
An Extension to ML to Handle Bound Variables

in Data Structures:

Preliminary Report

Dale Miller
Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104–6389 USA

dale@cis.upenn.edu

Abstract

Most conventional programming languages have direct methods for representing first-order terms
(say, via concrete datatypes in ML). If it is necessary to represent structures containing bound
variables, such as λ-terms, formulas, types, or proofs, these must first be mapped into first-order
terms, and then a significant number of auxiliary procedures must be implemented to manage
bound variable names, check for free occurrences, do substitution, test for equality modulo alpha-
conversion, etc. We shall show how the applicative core of the ML programming language can be
enhanced so that λ-terms can be represented more directly and so that the enhanced language, called
MLλ, provides a more elegant method of manipulating bound variables within data structures. In
fact, the names of bound variables will not be accessible to the MLλ programmer. This extension
to ML involves the following: introduction of the new type constructor ’a => ’b for the type of
λ-terms formed by abstracting a parameter of type ’a out of a term of type ’b; a very restricted and
simple form of higher-order pattern matching; a method for extending a given data structure with a
new constructor; and, a method for extending function definitions to handle such new constructors.
We present several examples of MLλ programs.

1 Introduction

Recent work in the specification of a wide variety of meta-programming systems — type checkers
and inferrers, theorem provers, program manipulation systems, evaluators, and compilers — has
revealed several important specification techniques, including one called higher-order abstract syntax
[16]. This specification technique uses a typed λ-calculus to succinctly capture many complex
syntactic notions pertaining to data structures containing notions of bound variables, such as those
of free and bound occurrences, scopes of binders, equality up to alphabetic change of bound variable
names, and substitutions. Huet and Lang [9] seem to have been the first to recognize the potential
of this approach to abstract syntax in an actual implementation. Some of their ideas were later
generalized in [11] to a logic programming setting. Higher-order abstract syntax is now central to

1This research was supported in part by grants ONR N00014-88-K-0633, NSF CCR-87-05596, and DARPA N00014-
85-K-0018. This paper was first presented at the Logical Frameworks Basic Research Action meeting in Nice, France,
7 – 12 May 1990. I am grateful to John Hannan, Frank Pfenning, and several attendees of the Logical Frameworks
BRA Workshop for comments on the content of this paper.

1

several recent specification systems. The Logical Framework (LF) [8], the Calculus of Constructions
(CC) [3], and hereditary Harrop formulas [12] are some recent logics that support this new view of
syntax. These systems have been used to specify various meta-programming tasks: LF has been
used to specify numerous proof systems [1] as well as various aspects of conventional programming
language semantics [2]; hereditary Harrop formulas have been implemented in the Isabelle theorem
prover [14, 15] and in λProlog, where a wide range of meta-programs have been written [4, 5, 6];
and, CC has been used to specify and compute with several deep mathematical theorems as well
as specify and develop various algorithms.

Such a specification technique has been accounted for in practice in essentially two ways. The
first can be called the package-style approach. That is, an implementor writes a collection of
functions and routines in a given programming language that captures this specification technique.
For example, the Mentor system [9] contained an implementation of second-order matching in order
to implement template matching for sophisticated program transformations. The Isabelle system is
a package of ML programs that can manipulate the higher-order abstract syntax of various object
logics.

The second approach to accounting for these specification techniques is to design programming
languages in which they are directly incorporated. The programming languages λProlog [13] and
Elf [17] are two such programming languages.

In all of these cases — Mentor, Isabelle, λProlog, and Elf — rather strong forms of unification
have been used to manipulate typed λ-terms. Thus, at first glance, it would seem difficult to find an
extension to the functional programming language ML that could incorporate higher-order abstract
syntax since general unification, especially unification that may be undecidable and does not admit
most general unifiers, is difficult to integrate directly into a functional setting.

In this paper, we shall attempt to illustrate how ML can be extended so as to allow the direct
manipulation of structures with bound variables. The extensions, called MLλ, will therefore permit
direct exploitation of the technique of higher-order abstract syntax. The key idea to making this
extension is that a weak form of unification of simply typed λ-terms, described in [10], is adequate
for capturing much of the ideas of higher-order abstract syntax and that if unification is restricted
to pattern matching, it comprises a simple and natural extension to usual ML pattern matching.

