller (1989). A Logical Analysis of Modules in Logic Programming, Journal
of Logic Programming 6 , 79 - 108.

[16] D. Miller (1989). Lexical Scoping as Universal Quantification, Sixth International
Logic Programming Conference, Lisbon, edited G. Levi and M. Martelli, MIT Press,
268 - 283.

[17] D. Miller (1990). Abstractions in logic programming, in Logic and Computer Sci-
ence, edited by P. Odifreddi, Academic Press, 329 - 359.

[18] D. Miller (1991). A Logic Programming Language with Lambda- Abstraction, Func-
tion Variables, and Simple Unification, in Extensions of Logic Programming: I n -
ternational Workshop, Tiibingen FRG, December 1989, edited by P. Schroeder-
Heister, Lecture Notes in Artificial Intelligence 475, Springer-Verlag, 253 - 281.

[19] D. Miller (1991). Unification of Simply Typed Lambda-Terms as Logic Program-
ming, Eight International Logic Programming Conference, Paris, edited by Koichi
Furukawa, MIT Press.

[20] D. Miller (to appear). Unification under a Mixed Prefix, Journal of Symbolic C o m -
putation.

[21] D. Miller and G. Nadathur (1987). A Logic Programming Approach to Manipu-
lating Formulas and Programs, Fourth Symposium on Logic Programming, IEEE
Press, 379 - 388.

[22] D. Miller, G . Nadathur, F. Pfenning, and A. Scedrov (1991). Uniform Proofs as a
Foundation for Logic Programming, Annals of Pure and Applied Logic 51, 125 -
157.

[23] G. Nadathur and B. Jayaraman (1989). Towards a WAM Model for XProlog, North
American Conference on Logic Programming, Cleveland, Ohio, edited by Ewing
Lusk and Ross Overbeek, 1180 - 1198.

[24] G. Nadathur and D. Miller (1988). An Overview of XProlog, Fifth International
Conference on Logic Programming, edited by R. Kowlaski and K. Bowen, MIT
Press, 810 - 827.

[25] G. Nadathur and D. Miller (1990). Higher-Order Horn Clauses, Journal of the
ACM 3 7 (4), 777 - 814.

[26] G. Nadathur and D. Wilson (1990). A Representation of lambda terms suitable for
operations on their intensions, ACM Conference on Lisp and Functional Program-
ming, edited by M. Wand, ACM Press, 341 - 348.

[27] T. Nipkow (1991). Higher-Order Critical Pairs, Sixth Annual IEEE Symposium on
Logic in Computer Science, Amsterdam, edited by G. Kahn.

[28] L. Paulson (1986). Natural Deduction as Higher-Order Resolution, Journal of Logic
Programming 3, 237 - 258.

[29] L. Paulson (1989). The Foundation of a Generic Theorem Prover, Journal of Au-
tomated Reasoning 5 , 363 - 397.

[30] F. Pfenning (1989). Elf: A Language for Logic Definition and Verified Metapro-
gramming, Fourth Annual Symposium on Logic in Computer Science, Monterey,
CA, 313 - 321.

[31] F. Pfenning (1991). Unification and Anti-Unification in the Calculus of Construc-
tions, Sixth Annual IEEE Symposium on Logic in Computer Science, Amsterdam,
edited by G. Kahn.

[32] F. Pfenning and C. Elliot (1988). Higher-Order Abstract Syntax, ACM-SIGPLAN
Conference on Programming Language Design and Implementation, ACM Press,
199 - 208.

[33] T. Pietrzykowski and D. Jensen (1976). Mechanizing w-Order Type Theory Through
Unification, Theoretical Computer Science 3, 123 - 171.

[34] W. Snyder and J . Gallier (1989). Higher-Order Unification Revisited: Complete
Sets of Transformations, Journal o f Symbolic Computation 8 , 101 - 140.

[35] R. Statman (1979). Intuitionistic Propositional Logic is Polynomial-Space Com-
plete, Theoretical Computer Science 9 , 67 - 72.

	University of Pennsylvania
	ScholarlyCommons
	August 1990

	A Logic Programming Language With Lambda-Abstraction, Function Variables, and Simple Unification
	Dale Miller
	Recommended Citation

	A Logic Programming Language With Lambda-Abstraction, Function Variables, and Simple Unification
	Abstract
	Comments

	tmp.1187894073.pdf.PZt0l

