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Abstract The topics of structural proof theory and logic programming have influ-
enced each other for more than three decades. Proof theory has contributed the notion
of sequent calculus, linear logic, and higher-order quantification. Logic programming
has introduced new normal forms of proofs and forced the examination of logic-based
approaches to the treatment of bindings. As a result, proof theory has responded by
developing an approach to proof search based on focused proof systems in which in-
troduction rules are organized into two alternating phases of rule application. Since
the logic programming community can generate many examples and many design
goals (e.g., modularity of specifications and higher-order programming), the close
connections with proof theory have helped to keep proof theory relevant to the gen-
eral topic of computational logic.

Keywords Structural proof theory - logic programming - computational logic -
history of programming languages

1 Introduction

Both symbolic logic and the theory of proof have been applied successfully in the
foundations of mathematics. For example, Gentzen’s early work on the sequent calcu-
lus [28, 29] was used to show the consistency of classical and intuitionistic logic and
arithmetic. The last several decades have demonstrated that logic has a significant and
continuing impact on computer science, possibly rivaling its impact on mathematics.
For example, there are major journals that cover the general topic of computational
logic—the ACM Transactions on Computational Logic, Logical Methods in Com-
puter Science, the Journal on Automated Reasoning, and the Journal of Logic and
Computation—to name a few. Similarly, there are several major conferences (e.g.,
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CADE, CSL, FSCD, LICS, IJCAR) that address various uses of logic in computa-
tional settings. This topic also has its own “unreasonable effectiveness” paper, namely
“On the Unusual Effectiveness of Logic in Computer Science” [34].

As computer science moves forward, researchers and practitioners occasionally
design new programming languages. Usually, the first demands asked of the design-
ers of programming languages are short-term, such as the need to support effective
implementations and to support interoperability with existing code and hardware.
While such short-term demands can always be realized, poor language designs can
lead to long-term costs. On this point, it is useful to be reminded of the following,
oft-cited quote.

“Beauty is the first test: there is no permanent place in the world for ugly
mathematics.” — G. H. Hardy, A Mathematician’s Apology [35]

The computer scientist sees in this quote a parallel in their own field: a poorly de-
signed computer system, even one that might be working, may have no permanent
place in the world since many additional demands usually appear and these will likely
force ugly systems to be replaced by those based on better designs. Such additional
demands are numerous and include the requirement that: code should be modular to
support maintainability; programs should be compilable so that they work on a single
processor as well as on multiple processors; or that some properties of code may need
to be formally proved before that code is used in critical systems. Satisfying such ad-
ditional demands requires a deep understanding of the semantics of a programming
language: quickly hacked languages do not generally support deep understanding or
establishing formal properties.

When looking to articulate and exploit deep principles in computing, researchers
are often led to exploit existing mathematically well-understood concepts or to de-
velop new frameworks. For example, finite state machines and context-free grammars
have been employed to provide a strong foundation for parsing strings into structured
data. When needing to deal with communications and shared resources in computer
networks, process calculi, such as CSP [38] and CCS [76], have been developed,
studied, and shaped into programming languages (e.g., the Occam programming lan-
guage [12]). Occasionally, syntactic systems that are not traditionally considered log-
ics are so well studied and found to be of such high quality that they can be used as
frameworks for programming languages: the A-calculus [8, 16] and the m-calculus
[77, 78, 97] are two such examples.

In this paper, I show how various features of some well studied logical systems di-
rectly influenced aspects of programming. At the same time, I provide some examples
where attempts to deal with various needs of computing directly lead to new designs
and results in logic. Logic is a challenging framework for computation: much can be
gained by rising to that challenge to find logical principles behind computation.

I should make it clear before proceeding that I am a participant in the several-
decade-long story that I give in this paper: I am not a detached and objective his-
torian. I have two goals in mind in telling this story. First, I want to give specific
examples of the mutual influence that has occurred between the abstract and formal
topic of proof theory and the concrete and practical topic of computer programming
languages. Second, I want to show how a part of computer science can be attached to
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the foundations of formal proof that was pioneered by Hilbert, Godel, and Gentzen:
the foundation that they and many others provided in the first half of the 20" century
has had significant and immediate impact on computer science today.

2 Logic and computation: the different uses of logic

Early in the 20" century, some logicians invented various computational systems,
such as Turing machines, Church’s A-calculus, and Post correspondence systems,
which were shown to all compute the same set of recursive functions. With the in-
troduction of high-level programming languages, such as LISP, Pascal, Ada, and C,
it was clear that any number of computation systems could be designed to compute
these same functions. Eventually, the large number of different programming lan-
guages were classified via the four paradigms of imperative, object-oriented, func-
tional, and logic programming. The latter two base computational systems on various
aspects of symbolic logic. Unlike most programming languages, symbolic logic is a
formal language that has well-defined semantics and which has been studied using
model theory [102], category theory [52, 53], recursion theory [31, 46], and proof
theory [28, 30]. As we now outline, logic plays different roles when it is applied to
computation.

The earliest and most popular use of logic in computer science views computation
as something that happens independently of logic: e.g., registers change, tokens move
in a Petri net, messages are buffered and retrieved, and a tape head advances along a
tape. Logics (often modal or temporal logics) are used to make statements about such
computations. Model checkers and Hoare proof systems employ this computation-as-
model approach.

Another use of logic is to provide specification and programming languages with
syntax and semantics tied directly to logic. The computation-as-deduction approach
to programming languages takes as its computational elements objects from logic,
namely, types, terms, formulas, and proofs. Thus, instead of basing computation on
abstractions of existing technology, e.g., characters on a Turing machine’s tape or
tokens in a Petri net, this approach to programming makes direct use of items found
in symbolic logic. One hope in making this choice is that programs that rely heavily
on logic-based formalisms might be able to exploit the rich meta-theory of logic to
help prove properties of specific programs and of entire programming languages.