Familiarity with the basic elements of ML is necessary for reading this paper.

2 A new datatype constructor

When referring to ML in this paper, we shall only consider a very small subset of the language, a
kind of mini-ML, which contains polymorphism, pattern matching, let, datatypes, and recursion.
We shall not consider modules, abstract datatypes, references, records, and several other features.
This restriction is intended to focus our attention. It is not clear how well the extension described
here will interact with the full definition of Standard ML [7] but the main ideas of integrating
higher-order abstract syntax with ML can be seen within this restriction.

The first-order syntax for the untyped λ-calculus can be declared using the following ML
datatype definition.

datatype ltm = app of ltm * ltm | abs of string * ltm | var of string;

The λ-term λx(fxx) can be encoded by the term

2

abs("x", app(app(var "f", var "x"), var "x"))

Before this definition can be meaningfully used, it is necessary to write several functions for testing
for alphabetic variants, changing bound variable names, testing for free or bound occurrences, etc.
ML itself does not treat bound variables directly. For example, while the ML term

abs("y", app(app(var "f", var "y"), var "y"))

denotes the same “abstract” λ-term, a user defined function is necessary in order to establish this
fact.

MLλ is the result of extending (mini-)ML with the following items.

1. One new type constructor: ’a => ’b denotes the type of a λ-term with an abstracted variable
of type ’a over a term of type ’b. We shall assume that both ’a and ’b are equality types. As
we shall see below, ’a => ’b will then also be an equality type. We shall furthermore restrict
the type ’a to be a user defined type. That is, it cannot be a type like int or string nor can
it be a pair or list type. The reason for this restriction is that the type ’a will be treated as
an “open” type, that is, new constants of that type will appear during computations. Some
concepts, such as integers and pairs, should be considered closed. This type should not be
confused with the type ’a -> ’b.

2. Two new term constructors:

(a) x\t : ’a => ’b if x is an identifier of type ’a and t is a term of type ’b. Here, identifiers
should be taken to be of the same class as the value constructor class Con of [7].

(b) t~x : ’b if t is of type ’a => ’b and x is an identifier introduced with \ and is of type
’a. This symbol will only appear with pattern variables of => type. This infix symbol
can be thought of as having the type (’a => ’b) * ’a -> ’b.

3. One new expression constructors fun fname tok = exp1 ==> exp2. This construction is
necessary in order to extend the definitions of functions in scopes where new identifiers are
introduced via \. The precedence of ==> is higher than that of function definition.

We describe each of these extensions in turn.
Given the new type constructor above, we shall introduce three datatypes that will be used

throughout the rest of this paper.

datatype tm = abs of tm => tm | app of tm * tm;

datatype term = a | b | f of term | g of term * term;

datatype form = p of term | q of term * term
| and of form * form | or of form * form
| imp of form * form | not of form
| all of term => form | some of term => form;

Here, the type tm is the type of untyped λ-terms, while term and form are the types for first-order
terms and first-order formulas, resp. Notice that in each case, where a bound variables is intended,
the type constructor => is used. For example, to form a universally quantified expression, the
constructor all is applied to a MLλ λ-term. The λ-expressions for the S, K, I combinators would
be the following MLλ terms

3

abs x\(abs y\ (abs z\(app(app(x,z),app(y,z)))))
abs x\(abs y\x)
abs x\x

Similarly, the first-order formula ∀x(p(x) ⊃ q(f(x), a))∧∀y∃x(q(x, g(y, x))) would be the following
term

and(all x\(imp(p(x), q(f(x),a)), all y\(some x\(q(x,g(y,x)))))

3 Equality and pattern matching

There would be no force to this extension if MLλ did not have built into it some equational facts
about λ-terms. In particular, these terms will satisfy the equations for α and η-conversion along
with the following very weak form of β conversion

(x\t)~x = t (β0).

