
Department of Computer & Information Science

Technical Reports (CIS)

University of Pennsylvania Year

Deriving Mixed Evaluation from

Standard Evaluation for a Simple

Functional Language

John Hannan Dale Miller
University of Pennsylvania, University of Pennsylvania,

University of Pennsylvania Department of Computer and Information Science Techni-
cal Report No. MS-CIS-89-28.

This paper is posted at ScholarlyCommons@Penn.

http://repository.upenn.edu/cis reports/787

Deriving Mixed Evaluation
From Standard Evaluation
For A Simple Functional

Language

MS-CIS-89-28
LINC LAB 150

John Hannan
Dale Miller

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

May 1989
This is a revised version os a paper appearing at the

International Conference on the Mathematics of
Program Construction, Twente University, The

Netherlands, June 1989.

Acknowledgements:
The first author is supported in part by a fellowship

from the Corporate Research and Architecture Group,
Digital Equipment Corporation, Maynard, MA USA.

Both authors are supported in part by NSF grants
CCR-05596-MCS-8219196-CER, IRI84-10413-A02,

ONR N00014-88-K-0633, DARPA grant
N00014-85-K-0018 and U.S. Army grants

DAA29-84-K-0061, DAA29-84-9-0027

Deriving Mixed Evaluation from Standard Evaluation
for a Simple Functional Language1

JOHN HANNAN and DALE MILLER

Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 191 04-6389 USA

We demonstrate how a specification for the standard evaluation of a simple functional programming
language can be systematically extended to a specification for mixed evaluation. Using techniques
inspired by natural semantics we specify a standard evaluator by a set of inference rules. The evalu a, t' lon
of programs is then performed by a restricted liind of theorem proving in this logic. We then describe
a systematic method for extending the proof system for standard evaluation to a new proof system
that provides greater flexibility in treating bound variables in the object-level functional programs.
We demonstrate how this extended proof system provides the capabilities of a mixed evaluator and
how correctness with respect to standard evaluation can be proved in a simple and direct manner.
The current work focuses only on a primitive notion of mixed evaluation for a simple functional
programming language, but we believe that our methods will extend to more sophisticated liinds of
evaluations and richer languages.

1 Introduction

The formal derivation and correctness of program analysis tools play a central role in many pro-
gramming language research efforts. In this paper we focus on evaluators for programming 1a.nguages.
We shall use natural deduction techniques to specify and derive evaluators for a simple fu~lctional lan-
guage. With a natural deduction theorem prover, one constructs formal proofs of propositions 11sing
a particular set of inference rules. If wc encode programs as terms then we can build propositions
expressing relationships between programs. A proof system can then axiomatize such rcla.t~ionships.
This approach to Qrogram analysis shares much with the work on structural operational seina,ntics
[19] and natural semantics [12].

Since what we shall call "mixed evaluation" is related to the terms "partial evaluation" and "mixed

'This is a revised version of a paper appearing a t the International Conference on the Mathematics of Program Con-
struction, Twente University, T h e Netherlands, June 1989.

computation," we provide a brief description of our use of these terms. Standanl evaluation refers to
a conventional notion of evaluation or interpretation of functional programs. Partial evaluation is the
process of constructing a new program given some original program and a part of its input [3]. In
general terms, it can be described as follows. Let f be some functional program of two arguments x
and y and consider the application f (c, y) for some constant (known) value c and variable (unknown)
value y. We wish to construct a new functional program f, such that f,(y) = f (c , y) for all values of
y, such that for any value of y, computing f,(y) should be easier (or faster) than computing f (c, y).
Such improvement is possible by "compiling" the information that x = c in f into the definition off,.

Mixed evaluation, also called symbolic evaluation in [5] , is the more general process of evaluating
expressions, which may contain free variables (i.e., not bound to any values), to some canonical
form. The key task of this process is properly treating the interaction between known and unknown
(symbolic) values. This combination of known and unknown values suggests the adjective "mixed."
While standard evaluation typically interprets variables by providing a mapping bet ween the variables
and their associated values, mixed evaluation requires some method for interpreting variables as objects
themselves.

The importance of mixed evaluation was elucidated by Futaniura [3] when he described the con-
struction of compiled programs, compilers, and compiler generators via mixed evaluation. Thus mixed
evaluation is a means for understanding and constructing a wide range of translation tools. But where
do mixed evaluators come from? In particular, can mixed evaluators be formally derived from stan-
dard evaluators? Few research efforts have addressed the formal constructioil of mixed evaluators
using principled techniques. We address this question by demonstrating how, for a simple functional
programming language, a specification for mixed evaluation can be derived from a specification for
standard evaluation.

The remainder of this paper is organized as follows. In Section 2 we introduce a simple functional
programming language, giving both a concrete and an abstract syntax. Following this we specify a
standard evaluator for this language in Section 3. In Section 4 we use the signature of the functional
program's abstract syntax to construct a mixed evaluator and in Section 5 we prove a form of its
correctness. Issues of implementation are discussed in Section 6. Summary comments and a description
of related work are provided in Section 7.

2 Abstract Syntax as Lambda Terms

We introduce a simple functional programming language for which we shall specify two evaluators
in subsequent sections. There is strong connection between the choice of abstract syntax for the formal
representation of functional programs and the complexity of the presentation of these evaluators. An
appropriate choice of abstract syntax will later facilitate our specification of simple and declarative
evaluators. It is this simple and declarative aspects of one evaluator (for standard evaluation) that will
permit it to be simply and automatically enhanced to yield another evaluator (for mixed evaluation).