There are, however, two strikingly different ways to apply the computation-as-
deduction approach to modeling computation: these different avenues rely on differ-
ent roles of proof in the design and analysis of computation.

Proof normalization: Natural deduction proofs can be seen as describing both func-
tions and values. For example, when a proof of the implication B O C is combined
with a proof of the formula B using the rule of modus ponens (also known as D-
elimination in natural deduction), the result is a proof of C. That proof, however, is
generally not a proof in normal form. The steps involved to normalize such a proof
(as described by, for example, Prawitz in [92]) are similar to -reductions in typed
A-calculi. In that way, a proof of B D C can be seen as a function that takes a proof of
B to a proof of C (employing modus ponens and normalization). This computational
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perspective of (natural deduction) proofs is often used as a formal model of functional
programming.

Proof search: Formulas can be used to encode both programs and goals (think to rules
and queries in database theory). Sequents are used to encode the state of a computa-
tion and (cut-free) proof search is used to provide traces in computation: changes in
sequents denote the dynamics of computation. Cut-elimination is not part of compu-
tation but can be used to reason about computation. This view of computation is used
to provide a foundation for logic programming.

Although both of these frameworks put formal proofs at their core, the difference
between these two approaches is a persistent one. Indeed, advances in understanding
the proof theory of higher-order quantification and of linear logic have resulted in
different advances in both of these paradigms separately. No current advances in our
understanding of proof have forced a convergence of these two paradigms.

The connections between functional programming and proof theory are well doc-
umented and celebrated in the literature as the Curry-Howard Isomorphism: see, for
example, [86, 99]. The connection between logic programming and proof theory is
less well documented, and it is the focus of this article.

The field of proof theory covers many topics, including consistency proofs, ordi-
nal inductions, reverse mathematics, proof mining, and proof complexity. Here, we
focus instead on structural proof theory, a topic initiated by Gentzen’s introduction
of sequent calculus and natural deduction [28]. The sequent calculus is particularly
appealing since Gentzen explicitly preferred it over natural deduction as a setting for
developing the meta-theory of proofs for both classical and intuitionistic logics simul-
taneously. Later, Girard showed that the sequent calculus provides a natural account
proofs in linear logic as well [30]. As we shall document, this feature of the sequent
calculus provides logic programming with a natural framework in which proof-search
is described for much richer logics (first-order and higher-order versions of classi-
cal, intuitionistic, and linear logics) than the underlying Prolog. Another feature of
sequent calculus is its support for abstraction: that is, it provides mechanisms for
allowing some aspects of a program’s specification to be hidden while other aspects
are made explicit. In programming language terminology, such abstractions provide
logic programming with modularity, abstract data types, and higher-order program-
ming. The use of abstractions can significantly aid in establishing formal properties
of programs [63].

3 Why turn to logic to design a programming language?

In many early programming systems, it was specific compilers (and interpreters) that
determined the meaning of programs. Since computer processors were rapidly chang-
ing and since compilers map high-level languages to these evolving processors, com-
pilers needed to evolve in order to exploit new processor architectures. Since the new
compilers did not commit to preserving the same execution behavior of programs as
earlier compilers, the meaning of programs would also change. For the many people
writing high-level code, the fact that their code could break when moving it between
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computer systems or to higher version numbers eventually became a serious prob-
lem. This situation became untenable when programs also grew dependent on the
services—such as memory management, file systems, and network access—offered
by operating systems: now programs could also break whenever there were changes
to operating systems.

Early efforts to formalize the meaning of programs employed the computation-
as-model paradigm mentioned above. For example, logical expressions could be at-
tached to program phrases in order to define pre- and post-conditions. In this setting,
the expression {P}S{Q} is used to denote the judgment that “if the formula P holds
and the program phrase S executes and terminates, then the formula Q holds”. For
example, the expression

{n=0Aa=0} (while n<10 do a := a+n; n := n+l) {n=11Aa =55}

should be true for most notions of while-loops and variable assignments. While this
approach to reasoning about the meaning of programs has had some success and is
used in several existing systems today, it has also had some significant failures. In
fact, the topic of model checking, in which the search for counterexamples (bugs)
replaced the search for formal proofs, arose from frustration that it was too difficult
to use pre- and post-condition reasoning in many systems, particularly, those that had
elements of distributed and concurrent execution [20].

Other mathematical frameworks for specifying the meaning of programming lan-
guages were given by denotational semantics [100], where the meaning of program
phrases is compositionally mapped into well defined and understood mathematical
objects, and operational semantics [79, 91], in which program execution is modeled
using inference rules to build proof-tree-like structures.

Still another approach to providing a formal semantics to a programming lan-
guage is to accept as a programming language a formal system that already has a
mathematical and well-understood semantics. Here, quantificational classical and in-
tuitionistic logics have well-developed theories of proofs and models: soundness and
completeness theorems relate these two remarkably different means of attributing
meaning to logical expressions. Logic programming is an approach to programming
where programs elements are logical formulas. While this approach can solve the
problem of giving a formal semantics to programs, one must recognize that there is
a tension between the needs of programming and solutions offered by logic. For ex-
ample, classical logic views formulas as either true or false and the search for a proof
might establish a given formula as true: in that case, it will always be true. Of course,
many situations need such permanence: for example, once a (sub)proof establishes
that the atomic formula (plus 2 3 5) holds (encoding the fact that 2 + 3 is equal to
5) then this fact is, of course, always true. On the other hand, computing needs to
deal with situations where a memory cell contains one value now, but in the future,
it contains another value. Modeling such memory cells in classical logic cannot be
done as simply as by using a predicate of the form “the memory location / contains
value x”.