(This equation is only required when pattern variables of => type are used.) Given this kind of
equality theory for MLλ terms, it is not possible to destruct a λ-term by separating its bound
variable from its body, since that operation is not invariant under α-conversion. Destructuring can
be done, however, by suitably extending the notion of pattern matching.

A pattern variable, say M of type t1 => t2 => ... => tn => t (=> associates to the right) is
permitted in a pattern/expression combination if every occurrence of M in that combination is of
the form M~x1~...~xm where m is less than or equal to n and x1,...,xm is a list of distinct \-bound
variables within the pattern or expression. Consider the following patterns and values for which
they are to be matched.

(1) x\y\(f(H~x)) u\v\(f(f(u)))
(2) x\y\(f(H~x)) u\v\(f(f(v)))
(3) x\y\(g(H~y~x,(f(L~x)))) u\v\(g(u,f(u)))
(4) x\y\(g(H~x,L~x)) u\v\(g(g(a,u),g(u,u)))

In each of these examples, a pattern variable is written with a capital letter. Solving these patterns
over the theory of α, βo, η is a very simple generalization of first-order pattern matching. The
following are the substitutions for solving these match problems.

(1) H == w\(f(w))
(2) match failure
(3) H == y\x\x L == x\x
(4) H == x\(g(a,x)) L == x\(g(x,x))

The match failure for (2) arises from the fact that substitution for λ-terms must avoid variable
capture. Hence, it is not possible to substitution a term for H in line (2) so that y is captured. This
aspect of pattern matching is very useful. For example, the pattern all x\(and(P,Q~x)) (with
pattern variables P and Q) would match with a term denoting a universally quantifed conjunction
in which the first conjunct does not contain a free occurrence of the quantified variable. For a
more complete treatment of unification with variables of higher-type restricted as above see [10].

4

Unification in such a setting is like unification for first-order logic in that unification problems are
decidable and most general unifiers exist when unifiers exist.

Given this use of pattern variables, the simplest functions that we can write in MLλ would be
the following:

fun vacuousp (x\T) = true
| vacuousp S = false;

(* ... or using wild-cards ... *)
fun vacuousp (x_) = true
| vacuousp _ = false;

exception DISCHARGE;
fun discharge (x\M) = M
| discharge _ = raise DISCHARGE

The function vacuousp has type (’a => ’b) -> bool and can be used to determine whether or
not an abstraction is vacuous. The function discharge has type (’a => ’b) -> ’b. It returns the
body of a vacuous abstraction or raises an exception if the abstraction is not vacuous. As the second
way of writing vacuousp illustrates, the wildcard _ denotes a pattern variable and that variable
behaves similarly to other variables. It is not a “textual” variable; for example, the expression x_
does not match any λ-abstraction, it only matches a vacuous one. Use either x\(_~x) or simply _
to match any λ-abstraction.

For another example, consider the following function that determines whether or not its argu-
ment is a term that denotes a Church numeral, that is, an untyped λ-term of the form λxλf.fnx
for some n ≥ 0.

fun numeralp (abs x\(abs f\x)) = true
| numeralp (abs x\(abs f\(app(f,M~x~f)))) = numeralp (abs x\(abs f\(M~x~f)))
| numeralp _ = false;

4 Extending function definitions

As the last example using Church numeral illustrates, while certain simple recursions over λ-terms
is possible, more general recursions are not possible. For example, it is not possible to write
a function that counts the number of applications app in a term of type tm. For more flexible
recursion, we need the ability to extend datatypes, such as tm and term, with new constants and
to also extend the definition of functions to include these constants. To motivate this, consider the
following description of the syntax of simply typed λ-terms. Let Σ be a signature, that is, a set of
simply typed constants. A term ct1 · · · tn (where c is neither an application nor abstraction) is a
Σ-term of type τ over this signature if Σ contains the constant c at type τ1 → · · · → τn → τ and
for i = 1, . . . , n, ti is a Σ-term of type τi. The syntax rule for λ-abstraction is given by: λx.t is a
Σ-term of type τ ′ → τ ′′ if t is a Σ ∪ {x : τ ′}-term of type τ ′′ (assuming x is not in Σ). That is,
passing through an abstraction causes the signature (set of constants) to be increased: a bound
variable can be thought of as introducing a “scoped constant.”