We distinguish between concrete syntax, which provides a convenient human-readable presentation
for programs, and abstract syntax. Let E be the functional language whose concrete syntax is defined
by the following grammar:

E ::= C I x I if E then E else E I (E E) 1

C : tm lamb : (tm 4 tm) --t tm
if : tm + tm --, tm 4 tm let : (tm + tm) -+ tm -+ tm
@ : tm --t tm + tm fix : (tm -+ tm) -+ tm

FIGURE 1
Typed Constants for E's Abstract Syntax

Xx.E I let x = E in E I fix x.E

The symbol C ranges over primitive constants including the integers and booleans.
We now define an abstract syntax for the programs of E . We shall view an evaluator as a program

that manipulates terms denoting E-programs. Thus we must define the set of terms and a method
for encoding E-programs into such terms. We shall use simply typed X-terms as the representation
language. To define our abstract syntax for E we begin by introducing the base type tm and a set
of typed constants that we shall use to construct terms denoting E-programs. (See Figure 1.) Notice
that the constants lamb, let and fix are second-order, that is, they each require a functional argument
of type tm -+ tm. In the examples that follow, M will be used as a second-order variable of this
meta-type and e; and a; will be meta-variables of type tm.

Using the new constants of Figure 1 we can build up X-terms forming an abstract syntax for E
as follows. For constants and variables in the concrete syntax we introduce associated constants and
variables of type tm to the abstract syntax. For the if statement we introduce the new constant if such
that if the three terms el, e2, es are of type tm, then (if el e2 e3) is a term of type tm. Application is
made explicit with the infix operator 'Q7 so that elQez represents the expression denoted by the term
el applied to e2. For lambda abstraction we introduce the constructor lamb that takes a meta-level
abstraction of the form Xx.e, in which x and e are of meta-type tm, and produces a term of type
tm. For example, the concrete syntax for lambda abstraction is Xx.E while its abstract syntax form
is (lamb Xx.e) (in which e is the abstract syntax form of E) . Similar to lamb, the let construct uses
a meta-term M of the form Xx.e to represent the binding of an identifier. Thus the concrete syntax
let x = El in E2 is given by the abstract term (let Xz.e2 el) in which el and e2 are the abstract
syntax forms of El and E2, respectively. To represent the recursive fix construct we introduce the
fix constant, which again uses an explicit abstraction to capture the binding. An example of this
construction is given below.

The language E shall also contain several constants denoting lists and primitive operations on list.
That is, we shall assume that E also contains the constants cons, nil, car, cdr, and null all at primitive
type tm. Given this typing scheme, to apply the constant null to an argument, say e, we must write
(null@e). It is possible to provide null with the type tm --t tm and to write this application as simply
(null tm). For most aspects of this paper, this choice of typing for these primitive constants will not
make a significant difference. We shall, however, adopt the convention that those functions that do
not correspond to special forms in ML will be denoted with the simple type tm.

We will not discuss any primitive operations on integers or booleans in this paper. They are,
of course, important to have in the full language but including them here is neither difficult nor

illuminating. In the following and subsequent examples, we systematically drop the apply "On operator
in order to make examples more readable. Consider the following expression that defines the append
function and then applies it to two lists.

let a p p = (fix f.Xk.Xl.(if (empty k) t h e n 1 else (cons (hd k) (f (t l k) 1))))

in (~ P P PI [21).

The corresponding term in the abstract syntax is

(let Aapp (app (cons 1 nil) (cons 2 nil))
(fia: Af(1amb Ak(lamb Al(if (empty k) 1 (cons (hd k) (f (tl k) I))))))).

Note how the four bindings in the concrete syntax (app, f, k, 1) are translated into explicit X-
abstractions in the abstract syntax.

We shall assume that the reader is familiar with the notions of p-conversion and p-normal form
for simply typed A-terms. For discussions on the motivation and advantages of using simply typed
A-terms to encode functional programs, see [7, 8, 11, 13, 181.

3 Standard Evaluation

We now present an evaluator for E , which we shall call the standard evaluator for E to distinguish
it from a second evaluator defined later. We shall divide the description of this evaluator into two
parts. The declarative aspects of it shall be presented using a proof system similar in style to structural
operational semantics and natural semantics [12, 191. Computing will be equated to finding proofs
in this proof system. The control aspects of this evaluator, that is, the search strategy used to find
proofs, shall be particularly simple for the standard evaluator. Control of our second evaluator will be
much more difficult. Logic programming provides a good setting for relating these different aspects of
evaluators. A particularly relevant logic programming language is discussed in Section 6.

To represent the proposition that a given program evaluates to a particular value, we need to
add to our term language a new type o for proposition, and a binary, infix constant + of type
tm -+ tm + o. The basic propositions for both evaluators we consider will, therefore, be of the
form e-e' where e and e' are both closed A-terms denoting expressions of E. If this proposition is
provable then we shall say that e evaluates to e'. Since evaluation is represented as a relation, a given
program may "evaluate" to more than one value. While this is not true of the standard evaluator (see
Proposition 3.1), it will be true of our second evaluator.

The declarative aspects of the standard evaluator are given by inference rules provided in Figure 2.
Proofs using these rules are defined in the usual, natural deduction fashion with only the following
difference. Whenever an inference rule involves a formula of the form (M e) where M is a term of type
tm -, tm and of the form Ax t , then we shall assume that this non-p-normal term is an abbreviation
for the term that results from substituting e for the free occurrences of variable x in the term t . Notice
that if M and e are p-normal terms of E , then the result of this substitution is again a p-normal
term of E. That is, no new redexes are introduced by substitution. For this reason, we shall generally
limit ourselves to considering only proofs in which all terms from E are in p-normal form. The non-

el -true e2-a el -false e3-(Y
(if el e2 e3)-a (if el e2 e3)-a

(lamb M)-(lamb M) (3)

e2-a2 (M a2)-a (M(f ia: M))-a
(let M e2)-a (fix M)+a

FIGURE 2
Inference Rules for the Standard Evaluator for E

p-normal terms appearing in the inference rules for lamb, fix, and @ are intended as a shorthand for
p-normal terms.