Resolving this tension has generally gone along two different avenues. The first
avenue added various features to a programming language, such as Prolog, that were
difficult or impossible to provide a logical description. In these cases, the resulting



6 Dale Miller

features can be useful but the underlying programming language drifts more and more
from its basis in logic. The second avenue attempted to use more expressive logics
than first-order classical logic in order to gain some expressive strengths. This paper
describes several milestones along this particular avenue for resolving the tension
between what logic and proof theory offers and what programming languages need.
As we shall see, this particular journey starts with classical logic and then moves to
intuitionistic and linear logics in order to provide more expressive programs.

4 A quick primer: terms and formulas of predicate logic

We shall assume that the reader has at least some familiarity with first-order predicate
logic. In this section, we simply review a few concepts that will help to anchor our
later discussions.

In order to define term and formula structures, we need to know which symbols
denote predicates and function symbols and what is their arity. Many first-order logic
systems (including most Prolog languages) only declare the arity of such symbols.
For example, the constructors for natural numbers and lists of natural numbers can
be written as

{z/0, s/1, nil/0, cons/2, append/3}

Thus, cons (the non-empty list constructor) takes two arguments while append (the
relation between two lists and the result of appending them) takes three arguments.
Some first-order logics are sorted: that is, there are primitive sorts, say, nat (for nat-
ural numbers) and list (for lists of natural numbers), and constructors are declared to
take their arguments from certain sorts. For example, the declaration displayed above
could be made more explicit using sorts such as

{z: {{),nat), s: ((nat),nat), nil: ({),list), cons : {{nat, list), list) }

Above only term constructors are given declarations in which the first member of their
associated tuple is the list of argument types it expects and the second member is the
type of the object that the constructor builds. Predicates could be declared separately
using the declaration {append : (list, list, list)} which associates a predicate with the
list of argument types it expects.

So that we can also comment on higher-order logic and syntax later, we use the
conventions introduced by Church’s Simple Theory of Types [15]. In particular, a
type is either a primitive type (these are introduced as we need them and correspond
to primitive sorts) and an arrow type which is an expression of the form 7; — 7,. The
arrow associates to the right: thus 7, — 7, — -+ — T, — Ty reads as 7| — (T, —
o+ = (T, = T0)---). A function symbol with the sort declaration ((7y,...,T,), To)
would correspond to the type 7y — 7o — --- — T,, — Tp. A predicate symbol with the
sort declaration (7y,...,1,) is encoded as the type 7| — T» — --- — T, — 0, where
we follow Church’s convention to use the primitive type o to denote the (syntactic
category of) formulas. Thus, the declarations above can be revised to be

{z: nat, s: nat— nat, nil : list, cons : nat — list — list,
append : list — list — list — o}



Reciprocal influences between proof theory and logic programming 7

While the arrow type is natural for presenting first-order logic, its presence will also
make it easy to generalize the syntax of terms and formulas to accommodate higher-
order logic (in Section 9).

A signature is a set containing pairings of tokens with their declared type so that
all tokens are declared to have at most one type. Informally, a X-term of type 7 is a
(closed) term all of whose tokens are taken from the signature ¥ and which respects
the typing declarations. For example, if X’ is the signature declared at the end of the
previous paragraph, then (s (s z)) and (cons (s z) (cons z nil)) are valid X-terms of
type nat and list, respectively. The X’-term

(append (cons z nil) (cons (s z) nil) (cons z (cons (s z) nil)))

has type o which means that it is also a formula. In Prolog syntax, the latter expres-
sion corresponds to the (more compact) append ([0], [1], [0,1]), which in turn
denotes the assertion that [0, 1] is the result of appending the lists [0] and [1]. In
general, we intend the token append to stand for the three-place relation such that
(append L K M) holds if and only if the concatenation of the list L with the list K is
the list M (a formal definition for this predicate is given in the next section).

The terms described above are examples of closed terms in the sense that they
contain no free variables. Let 2" be an infinite set of token-type pairs of the form
x : T where 7 is restricted to a primitive type. Assume that the two signatures X (of
constants) and 2~ (of first-order variables) do not contain the same token: in that case,
a term over the combined signature X U 2 are terms with possible free variables.

Predicate symbols are introduced as a means to collect together some terms and
to yield an atomic formula (such as the assertion about appending lists above). Non-
atomic formulas are created using the following propositional constants (along with
their declared types): T : o (truth), L : o (false), = : 0 — o (negation), V:0 — 0 — 0
(disjunction), A : 0 — 0 — o (conjunction), and D: 0 — 0 — o (implication). The two
quantifiers are parameterized by a type: V;x.B and 3;x.B denote the universal and
existential quantifiers (respectively) of the variable x of type 7 within the formula B.
If a quantifier is written without a subscript type expression, then that type is either
unimportant or easy to infer from its context.

5 Early foundations of logic programming

The logic programming paradigm had a beginning within the artificial intelligence
community dating back to the 1960s and 1970s. We start our story here with the
first systematic development of a proof procedure by Kowalski [50], which provided
a (non-deterministic) procedural interpretation of logic that lines up well with the
nearly simultaneous development of the first Prolog system by Colmerauer [17].

5.1 Declarative vs procedural programs

A central and early question about Prolog was how it might be possible to turn declar-
ative information about a desired computation into an actual procedure or program.
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For example, consider the simple problem of concatenating two lists to get a third
list. A declarative treatment of concatenation can be given by stating the following
two facts.

1. Concatenating an empty list on the front of a list L yields the list L.

2. If the result of concatenating list L to the front of list K is the list M, then the
result of concatenating list (cons X L) to the front of list K is the list (cons X M)
for any X (of type nat).

