
Functional programming with λ-tree syntax
Ulysse Gérard, Dale Miller, and Gabriel Scherer

Inria Saclay & LIX, Ecole Polytechnique
Palaiseau, France

ABSTRACT

We present the design of a new functional programming language,
MLTS, that uses the λ-tree syntax approach to encoding bindings
appearing within data structures. In this setting, bindings never be-
come free nor escape their scope: instead, binders in data structures
are permitted to move into binders within programs. The design of
MLTS—whose concrete syntax is based on that of OCaml—includes
additional sites within programs that directly support this move-
ment of bindings. We illustrate the features of MLTS by presenting
several collections of examples. We also present a typing discipline
that naturally extends the typing of OCaml programs. In order to
formally define the language’s operational semantics, we present an
abstract syntax forMLTS and a natural semantics for its evaluation.
We shall view such natural semantics as a logical theory with a rich
logic that includes both nominal abstraction and the ∇-quantifier:
as a result, the natural semantic specification ofMLTS can be given
a succinct and elegant presentation. A small step semantics and a
typing system are also presented.

1 INTRODUCTION

Even from the earliest days of high-level programming, functional
programming languages were used to build systems that manipu-
lated the syntax of various programming languages and logics. For
example, Lispwas a common language for building theorem provers,
interpreters, compilers, and parsers, and the ML programming lan-
guage was designed as a “meta-language” for a proof checker [21].
While these various tasks involve the manipulation of syntax, none
of these earliest functional programming languages provided sup-
port for a key feature of almost all programming languages and
logics: variable binding.

Bindings in syntactic expressions have been given, of course, a
range of different treatments within the functional programming
setting. Common approaches are to implement bindings by using
variable names or, in a more abstract way, by using de Bruijn’s
nameless dummies [10]. Since such techniques are quite complex to
get right and since bindings are so pervasive, a great deal of energy
has gone into making libraries of procedures that can help deal with
binders: for example, there is the locally nameless approach [3, 20,
28] and the parametric higher-order abstract syntax approach [7].

Extending a functional programming language with features that
support bindings in data has been considered before: for example,
there have been the FreshML [51, 58] and CαML [50] extensions
to ML-style functional programming languages. Also, entirely new
functional programming languages, such as the dependently typed
Beluga [45] language, have been designed and implemented with
the goal to support bindings in syntax. In the domain of logic pro-
gramming and theorem prover conception, several designs and

Draft, May 29, 2019, Submitted

2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

implemented systems exist that incorporate approaches to bind-
ing: such systems include Isabelle’s generic reasoning core [41],
λProlog [34, 37], Qu-Prolog [5], Twelf [44], αProlog [4], the Minlog
prover [56], and the Abella theorem prover [2].

In this paper we present MLTS, a new language that extend
(the core of) ML and incorporates the λ-tree syntax approach to
encoding the abstract syntax of data structures containing binders.
Briefly, we can define the λ-tree syntax approach to syntax as
following the three tenets: (1) Syntax is encoded as simply typed
λ-terms in which the primitive types are identified with syntactic
categories. (2) Equality of syntax must include αβ0η conversion
(defined in Section 7.2). (3) Bound variables never become free:
instead, their binding scope can move. This latter tenet introduces
the most characteristic aspect of λ-tree syntax which is often called
binder mobility.MLTS is, in fact, an acronym formobility and λ-tree
syntax.

2 THE BINDING FEATURES OF MLTS

We chose the concrete syntax ofMLTS to be an extension of that
of the OCaml programming language (a program in MLTS not
using the new language features should be accepted by the ocamlc
compiler). We shall assume that the reader is familiar with basic
syntactic conventions of OCaml [40], many of which are shared
with most ML-like programming languages. MLTS contains the
following five new language features.

(1) Datatypes can be extended to contain new nominal constants
and the (new X in body) program phrase provides a bind-
ing that declares that the nominal X is new within the lexical
scope given by body.

(2) A new typing constructor => is used to type bindings within
term structures. This constructor is an addition to the already
familiar constructor -> used for the typing of functional
expressions.

(3) The backslash (\ as an infix symbol that associates to the
right) is used to form an abstraction of a nominal over its
scope. For example, (X\body) is a syntactic expression that
hides the nominal X in the scope body. Thus the backslash
introduces an abstraction.

(4) The @ eliminates an abstraction: for example, the expres-
sion ((X\body) @ t) denotes the result of substituting the
abstracted nominal X with the term t in body.

(5) Clauseswithinmatch-expressions can also contain the (nab
X in rule) binder: in the scope of this binder, the symbol
X can match existing nominals introduced by the new binder
and the \ operator. Note that X is bound over the entire rule
(including both the left and right-side of the rule).

All three bindings expressions—(X\body), (new X in body)
and (nab X in rule)—are subject to α-renaming of bound vari-
ables, just as the names of variables bound in let declarations and

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Draft, May 29, 2019, Submitted Ulysse Gérard, Dale Miller, and Gabriel Scherer

function definitions. As we shall see, nominals are best thought of
as constructors: as a consequence, we follow the OCaml conven-
tion of capitalizing their names. We are assuming that, in all parts
of MLTS, the names of nominals (of bound variables in general)
are not available to programs since α-conversion (the alphabetic
change of bound variables) is always applicable. Thus, compilers
are free to implement nominals in any number of ways, even ways
in which they do not have, say, print names.

Expressions involving @ are greatly restricted within patterns of
match expressions: in particular the expression (m @ X1 ... Xj)
is restricted so that m is a pattern variable and X1, . . ., Xj are distinct
nominals bound within the scope of the pattern binding on m. This
restriction is essentially the same as those required by higher-order

pattern unification [30]: as a result, pattern matching in this setting
is a simple generalization of usual first-order pattern matching.

We note that the expression (X\ r @ X) is interchangeable with
the simple expression r: that is, when r is of => type, an η-equality
holds.

We now present several sets of examples ofMLTS programs in
the next sections. We hope that the informal semantics given above
plus the simplicity of the examples will give a working understand-
ing of the semantics ofMLTS. We delay the formal definition of the
operational semantics ofMLTS until Section 7.

3 MLTS EXAMPLES: THE UNTYPED

λ-CALCULUS
The untyped λ-terms can be defined inMLTS as the datatype:
type tm =

| App of tm * tm
| Abs of tm => tm ;;

The use of the => type constructor here indicates that the argument
of Abs is a binding abstraction of a tm over a tm. Just as the type tm
denotes a syntactic category of untyped λ-terms, the type tm => tm
denotes the syntactic category of terms abstracted over such terms.

Following usual conventions, expressions whose concrete syntax
have nested binders using the same name are disambiguated by the
parser by linking the named variable with the closest binder. Thus,
the concrete syntax (Abs(X\ Abs(X\ X))) is parsed as a term
α-equivalent to (Abs(Y\ Abs(X\ X))). Similarly, the expression
(let n = 2 in let n = 3 in n) is parsed as an expression α-
equivalent to (let m = 2 in let n = 3 in n): this expression
has value 3.

The MLTS program in Figure 1 computes the size of an untyped
λ-term. For example, (size (App(Abs(X\X), Abs(X\X)))) eval-
uates to 5. In the second match rule, the match-variable r will be
bound to an expression built using the backslash. On the right of
that rule, r is applied to a single argument which is a newly pro-
vided nominal constructor of type tm. The third match rule contains
the nab binder that allows the token X to match any nominal: al-
ternatively, that last clause could have matched any non-App and
non-Abs term by using the clause | _ -> 1. (Note that as written,
the three match rules used to define size could have been listed
in any order.) The following sequence of expressions shows the
evolution of a computation involving the size function.
size (Abs (X\ (Abs (Y\ (App(X,Y))))));;
1 + new X in (size (Abs (Y\ (App(X,Y)))));;

let rec size term =
match term with

| App(n, m) -> 1 + (size n) + (size m)
| Abs(r) -> 1 + (new X in size (r @ X))
| nab X in X -> 1;;

Figure 1: A program for computing the size of a λ-term.

let subst t u = new X in
let rec aux t = match t with

| X -> u
| nab Y in Y -> Y
| App(u, v) -> App(aux u, aux v)
| Abs r -> Abs(Y\ aux (r @ Y))

in aux (t @ X);;

let rec beta t = match t with
| nab X in X -> X
| Abs r -> Abs(Y\ beta (r @ Y))
| App(m, n) ->

let m = beta m in let n = beta n in
begin

match m with
| Abs r -> beta (subst r n)
| _ -> App(m, n)

end ;;

let two = Abs(F\ Abs(X\ App(F, App(F, X))));;
let plus = Abs(M\ Abs(N\ Abs(F\ Abs(X\

App(App(M,F), App(App(N,F),X))))));;
let times = Abs(M\ Abs(N\ Abs(F\ Abs(X\

App(App(M, App(N, F)), X)))));;

Figure 2: The function that computes the substitution [t/x]u
and the (partial) function that computes the β-normal form

of its argument.

1 + new X in 1 + new Y in (size (App(X,Y)));;
1 + new X in 1 + new Y in 1 + (size X)

+ (size Y);;
1 + new X in 1 + new Y in 1 + 1 + 1;;

The first call to sizewill bind the pattern variable r to X\ Abs(Y\
App(X,Y)). It is important to note that the names of bound vari-
ables withinMLTS programs and data structures are fictions: in the
expressions above, binding names are chosen for readability.