The first rule in Figure 2 specifies that the constants of E evaluate to themselves. The next
two rules treat the if expression in a natural way: the conditional part, el, must evaluate to true
or false for a proof to be found. Rule (3) states that object-level A-abstractions also evaluate to
themselves. In the rule for application (4), meta-level substitution correctly captures the notion of
function application (with a call-by-value semantics). In terms of our encoding at the abstract syntax
level, this rule simply states that @ o lamb is the identity function on terms of type (tm -+ tm). Similar
comments apply to the rule for let (5). In the rule for recursion (6)) the fixed point operator is given
the obvious unfolding meaning. This again makes explicit use of substitution at the meta-level since
the meta-term M is applied to the term (fix M). The result of this substitution replaces recursive
calls with the body of the recursive program, namely (fix M). Static scoping is ensured with this
specification because substitution, as a means of propagating binding information, guarantees that
the abstracted identifiers are replaced with their associated value prior to evaluating abstractions.
Thus we shall not need closures for manipulating abstractions.

Recall that we included in E some primitive constants for manipulating lists. The inference rules for
specifying the behavior of the standard evaluator for these additional constants are given in Figure 3.

If the proposition e-e' has a proof using only the inference rules in Figures 2 and 3 then we
shall write ke e-e' and refer to the resulting proof as an se-proof. Notice that any such proof does
not use two structural aspects of general natural deduction proofs: arguments from hypotheses and
critical variables (eigen-variables) . Our second interpreter, however, will make use of both of these
aspects of natural deduction proofs.

Given some closed expression e, we can think of the evaluation of e as the process of finding a

nil +nil el -a1 e2-02
(cons el en)-(cons a1 a2)

e-(cons a1 a 2)
(car e)-a1

e-(cons a1 az)
(cdr e)-a2

e-nil e-(cons a1 a2)
(null e)-true (null e)+ false

FIGURE 3
Additional Inference Rules for Some Primitive Constants

proof of the proposition k. e--+el, for some expression e'. It is easy to see from the inference rules,
that the only terms e' for which a proposition of the form e-e' has a proof are either integers,
boolean constants, object-level lambda expressions, or nested lists of such objects. We shall refer
to such terms as (proper) values and use a to denote such terms. Note that we have not supplied
an explicit evaluation ordering to either the inference rules or the propositions in a premise. Thus
one should think of nondeterministically searching for a proof via these inference rules. An actual
implementation, however, must make some commitment.

The following proposition about the standard evaluator is easily proved.

PROPOSITION 3.1 Given a closed A-term e of type tm, there is at most one proof of a proposition
of the form e-a, where a is some term.

PROOF. Let P (e) be the set of proofs of the proposition e-a for some a . Let # (e) be the height
of the smallest tree in P (e) . Let e be picked so that # (e) is minimal among those terms for which
P (e) contains two or more members. The ordering among terms here is according to the number of
non-logical constants (i.e., the constants from Figure 1) occurring in the term. The proof proceeds by
considering the structure of e. We include here just two cases that illustrate the proof.

(i) Assume e = (if el e2 e3). Then proofs in P (e) have either

el --+ true e2 -a el -false e - a
or

(if el e2 e3)-a (i f el e2 e3)-a

as their last inference rule. If all proofs in P (e) are of the first form then P (e 2) must have at
least two different proofs; but since e2 is a smaller term than e , this contradicts the selection
of e. Similarly, if all proofs in P (e) are of the second form then P(e3) must have at least two
different proofs; but since e3 is a smaller term than e , this contradicts the selection of e. Finally,
we have the case in which P (e) contains proofs of both forms. But then P (e l) has at least two
different proofs, again contradicting the choice of e.

(ii) Assume e = (fix M) . Then all proofs in P(e) have the last inference rule

Thus the cardinality of P(e) and P (M (fix M)) must be the same. But #(e) = #(M (j k M)) + 1
which contradicts the selection of e.

The remaining cases axe carried through similarly.

We say that e has a value if there is a proof of e-a for some term a. By virtue of the above
proposition, we may say that if e has a value, it has a unique value, i.e., the a such that e-a is
provable. Notice that we shall not insist that all functional programs of E have values. An object-
level, ML-style typing scheme could be used to remove certain programs that do not have values. Of
course, other programs may fail to have values since they never terminate. We shall not identify such
non-terminating programs with the "undefined value" as is often done in denotational semantics.

By virtue of Proposition 3.1, it is possible to use theorem proving or logic programming techniques
to turn the proof system specification of an evaluator into an actual implementation. For example,
all the inference rules for constructing se-proofs can be represented as Horn clauses over a language
where first-order terms are replaced by simply typed A-terms. For example, inference rule (4) could
be written as the Horn clause

Here, conjunction is denoted by the logical constant & of type o+o-+o. Determining that e has a
value is equivalent to proving that the formula 3cr(e-a) has a proof from Horn clauses that result
from translating the inference rules of the evaluator. As is well known, if such proofs can be found, it
can be assumed that they contain the witness for this existential, which would, of course, be the value
of e . Because the rules for standard evaluation have a very regular structure, a very naive control
strategy, such as the depth-first control of Prolog, would serve to find values whenever they exist.
Thus, when we refer to standard evaluation as an actual, deterministic process, we shall think of it as
this kind of Prolog-like execution.