Of course, there are many other statements about concatenation that one could make
(for example, that concatenation is associative). The two facts above can be captured
easily in first-order logic. Using the predicate symbol append introduced in Section 4,
the above two facts about concatenation can be encoded as the two formulas

VL(append nil LL) and

VXVLVKYM|[(append L K M) D (append (cons X L) K (cons X M))]

(Here, the type of X is nat and of L, K, and M is list.) Following standard Prolog-
inspired conventions, we shall write variables as tokens with an initial capital letter
and we shall drop all quantifiers assuming that all variables are universally quantified
around such formulas. Another convention used by Prolog is to reverse the direction
of the implication and to use an ASCII approximate : - to a turnstile (I-). Following
these conventions, we have the following Prolog-style program definition. '

append nil L L.
append (cons X L) K (cons X M) :- append L K M.

For a second example of a declarative specification written using Prolog syntax,
Figure 1 contains a small graph along with the specification of both the adjacency
relation of that graph and a specification of the notion of a path between two points in
that graph. In the last line of that specification, another Prolog convention is used: the
comma denotes conjunction. That last line can be read as follows: if there is a step
from X to Z and a path from Z to Y then there is a path from X to Y. We have also
assumed that the signature for these formulas contains the following items

a :node, b : node, c: node, d : node,
step : node — node — o, path: node — node — o

where node is a primitive type denoting nodes in the graph.
In general, the logical formulas that underlie the Prolog programming language
are formulas generally referred to as Horn clauses. These formulas are of the form

Vxp . Vxa[(Ap A - AAy) D Aol (n,m>0)
where the formulas Ag,Aq,...,A, are atomic formulas all of whose free variables are
in the set {xi,...,x,}. If n =0 then we do not write any universal quantifiers and if

m = 0 then we do not write the implication. In classical logic, it is possible to convert

! We use the syntax of AProlog instead of Prolog: for simple programs, the difference between these
languages is small.
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step a b.
step b c.
@ step c b.
path X Y :- step X Y.
path X Y :- step X Z, path Z Y.

Fig. 1 A small graph on four nodes and a Prolog specification of it.

all formulas to a logically equivalent formula (of essentially the same size) in which
implication D is not present and where all occurrences of negation — are applied only
to atomic formulas. Such formulas are in negation normal form. In particular, the
negation normal form of the Horn clause above is

Vxp ... Vxu[2AL V- VA, V Ay

If we let &7 be the set containing the five formulas displayed in Figure 1, it would
seem natural to expect that provability from &2 and computing with this logic pro-
gram might be related. For example, it is the case that & proves (in classical and
intuitionistic logics) the atomic formula (path a ¢) (i.e., that there is a path from node
a to node ¢) and that the formula (path a d) has no proof. While one might expect this
connection to be rather immediate, the early history of Prolog obfuscated this connec-
tion with provability by describing logic programming computation as a refutation,
as we shall now illustrate.

5.2 Refutation and skolemization

In the late 1960s and early 1970s, the resolution refutation procedure of Robinson
[95] was applied in various areas of computational logic. For example, Green showed
in [32] that resolution refutations could be used to provide answers within question-
answering systems. Given the dominance of resolution, it was natural for Kowalski
to have adopted it to provide a description of the operational behavior of Prolog.

On one hand, the choice of resolution was natural for this purpose since term
unification was needed to describe Colmerauer’s Prolog and since unification was
built into the principle inference rule of resolution. On the other hand, this choice was
unfortunate since it required turning what is most naturally considered a problem of
searching for a proof into the problem of searching for a refutation. Since classical
logic has an involutive negation, it is the case that proving A from &2 is equivalent
to proving L from &2 U{A D_}: that is, building a refutation of & U{A D_L}. Note
that this latter step is not valid in intuitionistic logic: in general, resolution is not
a sound procedure for intuitionistic logic (without significant modifications to that
procedure).

There seems to be only one reason why resolution and not proof dominated the
early years of theorem proving in classical logic, and that was the use of skolemization
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to simplify quantifier structures in formulas. The process of skolemizing a first-order
formula, say, B (in negation normal form) involves repeatedly replacing a subformula
occurrence 3y.C(y) in B with C(f(x1,...,x,)), where f is a new function symbol
(an extension to the formula signature) and where xi,...,x, is the list of universally
quantified variables of B that contain the occurrence Jy.C(y) in their scope. A Skolem
normal form of B is then a formula that arises from repeatedly removing existential
quantifiers in this manner until no occurrences of existential quantifiers remain. The
main theorem that relates a formula B with a Skolem normal form of B is that they are
equisatisfiable: that is, there is a model of B if and only if there is a model of a Skolem
normal form of B. Since skolemization can introduce new constants (Skolem function
symbols), the models of B are necessarily different from the models of a Skolem
normal form of B. Thus, the stage is set for introducing refutations: in order to prove
B is a theorem, we can show instead that —B is unsatisfiable. This restatement is, of
course, equivalent to showing that the skolemized form of —B is unsatisfiable. It is this
latter property that the resolution refutation framework is designed to demonstrate.

There are at least a couple of reasons why basing the theory of logic program-
ming on skolemization and refutation was not a good idea, at least in hindsight. First,
Horn clauses do not contain quantifier alternations and, hence, skolemization is not
a needed processing step. Since skolemization is not required, the motivation to use
refutations as outlined loses its force. Second, a couple of the extensions to the de-
sign of logic programming that we shall cover soon do not work simply with either
skolemization or refutations. In particular, intuitionistic logic plays an important role
in the development of logic programming, but skolemization and resolution refutation
are both not a sound process in intuitionistic logic. It is also the case that higher-order
quantification plays an important role in the development of logic programming and
in that setting, and when higher-order substitutions are present, skolemization is a
more complex and problematic process. For example, since higher-order instantia-
tions can introduce new instances of quantifiers, the result of a higher-order instanti-
ation of a formula in Skolem normal form may result in a formula that is no longer
Skolem normal (something that cannot happen in the first-order setting). More se-
riously, in higher-order logic, Skolem functions can give rise to uses of the Axiom
of Choice even for situations (such as logic programming) where one does not in-
tend for the Axiom of Choice to be a relevant logical feature. For example, Andrews
[6] has described a generalization of resolution refutation for a higher-order logic
that can dynamically re-skolemize after the application of a higher-order substitu-
tion, but his system was not sound. If the Axiom of Choice was admitted, his system
became sound but no longer complete. While an improvement to unification (a key
component of resolution) was found that can make skolemization sound [61], many
computer systems that use unification in a higher-order intuitionistic logic setting,
such as AProlog [73], Twelf [90], and the Isabelle theorem prover [89], have found
ways to avoid both resolution and skolemization entirely.
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5.3 SLD-resolution