Figure 2 defines the function (subst t u) that takes an abstrac-
tion over terms t and a term u and returns the result of substituting
the (top-level) bound variable of t with u. This function works by
first introducing a new nominal X and then defining an auxiliary
function that replaces that nominal in a term with the term u. Fi-
nally, that auxiliary function is called on the expression (t @ X)
which is the result of “moving” the top-level bound variable in
t to the binding occurrence of the expression new X in. (As we
note in Section 10.3, such binder movement can be implemented
in constant time.) This substitution function has the type (tm
=> tm) -> (tm -> tm): that is, it is used to inject the abstraction
type => into the function type ->. Substitution is then used by the
second function of Figure 2, beta, to compute the β-normal form
of a given term of type tm. This figure also contains the Church
numeral for 2 and operations for addition and multiplication on

Functional programming with λ-tree syntax Draft, May 29, 2019, Submitted

let rec vacp1 t = match t with
| Abs(X\X) -> false
| nab Y in Abs(X\Y) -> true
| Abs(X\ App(m @ X, n @ X)) ->

(vacp1 (Abs m)) && (vacp1 (Abs n))
| Abs(X\ Abs(Y\ r @ X Y)) ->

new Y in vacp1(Abs(X\ r @ X Y))
| s -> false ;;

let vacp2 t = match t with
| Abs(r) -> new X in

let rec aux term = match term
with

| X -> false
| nab Y in Y -> true
| App(m, n) ->

(aux m) && (aux n)
| Abs(u) ->

new Y in aux (u @ Y)
in aux (r @ X)

| s -> false;;

let vacp3 t = match t with
| Abs(X\s) -> true
| t -> false ;;

Figure 3: Three implementations for determining if an ab-

straction is vacuous.

let rec assoc x alist = match alist with
| ((u,y)::alst) -> if (u = x) then y else

(assoc x alst);;

type tm ' =
| App ' of tm ' * tm '
| Abs ' of tm ' => tm ';;

let rec id gamma term = match term with
| App(m,n) -> App '(id gamma m,id gamma n)
| Abs(r) -> new X in Abs '(Y\ (id

((X,Y):: gamma) (r @ X)))
| nab X in X -> assoc X gamma;;

Figure 4: Translating from tm to its mirror version tm'.

Church numerals. In the resulting evaluation context, the values
computed by (beta (App(App(plus, two), two))) and (beta
(App(App(times, two), two))) are both the Church numeral
for 4.

For another example, consider a program that returns true if
and only if its argument, of type tm => tm, is such that its top-level
bound variable is a “vacuous” binding. Figure 3 contains three im-
plementations of this boolean-valued function. The first implemen-
tation proceeds by matching patterns with the prefix X\, thereby,
matching expressions of type tm => tm. The second implementa-
tion uses a different style: it creates a new nominal X and proceeds
to work on the term t @ X, in the same fashion as the size example.
The internal aux function is then defined to search for occurrences
of X in that term. The third implementation, vacp3, is not (overtly)
recursive since the entire effort of checking for the vacuous binding
is done during pattern matching. The first match rule of this third

type deb =
| Dapp of deb * deb
| Dabs of deb
| Dvar of int;;

let rec nth n l = match (n, l) with
| (0, x::k) -> x
| (c, x::k) -> nth (c - 1) k;;

let index x l =
let rec aux c x k = match (x, k) with

| nab X in (X, X::(l @ X)) -> c
| nab X Y in (X, Y::(l @ X Y)) ->

aux (c + 1) x (l @ X Y)
in aux 0 x l;;

let rec trans prefix term = match term with
| App(m, n) -> Dapp(trans prefix m,

trans prefix n)
| Abs r -> new X in

Dabs(trans (X:: prefix) (r @ X))
| nab Y in Y -> Dvar (index Y prefix);;

let rec dtrans prefix term = match term with
| Dapp(m, n) -> App(dtrans prefix m,

dtrans prefix n)
| Dabs r -> Abs(X\ dtrans (X:: prefix) r)
| Dvar c -> nth c prefix ;;

Figure 5: De Bruijn’s nameless dummy syntax and its con-

versions with type tm.

implementation is essentially asking the question: is there an in-
stantiation for the (pattern) variable s so that the λx .s equals t? This
question can be posed as asking if the logical formula ∃s .(λx .s) = t
can be proved. In this latter form, it should be clear that since sub-
stitution is intended as a logical operation, the result of substituting
for s never allows for variable capture. Hence, every instance of the
existential quantifier yields an equation with a left-hand side that
is a vacuous abstraction. Of course, this kind of pattern matching
requires a recursive analysis of the term t .

For a simple example of computing on the untyped λ-calculus,
consider introducing a mirror version of tm, as is done in Figure 4,
andwriting the function that constructs themirror term in tm' from
an input term tm. This computation is achieved by adding a context
(an association list) as an extra argument that maintains the associa-
tion of bound variables of type tm and those of type tm'. The value
of id [] (Abs(X\ Abs(Y\ App(X,Y)))) is (Abs'(X\ Abs'(Y\
App'(X,Y)))) (the types of X and Y in these two expressions are,
of course, different).

Figure 5 presents a datatype for the untyped λ-calculus in De
Bruijn’s style nameless dummies [9] as well as the functions that
can convert between that syntax and the one with explicit bindings.
The auxiliary functions nth and index take a list of nominals as
their second argument: nth takes also an integer n and returns the
nth nominal in that list while index takes a nominal and returns
its ordinal position in that list. For example, the value of

trans [] (Abs(X\X));;

Draft, May 29, 2019, Submitted Ulysse Gérard, Dale Miller, and Gabriel Scherer

let rec maptm fapp fabs fvar term = match term
with
| App(m,n) -> fapp (maptm fapp fabs fvar m)

(maptm fapp fabs fvar n)
| Abs(r) -> fabs (fun x ->

maptm fapp fabs fvar (r @ x))
| nab X in X -> fvar X;;

let mapvar fvar term =
maptm (fun m -> fun n -> App(m, n))

(fun r -> Abs(X\ r X))
fvar term;;

let lookup sub var = match var with
| nab X in X ->

let rec aux s = match s with
| [] -> X
| (X,t)::sub -> t
| (y,t)::sub -> aux sub

in aux sub;;

let fv term =
maptm union

(fun r -> new X in remove X (r X))
(fun x -> x::[]) term;;

let size term =
maptm (fun x -> fun y -> 1 + x + y)

(fun r -> new X in 1 + (r X))
(fun x -> 1) term;;

let terminals term =
maptm (fun x -> fun y -> x + y)

(fun r -> new X in (r X))
(fun x -> 1) term;;

Figure 6: Various computations on untyped λ-terms using

higher-order programs.

is the term DAbs(DAbs(DAbs(DApp(Dvar 2, DAbs(Dvar 1)))))
of type deb. If dtrans [] is applied to this second term, the former
term is returned (modulo α-renaming, of course).

4 HIGHER-ORDER PROGRAMMING

EXAMPLES

Recall the familiar “fold-right” higher-order function.

let rec foldr f a lst = match lst with
| [] -> a
| x :: xs -> f x (foldr f a xs);;

This function can be viewed as replacing all occurrences of :: with
the binary function f and all occurrences of [] with a. The higher-
order program maptm in Figure 6 does the analogous operation on
the datatype of untyped λ-terms tm. In particular, the constructors
App and Abs are replaced by functions fapp and fabs respectively.
In addition, the function fvar is applied to all nominals encountered
in the term. This higher-order function can be used to define a
number of other useful and familiar functions. For example, mapvar
function is a specialization of the maptm function that just applies a
given function to all nominals in an untyped λ-term. The application

of a substitution (an expression of type (tm * tm) list) to a term
of type tm can then be seen as the result of applying the lookup
function to every variable in the term (using mapvar). Using the
functions in Figure 6, the three expressions
Abs(X\ (mapvar (fun x -> X)

(Abs(U\ Abs(V\ App(U,V))))));;
new X in new Y in lookup ((X, Abs(U\U))::

(Y, Abs(U\ App(U,U)))::[]) X;;
new X in new Y in lookup ((X, Abs(U\U))::

(Y, Abs(U\ App(U,U)))::[]) Y;;

evaluate to the following three λ-terms.
Abs(X\ Abs(Y\ Abs(Z\ App(X, X))))
Abs(X\ X)
Abs(X\ App(X, X))

Three additional functions are defined in Figure 6: fv constructs
the list of free variables in a term; size is a re-implementation of
the size function presented in Section 3; and terminals counts the
number of variable occurrences (terminal nodes) in its argument.

5 TYPING

Given thatMLTS is a rather mild extension to OCaml at the syntax
level, a typing system for MLTS is simple to present and follows
standard practices. Figure 7 contains the rules for typing the new
features ofMLTS: additional rules for encoding let and let rec
constructions (as well as for built-in types such as integers) must
also be added, but these follow the usual pattern. The inference
rules in this figure involve the following typing judgments.

Γ ⊢ M : A Γ ⊢ A : R : B Γ ⊢ M : A ⊣ ∆ open A

In all of these rules, Γ is the usual association between bound
variables and a type: in our situation, Γ will associate both variables
and nominals to type expressions. (We also assume that the order
of pairs in Γ is not important.) The first of these judgments is the
usual typing judgment between a program expression M and A. The
second of these judgments is used to type a rewriting rule R that
has a left-hand side of type A and a right-hand side of type B. For
example, the following typing judgment should be provable.

Γ ⊢ tm : Abs(r) -> 1 + (new X in size (r @ X)) : int

Since this rule expression is intended to be closed (that is, the
variable r is quantified implicitly around this rule), the actual value
of Γ will not impact this particular typing judgment. The third
typing judgment above is used to analyze the left-hand-side of a
match rule: in particular, Γ ⊢ M : A ⊣ ∆ holds if during the process
of analyzing the pattern M, pattern variables are produced (since
these are implicitly quantified) and placed into the typing context
∆. For example, the following should be provable.

Γ ⊢ Abs(r) : tm ⊢ {r : tm => tm}

Some of the inference rules in Figure 7 contain premises of the
form (open A) where A is a primitive type. Types for which this
judgment holds are called open types and are the types of bindings
in the new and backslash expressions: equivalently, open types can
contain nominals. For our purposes here, we can assume that every
type that is defined in a program (using the type command) is
presumed to be open. For example, the judgment (open tm) needs
to be true so that the type tm => tm can be formed in the various

Functional programming with λ-tree syntax Draft, May 29, 2019, Submitted

typing rules. On the other hand, the built-in type for integers int
should not be considered open in this sense. Clearly a keywordmust
be added to datatype declarations to indicate if a type is intended
as open in this sense.

In the inference rules in Figure 7, whenever we extend the typing
context Γ to, say, Γ,X : A, we always assume that X is not declared
a type in Γ already. Since α-conversion is always possible within
terms, this assumption can always be satisfied. Note that since
pattern variables are restricted (as is usual) so that they have at
most one occurrence in a given pattern, the union of contexts, in
the form ∆1, . . . ,∆n never attributes more than one type to the
same variable.

The prototype implementation TryMLTS [19] of MLTS contains
a type inference engine that runs on top of λProlog: given the hy-
pothetical judgments available in λProlog, the implemented typing
system is structured differently (but equivalently) to the one given
in Figure 7.