Evaluation of this kind can be viewed as a kind of one-way rewriting. In this evaluator, however,
rewriting always takes place at the top-most level of an expression. Rewriting could be attempted on
proper subexpressions of a given expression, although this would be problematic if the subexpression
was inside the scope of an object-level abstraction. Notice that this evaluator deals with object-level
abstractions in one of two ways: it either treats it as essentially "quoted," as in the case of lamb, or
it removes it by substituting a value in for it, as in the case of @, let, and fix.

Computing inside an abstraction has at least two problems. The first is that of correctly evaluating
an expression containing an abstracted variable: the evaluator currently only deals with expressions
whose top-level symbol is a constant declared in Section 2. A reasonable method for solving this
problem is to specify that when an abstracted variable is encountered, it should evaluate to itself, that
is, it should be treated as a "quoted" expression. The challenge here is to see how a proof system
might support such a treatment of abstracted variables. The second problem of rewriting within an
abstraction is that generally the result of such rewriting will not be a proper value. Consider, for
example, the expression

(lamb Ax(if (null x) el e 2)) .

Applying the standard evaluator to the expressions el and e2 would yield proper values if their evalua-
tion was independent of any value assigned to x. So assume that el and e2 evaluate to the expressions
a1 and a 2 , respectively. Further evaluation of the if expression is impossible as the value of (null x)
is dependent on having a known value for x. We can only reduce the above expression to

(lamb Xx(if (null x) a1 a2)).

Thus, we must deal with "improper" or generalized values. As this example illustrates, an if statement
can be rewritten in three different ways: Figure 2 provides two ways and the third way replaces an
if statement with another if statnient where its arguments may have been rewritten. This last
observation reveals a cost in doing a more liberal rewriting of terms: evaluation may become more
non-deterministic.

In the next section, we specify an extension to standard evaluation that is capable of systema,tically
descending into abstractions and correctly handling abstracted variables.

4 Mixed Evaluation

The notion of descending into an abstraction to perform rewrites is often referred to as mixed eval-
uation since evaluation must be done not only on terms of E but also on terms containing abstracted
variables and these are often treated as symbolic values. Thus, computations on "real" and symbolic
values must be mixed together.

To obtain a mixed evaluator for E we first specify its proof system, which will be obtained by adding
proof rules to those for the standard evaluator. As the discussion from the last section indicates, we
should add the following inference figure to the standard evaluator.

el - ei e2 - e$ e3 - ei
(if el e2 es)+(if ei ea ei)

Thus, an if -expression can "mix-evaluate" to another if -expression if their corresponding arguments
"mix-evaluate." Notice again that the above inference rule can be written as a Horn clause.

The kinds of inference rules we have presented so far (those equivalent to Horn clauses) do not
provide a natural setting for dealing with the mixed evaluation of expressions, such as (lamb M), that
contain abstractions. To handle such expressions we consider two additional meta-logical constants and
the natural deduction inference rules for introducing them. Implication, written as +, is a constant of
type o -+ o + o. Also, for every type r built up exclusively from tm and +, universal quantification
at type T will be denoted by the constant V, of type (T + o) -+ o. Quantification will be written as
V,(Xx A) or more simply as V,x A. Furthermore, we shall generally drop the type subscript when its
value can be determined from context.

To prove propositions using these two new connectives, we introduce the following two introduction
rules given by Gentzen [4] and Prawitz [20].

Here, c is a constant of type T that must not occur in the formula Va: A or in any undischarged
assumptions of this rule. Here, of course, [x H C] denotes the operation of substituting c for free
occurrences of x. Given our convention regarding non-/?-normal formulas from Section 3, this rule
could be simply written as

(V I)
VT B

Here, B would be an abstraction of the form r -+ o .
Both of these inference rules provide a kind of hypothetical or scoping construction in proofs. Im-

plication introduction allows a new formula to be assumed and discharged while universal introduction
allows a new constant to be introduced and discharged. Both an assumed formula and an introduced
constant have very specific scopes.

Given these extensions to our proof system, we claim that the following inference rule specifies a
natural mixed evaluation strategy for object-level A-abstractions.

VXVY (x-y * ((M 2)-(M' Y)))
(lamb M)-(lamb M')

To understand this rule, let us examine a simplier rule. Consider an inference rule whose premise is
of the form

Vx(A1 + A2).

To construct a proof of this formula we first select a new constant, c, not occurring in A1, A2, or any
undischarged hypothesis, and substitute it for the bound variable x. Then we assume the formula
Al[x H c]. This assumption will generally denote some property about this newly introduced constant.
Finally, from this new assumption, we attempt to prove the formula A2[x I+ c]. If a proof can be
found, then we discharge the assumption Al[x H c] and the constant c.

Given this operational interpretation of universal and implicational propositions, the rule for the
mixed evaluation of (lamb M) can be read operationally as follows: if from the assumption tha,t c
mix-evaluates to d, where c and d are two new constants, it follows that M c mix-evaluates to M'd,
then we can conclude that (lamb M) mix-evaluates to (lamb M'). Thus, let M be of the form Xz t.
This inference rule can be interpreted as replacing the bound variable z in t with a new constant that
will "name" that bound variable. This new name, the constant c, is also assumed to have a value, the
new constant d. A value is then sought for the expression t[z H c]. This value, say s , will contain
occurrences of d but not c. The abstraction M' is then the result of abstracting d out of s, that is, it
would be the term Az s[d H z].