There were two main ingredients in resolution refutations. The first ingredient is
clauses, which are formulas of the form

Vxp ... Vxg[L1 V...V Ly, (n,m >0)

where x1,...,x, is a (possibly empty) list of first-order variables and Ly,...,L,, is a
(possibly empty) list of literals (atomic formulas or their negation). From what we
noted above, Horn clauses can be seen as clauses in which exactly one literal is an
atomic formula (instead of the negation of an atomic formula). In general, however,
a clause can have any mixture of atomic formulas and negated atomic formulas.

The second ingredient is inference rules that take clauses as their premises and
conclusion. The only one of these rules that interest us here is the so-called resolution
rule which can be written as

Vxy...,Vn,[LV M] VY1 ..oy, Vym[—K V N]
Vz1...,Y2,[0M V ON]

6 = mgu(L,K).

Here, L and K are atomic formulas, M and N are (possibly empty) disjunctions of
literals, and the proviso for this rule is that L and K are unifiable and that 0 is set
to the most general unifier L and K. A resolution refutation of the set of clauses
{Ci,...,C,} is a tree of such inference rules (plus another rule called factoring) in
which the leaves come from the set of clauses and the root is the empty clause. When
such a tree exists, the fact that the empty disjunction is clearly unsatisfiable can then
be transferred to the collection of clauses in its leaves.

The resolution rule is rather remote from Gentzen’s rules for sequent calculus.
While Gentzen’s introduction rules process exactly one logical connective per rule,
the resolution rule above will deal with n -+ m + p universal quantifiers along with
a number of disjunctions. Furthermore, the operation of unification is not contained
in sequent calculus presentations (although the implementation of theorem provers
based on the sequent calculus often uses unification).

Kowalski and Kuehner developed a specialized form of resolution based on linear
resolution with selection function (SL-resolution) [51]. When this variant of resolu-
tion is applied to Horn clauses, it was called SLD-resolution (D for definite, since
Horn clauses have also been called definite clauses) [7]. In this setting, attempting
to prove the conjunctive goal A; A ... A A, from the Horn clauses in &2 results in
attempting to refute the clauses in & together with the clause —A| V...V —A,: this
latter clause is distinguished in that the literals it contain are all negated atoms. In
this setting, SLD-resolution is essentially the restriction of resolution so that one of
the clauses being used in the premise of a resolution is always the most recently pro-
duced such distinguished clause. This greatly restricted version of resolution could
be seen as forming the basis of the engine used in Prolog. Effective implementations
of SLD-resolution were developed, with the most popular one based on the Warren
abstract machine [1, 104].

Several variations on Horn clauses have been considered: these include disjunc-
tive logic programs [56, 80] and constraint logic programs [43]. In the latter vari-
ation, equality of terms is generalized to be a richer relation (e.g., greater-than and
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non-equal-to) than syntactic equality: such constraints do not normally have most
general solutions so one should not choose to solve them immediately but rather de-
lay them until additional constraints are discovered. Most of these extensions were
limited to features that could either be seen as retaining the basic characteristics of
SLD-resolution or which could be compiled into the Warren Abstract Machine. While
some extensions, such as HiLoG [14], proved useful in some circles, they often ex-
erted no influence on the topics of logic and proof theory.

There are, however, many downsides of using resolution as the core explanation
of how logic programming languages should work.

— Refuting is an odd choice in a setting where proving seems more natural.

— In order to present formulas as Horn clauses, one may need to transform a formula
into its conjunction normal form, and this can cause an exponential increase in
formula sizes or require the introduction of new predicate constants in order to
keep that size from exploding.

— First-order unification maintains the normal form of clauses while this is not the
case with higher-order quantification since predicate substitutions can transform
a formula in normal form into one that is not in normal form. This particular
problem could be addressed by re-normalizing after predicate substitutions [6,
42].

— More importantly, resolution does not naturally fit with intuitionistic and linear
logics although it is possible to develop them based on the structure of sequent
calculus proofs [24, 101].

These limitations with resolution refutations were then limitations to the designs
of new logic programming languages. At roughly the same time as this framework
was being designed for logic programming, researchers in functional programming
languages were embracing many features of computational logic and proof theory
that go well beyond the theory of first-order Horn clauses. In particular, higher-
order programming, intuitionistic-logic based typing, and linear logic were all being
considered as central and powerful themes in the design of modern functional pro-
gramming languages. Guided by the Curry-Howard Isomorphism, the proof theory
of higher-order intuitionistic logic helped to guide the design of many functional pro-
gramming and reasoning systems [18, 57] and linear logic was seen as offering new
features [103].

6 Proof theory characterization of Horn clauses

Gentzen’s sequent calculus provides a natural setting for describing the operational
behavior of proof search. Instead of building a refutation, one could instead attempt
a proof. When attempting the proof of a goal G from a set of program clauses &, we
can consider the problem of building a Gentzen style proof system with the sequent
Z |+ G. For example, let & be a set of Horn clauses and let one of them be

Vxp ... Vxm[(A1 A< AAy) D Aol
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The following backchaining rule of inference is then admissible in Gentzen’s LK

calculus
PE0OA - P OA,

ZEA

BC,

where it is the case that 0 is a substitution such that @Ay = A. Admissibility of this
rule is easy to see since it is the combination of one occurrence of a contraction, n
occurrences of V-left introduction, one occurrence of D-left, and one occurrence of
the initial rule. A stronger statement is also possible: this is the only inference rule
that is required. That is, & - A is provable in classical logic implies that there is a
proof of that sequent in which only instances of the BC rule are needed.