Given this model of syntax, a functional program that performs recursion on the structure of
λ-terms will need to have new constants introduced to stand for bound variables and will need to

5

have procedures for extending functions so that they will behave correctly on those new terms. We
illustrate such processing by writing one of the simplest recursive programs, the identity function.
The functions copyterm and copyform defined below are such that they return their arguments
unchanged by recursively copying that argument into its output.

fun copyterm a = a
| copyterm b = b
| copyterm (f X) = f(copyterm X)
| copyterm (g(X,Y)) = g(copyterm X, copyterm Y);

fun copyform (p X) = p(copyterm X)
| copyform (q(X,Y)) = q(copyterm X, copyterm Y)
| copyform (and(X,Y)) = and(copyform X, copyform Y)
| copyform (or(X,Y)) = or(copyform X, copyform Y)
| copyform (imp(X,Y)) = imp(copyform X, copyform Y)
| copyform (all M) = all x\(fun copyterm x = x ==> copyform (M~x))
| copyform (some M) = some x\(fun copyterm x = x ==> copyform (M~x))

The only new item in these lines is in the clauses for copying all and some. Here, the ==> expression
construction is used. Evaluating the following expression

fun fname tok = exp1 ==> exp2

first extends the definition of the fname function with the clause that says that the \-identifier tok
rewrites to the expression exp1; second, evaluates the expression exp2; and third, discharges the
function definition extension once a value is returned.

Consider computing the value copyform (some u\(all v\(p(u,v)))). This would yeild the
following sequence of expressions.

some x\(fun copyterm x = x ==> copyform (u\(all v\(p(u,v)))~x)
some x\(fun copyterm x = x ==> copyform (all v\(p(x,v))))
some x\(fun copyterm x = x ==>
all y\(fun copyterm y = y ==> copyform (v\(p(x,v))~y)))

some x\(fun copyterm x = x ==>
all y\(fun copyterm y = y ==> copyform (p(x,y))))

some x\(fun copyterm x = x ==>
all y\(fun copyterm y = y ==> p(copyterm x,copyterm y)))

some x\(fun copyterm x = x ==> all y\(fun copyterm y = y ==> p(x,y)))

The final expression is, of course, more simply some x\(all y\(p(x,y))), which is α-convertible
to the initial term.

These copy-functions can be used to implement substitution into formulas. Consider the fol-
lowing MLλ program.

fun substform M T = discharge x\(fun copyterm x = T ==> copyform (M~x))

Here substform has the type (term => form) -> term -> form. Its operation can be describe
as follows: introduce a new identifier x of type term, instruct copyterm to copy x to T and then

6

return the result of copyform (M~x). Since x is not copied to itself, x cannot appear in the value
copyform (M~x) since it is not in either the values M or T.. Thus, discharge will always be given
a vacuous abstraction and hence will not raise an exception.

Substititution for the untyped λ-terms can be implemented similarly.

fun copy (app(S,T)) = app(copy S, copy T)
| copy (abs M) = abs(x\(fun copy x = x ==> copy (M~x)));

fun subst M T = discharge x\(fun copy x = T ==> copy (M~x));

Notice that in all the cases above, the coding of substitution is particularly simple and natural.
The reader should consider writing similar subsitution functions in ML on the first-order syntax
for untyped λ-terms and compare them to the above implementations.

In these examples, the substitution functions have been written in curried form. This choice
was made simply to illustrate that substitution can be used to carry => to ->. For example, if M is
of the type term => form then substform M is of the type term -> form. In otherwords, M can
be seen as code describing a function from term to form and it is the substform function that
translates that code into that actual function.

5 More examples

In this section we present several examples of computing on first-order formulas and on untyped
λ-terms.