Figure 4 contains all the inference rules that are needed to extend the proof system for standard
evaluation into the proof system for mixed evaluation. We refer to this extended system and proofs
constructed in this system as the mix proof system and mix-proofs, respectively.

Note that since we have constructed this proof systeni by augmenting the one for standard evalua-
tion, be (e--+a) implies k-,;, (e-a), where kix denotes provability in the extended proof system.
The converse is not true, however, and for a given e there may now be many e' such that hi, e-e'.

Also notice that mixed evaluation is dex ive , that is, for all terms e E E, kix e-e.
The similarity of the rules in Figure 4 suggest that they can be explained or generated via some

uniform technique. This is, indeed, the case. Before presenting such a transformation, we note that
there is an alternative presentation of inference figures.

el - ei e2+e4 e3 + e i
(if el e2 e3)-(if ei e; e6) (2 4

VXVY (x-Y * ((M x) - (M 1 y)))
(lamb M)-(lamb M I)

e2 - e; VXVY (x-Y * ((M x)---t(M1 Y)))
(let M e2)-(let MI e4)

FIGURE 4
Inference Rules for the Mixed Evaluator for E

As was mentioned in Section 3, the inference rules in that section could be identified naturally
with Horn clauses of the meta logic. The inference rules in this section can also be naturally identified
with formulas, but they will not generally be Horn clauses. For example, the inference figure above
for object-level A-abstractions can be written as the formula

V M V M v x V y (x - y + (M x) - (M 1 y)) + (lamb M)+(lamb M I)] ,

which is not a Horn clause because of the implication and universal quantifier in the antecedent. The
class of formulas that is necessary here to capture the inference rules described in this section can be
described as follows. Let A be a syntactic variable denoting atomic formulas of the meta-logic, that
is, formulas of the form e-el. The required class of formulas is then defined as the range of the
syntactic variable L that is defined as

Such formulas form a subset of the hereditary Harrop formulas investigated in [14] where it is shown
that in an intuitionistic proof system, these formulas can give rise to an operational interpretation
similar to Horn clauses: logic programming can be naturally interpreted in hereditary Harrop formulas.
The class of L-formulas is very similar to the language used for the specification of logics in the Isabelle
theorem prover [17].

Given this relation between inference rules and formulas, we shall describe a syntactic transforma-
tion on constants of the abstract syntax of E (i.e., those from Figure 1) that will yield the L-formulas
that encode the inference rules of Figure 4. Let t and s be terms of E that are both of type r. The
following two clauses define by recursion on simple types the three place function it-s : r] , which
returns Lformulas.

a [t-s : r-a] := VxVy([x-y : r] + [tx-sy : a]) .

[t-s : tm] := t-s.

The inference rules in Figure 4 are exactly those rules that translate into the formulas denoted by
[c-c : r]] for each constant c (of type r) of E's abstract syntax. These rules for mixed evaluation
are therefore derived independently of standard evaluation: they only depend on the constants of the
abstract syntax of E. If E were enriched with new language features then the abstract syntax would
be extended with new constants. The above translation, applied to these constants, would yield an
appropriate collection of mixed evaluation clauses for these new features.

Now let us consider an example of mixed evaluation. Let A be an abbreviation of the append
function given by the term

(fix X f (lamb Xx(lamb Xy(if (null x) y (cons (car x) (f (cdr x) y)))))).

Now suppose we try to show that there exists some a such that t (A @ (cons 1 nil))-a. It is not
hard to see that the only possible value for a is

(lamb X y(if (null (cons 1 ni l)) y (cons (car (cons 1 nil)) (A (cdr (cons 1 ni l)) y)))) .

No further evaluation is possible.
Now consider showing h, (A @ (cons 1 nil))-a for some a. The additional rules of the mix

proof system provide for further simplification of this expression. In particular, the partial instantiation
of a list structure often provides enough information for the evaluation of some functions, e.g., the
function null applied to the "cons" of any two expressions that have values is always false. Clearly
we can have the same value for a as above. Further evaluation, however, is also possible, yielding
(lamb Xy(cons 1 y)) .

In this section we have concentrated exclusively on the declarative aspects of mixed evaluation. Of
course, for an actual implementation of a mixed evaluator, the control aspects must also be addressed.
Obviously, control of this evaluator is much more complex than for the standard evaluator since
Proposition 3.1 does not hold for the extended proof system. For the rest of this paper, we shall
assume that the mixed evaluator is a kind of non-deterministic program. The issue of imposing
particular search strategies on it is beyond the scope of this paper.

5 Correctness of Mixed Evaluation

We constructed a proof system for mixed evaluation by extending the one for the standard eval-
uation of E. Given this intimate connection between the two systems we are able to express and
prove a form of correctness for mixed evaluation directly in terms of standard evaluation. We want
the mix system to preserve the values of expressions given by the standard evaluator. This notion of
correctness is stated by the following theorem.

THEOREM 5.1 (Partial Correctness of Mixed Evaluation) For all e , e l , a E E , if
ki, e - e' and be e-a then there exists some value a' such that be el-a' and ki, a-0'.

Graphically, this relation among terms is depicted by the commuting diagram

mix
e

in which the arrows "". and 3 correspond to provability in be and kix , respectively.
The following two lemmas will help us in proving Theorem 5.1.

LEMMA 5.2 For all constants c E E, kix c-e implies e = c. For all terms (lamb M) E E,
ki, (lamb M)-e implies e = (lamb M') for some M'.