6 ABSTRACT SYNTAX AS UNTYPED

λ-CALCULUS
Although MLTS is designed as a strongly typed functional pro-
gramming language, evaluation for this language is fundamentally
untyped. The abstract syntax for MLTS is based on the untyped
λ-calculus along with a few extensions to capture the new features
ofMLTS.

Recall the semantic description of the untyped λ-calculus given
by Scott in [57]. Scott was able to present a semantic domain D and
its function space [D → D] along with two continuous mappings
(retracts) Φ : D → (D → D) (encoding application) and Ψ : (D →
D) → D (encoding abstraction). For example, the untyped λ-term
λxλy ((xy)y) is encoded as a value in domainD using the expression
(Ψ(λx (Ψ(λy (Φ(Φ X Y) X)))))).

Note that syntactically, application in the untyped λ-calculus is
captured by two domain-level features: function application and
the mapping Φ. Similarly, abstraction is captured by two domain-
level features: function abstraction (the creation of an element of
[D → D]) and the mapping Ψ. We can thus identify two different
syntactic categories in this encoding: those denoted by the domain
D and those identified by the domain of (continuous) functions
D → D. In what follows, we need to make a similar distinction
between (λx .T) of type D → D and (Ψ(λx .T)) of type D. In order
to give suggestive names for this distinction, we shall borrow a bit
of terminology from Martin-Löf’s notion of arity typing [39]. In
particular, we will say that a term of type D has arity type 0 while a
term of type D → D has arity type 0→ 0. Other arities are possible
but they are not needed in the current design ofMLTS.

7 FORMALIZING THE DESIGN OFMLTS

Bindings are such an intimate part of the nature of syntax that we
should expect that our high-level programming languages account
for them directly: for example, any built-in notion of equality or
matching should respect at least α-conversion. (The paper [33] con-
tains an extended argument of this point in the setting of logic pro-
gramming and proof assistants.) Another reason to include binders
as a primitive within a functional programming languages is that
their semantics have a well understood declarative and operational

treatment. For example, Church’s higher-order logic STT [8] con-
tains an elegant integration of bindings in both terms and formulas.
His logic also identifies equality for both terms and formulas with
αβη-conversion. Church’s integration is also a popular one in theo-
rem proving—being the core logic of the Isabelle [42], HOL [22, 23],
and Abella [2] theorem provers—as well as the logic programming
language λProlog [34]. Given the existence of these provers, a good
literature now exists that describes how to effectively implement
STT and closely related logics. Since the formal specifications of
evaluation and typing will be given using inference rules and since
such rules can be viewed as quantified formulas, this literature
provides means for implementingMLTS.

7.1 Equality modulo α , β , η conversion

The abstract syntax behindMLTS is essentially a simply typed λ-
term that encodes untyped λ-calculus, as described in Section 6.
Furthermore, the equality theory of such terms is given by the fa-
miliar α , β , η conversion rules. As a result, a programming language
that adopts this notion of equality cannot take an abstraction and
return, say, the name of its bound variable: since that name can be
changed via the α-conversion, such an operation would not be a
proper function. Thus, it is not possible to decompose the untyped
λ-term λx .t into the two components x and t . Not being able to re-
trieve a bound variables name might appear as a serious deficiency
but, in fact, it can be a valuable feature of the language: for example,
a compiler does not need to maintain such names and can choose
any number of different, low-level representations of bindings to
exploit during execution. Since the names of bindings seldom have
semantically meaningful value, dropping them entirely is an inter-
esting design choice. That choice is similar to one taken in ML-style
languages in which the location in memory of a reference cell is
not maintained as a value in the language.

The relation of λ-conversion is invoked when evaluating the
expression (t @ s1 ... sn). As we shall see, MLTS is a typed
language so we can assume that the expressions s1, . . . , sn have
types γ1, . . . ,γn , respectively, and that t must have type γ1 →
· · · → γn → γ0. Thus, t is η-equivalent to a term with n abstrac-
tions, for example, X1\...Xn\ t' and the value of the expression
(t @ s1 ... sn) is the result of performing λ-normalization of
(X1\...Xn\ t') to the arguments s1, . . . , sn.

As we illustrated in Section 3, it is possible to implement both
substitution and λ-conversion in MLTS. Thus, it is possible to limit
the occurrences of @ to appear only within the scope of match
clauses and only then with a pattern variable as the first argument
of @. For the sake of the rest of this paper, we will not enforce that
restriction.

7.2 Pattern unification and matching

Since we are not able to decompose bindings into their bound
variable and body, we need to find alternative means for analyzing
the structure of terms containing bindings. As our earlier examples
illustrated, matching within patterns can be used to probe terms
and their bindings. If we do not place restrictions on the use of
pattern variables, then patterns can have complex behaviors that
we may wish to avoid during evaluation.

Draft, May 29, 2019, Submitted Ulysse Gérard, Dale Miller, and Gabriel Scherer

Γ,x : C ⊢ x : C
Γ ⊢ M : A -> B Γ ⊢ N : A

Γ ⊢ (M N) : B
Γ,x : A ⊢ M : B

Γ ⊢ (fun x -> M) : A -> B

Γ ⊢ M : A Γ,x : A ⊢ M : B
Γ ⊢ let x = M in N : B

Γ,X : A ⊢ M : B open A

Γ ⊢ (X \ M) : A => B

Γ ⊢ r : A1 => ... => An => A Γ ⊢ t1 : A1 . . . Γ ⊢ tn : An
Γ ⊢ (r @ t1 ... tn) : A

C : A1, . . . ,An → B Γ ⊢ t1 : A1 . . . Γ ⊢ tn : An
Γ ⊢ C(t1,...,tn) : B

Γ ⊢ M : A Γ ⊢ N : B
Γ ⊢ (M, N) : A * B

Γ,X : A ⊢ M : B open A

Γ ⊢ (new X in M) : B
Γ ⊢ term : B Γ ⊢ B : R1 : A . . . Γ ⊢ B : Rn : A

Γ ⊢ match term with R1 | ... | Rn : A

Γ,X : C ⊢ A : R : B open C

Γ ⊢ A : nab X in R : B
Γ ⊢ L : A ⊣ ∆ Γ,∆ ⊢ R : B

Γ ⊢ A : L -> R : B
Γ ⊢ X1 : A1 . . . Γ ⊢ Xn : An open A1 . . . open An

Γ ⊢ (r @ X1 ... Xn) : A ⊣ r : A1 => ... => An => A

Γ ⊢ x : A ⊣ x : A
Γ ⊢ p : A ⊣ ∆1 Γ ⊢ q : B ⊣ ∆2
Γ ⊢ (p,q) : A * B ⊣ ∆1,∆2

C : A1, . . . ,An → B Γ ⊢ p1 : A1 ⊣ ∆1 . . . Γ ⊢ pn : An ⊣ ∆n
Γ ⊢ C(p1,...,pn) : B ⊣ ∆1, . . . ,∆n

Figure 7: Typing rules based on the concrete syntax for the new features ofMLTS.

7.2.1 Unique occurrence of pattern variables. We impose a familiar
restriction on the match rules: a pattern variable must have exactly
one occurrence within a match pattern. Asking for at least one
occurrence avoids under-specified pattern variables, that could be
bound to anything. As is typical in ML-style languages, asking for
at most one occurrence relieves pattern matching from the need to
check equality of terms. Since terms can be large, pattern matching
could involve a costly recursive descent of terms; we forbid re-
peated occurrences of pattern variables and force the programmer
to insert equality checking outside the pattern matching operation.
Thus, instead of defining memb : tm -> tm list -> bool with
the following code using a repeated match variable
let rec memb x l = match (x,l) with

| (x,[]) -> false
| (x,(x::l)) -> true
| (y,(x::l)) -> memb x l;;

we can require the programmer to write an equality predicate for
type tm and then rewrite the program above as follows.
let rec eqtm t s = match (t,s) with

| (App(m1 ,m2), App(n1,n2)) -> eqtm m1 n1 &&
eqtm m2 n2

| (Abs r, Abs s) -> new X in eqtm (r @ X)
(s @ X)

| nab X in (X, X) -> true
| _ -> false;;

let rec memb x l = match (x,l) with
| (x,[]) -> false
| (x,(y::l)) -> if (eqtm x y)

then true else (memb x l);;

Given the definition of the tm datatype, it is clear that a compiler for
MLTS could define its own equality predicate for this type. In that
case, repeated variable occurrences in patterns could be allowed
since resolving such patterns could be done using these equality
predicates.

7.2.2 Restricted use of higher-order pattern variables. Since pattern
variables within match rules can have higher-order types, occur-
rences of those variables within patterns need to be restricted:

otherwise, undesirable features of higher-order matching could
appear. Fortunately, there is a natural restriction on occurrences of
pattern variables that guarantees that a match either fails or suc-
ceeds with at most one solution. That restriction is the following:
every occurrence of an expression of the form (r @ X1 ... Xn)
in the left-hand side of a match rule must be such that the pattern
variable r is applied to n ≥ 0 distinct nominals X1 ... Xn and
those nominals are bound within the scope of the binding for r. For
example, the following expression is not well formed

Abs(X\ (match Abs(Y\ App(X,Y)) with
| Abs(Z\ r @ Z X) ->

Abs(Z\ r @ X Z)));;

since the scope of the nominal X contains the (implicit) scope of the
pattern variable r, which is around the rule (Abs(Z\ r @ Z X)
-> Abs(Z\ r @ X Z)).

This restriction can be motivated within a purely logical setting
as follows. Let j be a primitive type and let f : j → j → j be a simply
typed constant. The formula ∃G : j → j ∀x : j [G x = (f x x)] has
a unique proof in which G is instantiated by the term λw .(f w w).
Note that the binding scope of the variable x is inside the binding
scope of the variable G. If, however, one switches the order of the
quantifiers, yielding ∀x : j ∃G : j → j [G x = (f x x)], then
there are four different proofs of this equation: if one replaces
the outermost universal quantifier with an eigenvariable, say a,
then there are four different solutions for G, namely, λw .(f a a),
λw .(f a w), λw .(f w a), and λw .(f w w).

The subset of higher-order unification in which unification vari-
ables (a.k.a., logic variables, meta-variables, pattern variables) are
applied to distinct bound variables restricted as described above, is
called higher-order pattern unification or Lλ unification [30]. (A func-
tional programming implementation of such unification is given
in [38].) This particular subset of higher-order unification is com-
monly implemented in theorem provers such as Abella [2], Minlog
[56], and Twelf [44] as well as recent implementations of λProlog
[12, 52].