The following program simply counts the number of applications in an untyped λ-term.

fun count (app(T,S)) = 1 + count T + count S
| count (abs M) = discharge x\(fun count x = 0 ==> count (M~x));

Notice that in this function, the base cases for recursion are introduced during the execution of this
function.

The following two programs perform call-by-name and call-by-value reductions on untyped λ-
terms.

fun cbn (abs M) = abs M
| cbn (app(T,S)) =

let val (abs M) = cbn T in
cbn (subst M S)

end;

fun cbv (abs M) = abs M
| cbv (app(T,S)) =

let val (abs M) = cbv T in
cbv (subst M (cbv S))

end;

The following function normal computes the βη-normal form of an untyped λ-terms (when such
normal forms exist).

7

fun onepass (app(abs M, T)) = onepass (subst M T)
| onepass (abs x\(app(T,x))) = onepass T
| onepass (app(T,S)) = app(onepass T, onepass S)
| onepass (abs M) = abs x\(fun onepass x = x ==> onepass (M~x));

fun normal T =
let val S = onepass T in
if T = S then T else normal S

end;

The first clause of onepass reduces β-redexes and the second clause reduces η-redexes. Notice
that the proviso that the abstracted varaible x in an η-reduce is not free in the term T is handled
automatically.

The following program computes the negation normal form of first-order formulas by removing
implications and by pushing negations using deMorgan’s laws until they have atomic scopes.

fun nnf (p T) = p T
| nnf (q(T,S)) = q(T,S)
| nnf (neg(p T)) = neg(p T)
| nnf (neg(q(T,S))) = neg(q(t,S))
| nnf (neg(neg M)) = nnf M
| nnf (and(M,N)) = and(nnf M, nnf N)
| nnf (or(M,N)) = or(nnf M, nnf N)
| nnf (imp(M,N)) = or(nnf(neg M),nnf N)
| nnf (neg(imp(M,N)) = and(nnf M, nnf(neg N))
| nnf (neg(and(M,N))) = or(nnf(neg M), nnf(neg N))
| nnf (neg(or(M,N))) = and(nnf(neg M), nnf(neg N))
| nnf (forall M) = forall x\(nnf(M~x))
| nnf (exists M) = exists x\(nnf(M~x))
| nnf (neg(forall M)) = exists x\(nnf(neg(M~x)))
| nnf (neg(exists M)) = forall x\(nnf(neg(M~x)));

Notice that this function does not need to use the ==> construction to extend a function since new
constants of type term are handled correctly by the first four clauses.

The following functions compute a prenex normal form of a formula in negation normal form.
The merge auxillary function is used to combine the prefixes of two formulas in prenex normal
form. If the first argument to merge is true, this merging is assumed to be across a conjunction;
if that argument is false, it is assume to be across a disjunction.

fun merge (true, all M, all N) = all x\(merge(true, M~x, N~x))
| merge (false, some M, some N) = some x\(merge(false, M~x, N~x))
| merge (flag, (all M), N) = all x\(merge(flag, M~x, N))
| merge (flag, (some M), N) = some x\(merge(flag, M~x, N))
| merge (flag, N, (all M)) = all x\(merge(flag, N, M~x))
| merge (flag, N, (some M)) = some x\(merge(flag, N, M~x))
| merge (true, M, N) = and(M,N)
| merge (false, M, N) = or(M,N);

8

fun prenex (p T) = p T
| prenex (q(T,S)) = q(T,S)
| prenex (not M) = not M
| prenex (and(P,Q)) = merge(true, prenex P, prenex Q)
| prenex (or(P,Q)) = merge(false, prenex P, prenex Q)
| prenex (all M) = all x\(prenex(M~x))
| prenex (some M) = some x\(prenex(M~x));

6 Some problems and possible variations

The design of new programming languages and extensions to old languages is a serious business
that should be carefully considered. The informal presentation in this paper is certainly not such
a serious study. All that is indicated here is that there might be a dimension in which ML can be
extended to address the concerns of handling the data structures containing bound variables. In
this section, some problems with MLλ are mentioned and possible variations of it are considered.