The lemma provides information about the structure of mix-evaluated constants and abstraction.
The proof trivially follows from the definition of the mix proof system. The next result that we need
concerns the existence of mix-proofs for certain terms.

LEMMA 5.3 If kix t-s and kix (lamb M)-(lamb N), then kix (M t) - (N s).

We provide here only an outline of the proof. As discussed previously, the inference figures used
to define mix can be written as a set of hereditary Harrop formulas. Let MIX be the set of such
clauses denoting the inference rules for the mix-proof system. The proofs in the mix-system are
easily identified with uniform proofs involving the formulas in MIX (see [14] for a definition of uni-
form proof). In [14] it was shown that, with respect to hereditary Harrop formulas, intuitionis-
tic provability is the same as provability with only uniform proofs. Thus, assume hi, t-s and
kix (lamb M)-(lamb N). Then both of these formulas are intuitionisticaly provable from MIX. A

uniform proof of (lamb M)-(lamb N) is either an axiom (i.e., M is identical to N) or is constructed
by first proving VxVy(x-y + (M 2)-(N y)) (that is, these are the only two ways to prove such
a mix-proposition between lamb expressions). Notice, that if M is identical to N , then the latter
proposition is also provable. Hence, in either case, we can conclude (by universal instantiation and
modus ponens) that (M t)-(N s) has an intuitionistic proof from MIX. By the result in [14], it
follows that (M t)-(N s) has a uniform proof from MIX and this is equivalent to the fact that this
same proposition has a mix-proof.

PROOF. (of Theorem 5.1) We assume kix e-e' and be e-a for e, e', a E E. The proof proceeds
by induction on the height h of the se-proof of e-a and then by case analysis on the last inference
rule for a mix-proof O of e-e'. At each point, we can build the unique value a' such that be ;,'--+a'
and hi, a-a'.

base: h = 1. Two cases apply: either e is some base constant c or of the form (lamb M).

(i) Assume E is of the form c-c for some constant c. Then trivially O must be of the form
C-c and, hence a' = c.

(ii) Assume Z is of the form (lamb M)-(lamb M) for some M. Then trivially O must be of
the form (lamb M)-(lamb M') for some M'; and, hence, a' = (lamb M').

step: h > 1. We shall just consider three cases that illustrate the salient features of the proof. The
other cases following similarly.

(i) Assume that the last inference rule of E is of the form

el -true e2-a2
(if el e2 e3)-a2

Also assume the last rule of O is of the form

el - e: e2 - ei e3 - e;
(if el e2 e3)-(if ei ei e;)

Then we must find some a ; such that ke (if ei eh ei)-a; and kiX a2-a;. By in-
ductive hypothesis, there exists some a { such that be ei-a; and also bx true-a;,
and by Lemma 5.2, a: = true; also by inductive hypothesis there exists some a; such that
he ei-a', and ki, a2-a',. These relationships among terms are illustrated by the two

commuting diagrams:

mix
el

mix

jise

true true

mix
e2 - el

'11 a2 mix : I s e 4

But then we have heei--+true and keei -a; and so we have
be ((if ei ei e;)-a;. This is summarized by the following commuting diagra'm:

(i i) Assume the last rule of 3 is of the form

Also assume that the last inference rule of O is of the form

By hypothesis, there exists some a: such that be ei-a: and bX (lamb M)-a:, but
then by Lemma 5.2, we must have a: = (lamb M') for some M'. (Note that we may have
M = M'.) Likewise, there exists some a ; such that ei-a; and bx a2-a;. These
relationships among terms are illustrated by the two commuting diagrams:

13

mix mix
el e:

I I se se[. lse
mix mzx

(lamb M) - (lamb MI) a2 - 4

Now given hi, (lamb M)-(lamb M I) then either M = M' or
h i Q x y (x y =+ ((M 2)-(M' y))). The latter case subsumes the former so by

Lemma 5.3 we have hi, (Ma2)-(M'a!;) (since we assumed kix a2-a:). Then, by
inductive hypothesis, there exists some at such that the following commutes:

mix - M'a!;

Thus we can construct an se-proof whose last inference rule is

And so the following diagram commutes:

mix
(e1@e2) - (e:@el>

se I mix
a!

I se
a!'

(i i i) Assume the last rule of E is of the form

Also assume that the last inference rule of O is of the form

QXQY (x-Y =+ ((M x) - (M 1 y)))
(f ix M)-(fix M ')

By Lemma 5.3 we have kix (M (f ix M))-(MI (fix M I)) (since we assumed t,;, (fix M) -
(fix MI)) . By induction hypothesis, given ke (M (f ix M)) -a and hix (M (f ix M)) -
(M1(fiz: M I)) , we have be (Mt(f i3: MI))-a' for some a' such that t,;, a-at. Hence
we have the following commuting diagram:

(fi. M)
mix

I
* (fix Mt)

I

The remaining cases follow similarly and are not included here.

Notice, however, that Theorem 5.1 states that mix preserves values only in the forward direction.
An analogous statement for the reverse direction does not hold, i.e., for some expressions e, et such
that hi, e-et, et may have a value while e has none. As an example, consider the expression
e = (lamb Xx.true)@(fix XX.~) . It is easy to show that

ki, (lamb Xx.true)@(fix Xx.x)-true

while (lamb Xx.true)@(fia: Ax.%) has no value. For practical purposes, however, this deficiency can
be overcome by enforcing a deterministic control strategy on the construction of mix-proofs that first
applies the original (se) rules (when applicable) before applying the new rules of Figure 4.