Let A be a syntactic variable that ranges over first-order atomic formulas. Let ¢
and 2, be the sets of all first-order G- and D-formulas defined inductively by the
following rules:

G:=T|A|G1/\G2|G1\/G2|HXG,
D:=A|GDA|DAD;|VxD.

For the rest of this paper, the formulas of 2 are called first-order Horn clauses.

For the reader familiar with Church’s treatment of higher-order logic, we define
also a higher-order generalization to first-order Horn clauses. Let .7#] be the set of all
A-normal terms that do not contain occurrences of the logical constants D,V, and L.
Let A and A, be syntactic variables denoting, respectively, atomic formulas and rigid
atomic formulas (atomic formulas with a constant as its head symbol) in 7. Let %
and 2, be the sets of all higher-order G and D-formulas defined inductively by the
following rules:

G:=T|A|GiAG:|GiVG: |G,
DIZAr|GDAr|D|/\D2|VxD.

Note that the type of quantified variables in this definition can be at any type includ-
ing higher-order (predicate) types. The formulas of %, are called higher-order Horn
clauses. Notice that %, is precisely the set of formulas contained in the set of terms
J4.

The proof theory surrounding the higher-order version of Horn clauses has some
challenges. In particular, higher-order (predicate) instantiations of higher-order Horn
clauses may no longer yield higher-order Horn clauses. Nadathur was able to prove
[81, 84], however, that in the restricted setting of logic programming, whenever there
was a proof involving higher-order Horn clauses, it was also possible to restrain
higher-order substitutions so that the only instances of Horn clauses were other Horn
clauses.

Influence: Proof theory on logic programming

Sequent calculus provides a flexible framework for formalizing logic program-
ming using Horn clauses with both first-order and higher-order quantification.



14 Dale Miller

Notice that goal formulas (G-formulas in the definitions above) are not necessar-
ily limited to atomic formulas: in the Horn clause setting, they can also be conjunc-
tions, disjunctions, and existential quantifiers. Thus, backchaining is not the only in-
ference rule that can be used in this setting. In fact, one can prove the following: when
a sequent contains a non-atomic right-hand side (i.e., a goal formula with a logical
connective) then the proof of that sequent can be assumed to be a right-introduction
rule. Thus, provability with respect to this presentation of Horn clauses builds proofs
divided into two phases: when the goal formula is atomic, the backchaining inference
rule is used but when the goal formula is non-atomic, then the goal is reduced by
using a right-introduction rule (reading proofs from the conclusion to premises).

This two-phase aspect of proof search has a natural appeal. The processing of
logical connectives in the goal is fixed (by the right introduction rules). It is only when
a non-logical symbol (the predicate at the head of an atomic formula) is encountered
as the goal that we need to consult the (logic) program.

Now that we have a firm basis for logic programming using Horn clauses in se-
quent calculus, we can ask a natural question: What is the dynamics of proof search?
More precisely, if &2 | A is a root of a sequent calculus proof and &' - A’ is any
other sequent in that proof (where A and A’ are atomic formulas), then how are &2
and &', and A and A’ related. In the case of Horn clauses, we know that there are
rather natural proof systems for classical logic in which & = &', Thus, during the
search for a goal, there is no change to the left and, thus, the logic program is global
and flat: every part of it is present at all times. Another way to describe this is to say
that the only dynamics—the changing of atomic formulas—takes place within non-
logical contexts, that is, in the scope of the non-logical symbols that are the predicates
of atoms. Putting the dynamics of computation outside of logical contexts certainly
seems to diminish the potential of logic to encode and reason about computational
dynamics.

This characterization of Horn clauses has important implications for the structur-
ing of programs: if a program clause is ever needed during a computation, it must
be available at the beginning of that computation. Thus, Horn clauses do not support
directly any hiding of one part of a program from other parts of a program: such a
lack is a significant problem for a modern programming language [63].

7 What’s past is PROLOGue: intuitionistic logic extensions

Working from this last observation about how the left-hand-side of sequents using
Horn clauses is a fixed and global value, the simple suggestion to use goals that
are implications would allow contexts to grow as one moves up a proof from the
conclusion to premises. In particular, Gentzen’s right introduction rule for implication

P .DFG
P+-DDOG

can be interpreted as adding the new program element D (which might be a Horn
clause) to the logic program £2. Thus, an attempt to prove the query (D; D Aj) A
(D2 D Ay) from the logic program & would be expected to yield the attempts to
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prove A; from &2 U{D;} and to prove A, from & U{D,}. Thus, attempts to prove
the two goals A| and A, are performed with different logic programs.

While this approach to adding a form of modularity to logic programming is
rather immediate, one must confront the fact that classical logic does not provide
the proper foundations for this notion of modularity. For example, one expects that
attempting to prove (D; D A1)V (D3 D Az) from & would result in an attempt to
prove A; from & U{D;} or to prove A, from &2 U{D,}. But this interpretation is
not supported by classical logic. Since the classical interpretation of the implication
D D G is the same as (=D) V G then (D] D A1) V (D2 D A3) is logically equivalent
to both (D2 D A;) V(D) D Az) and (D; D (D2 D (A1 VA3z)). That is, classical logic
does not support the intended scoping interpretation.

In the mid-1980s, the author was developing just such a scheme for providing
AProlog [73, 83] with a form of modularity: the theory quickly settled on the need
to use intuitionistic logic and not classical logic in order to achieve this approach to
modularity [60, 62]. By the mid-1980s, intuitionistic logic and its proof theory had
had a long development, much of that was in the general area of the Curry-Howard
Isomorphism (proofs-as-programs). As it turns out, at about this same time, there was
nearly simultaneous development of computational uses of large parts of intuitionistic
logic that fell outside the Curry-Howard Isomorphism and more squarely in the proof-
search framework. These various developments include the following.