6.1 Problems regarding function definition extension

When a new constant is introduced by the \ construct, it is important to know if all the necessary
functions have been extended to correctly handle that new constant. In all the examples in this
paper, it was an easy matter to check the calling structure of functions to be sure that suitable
definition extensions were actually done. When examples get to be larger, such checks might get
to be very difficult. If higher-order programming is also involved in recursions over the structure of
λ-terms, then it would be impossible in general to have a static check determine that all functions
that might be passed in as values are extended correctly.

Another problem with function definition extensions is that functions can only be extended to
handle just the new constant: more general patterns involving that constant are not possible. For
example, consider the following two programs. Both seem quite sensible as computations while
they make use of a stronger form of function definition extension than is permitted above.

fun eq (app(T,S),app(U,V)) = eq (T,U) andalso eq (S,V)
| eq (abs M, app N) = discharge x\(fun eq (x,x) = true ==> eq (M~x,N~x))
| eq (_,_) = false

fun subst M t =
let fun aux x\x = t

| aux x\(app (M~x, N~x)) = app(aux M, aux N)
| aux x\(abs (M~x)) = abs y\(fun aux x\y = y ==> aux x\(M~x~y))

in aux M
end;

The function eq of type (tm * tm) -> bool determines whether or not its arguments are alpha-
betic variants. The function definition extension fun eq (x,x) = true involves extending eq on
the value (x,x) and not just the identifier x. The function subst reimplements the previously
given function of the same type, except this time it does not use discharge and the copy function.

9

Here again, the extension fun aux x\y = y is more general than permitted earlier. Notice that
in both of these cases, the only constants of type tm that are permitted in new patterns are those
involving the new constant.

6.2 Weakening pattern matching

In ML, the cost of pattern matching is dominated by the size of the pattern and not the value
being matched against. This is not true of MLλ since pattern matching may need to check if an
abstraction is vacuous in a given input and this check will require a possible descent of the entire
input. It is possible to modify pattern matching so that this check for vacuous abstraction is not
part of the matching process. This can be done by requiring that if a pattern variable is in the scope
of \-abstracted identifiers, that pattern variable must be applied to all those abstracted variables (in
some order). Thus the pattern all x\(and(P,Q~x)) would not be permitted while the pattern all
x\(and(P~x,Q~x)) would be permitted. The check for vacuous abstraction can be programmed in
this weaker language on a per-signature basis (a fully polymorphic vacuousp presented earlier is
not possible). For example, the following program is of type (term => term) -> bool.

fun vacuoustermp x\a = true
| vacuoustermp x\b = true
| vacuoustermp x\(f(M~x)) = vacuoustermp M
| vacuoustermp x\(g(M~x, N~x)) = vacuoustermp M andalso vacuoustermp N
| vacuoustermp x\x = false;

There seems to be no compelling reason for making pattern matching simpler in this manner:
it seems more elegant to use pattern matching to achieve the same ends as calling the various
vacuousp functions.

6.3 Internalizing subst

The implementation of the various subst predicates in this paper was completely determined by the
signature of the constants building the data structures into which substitution is done. It is therefor
sensible for an implementation of MLλ to have a generic subst of type (’’a => ’’b) -> ’’a -> ’’b
for equality types ’’a and ’’b. Internalizing substitution in this way is very similar to internalizing
equality in SML to certain “concrete” datatypes.

6.4 The standard litany

This preliminary report does not address the large number of questions that should be addressed
in serious language design. We list and briefly comment on some of these.

1. Type inference. This should be essentially the same as type inference for ML.

2. Run time type errors. These should not be possible. The extended pattern matching process
can be done without respect to type information.

3. Match exception. It is very useful to have static checks that can warn a programmer of a
function definition that may not have enough cases to deal with all the constructors that
can be used to build its arguments. It should be possible to extend the analysis used in ML

10

to MLλ, although very little can probable be done statically if higher-order programming is
mixed with function definition extension.

4. Semantics of new constructions. Good question. This extension seems very intensional so
getting a denotational semantics for it looks hard. On the other hand, this extension does seem
to have significant “declarative context” and so should have some of meaningful semantics.
Here, semantic notions used to address programs in λProlog might prove useful [12].