The following results about about higher-order pattern unifica-
tion are proved in [30].

Functional programming with λ-tree syntax Draft, May 29, 2019, Submitted

(1) It is decidable and unitary, meaning that if there is a unifier
then there exists a most general unifier.

(2) It does not depend on typing. As a result, it is possible to add
it to the evaluator forMLTS based on untyped terms.

(3) The only form of β-conversion that is needed to solve such
unification problems is what is called β0-conversion which
is a form of the β rule that equates (λx .t)x with t .

An equivalent way to write the β0-conversion rule (assuming the
presence ofα-conversion) is that (λx .t)y converts to t[y/x] provided
that y is not free in λx .t . Notice that applying β0 reduction actually
makes a term smaller and does not introduce new β redexes: as a
result it is not a surprise that such unification (and, hence, matching)
has low computational complexity (the paper [53] claims that such
unification is, in fact, solvable in linear time).

7.2.3 All nab bound variables must have a rigid occurrence. There
is an additional restriction on match rules that is associated to the
nab quantifiers that appear in such rules. We say that an occurrence
of a nab-quantified nominal is flexible if it is in the scope of an @.
For example, in the code

Abs(X\ (match Abs(Y\ App(X,Y)) with
| nab W in Abs(Z\ r @ Z W) ->

Abs(Z\ r @ W Z)));;

the nominal binding W has two occurrences that are flexible: one
each within (r @ Z W) and (r @ W Z). All other occurrences of
a nab quantified nominal is rigid. For example, in the match rule
| nab X in X -> 1, X has a binding occurrence and a rigid oc-
currence. In the auxiliary function used by the insert function in
Figure 5, namely,

let rec aux c x k = match (x, k) with
| nab X in (X, X::(l @ X)) -> c
| nab X Y in (X, Y::(l @ X Y)) ->

aux (c + 1) x (l @ X Y)

the nominals X and Y have both rigid and flexible occurrences within
their scope.

The one additional restriction that we need is the following: ev-
ery nab quantified variable must have at least one rigid occurrence
in the left part of the match rule (the pattern) that falls within
the scope of its binder. For example, the code listed above (for an
expression of type tm) does not satisfy this restriction since every
occurrence of W in the pattern is flexible (there is just one such
occurrence). The necessity of this restriction can be seen when we
consider a pattern of the form

| nat X Y in (r @ X Y) -> term

In the event that a nominal, say U, is matched with the pattern in
this rule, there are two instantiations for r that make this match
succeed, namely, using the terms X\Y\X and X\Y\Y: we wish to
avoid multiple successful matches of the same rule. The following
clause is also ruled out by this restriction

| nat X in 1 -> X

since X has no rigid occurrence in the expression 1. Discarding this
match rule makes sense since the nominal that is returned as the
result of this match is not constrained by the input to the match.

7.3 β0 versus β
As we describe in Section 7.2.2, we will insist that in the left side
of a match rule, all subexpressions of the form (r @ X1 ... Xn)
are such that the scope of the binding for r contains the scope
of the bindings for the distinct variables in X1, . . ., Xn. On the
right-hand side of a match rule, however, it seems that one has
an interesting choice. If on the right, we have an expression of
the form (r @ t1 ... tn) then clearly, the terms t1, . . ., tn are
intended to be substituted into the abstraction that is instantiated
for the pattern variable r: that is, we need to use β-conversion on
this redex. One design choice is that we restrict the terms t1, . . .,
tn to be distinct nominals just as on the left-hand-side: in this case,
β-reduction of the expression (r @ t1 ... tn) requires only β0
reductions. A second choice is that we allow the terms t1, . . .,
tn to be unrestricted: in this case, β-reduction of the expression
(r @ t1 ... tn) requires more general (and costly) β-reductions.

A similar trade-off between allowing β-conversion or just β0
conversion has also been studiedwithin the theory and design of the
π -calculus. In particular, the full π -calculus allows the substitution
of arbitrary names into input prefixes (modeled by β-conversion)
while the πI -calculus (π -calculus with internal mobility [54]) is
restricted in such a way that the only instances of β-conversions
are, in fact, β0-conversions (see Chapter 11 in [34]).

Another reason to identify the β0 fragment of β-conversion is
that β0 reduction provides support for binder mobility and it can be
given effective implementations, sometime involving only constant
time operations (see Section 10.3).

7.4 Match rule quantification

Match rules inMLTS contain two kinds of quantification. The famil-
iar quantification of pattern variables can be interpreted as being
universal quantifiers. For example, the first rule defining the size
function in Section 3, namely,

| App(n, m) -> 1 + size n + size m

can be encoded as the logical statement

∀m∀n[(size (App(n, m))) = 1 + size n + size m].

The third match rule for size contains the binder nab
| nab X in X -> 1

which corresponds approximately to the generic ∇-quantifier (pro-
nounced nabla) that is found in various efforts to formalize the
metatheory of computational systems (see [2, 36] and Section 8).
That is, this rule can be encoded as ∇x.(size x = 1): that is, the
size of a nominal constant is 1.

Although there are two kinds of quantifiers around such match
rules, the ones corresponding to the universal quantifiers are im-
plicit while the ones corresponding to the ∇-quantifiers are explicit.
Our design forMLTS places the implicit quantifiers at outermost
scope: that is, the quantification over a match rule is of the form ∀∇.
Another choice might be to allow some (all) universal quantifiers
to be explicitly written and placed among any nab bindings. While
this is a sensible choice, the ∀∇-prefixes is, in fact, a reduction class
in the sense that if one has a ∀ quantifier inside a ∇-quantifier, it is
possible to rotate that ∇-quantifier inside using a technique called
raising [30, 36]. That is, the formula ∇x : γ∀y : τ (Bxy) is logically

Draft, May 29, 2019, Submitted Ulysse Gérard, Dale Miller, and Gabriel Scherer

equivalent to the formula ∀h : (γ → τ)∇x : γ (Bx (hx)): note that
as the ∇-quantifier of type γ is moved to the right over a universal
quantifier, the type of that quantifier is raised from τ to γ → τ .
Thus, it is possible for an arbitrary mixing of ∀ and ∇ quantifiers
to be simplified to be of the form ∀∇.

7.5 Nominal abstraction

Before we can present the formal operational semantics of MLTS,
we need to introduce one final logical concept, nominal abstrac-

tion, which allows implicit bindings represented by nominals to
be moved into explicit abstractions over terms [18]. The following
notation is useful for defining this relationship.

Let t be a term, let c1, . . . , cn be distinct nominals that possibly
occur in t , and let y1, . . . ,yn be distinct variables not occurring in t
and such that, for 1 ≤ i ≤ n, yi and ci have the same type. Then we
write λc1 . . . λcn .t to denote the term λy1 . . . λyn .t ′ where t ′ is the
term obtained from t by replacing ci byyi for 1 ≤ i ≤ n. There is an
ambiguity in this notation in that the choice of variables y1, . . . ,yn
is not fixed. However, this ambiguity is harmless: the terms that are
produced by acceptable choices are all equivalent under a renaming
of bound variables.

Letn ≥ 0 and let s and t be terms of type τ1 → · · · → τn → τ and
τ , respectively; notice, in particular, that s takesn arguments to yield
a term of the same type as t . The formula s⊵t is a nominal abstraction

of degree n (or, simply, a nominal abstraction). The symbol ⊵ is
used here in an overloaded way in that the degree of the nominal
abstraction it participates in can vary. The nominal abstraction s ⊵ t
of degree n is said to hold just in the case that s is λ-convertible to
λc1 . . . cn .t for some distinct nominals c1, . . . , cn .

Clearly, nominal abstraction of degree 0 is the same as equality
between terms based on λ-conversion, and we will use = to denote
this relation in that case. In the more general case, the term on the
left of the operator serves as a pattern for isolating occurrences of
nominals. For example, if p is a binary constructor and c1 and c2
are nominals, then the nominal abstractions of the first row below
hold while those in the second row do not.

λx .x ⊵ c1 λx .p x c2 ⊵ p c1 c2 λx .λy.p x y ⊵ p c1 c2

λx .x ̸⊵ p c1 c2 λx .p x c2 ̸⊵ p c2 c1 λx .λy.p x y ̸⊵ p c1 c1

A logic with equality generalized to nominal abstraction has
been studied in [16, 18] where a logic, named G, that contains fixed
points, induction, coinduction, ∇-quantification, and nominal ab-
straction is given a sequent calculus presentation. Cut-elimination
for G is proved in [18] and algorithms and implementations for
nominal abstraction are presented in [16, 59]. An important feature
of the Abella prover—∇ in the head of a definition—can be explained
and encoded using nominal abstraction [17].

8 NATURAL SEMANTIC SPECIFICATION OF

MLTS

We can now define the operational semantics of MLTS by giving
inference rules in the style of natural semantic (a.k.a. big-step se-
mantic) following Kahn [26]. The semantic definition for the core of
MLTS is defined in Figure 8. Since those inference rules are written
using an abstract syntax for MLTS, we briefly describe how that
abstract syntax is derived from the concrete syntax.

Instead of detailing the translation from concrete to abstract
syntax, we illustrate this translation with an example. There is an
implementation ofMLTS that includes a parser and a transpiler into
λProlog code: this system is available for online use and for down-
loading at https://trymlts.github.io [19]. For example, the λProlog
code in Figure 9 is the abstract syntax for the MLTS program for
size given in Section 3.

The backslash (as infix notation) is also used in λProlog to denote
binders and it is the only λProlog primitive in Figure 9. The other
constructors are introduced to encodeMLTS abstract syntax trees.

The constant fix represents anonymous fixpoints, to which re-
cursive functions are translated (we also have a n-ary fixpoint for
mutually-recursive functions). Note that fix x \ t is idiomatic
λProlog syntax for the application fix (x \ t), omitting paren-
theses to use fix in the style of a binder. The expression lam x \
... represents the MLTS expression fun x -> Similarly, the
expression new X \ ... encodes new X in The expression-
former match represents pattern-matching, it expects a scrutinee
and a list of clauses. Clauses are built from the infix operator ==>,
taking a pattern on the left and a term on the right, and from quan-
tifiers all, to introduce universally-quantified variables (implicit in
MLTS programs), and nab to introduce nominals. all-bound vari-
ables and nab-bound nominals have the type of expressions; they
are injected in patterns by pvar and pnom. pvariant (in patterns)
and variant (in expressions) denote datatype constructor applica-
tions, they expect a datatype constructor and a list of arguments.
special expects the name of a run-time primitive (arithmetic op-
erations, polymorphic equality...) and a list of arguments. int rep-
resents integer literals. Finally, we use explicit AST expression-
formers backslash and arobase and pattern-formers pbackslash
and parobase to represent the constructions \ and @ ofMLTS. Only
arobase is present in this example.