— The N-Prolog language of Gabbay and Reyle [25, 26] was designed to allow
hypothetical implications in a Prolog-like setting.

— McCarty [58, 59] explored using intuitionistic logic to extend the expressiveness
of logic programs.

— Miller, Nadathur, Pfenning, and Scedrov [74, 75] developed a higher-order ver-
sion of hereditary Harrop formulas in order to support within logic programming
rich notions of abstractions, such as modules, abstract datatypes, and higher-order
programming.

— Paulson employed an intuitionistic logic to maintain proof states within the Is-
abelle theorem prover [89].

— Hallnais and Schroeder-Heister applied proof-theoretic considerations to extend
Horn clause programming in ways similar to these other approaches [33].

The simultaneous development of similar uses of intuitionistic logic within the
logic programming (proof search) setting provided a great deal of confidence that in-
tuitionistic logic and formulas with logical complexity much richer than Horn clauses
could have important applications in computational logic. Since resolution refutations
fundamentally rely on classical logic principles, the familiar framework on SLD-
resolution needed to be rejected as a framework for these newly extended logic pro-
gramming proposals. The sequent calculus provided just such a new starting point.
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Influence: Proof theory on logic programming

The sequent calculus provided a direct and straightforward characterization of
goal-directed proof search, and that provided a notion of abstract logic pro-
gramming language.

A uniform proof [74, 75] is a single conclusion (cut-free) sequent proof in which
each occurrence of a sequent whose right-hand side contains a non-atomic formula
is the conclusion of a right-introduction rule. In other words, a uniform proof is a
sequent proof such that, for each occurrence of a sequent I" - G in it, the following
conditions are satisfied:

If Gis T then that sequent is immediately proved.

If G is BAC then that sequent is inferred from I’ - Band I" - C.

If G is BV C then that sequent is inferred from either I' =B or I - C.

If G is 3x B then that sequent is inferred from I" - [t /x|B for some term r.

If G is B D C then that sequent is inferred from B,I" - C.

If G is Vx B then that sequent is inferred from I' - [c/x]B, where c is an variable
(parameter) that does not occur free in Vx B nor in the formulas in I". Gentzen
referred to such variables used in this manner as eigenvariables of the proof [28].

AN S e

The notion of a uniform proof reflects the search instructions associated with
the logical connectives. The logic program is only examined (via left-introduction
rules) in the case that a non-logical symbol rises to the top of the query: such non-
logical symbols are predicates and these are given meaning (axiomatized) by the logic
program on the left-hand-side of a sequent. An abstract logic programming language
is a triple (2,%,1) such that for all finite subsets & of & and all formulas G of ¢,
Z | G holds if and only if there is a uniform proof of G from &7. It is in the following
sense that uniform proofs are intended to capture the notion of goal-directed search.
The impact on the search for proofs is fixed by the top-level logical connective of the
goal. We only examine the program when there is a non-logical symbol at the head
of the sequent.

One example of an abstract logic programming language is the one based on
Horn clauses. In particular, both the triples (2;,%;,F¢) (capturing first-order Horn
clauses) and (2»,%,¢) (capturing higher-order Horn clauses), are abstract logic
programming languages. This statement is also true if classic provability is replaced
by intuitionistic provability in both of these triples.

The following is a more complex example of an abstract logic programming lan-
guage. Let A be a syntactic variable that ranges over first-order atomic formulas. Let
% and 25 be the sets of all first-order G- and D-formulas defined by the following
rules:

G=T|A|GING|GIVGy|V¥xG|3xG|DDG,
D:=A|GDA|VxD|DyAD,.

Formulas in &5 are called first-order hereditary Harrop formulas. It is proved in [74]
that the triple (Z3,%;,1) is an abstract logic programming language.
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Let 7% be the set of all A-normal terms that do not contain occurrences of the
logical constants D and L. Let A and A, be syntactic variables denoting, respectively,
atomic formulas and rigid atomic formulas in J#4. Let ¥4 and %, be the sets of G-
and D-formulas that are defined by the following mutual recursion:

G:=T|A|GIAGy|GIVG,|¥xG|3xG|D>G
D:=A,|GDA,|VxD|D|AD;.

The formulas of 2, are called higher-order hereditary Harrop formulas and it is
proved in [74] that the triple (Za,%4,F/) is an abstract logic programming language.

As in the case of Horn clauses, proof search with hereditary Harrop formulas
yields uniform proofs that are organized into alternating phases: one phase reduces
goal formulas (using right-introduction rules), and one phase performs backchaining
steps (using left-introduction rules and the initial rule) [64, 74].

The AProlog programming language was designed to implement most of the intu-
itionistic theory of higher-order hereditary Harrop formulas: a key design goal of that
language was to demonstrate the abstraction mechanisms that those formulas pro-
vide [73, 83]. Since there is a significant gap between having a description of a logic
programming language in a sequent calculus and an actual implementation of that
language, there were a number of significant developments that needed to be made
prior to having comprehensive implementations of that language, of which there are
two currently, namely Teyjus [85, 94] and ELPI [19]. The description of a unification
algorithm that works well in the sequent calculus where eigenvariables are present
was one of those challenges [64, 65, 82]: such unification made it possible to avoid
the problematic use of Skolem terms.

At the end of Section 6 we described the dynamics of proof search with Horn
clauses as flat since the logic program used during proof search never changes during
a computation. When we examine the dynamics of change using hereditary Harrop
formulas, we note that the left-hand side of sequents (the logic program) can grow
monotonically as we move from the conclusion to premises.