This example illustrates the interaction of mixed and eager evaluation. The standard evaluator
of Section 3 uses an eager evaluation strategy, i.e., arguments are evaluated before being used. (In a
lazy evaluation strategy an argument is not evaluated until later, if ever.) In particular, in each of the
following inference rules for standard evaluation

el-(ZambM) ea-an (Ma2)-a e2-a2 (M a2)-a
(elQe21-a (let M e2)-a (4, 5)

the argument e2 is evaluated before it is used. But notice that these two rules, in the context of mixed
evaluation, become more flexible. Recall the observation that our mixed evaluation was reflexive in
that any expression can mix-evaluate to itself. Hence, the following two instances of these rules a.re
derivable from the mix set of inference rules.

el-(lamb M) e2-e2 (M e2)-a e2-e2 (M e2)-a
(el@ez)-a (let M e2)+a

for some given el, e2, M, a. But these are effectively the inference rules that one uses (instead of the
two above) for standard evaluation employing a lazy evaluation strategy, namely,

(M e2)-a
(let M e2)+a

in which arguments are not evaluated first. We can conclude that our mixed evaluator includes not
only "eager" evaluation but also "lazy" evaluation. We conjecture the following relationship between
lazy evaluation and mixed evaluation.

CONJECTURE 5.4 Let set be the proof system obtained by replacing rules 4 and 5 in Figure 2 by
the rules 4t and 5t given above and let bet refer to provability in this new proof system. Then t.he
following hold:

(i) For all e, e',a E E , if ki, e+e' and ke-,, e--+a then there exists some value a' such that
kel el-a' and kix a-a'.

(ii) For e ,et ,a ' E E , if ki, e-e' and bet e'+a' then there exists some value a such that
e-a and kix a-a'.

In other words, if e mix-evaluates to e' then e has a value if and only if e' has a value (in the set

system) and these values are also connected by mixed evaluation.
The general discussion of correctness in this section has been greatly simplified by two features of

our standard and mixed evaluation. First, the lack of explicit environments for manipulating bound
variables in our specifications reduces the overall complexity of our proof systems and (meta) proofs
about those systems. Second, the values for both our evaluation systems are a subset of the language
of expressions, namely E. Thus we can manipulate these values just as regular expressions in the
language. For specifications that include, for example, closures as values, such uniform treatment is
not easily obtained.

6 Implementation of the Meta-Logic

In Sections 3 and 4, we claimed that techniques found in logic programming can be used to provide
implementations of our evaluators. In this section, we elaborate a bit more on this claim.

One way to provide implementations of standard and mixed evaluation is to embedded them into
Prolog-like systems. Such systems must, however, extend conventional Prolog [22] in at least the
following directions.

The collection of hereditary Harrop formulas (or the subset of L-formulas) must be supported.
Prolog supports Horn clauses, which are a proper subset of hereditary Harrop formulas.

First-order terms must be replaced with the more general notion of simply typed A-terms.

Unification of simply typed A-terms must be supported to some degree. In particular, the
equality of A-terms must be determined up to a-conversion and head level /?-contraction.

Unification must also be modified to deal with the appearance of constants introduced to prove
universally quantified formulas. In particular, any free or "logical" variables, say x, present when
such a new constant, say c, is introduced must be constrained so that any term that instantiates
x must not contain an occurrence of c .

The higher-order logic programming language XProlog 1151 contains all of these extensions to
conventional Prolog. Aspects of the formal foundations for AProlog can be found in [14]. The proof
systems and examples in this paper were developed and tested using a prototype implementation of
this language.

As we mentioned in Section 3, the depth-first search strategy of Prolog (and also of AProlog) is
adequate for providing an in~plementation of a standard evaluator. Controlling mixed evaluation,
however, is much more difficult. For this task there is probably not one correct notion of what should

be the unique result of mixed evaluation. More likely, different control strategies for mixed evaluation
will be needed for different applications. Thus the depth-first control mechanisms of AProlog would
not be particularly useful. Instead, a collection of high-level tactics and tacticals [6] could be employed
to structure the search for proofs. Tactical and tactics can be implemented directly in XProlog [2] or
in a secondary language, such as ML [17].

7 Summary and Related Work

We have shown how an elementary specification for mixed evaluation can be derived from a spec-
ification for standard evaluation. By encoding programs as simply typed A-terms and specifying
evaluation via inference rules akin to structural operational semantics, we demonstrated a natural
method of extending standard evaluation with additional inference rules derived from the signature
of E, the abstract syntax of a simple functional programming language. As this signature contains
constants of second-order types, this extension led to inference rules that require hypothetical and
scoping constructions. Such rules, fortunately, can be given a simple operational interpretation and
can be naturally implemented using logic programming techniques.

Of course, the mixed evaluator that we derive provides only a "core" set of mixed evaluation
rules. For example, our method is not rich enough to provide mixed evaluation rules that can simplify
an expression like max(max(x, I) , x) to just max(1, x) (given a typical definition for max) since this
evaluation requires the additional information that max is both commutative and associative. This
information is additional in the sense that a standard evaluator does not need it. The application
of such auxiliary information is commonly found in compilers that perform such tasks as constant
folding. Future work will attempt to capture this kind of auxiliary information.

The current paper provides only syntactic results concerning different forms of evaluation. We
hope to extend this work to a semantic characterization that provides a natural connection between
our standard and mixed evaluation systems. One promising approach uses logical relations [21]. These
are relations defined over the type structure of simply typed A-terms and they have been used to study
both the syntax and semantics of the simply typed A-calculus. The similarity between our construction
of new inference rules (based on the types of constants) and the definition of logical relations is striking,
but subtle differences between the two remain. We would, however, like to characterize evaluation
in terms of logical relations and give semantic proofs for the soundness of mixed evaluation. Logical
relations may well provide a convenient and powerful mechanism for characterizing and understanding
mixed evaluation.