It is intended that the inference rules given in Figure 8 are, in
fact, notations for formulas in the logic G. For example, schema
variables of the inference figure are universally quantified around
the intended formula; the horizontal line is an implication; the list
of premises is a conjunction; and ⇓ is a binary (infix) predicate, etc.
Some features of G are exploited by some of those inference rules:
those features are enumerated below.

In the rules for app, let and fix, a variable of arity type 0→ 0
(namely, R) is applied to a term of arity type 0. These rules make
use of the underlying equality theory of simply typed λ-terms in G
to perform a substitution. In the rule for apply, for example, if R is
instantiated by the term λw .t and U is instantiated by the term s ,
then the expression written as (R U) is equal (in G) to the result
of substituting s for the free occurrences of w in t : that is, to the
result of a β-reduction on the expression ((λw .t) s).

Existential quantification is written explicitly into the first rule
for patterns. It is possible (as is done in other rules) to drop the
explicit existential quantifier and instead have the quantification be
implicitly universally quantified around the entire rule. We write
it explicitly here to highlight the fact that solving the problem of
finding instances of pattern variables in matching rules is lifted to
the general problem of finding substitution terms in G.

The proof rules for natural semantics are nondeterministic in
principle. Consider attempting to prove that t , a term of arity type
0, has a value: that is, ∃V , t ⇓ V . It can be the case that no proof

https://trymlts.github.io

Functional programming with λ-tree syntax Draft, May 29, 2019, Submitted

⊢ lam R ⇓ lam R

⊢ ∀i ∈ [1;n], Ti ⇓ Vi
⊢ variant c [T1, . . . ,Tn] ⇓ variant c [V1, . . . ,Vn]

⊢ C ⇓ tt ⊢ L ⇓ V

⊢ cond C L M ⇓ V

⊢ C ⇓ ff ⊢ M ⇓ V

⊢ cond C L M ⇓ V

⊢ M ⇓ lam R ⊢ N ⇓ U ⊢ (R U) ⇓ V

⊢ appM N ⇓ V

⊢ M ⇓ U ⊢ (R U) ⇓ V

⊢ (letM R) ⇓ V

⊢ R (fix R) ⇓ V
⊢ fix R ⇓ V

⊢ ∇x .(E x) ⇓ V

⊢ new (λx .E x) ⇓ V

⊢ M ⇓ backslash R ⊢ (R X) ⇓ V

⊢ arobaseM X ⇓ V

⊢ ∇x .(E x) ⇓ (V x)

⊢ backslash (λx .E x) ⇓ backslash (λx .V x)

⊢ clause T Rule U ⊢ U ⇓ V

⊢ (match T (Rule::Rules)) ⇓ V

⊢ ∃x .clause T (P x) U

⊢ clause T (all (λx .P x)) U

⊢ matches T P ⊢ (λz1 . . . λzm .(p =⇒ u)) ⊵ (P =⇒ U)

⊢ clause T (nab z1 . . . nab zm .(p =⇒ u)) U

⊢ ¬(∃u, clause T Rule u) ⊢ (match T Rules) ⇓ V

⊢ (match T (Rule::Rules)) ⇓ V

⊢ ∀i ∈ [1;n], matches ti pi
⊢ matches (variant c [t1, . . . , tn]) (pvariant c [p1, . . . ,pn])

nominal(c)
⊢ matches c (pnom c) ⊢ matches x (pvar x)

Figure 8: A natural semantic specification of evaluation.

(fix size \ lam term \
match term
[(all m \ all n \

(pvariant c_App [(pvar n), (pvar m)]) ==>
(special add [(special add [(int 1),

(app size n)]),
(app size m)])),

(all r \ (pvariant c_Abs [pvar r]) ==>
(special add

[(int 1),
(new X \ app size

(arobase r X))])),
(nab X \ (pnom X) ==> (int 1))])

Figure 9: The abstract syntax of the size program.

exists or that there might be several proofs with different values
for V . No proofs are possible if, for example, the condition in a
conditional phrase does not evaluate to a boolean or if there are
insufficient match rules provided to cover all the possible values
given to a match expression. Ultimately, we will want to provide a
static check that could issue a warning if the rules listed in a match
expression are not exhaustive. Conversely, the variables introduced
by all and nab in patterns may have several satisfying values, if
they are not used in the pattern itself, or only in flexible occurrences
(see Section 7.2.3).

The nominal abstraction of G is directly invoked to solve pattern
matching in which nominals are explicitly abstracted using the
nab binding construction. When attempting to prove the judgment
⊢ clause T Rule U , the inference rules in Figure 8 eventually lead
to an attempt to prove in G an existentially quantified nominal
abstraction of the form

∃x1 . . . ∃xn[(λz1 . . . λzm .(p =⇒ u)) ⊵ (P =⇒ U)].

Here, the arrow =⇒ is simply a formal (syntactic) pairing operator,
expecting a pattern on the left and a term on the right. The schema
variables x1, . . . ,xn can appear free only in p and u: furthermore,
if any of these variables are free in s they must be free in t . Also, if
any of the variables z1, . . . , zm are free in s they are also free in t .
While the variables x1, . . . ,xn cannot appear more than once in t ,

the variables z1, . . . , zm are not restricted in this fashion. In order
to prove the formula ∃x̄ (λz̄.t) ⊵ s , one must find a collection of
distinct nominals c̄ and witness terms t̄ that do not contain any of
the elements of c̄ such that [t̄/x̄ , c̄/z̄]t = s [59].

The last ingredient of our pattern-matching rule is the judg-
ment (⊢ matches T P) that checks that a term or value T is in-
deed matched by a pattern P . In a previous version of our system,
we would represent patterns directly as terms, and this judgment
would be equivalent to T = P . Now that they form two distinct
syntactic categories, the judgment relates pattern-formers to the
corresponding term-formers. Nominals are embedded in patterns
by the pnom(c) pattern-former, which matches a corresponding
nominal—the condition nominal(c) can be expressed in terms of
nominal abstraction (λx . x) ⊵ c . Term variables introduced by all
are embedded in patterns by the pvar pattern-former, and they can
match any term x—note that in this rule, x denotes an arbitrary
term, substituted for a term variable by the all-handling rule.

It is worth pointing out that given the way we have defined
the operational semantics of MLTS, it is immediate that “nominals
cannot escape their scopes.” For example, the expression (new X
in X) does not have a value (in abstract syntax, this expression
translates to (new X\ X)). More precisely, there is no proof of
⊢ ∃v .(new (λx .x)) ⇓ v using the rules in Figure 8. To see why
this is an immediate consequence of the specification of evaluation,
consider the formula (which encodes the rule in Figure 8 for new)

∀E∀V [(∇x .(E x) ⇓ V) ⊃ (new E ⇓ V)].

Given that the scope of the ∇x is inside the scope of ∀V , it is not
possible for any instance of this formula to allow the x binder to
appear as the second argument of the ⇓ predicate. While such es-
caping is easily ruled out using this logical specification, a direct
implementation of this logic may incur a cost, however, to con-
stantly ensure that no escaping is permitted. (See Section 10 for
more discussion on this point.)

9 BINDER MOBILITY

We started this programming language project with the desire to
treat binders in syntax as directly and naturally as possible. We

Draft, May 29, 2019, Submitted Ulysse Gérard, Dale Miller, and Gabriel Scherer

approached this project by designing the MLTS language with
more binders than, say, OCaml: it has not only the usual binders for
building functions and for refactoring computation (via the let con-
struction) but also new binders that are directly linked to binders in
data (via the new X in, nab X in, and X\ operators). Finally, the
natural semantics ofMLTS in G and its implementation in λProlog
are all based on using logics that contain rich binding operators
that go beyond the usual universal and existential quantifiers. It is
worth noting that if one were to write MLTS programs that do not
need to manipulate data structures containing bindings, then the
new binding features of MLTS would not be needed and neither
would the novel features of both G and λProlog. Thus, in a sense,
binders have not been formally implemented in this story: instead,
binders of one kind have been implemented and specified using
binders in another system. We were able to complete a prototype
implementation of MLTS since the implementers of λProlog pro-
vide a low-level implementation of bindings that we are able to use
in our static and dynamic semantic specifications.

One way to view the processing of a binder is that one first opens
the abstraction, processes the result (by “freshening” the freed
names), and then closes the abstraction [50]. In the setting ofMLTS,
it is better to view such processing as the movement of a binder:
that is, the binder in a data structure actually gets re-identified with
an actual binder in the programming language. As we illustrated in
Section 3 with the following step-by-step evaluation

size (Abs (X\ (Abs (Y\ (App(X,Y))))));;
new X in 1 + (size (Abs (Y\ (App(X,Y)))));;
new X in 1 + new Y in 1 + (size (App(X,Y)));;
new X in 1 + new Y in 1 + 1 + (size X)

+ (size Y);;
new X in 1 + new Y in 1 + 1 + 1 + 1;;

the bound variable occurrences for X and Y simply move. It is never
the case that a bound variable becomes free: instead, it just becomes
bound elsewhere. Thus, our strategy for strengthening the expres-
siveness ofMLTS over other ML-style languages has been to add
to the language more binding sites to which bindings can move.

10 INTERPRETERS FOR MLTS

Wehave a prototype implementation ofMLTS. A parser from our ex-
tended OCaml syntax and a transpiler that generates λProlog code
are implemented in OCaml. A simple evaluator and type checker
written in λProlog can then be used to type check and executeMLTS
code. The implementation of the evaluator in λProlog is rather com-
pact but not completely trivial since neither ∇-quantification nor
nominal abstraction are native to λProlog: they needed to be imple-
mented. Both the Teyjus [52] and the Elpi [12] implementations of
λProlog can be used to execute theMLTS interpreter.

The TryMLTS web site [19] provides a means for anyone with a
recent web browser to create and executeMLTS programs online
without needing to install any software. Since Elpi, the parser, and
the transpiler are written in OCaml, web-based execution was made
possible by compiling the OCaml bytecode to a Javascript client
library with js_of_ocaml [25].