7 Conclusion

An extension to ML that would permit rather direct handling of data structures containing internal
abstract has been informally proposed. That extension, called MLλ, provides a way to represent
such structures so that the programmer does not have direct access to bound variables names.
Other more declarative ways of dealing with bound variables are made available.

References

[1] Avron, A., Honsell, F., and Mason, I (1987), Using Typed Lambda Calculus to Implement
Formal Systems on a Machine. Technical Report ECS-LFCS-87-31, Laboratory for the Foun-
dations of Computer Science, University of Edinburgh.

[2] Burstall, R. and Honsell, F. (1988), A natural deduction treatment of operational semantics.
In Foundations of Software Technology and Theoretical Computer Science, pages 250–269,
Springer-Verlag LNCS, Vol. 338.

[3] Coquand, T. and Huet, G. (1988), The calculus of constructions. Information and Computa-
tion, 76(2/3):95–120, February/March 1988.

[4] Felty, A. and Miller, D. (1988), Specifying Theorem Provers in a Higher-Order Logic Program-
ming Language, Proceedings of the Ninth International Conference on Automated Deduction,
Argonne, IL, 23 – 26, eds. E. Lusk and R. Overbeek, Springer-Verlag Lecture Notes in Com-
puter Science, Vol. 310, 61 – 80.

[5] Hannan, J. and Miller, D. (1988), Uses of Higher-Order Unification for Implementing Program
Transformers, Fifth International Conference and Symposium on Logic Programming, ed. K.
Bowen and R. Kowalski, MIT Press, 942 – 959.

[6] Hannan, J. and Miller, D. (1989), A Meta Language for Functional Programs, Chapter 24
of Meta-Programming in Logic Programming, eds. H. Rogers and H. Abramson, MIT Press,
453–476.

[7] Harper, R., Milner, R., and Tofte, M. (1989), The Definition of Standard ML: Version 3.
Technical Report ECS-LFCS-89-81, Laboratory for the Foundations of Computer Science,
University of Edinburgh.

[8] Harper, R., Honsell, F., and Plotkin, G. (1987), A framework for defining logics. In Second
Annual Symposium on Logic in Computer Science, pages 194–204, Ithaca, NY.

11

[9] Huet, G. and Lang, B. (1978), Proving and Applying Program Transformations Expressed
with Second-Order Logic, Acta Informatica 11, 31 – 55.

[10] Miller, D. (1990), “A Logic Programming Language with Lambda-Abstraction, Function Vari-
ables, and Simple Unification,” in Extensions of Logic Programming edited by Peter Schroeder-
Heister, Springer-Verlag.

[11] Miller, D. and Nadathur, G. (1987), A Logic Programming Approach to Manipulating For-
mulas and Programs, Proceedings of the IEEE Fourth Symposium on Logic Programming,
IEEE Press, 379 – 388.

[12] Miller, D., Nadathur, G., Pfenning, F., and Scedrov, A. (1988), Uniform proofs as a foundation
for logic programming. To appear in the Annals of Pure and Applied Logic.

[13] Nadathur, G. and Miller, D. (1988), An Overview of λProlog, Fifth International Conference
on Logic Programming, eds. R. Kowlaski and K. Bowen, MIT Press, 810 – 827.

[14] Paulson, L. (1986), Natural Deduction as Higher-Order Resolution, Journal of Logic Program-
ming 3, 237 – 258.

[15] Pauslon, L. (1989), The Foundation of a Generic Theorem Prover, Journal of Automated
Reasoning, Vol. 5, 363 – 397.

[16] Pfenning, F. and Elliott, C. (1988), Higher-Order Abstract Syntax, Proceedings of the ACM-
SIGPLAN Conference on Programming Language Design and Implementation, ACM Press,
199 – 208.

[17] Pfenning, F. (1989), Elf: A Language for Logic Definition and Verified Metaprogramming,
Fourth Annual Symposium on Logic in Computer Science, Monterey, CA, 313 – 321.

12