The use of natural deduction as a framework for evaluating programs has been studied by several
others [I , 12, 191 and has been called structural operational semantics [19] and natural semantics [12].
More specifically, the discussion of mixed evaluation in the context of natural deduction or inference
rules is also found in [9]. However, in that work a language independent philosophy is taken and
mixed evaluation is an operation over proof trees, using a pruning-like method. A set of heuristics is
developed to guide the n~anipulation of these proof trees. This approach is more general tha.n ours
in that it is for a specific meta-language (TYPOL) rather than for a specific object-language. Our
approach, however, attempts to derive mixed evaluation automatically.

The idea of deriving mixed evaluation as an enrichment of standard evaluation was suggested by

Heering with what he calls "automatic partial w-enrichment" [lo]. This technique attempts to extend
mechanically standard evaluation to mixed evaluation via a set of enrichment rules. Our approach
appears to be an instance of these kinds of enrichment rules.

Finally, our work shares much in spirit with the automatic binding time analysis of [16]. In that
work the authors present a two-level A-calculus for distinguishing between compile-time and run-time
computations. Constructions such as application and abstraction (of A-terms) are annotated with
binding information, identifying them as occurring either early (at compile-time) or late (at run-
time). They describe an algorithm which, given partial binding information, computes the "best"
complete binding information. The notion of best refers roughly to performing as much computation
as possible at compile-time. Their ability to identify and perform computations at compile-time is
similar to our ability to perform computations over terms containing symbolic values.

Acknowledgements: The first author is supported in part by a fellowship from the Corporate
Research and Architecture Group, Digital Equipment Corporation, Maynard, MA USA. Both authors
are supported in part by grants NSF CCR-87-05596, ONR N00014-88-K-0633, and DARPA N00014-
85-K-0018.

References

[I] R. Burstall and Furio Honsell. A natural deduction treatment of operational semantics. In
Foundations of Software Technology and Theoretical Computer Science, pages 250-269, Springer-
Verlag LNCS, Vol. 338, 1988.

[2] A. Felty and D. Miller. Specifying theorem provers in a higher-order logic programming language.
In Proceedings of the Ninth International Conference on Automated Deduction, 1988.

[3] Y. Futamura. Partial evaluation of computation process - an approach to a compiler-compiler.
Computer, Systems, Controls, 2(5):45-50, 1971.

[4] G. Gentzen. Investigations into logical deduction. In M. Szabo, editor, The Collected Papers of
Gerhard Gentaen, pages 68-131, North-Holland Publishing Co., 1969.

[5] F. Giannotti, A. Matteucci, D. Pedreschi, and F. Turini. Symbolic evaluation with structural
recursive symbolic constants. Science of Computer Programming, 9(2):161-177, 1987.

[6] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh LCF: A Mech-
anised Logic of Computation. Volume 78 of Lecture Notes in Computer Science, Springer-Verlag,
1979.

[7] J. Hannan and D. Miller. A meta-logic for functional programming. In M. Rogers and H.
Abramson, editors, Proceedings of the META88 Workshop, MIT Press, 1989. (to appear).

[8] J. Hannan and D. Miller. Uses of higher-order unification for implementing program transformers.
In K. Bowen and R. Kowalski, editors, Fifth International Conference and Symposium on Logic
Programming, MIT Press, 1988. Also available as University of Pennsylvania Technical Report
MS- CIS-88-46.

[9] L. Hascoet. Partial evaluation with inference rules. New Generation Computing, 6(2-3):187-209,
1988.

[lo] J. Heering. Partial evaluation and w-completeness of algebraic specifications. Theoretical Com-
puter Science, 43:149-167, 1986.

[ll] G. Huet and B. Lang. Proving and applying program transformations expressed with second-order
logic. Acta Informatics, 11:31-55, 1978.

[12] G. Kahn. Natural semantics. In Proceedings of the Symposium on Theoretical Aspects of Computer
Science, pages 22-39, Springer-Verlag LNCS , Vol. 247, 1987.

[13] D. Miller and G. Nadathur. A logic programming approach to manipulating formulas and pro-
grams. In Proceedings of the IEEE Fourth Symposium on Logic Programming, IEEE Press, 1987.

[14] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation for logic
programming. To appear in the Annals of Pure and Applied Logic.

[15] G. Nadathur and D. Miller. An overview of AProlog. In K. Bowen and R. Kowalski, editors, Fifth
International Conference and Symposium on Logic Programming, MIT Press, 1988.

[16] H. Nielson and F. Nielson. Automatic binding time analysis for a typed A-calculus. Science of
Computer Programming, 10(2):139-176, 1988.

[17] L. Paulson. The foundation of a generic theorem prover. (To appear in the Journal of Automated
Reasoning).

[18] F. Pfenning and C. Elliot. Higher-order abstract syntax. In Proceedings of the ACM-SIGPLAN
Conference on Programming Language Design and Implementation, 1988.

[19] G. Plotkin. A Structural Approach to Operational Semantics. DAIMI FN-19, Aarhus University,
Aarhus, Denmark, September 1981.

[20] Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Uppsala, 1965.

[21] R. Statman. Logical relations and the typed A-calculus. Information and Control, 65:85-97, 1985.

[22] L. Sterling and E. Shapiro. The Art of Prolog: Advanced Programming Techniques. MIT Press,
Cambridge, MA, 1986.