There is little about this prototype implementation that is focused
on providing an efficient implementation of MLTS. Instead, the
prototype is a useful device for exploring the exact meaning and

possible uses of the new program features. Never-the-less, we can
comment here briefly on some costs of the underlying system that
will likely appear in any implementation ofMLTS.

10.1 Nominal-escape checking

As we have mentioned in Section 8, nominals are not allowed to
escape their scope during evaluation and quantifier alternation
can be used to enforce this restriction at the logic level. When one
implements the logic, one needs to implement (parts of) the unifica-
tion of simply typed λ-terms [24] and such unification is constantly
checking that bound variable scopes are properly restricted. There
are times, however, when the expensive check for escaping nomi-
nals are not, in fact, needed. In particular, it is possible to rewrite
the inference rule in Figure 8 for the new binding operator as the
following rule.

⊢ ∇x .(E x) ⇓ (U x) U = λx .V

⊢ new E ⇓ V

Here, bothU andV are quantified universally around the inference
rule. Attempting a proof of the first premise can result in the con-
struction of some (possibly large) value, say t such that ⊢ (E x) ⇓ t
holds. We can immediately form the binding ofU 7→ λx .t without
checking the structure of t . The second premise is where the ex-
amination of t may need to take place: if x is free in t , then there
is no substitution for V that makes λx .t equal to λx .V . This check
can be expensive, of course, since one might in principle need to
examine the entire structure of t to solve this second premise. There
are many situations, however, where such an examination is not
needed and they can be revealed by the typing system. For example,
if the type of U is, say, tm => int, there should not be any pos-
sible way for an untyped λ-term to have an occurrence inside an
integer. Furthermore, there are static methods for examining type
declarations in order to describe if a type τ1 → τ2 (for primitive
types τ1 and τ2) can be inhabited by at most vacuous λ-terms (see,
for example, [31]). Of course, if the types of τ1 and τ2 are the same
(say, tm), then type information is not useful here and a check of
the entire structure t might be necessary. Other static checks and
program analyses might be possible as a way to reduce the costs of
checking for escaping nominals: the paper [51] includes such static
checks albeit for a technically different functional programming
language, namely FreshML [58].

10.2 Formal properties ofMLTS

We list the following three formal property aboutMLTS.

Theorem 10.1 (Nominals do not escape). Let E be the abstract

syntax of an MLTS program that does not contain any free nominal.

If ⊢ E ⇓ V is provable then V does not contain any free nominals.

The proof of this follows from a simple induction on the struc-
ture of proofs in the logic G: the precise nature of the semantic
specification given in Figure 8 is not relevant. The systematic use
of the ∇-quantifier guarantees this conclusion.

Theorem 10.2 (Type preservation). If the typing judgment ⊢ E :
A and the evaluation judgment ⊢ E ⇓ V holds, then so does ⊢ V : A.

While the proof of this follows the usual outline, there is one
place in the proof where an essential feature of the G logic is

Functional programming with λ-tree syntax Draft, May 29, 2019, Submitted

relevant. If our specification of evaluation contained neither occur-
rences of negation nor of nominal abstraction, then it would be pos-
sible easy to prove the following substitution lemma: ⊢ ∇x ((Ex) ⇓
V) implies ⊢ ∀x ((Ex) ⇓ V) (see [36]). However, our specification of
evaluation contains both negation and nominal abstraction. The
main novelty of the proof of this lemma is to find an alternative
proof of a similar substitution lemma sufficient to complete the
usual proof outline.

Theorem 10.3 (Determinacy of evaluation). If ⊢ E ⇓ V and

⊢ E ⇓ U then V = U .

The proof of this theorem follows the usual outline. The main
complicating difference from the standard approach is the more
complex nature of pattern matching. The restrictions on patterns
have been designed, however, to ensure determinacy: this is partic-
ularly true for the restriction on pattern variable (i.e., they occur
exactly once in the pattern) and the restriction that every nab bound
variable has a rigid occurrence in the left-hand-side of the pattern.

Detailed proofs can be found in the forthcoming Ph.D. disserta-
tion of the first author.

10.3 Costs of moving binders

As we have mentioned before, binders are able to move from, say,
a term-level binding to a program-level binding by the use of β0. In
particular, ify is a binder that does not appear free in the abstraction
λx .B then the β0 reduction of (λx .B)y causes the x binding in B to
move and to be identified with the y binder in B[y/x]. If one must
actually do the substitution of y for x in B, a possibly large term (at
least its spine) must be copied. However, there are some situations
where this movement of a binding can be inexpensive. For example,
consider again the following match rule for size.

| Abs(r) -> 1 + (new X in size (r @ X))

If we assume that the underlying implementation of terms use
De Bruijn’s nameless dummies, it is possible to understand the
rewriting needed in applying this match clause to be a constant
time operation. In particular, if r is instantiated with an abstraction
then its top-level constructor would indicate where a binder of
value 0 points. If we were to compile the syntax (r @ X) as simply
meaning that that top-level constant is stripped away, then a binder
of value 0 in the resulting term would automatically point (move)
to being bound by the new X binder. While such a treatment of
binder mobility without doing substitution is possible in many of
our examples, it does not cover all cases. In general, a more involved
scheme for implementing binder mobility must be considered. This
kind of analysis and implementation of binder mobility is used in
the ELPI implementation of λProlog [12].

11 FUTUREWORK

There is clearly much more work to do. While the examples pre-
sented in this paper illustrate that the new features in MLTS can
provide elegant and direct support for computing with binding
structures, we plan to develop many more examples centered on
the general area of implementing theorem prover and compiler
construction. A more effective implementation is also something
we wish to target soon. It seems likely that we will need to consider
extensions to the usual abstract machine models for functional

programming in order to get such a direct implementation. A first
step in this direction would be to first design a small-step (SOS)
semantics equivalent of our natural semantics.

The cost of basic operations inMLTS must also be understood
better. As we noted in Section 3, we could design pattern matching
in clauses in such a way that they might require the recursive
descent of entire terms in order to know if a match was successful.
The language could also be designed so that such a costly check is
never performed during pattern matching: for example, one could
insist that every pattern variable is @-applied to a list of all nominal
abstractions that are in the scope of the binding for that pattern
variable. In that case, a recursive descent of terms is not needed.

Given the additional expressivity ofMLTS, the usual static checks
used to producewarnings for non-exhaustivematchings aremissing
cases that we should add. As mentioned in Section 10, still other
static checks are needed to help a future compiler avoid making
costly checks.

It is also interesting to see to what extent binders interact with
a range of non-functional features, such as references. A natural
starting point to explore the possible interaction of effectful features
would be to use a natural semantic treatment based on linear logic
(see, for example, [6]): the logical features of G should also work
well in a linear logic setting.

Finally, the treatment of syntax with bindings generally leads
to the need to manipulate contexts and association lists that relate
bindings to other bindings, to types, or to bits of code. We have
already seen association lists used in Figure 4. It seems likely that
more sophisticatedMLTS examples will require singling out con-
texts for special treatment. Although the current design ofMLTS
does not commit to any special treatment of context, we are inter-
ested to see what kind of treatment will actually prove useful in a
range of applications.

12 RELATEDWORK

The term higher-order abstract syntax (HOAS)was introduced in [43]
to describe an encoding technique available in λProlog. A subse-
quent paper identified HOAS as a technique “whereby variables
of an object language are mapped to variables in the metalan-
guage” [44]. When applied to functional programming, this lat-
ter description implies the mapping of bindings in syntax to the
bindings that create functions. Unfortunately, such encoding tech-
nique often lacks adequacy (since “exotic terms” can appear [11]),
and structural recursion can slip away [15]. The terms λ-tree syn-
tax [35] and binder mobility [32] were later introduced to describe
the different and more syntactic approach that we have used here.

12.1 Systems with two arrow type constructors

The MLλ [29] extension to ML is similar to MLTS in that it also
contained two different arrow type constructors (-> and =>) and
pattern matching was extended to allow for pattern variables to
be applied to a list of distinct bound variables. The new opera-
tor of MLTS could be emulated by using the backslash operator
and a “discharge” function. Critically missing from that language
was anything similar to the nab binding of MLTS. Also, no formal
specification and no implementation were ever offered. Licata &
Harper [27] have used the universe feature of Agda 2 to provide

Draft, May 29, 2019, Submitted Ulysse Gérard, Dale Miller, and Gabriel Scherer

an implementation of bindings in data structures that also relies
on supporting two different implications-as-types that is found in
MLTS and inMLλ .

Nominals and nominal abstraction, in the sense used in this pa-
per, were first conceived, studied, and implemented as part of the
Abella theorem prover [2]. Although the design of Abella does not
use the ⊵ relation directly, the notion of “∇ in the head” of defini-
tions is essentially equivalent to having the ⊵ relation in the logic.
While Abella only has one arrow type constructor, that arrow type
essentially maps to the => of MLTS: this is possible in Abella since
computation is performed at the level of relations and not functions.
As a result, the function type arrow -> of MLTS and OCaml is not
needed. Thus the distinction mentioned in [27] between an arrow
for computation and an arrow for binding is, in fact, also present
in Abella, although computations are not represented functionally.

12.2 Systems with one arrow type constructor

The Delphin design is probably the closest toMLTS, in particular
[55] introduced a programming-language version of the∇ quantifier
from [36], whose usage is related to the ∇ of MLTS. In Delphin,
∇ introduces normal term variables (there is no separate class of
nominal constants), while MLTS presents nominals as closer to
datatype constructors, with a natural usage in pattern-matching.

Delphin makes nominal-escape errors impossible at runtime by
imposing a static discipline to prevent them, while MLTS allows
runtime failure in order to allow for more experimentation. The
original proposal in [55] uses a type modality that imposes a strict
FIFO discipline on free variables. This discipline was found too
constraining; [49] completely eschews a new construct (its νx . e
binder actually corresponds to nominal abstraction X\e inMLTS),
and [48] uses a type-based restriction (type subordination), only
allowing to introduce a fresh nominal in expressions whose return
types only contains values that cannot contain this nominal. This
discipline accepts some examples from our paper, for example size
in Figure 1 and id in Figure 4, but rejects other (safe) programs, such
as the second and third one-liner examples of Section 4. Richer static
disciplines have been proposed by the FreshML community [47, 51],
but they add complexity, and for example interact poorly with the
introduction of mutable state; MLTS is an experimental design
aiming for expressivity, so we decided to allow dynamic escape
failures instead.

Beluga allows the programmer to use both dependent types and
recursive definitions as well as an integrated notion of context
(along with a method to describe certain invariants using context
schema). Static checks of Beluga programs can be used to prove
that formal correctness of Beluga programs (commonly by proving
that a given piece of program code is, in fact, a total function). As a
result, a checked Beluga program is often a formal proof. Since a
wide range of formal systems can be encoded naturally using LF
terms, Beluga programs can be used for both programming with
and reasoning about the meta-theory of those formal systems. Since
bindings and contexts are part of the vocabulary of Beluga, these
formal proofs can capture the metatheory of logical and computa-
tional systems (such as natural deduction proof systems and the
operational semantics of rich programming languages). The goal
ofMLTS is intended only to support programming and not directly

reasoning: just as with, say, OCaml, the intent of new features of
MLTS is only to support the manipulation of syntax containing
bindings. A possibly interesting comparison between MLTS and
Beluga might be explored by using typing and contexts in the latter
in a mostly trivial way. It is likely that Beluga could code most
MLTS programs although using different primitives.

12.3 Systems using nominal logic

The FreshML [58] and CαML [50] functional programming lan-
guages provide an approach to names based on nominal logic [46].
In a sense, these two programming languages provide for an ab-
stract treatment of names and naming. Once naming is available,
binding structures can also be implemented. In a sense, the design of
these two ML-variants are also more ambitious than the design goal
intended forMLTS: in the latter, we were not focused on naming
but just bindings.

The recent paper [14] introduces a syntactic framework that
treats bindings as primitives. That framework is then integrated
with various tools and with the framework of contextual types
(similar to that found in Beluga) in order to provide a programmer
of, say, OCaml with sophisticated tools for the manipulation of
syntax and binders. A possible future target forMLTS could be to
provide such tools more directly in the language itself.

12.4 Challenge problems and benchmarks

Genuine comparisons between different programming languages
are generally hard to achieve. For example, in the area of logical
frameworks and related theorem provers, there are also a number
of formal systems and computer implementations. In order to un-
derstand the relative merits of these different systems, challenge
problems and benchmarks [1, 13] have been proposed to help peo-
ple sort out specific merits and challenges of one system relative
to another. In depth comparisons of the programming languages
described above will probably require similar in-depth comparisons
on representative programming tasks.

13 CONCLUSION

While the λ-tree syntax approach to computing with syntax con-
taining bindings has been successfully developed within the logic
programming setting (in particular, in λProlog and Twelf), we pro-
vide in this paper another example of how binding can be captured
in a functional programming language. Most of the expressiveness
ofMLTS arises from its increased use of program-level binding. The
sophistication needed to correctly exploit binders and quantifiers in
MLTS is a skill most people have learned from using quantification
in, for example, predicate logic.

We have presented a number of MLTS programs and we note
that they are both natural and unencumbered by concerns about
managing bound variable names. We have also presented a typing
discipline forMLTS as well as a formal specification of its natural
semantics: this latter task was aided by being able to directly exploit
a rich logic, called G, that incorporates λ-tree syntax principles
within quantificational logic. Finally, this natural semantic specifi-
cation was directly implementable in λProlog. As a consequence,
a prototype implementation is available for helping to judge the
expressiveness of MLTS programs.

Functional programming with λ-tree syntax Draft, May 29, 2019, Submitted

Acknowledgments. We thank Kaustuv Chaudhuri, François Pot-
tier, Enrico Tassi, the HOPE Workshop 2018 audience, and the re-
viewers on an earlier draft of this paper for their helpful comments
and observations.

REFERENCES

[1] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Ben-
jamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, GeoffreyWashburn, Stephanie
Weirich, and Steve Zdancewic. 2005. Mechanized Metatheory for the Masses:
The POPLmark Challenge. In Theorem Proving in Higher Order Logics: 18th Inter-

national Conference (LNCS). Springer, 50–65.
[2] David Baelde, Kaustuv Chaudhuri, AndrewGacek, Dale Miller, Gopalan Nadathur,

Alwen Tiu, and Yuting Wang. 2014. Abella: A System for Reasoning about
Relational Specifications. Journal of Formalized Reasoning 7, 2 (2014), 1–89.
https://doi.org/10.6092/issn.1972-5787/4650

[3] Arthur Charguéraud. 2011. The Locally Nameless Representation. Journal of Au-
tomated Reasoning (May 2011), 1–46. https://doi.org/10.1007/s10817-011-9225-2

[4] James Cheney and Christian Urban. 2004. Alpha-Prolog: A Logic Programming
Language with Names, Binding, and Alpha-Equivalence. In Logic Programming,

20th International Conference (LNCS), Bart Demoen and Vladimir Lifschitz (Eds.),
Vol. 3132. Springer, 269–283.

[5] Anthony S. K. Cheng, Peter J. Robinson, and John Staples. 1991. Higher Level
Meta Programming in Qu-Prolog 3: 0. In Logic Programming, Proceedings of the

Eigth International Conference, Paris, France, June 24-28, 1991, Koichi Furukawa
(Ed.). MIT Press, 285–298.

[6] Jawahar Chirimar. 1995. Proof Theoretic Approach to Specification Languages.
Ph.D. Dissertation. University of Pennsylvania. http://www.lix.polytechnique.
fr/Labo/Dale.Miller/chirimar/phd.ps

[7] Adam Chlipala. 2008. Parametric higher-order abstract syntax for mechanized
semantics. In Proceeding of the 13th ACM SIGPLAN international conference on

Functional programming, ICFP 2008, Victoria, BC, Canada, September 20-28, 2008,
James Hook and Peter Thiemann (Eds.). ACM, 143–156. https://doi.org/10.1145/
1411204.1411226

[8] Alonzo Church. 1940. A Formulation of the Simple Theory of Types. J. of Symbolic

Logic 5 (1940), 56–68. https://doi.org/10.2307/2266170
[9] Nicolaas Govert de Bruijn. 1972. Lambda Calculus Notation with Nameless

Dummies, a Tool for Automatic Formula Manipulation, with an Application to
the Church-Rosser Theorem. Indagationes Mathematicae 34, 5 (1972), 381–392.

[10] N. G. de Bruijn. 1979. Lambda Calculus Notation with Namefree Formulas
Involving Symbols that Represent Reference Transforming Mappings. Indag.

Math. 40, 3 (1979), 348–356.
[11] Joëlle Despeyroux, Amy Felty, and Andre Hirschowitz. 1995. Higher-order

abstract syntax in Coq. In Second International Conference on Typed Lambda

Calculi and Applications. 124–138.
[12] Cvetan Dunchev, Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico Tassi. 2015.

ELPI: Fast, Embeddable, λProlog Interpreter. In Logic for Programming, Artificial

Intelligence, and Reasoning - 20th International Conference, LPAR-20 2015, Suva,

Fiji, November 24-28, 2015, Proceedings (LNCS), Martin Davis, Ansgar Fehnker,
Annabelle McIver, and Andrei Voronkov (Eds.), Vol. 9450. Springer, 460–468.
https://doi.org/10.1007/978-3-662-48899-7_32

[13] Amy P. Felty, Alberto Momigliano, and Brigitte Pientka. 2015. The Next 700
Challenge Problems for Reasoning with Higher-Order Abstract Syntax Represen-
tations: Part 2–A Survey. J. of Automated Reasoning 55, 4 (2015), 307–372.

[14] Francisco Ferreira and Brigitte Pientka. 2017. Programs Using Syntax with First-
Class Binders. In Programming Languages and Systems - 26th European Symposium

on Programming, ESOP 2017, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,

Proceedings (Lecture Notes in Computer Science), Hongseok Yang (Ed.), Vol. 10201.
Springer, 504–529.

[15] M. J. Gabbay and A. M. Pitts. 1999. A new approach to abstract syntax involving
binders. In 14th Symp. on Logic in Computer Science. IEEE Computer Society Press,
214–224.

[16] Andrew Gacek. 2009. A Framework for Specifying, Prototyping, and Reasoning

about Computational Systems. Ph.D. Dissertation. University of Minnesota.
[17] Andrew Gacek, Dale Miller, and Gopalan Nadathur. 2008. Combining generic

judgments with recursive definitions. In 23th Symp. on Logic in Computer Sci-

ence, F. Pfenning (Ed.). IEEE Computer Society Press, 33–44. http://www.lix.
polytechnique.fr/Labo/Dale.Miller/papers/lics08a.pdf

[18] Andrew Gacek, Dale Miller, and Gopalan Nadathur. 2011. Nominal abstraction.
Information and Computation 209, 1 (2011), 48–73. https://doi.org/10.1016/j.ic.
2010.09.004

[19] Ulysse Gérard, Dale Miller, and Gabriel Scherer. 2018. Try MLTS Online. https:
//trymlts.github.io/.

[20] A. Gordon. 1994. A Mechanisation of Name-Carrying Syntax up to Alpha-
Conversion. In International Workshop on Higher Order Logic Theorem Proving

and its Applications (Lecture Notes in Computer Science), Vol. 780. 414–426.
[21] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. 1979. Edin-

burgh LCF: A Mechanised Logic of Computation. LNCS, Vol. 78. Springer.
[22] Michael J. C. Gordon. 1991. Introduction to the HOL System. In Proceedings of the

International Workshop on the HOL Theorem Proving System and its Applications,
Myla Archer, Jeffrey J. Joyce, Karl N. Levitt, and Phillip J. Windley (Eds.). IEEE
Computer Society, 2–3.

[23] John Harrison. 2009. HOL Light: an overview. In International Conference on

Theorem Proving in Higher Order Logics. Springer, 60–66.
[24] Gérard Huet. 1975. A Unification Algorithm for Typed λ-Calculus. Theoretical

Computer Science 1 (1975), 27–57.
[25] js-of-ocaml 2018. Js_of_ocaml. http://ocsigen.org/js_of_ocaml/.
[26] Gilles Kahn. 1987. Natural Semantics. In Proceedings of the Symposium on Theo-

retical Aspects of Computer Science (LNCS), Franz-Josef Brandenburg, Guy Vidal-
Naquet, and Martin Wirsing (Eds.), Vol. 247. Springer, 22–39.

[27] Daniel R. Licata and Robert Harper. 2009. A Universe of Binding and Computation.
In Proceedings of the 14th ACM SIGPLAN International Conference on Functional

Programming (ICFP ’09). ACM, New York, NY, USA, 123–134. https://doi.org/10.
1145/1596550.1596571

[28] Conor McBride and James McKinna. 2004. Functional pearl: I am not a number -
I am a free variable. In Proceedings of the ACM SIGPLAN Workshop on Haskell,

Haskell 2004, Snowbird, UT, USA, September 22-22, 2004, Henrik Nilsson (Ed.).
ACM, 1–9. http://doi.acm.org/10.1145/1017472.1017477

[29] Dale Miller. 1990. An Extension to ML to Handle Bound Variables in Data
Structures: Preliminary Report. In Proceedings of the Logical Frameworks BRA

Workshop. Antibes, France, 323–335. http://www.lix.polytechnique.fr/Labo/Dale.
Miller/papers/mll.pdf Available as UPenn CIS technical report MS-CIS-90-59.

[30] Dale Miller. 1991. A Logic Programming Language with Lambda-Abstraction,
Function Variables, and Simple Unification. J. of Logic and Computation 1, 4
(1991), 497–536.

[31] Dale Miller. 1992. Unification under a mixed prefix. Journal of Symbolic Compu-

tation 14, 4 (1992), 321–358.
[32] Dale Miller. 2004. Bindings, mobility of bindings, and the ∇-quantifier. In 18th

International Conference on Computer Science Logic (CSL) 2004 (LNCS), Jerzy
Marcinkowski and Andrzej Tarlecki (Eds.), Vol. 3210. 24. https://doi.org/10.1007/
978-3-540-30124-0_4

[33] Dale Miller. 2018. Mechanized Metatheory Revisited. Journal of Automated

Reasoning (04 Oct. 2018). https://doi.org/10.1007/s10817-018-9483-3
[34] Dale Miller and Gopalan Nadathur. 2012. Programming with Higher-Order Logic.

Cambridge University Press. https://doi.org/10.1017/CBO9781139021326
[35] Dale Miller and Catuscia Palamidessi. 1999. Foundational Aspects of Syntax.

Comput. Surveys 31 (Sept. 1999).
[36] Dale Miller and Alwen Tiu. 2005. A proof theory for generic judgments. ACM

Trans. on Computational Logic 6, 4 (Oct. 2005), 749–783. https://doi.org/10.1145/
1094622.1094628

[37] Gopalan Nadathur and Dale Miller. 1988. An Overview of λProlog. In Fifth

International Logic Programming Conference. MIT Press, Seattle, 810–827. http:
//www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp88.pdf

[38] Tobias Nipkow. 1993. Functional Unification of Higher-Order Patterns. In 8th

Symp. on Logic in Computer Science, M. Vardi (Ed.). IEEE, 64–74.
[39] Bengt Nordstrom, Kent Petersson, and Jan M. Smith. 1990. Programming in

Martin-Löf’s type theory : an introduction. Oxford: Clarendon.
[40] OCaml. 2018. http://ocaml.org/.
[41] Lawrence C. Paulson. 1989. The Foundation of a Generic Theorem Prover. Journal

of Automated Reasoning 5 (Sept. 1989), 363–397.
[42] Lawrence C. Paulson. 1994. Isabelle: A Generic Theorem Prover. Number 828 in

LNCS. Springer Verlag.
[43] Frank Pfenning and Conal Elliott. 1988. Higher-Order Abstract Syntax. In Pro-

ceedings of the ACM-SIGPLAN Conference on Programming Language Design and

Implementation. ACM Press, 199–208.
[44] Frank Pfenning and Carsten Schürmann. 1999. System Description: Twelf — A

Meta-Logical Framework for Deductive Systems. In 16th Conf. on Automated

Deduction (CADE) (LNAI), H. Ganzinger (Ed.). Springer, Trento, 202–206. https:
//doi.org/10.1007/3-540-48660-7_14

[45] Brigitte Pientka and Joshua Dunfield. 2010. Beluga: A Framework for Program-
ming and Reasoning with Deductive Systems (System Description). In Fifth Inter-

national Joint Conference on Automated Reasoning (LNCS), J. Giesl and R. Hähnle
(Eds.). 15–21.

[46] Andrew M. Pitts. 2003. Nominal Logic, A First Order Theory of Names and
Binding. Information and Computation 186, 2 (2003), 165–193.

[47] A. M. Pitts and M. J. Gabbay. 2000. A Metalanguage for Programming with
Bound Names Modulo Renaming. In Mathematics of Program Construction. 5th

International Conference, MPC2000, Ponte de Lima, Portugal, July 2000. Proceedings

(LNCS), R. Backhouse and J. N. Oliveira (Eds.), Vol. 1837. Springer, Heidelberg,
230–255.

[48] Adam Poswolsky and Carsten Schürmann. 2008. System Description: Delphin -
A Functional Programming Language for Deductive Systems, In International
Workshop on Logical Frameworks and Meta-Languages: Theory and Practice

https://doi.org/10.6092/issn.1972-5787/4650
https://doi.org/10.1007/s10817-011-9225-2
http://www.lix.polytechnique.fr/Labo/Dale.Miller/chirimar/phd.ps
http://www.lix.polytechnique.fr/Labo/Dale.Miller/chirimar/phd.ps
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.2307/2266170
https://doi.org/10.1007/978-3-662-48899-7_32
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics08a.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics08a.pdf
https://doi.org/10.1016/j.ic.2010.09.004
https://doi.org/10.1016/j.ic.2010.09.004
https://trymlts.github.io/
https://trymlts.github.io/
http://ocsigen.org/js_of_ocaml/
https://doi.org/10.1145/1596550.1596571
https://doi.org/10.1145/1596550.1596571
http://doi.acm.org/10.1145/1017472.1017477
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/mll.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/mll.pdf
https://doi.org/10.1007/978-3-540-30124-0_4
https://doi.org/10.1007/978-3-540-30124-0_4
https://doi.org/10.1007/s10817-018-9483-3
https://doi.org/10.1017/CBO9781139021326
https://doi.org/10.1145/1094622.1094628
https://doi.org/10.1145/1094622.1094628
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp88.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp88.pdf
http://ocaml.org/
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1007/3-540-48660-7_14

Draft, May 29, 2019, Submitted Ulysse Gérard, Dale Miller, and Gabriel Scherer

(LFMTP 2008), A. Abel and C. Urban (Eds.). Electr. Notes Theor. Comput. Sci. 228,
113–120.

[49] Adam Poswolsky and Carsten SchÃĳrmann. 2008. Practical programming with
higher-order encodings and dependent types. In Proceedings of the European

Symposium on Programming (ESOP âĂŹ08).
[50] François Pottier. 2006. An Overview of Cαml. In Proceedings of the ACM-SIGPLAN

Workshop on ML (ML 2005) (Electr. Notes Theor. Comput. Sci.), Vol. 148. 27–52.
https://doi.org/10.1016/j.entcs.2005.11.039

[51] François Pottier. 2007. Static name control for FreshML. In 22nd Annual IEEE

Symposium on Logic in Computer Science (LICS 2007). IEEE, 356–365.
[52] Xiaochu Qi, Andrew Gacek, Steven Holte, Gopalan Nadathur, and Zach Snow.

2015. The Teyjus System – Version 2. http://teyjus.cs.umn.edu/ http://teyjus.cs.
umn.edu/.

[53] Zhenyu Qian. 1996. Unification of higher-Order patterns in linear time and space.
J. of Logic and Computation 6, 3 (1996), 315–341.

[54] Davide Sangiorgi. 1996. π -calculus, internal mobility and agent-passing calculi.
Theoretical Computer Science 167, 2 (1996), 235–274.

[55] Carsten Schürmann, Adam Poswolsky, and Jeffrey Sarnat. 2005. The nablda-
calculus. Functional Programming with Higher-order Encodings. In Proceedings

of the 7th International Conference on Typed Lambda Calculi and Applications

(TLCA’05). https://doi.org/10.1007/11417170_25
[56] Helmut Schwichtenberg. 2006. Minlog. In The Seventeen Provers of the World

(LNCS), Freek Wiedijk (Ed.), Vol. 3600. Springer, 151–157. https://doi.org/10.
1007/11542384_19

[57] Dana Scott. 1970. Outline of a Mathematical Theory of Computation. In Pro-

ceedings, Fourth Annual Princeton Conference on Information Sciences and Systems.
Princeton University, 169–176. Also, Programming Research Group Technical
Monograph PRG–2, Oxford University.

[58] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. 2003. FreshML: Programming
with Binders Made Simple. In Eighth ACM SIGPLAN International Conference on

Functional Programming (ICFP 2003), Uppsala, Sweden. ACM Press, 263–274.
[59] Yuting Wang, Kaustuv Chaudhuri, Andrew Gacek, and Gopalan Nadathur. 2013.

Reasoning about Higher-Order Relational Specifications. In Proceedings of the 15th
International Symposium on Princples and Practice of Declarative Programming

(PPDP), Tom Schrijvers (Ed.). Madrid, Spain, 157–168. https://doi.org/10.1145/
2505879.2505889

https://doi.org/10.1016/j.entcs.2005.11.039
http://teyjus.cs.umn.edu/
http://teyjus.cs.umn.edu/
http://teyjus.cs.umn.edu/
https://doi.org/10.1007/11417170_25
https://doi.org/10.1007/11542384_19
https://doi.org/10.1007/11542384_19
https://doi.org/10.1145/2505879.2505889
https://doi.org/10.1145/2505879.2505889

	Abstract
	1 Introduction
	2 The binding features of MLTS
	3 MLTS examples: the untyped -calculus
	4 Higher-order programming examples
	5 Typing
	6 Abstract syntax as untyped -calculus
	7 Formalizing the design of MLTS
	7.1 Equality modulo , , conversion
	7.2 Pattern unification and matching
	7.3 0 versus
	7.4 Match rule quantification
	7.5 Nominal abstraction

	8 Natural semantic specification of MLTS
	9 Binder mobility
	10 Interpreters for MLTS
	10.1 Nominal-escape checking
	10.2 Formal properties of MLTS
	10.3 Costs of moving binders

	11 Future work
	12 Related work
	12.1 Systems with two arrow type constructors
	12.2 Systems with one arrow type constructor
	12.3 Systems using nominal logic
	12.4 Challenge problems and benchmarks

	13 Conclusion
	References