The overview of structuring mechanisms for logic programming given in [11]
provides still additional examples of how proof theory considerations can provide or
can influence this aspect of designing logic programming languages.

8 Linear Logic and Logic Programming

As we noted in the previous section, the use of intuitionistic logic and hereditary Har-
rop formulas allowed logic programs to be seen as a structure that grows in a stack-
based discipline as the search for proofs moves from the conclusion to premises.
While such growth in logic programs is an improvement over what was available us-
ing only Horn clauses, many additional problems existed in computational logic that
were just out of reach of having an elegant solution using intuitionistic logic.

For example, in the area of natural language, a good treatment of filler-gap de-
pendencies (used to characterize such natural language constructs as questions and
relative clauses) was hard to achieve using standard Horn clause-based logic gram-
mars and lead to the development of the slashed non-terminal in the framework of



18 Dale Miller

Generalized Phrase Structure Grammar (GPSG) [27]. A different approach using in-
tuitionistic logic made it possible to identify the linguistic notion of gap introduction
with hypothesis introduction that arises from an implicational goal. As reported by
Pareschi [87, 88], that technique provided an elegant new perspective to that linguis-
tic phenomenon but it also failed to treat known restrictions on the distribution and
use of gaps-as-hypotheses: in particular, gaps needed to be used and they could not
appear in certain parts of phrases.

For another example, Hodas [39, 41] described how it was possible to capture
partially the notion of objects-with-state within logic programming. Again, intuition-
istic logic provides a partial solution. In particular, it is possible to store the value
of a register as an atomic formula among the other clauses of a logic program. For
example, the atomic formula reg(4) can encode the fact that a register has value 4.
Unfortunately, there is no way to have that atomic formula replaced with, say, reg(5)
within intuitionistic logic. More specifically, it is not possible to write a logic program
clause such that backchaining on it would justify the following inference.

Poreg(5) A
P.reg(4)FA
where both A and A’ are atomic formulas. The best one can do within intuitionistic
logic is to move to a context in which both atoms reg(4) and reg(5) are present: that
is, the following inference is possible.
P reg(4),reg(5) A
P.reg(4)F A

Unfortunately, this situation (where a register has two different values) does not pro-
vide a proper model of a register.

With the appearance of Girard’s linear logic [30], it was possible to extend the
design of previous logic programming languages so that they could solve the cited
problems in both the gap-threading and the state-encapsulation situations. Logic pro-
gramming provided other important examples that helped to convince a number of
computer scientists of the value of linear logic to computational logic: beyond the
two examples mentioned above, additional examples appeared in the areas of concur-
rency [48, 66], Petri nets [21, 45], and theorem proving [40].

Influence: Logic programming on proof theory

A large set of examples arose from the logic programming community, in which
linear logic was immediately applicable. Such examples increased the confi-
dence in the utility of linear logic in computational logic.

Linear logic also provided a richer analysis of the role of structural rules in
Gentzen’s sequent calculus and, as a result, greatly improved our understanding of
proof search. For example, if one can restrict the uses of the structural rule of con-
traction (which can be done in linear logic), one can often turn a naive proof search
mechanism into a complete decision procedure.
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After Girard’s introduction of linear logic in 1987, it became clear that there
should be linear logic programming languages: the logic programming paradigm
lacked certain features (e.g., side-effects and communications) which linear logic
seems capable of capturing.

Among the first linear logic programming languages designed, there was a di-
vergence along two axes. One of the most challenging connectives in linear logic
for computer scientists to appreciate was the multiplicative disjunction 7. For the
proof theorist, this connective was not a challenge since it could be identified with
the comma appearing on the right of Gentzen’s multiple conclusion sequents. It could
also be seen as the de Morgan dual of the multiplicative conjunction ®. In computa-
tional logic, however, intuitions coming from intuitionistic logic can make it difficult
to find computational meaning for % since Gentzen identified intuitionistic logic with
single conclusion sequents. While an early proposal for a linear logic programming
language avoided using 7, the first linear logic programming language actually made
prominent use of that connective.

8.1 Linear Objects

Historically speaking, the first proposal for a linear logic programming language
was LO (Linear Objects) by Andreoli and Pareschi [4, 5]. LO is an extension to
the Horn clause paradigm in which, roughly speaking, the role of atomic formu-
las in Horn clauses is generalized to multisets (built using %) of atomic formulas.
In LO, backchaining captures multiset rewriting and the dominant examples of LO
were taken from those domains where multiset rewriting had proved useful, namely,
object-oriented programming and the coordination of processes. Program clauses in
LO are formulas of the form

V(G == Gp— (A1 B ---BAp)).

Here p > 0 and m > 0; occurrences of < are either occurrences of —o (linear impli-
cation) or = (intuitionistic implication); Gy, ... G,, are built from 1, %, ?, T, &, and
V;and Ay,...A,, are atomic formulas. The two implications are related by the famil-
iar linear logic equivalence between B = C and (! B) —o C. By applying (uncurrying)
equivalences, the displayed formula above can be rewritten as

W(§G1 @+ @8§Gp) — (A1 B - B Ap)]

where §G; is either G; if G; is to the immediate left of a —o or is ! G; if G; is to the
immediate left of a =. Note that if this displayed formula contained no occurrences
of %% and = then it is an easy matter to view that formula as a simple Horn clause.

8.2 Lolli

The Lolli logic programming language was introduced by Hodas and the author as
a linear logic extension to the intuitionistic theory of hereditary Harrop formulas. In
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THE RIGHT INTRODUCTION RULES
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Fig. 2 The proof system for Lolli. The rule for universal quantification has the proviso { that y is not free
in any formula of the conclusion. In the V-left rule, the proviso i requires 7 to be a term of type 7.

particular, Lolli can be seen as a revision and small extension to the logic of heredi-
tary Harrop formulas (Section 7). For our purposes here, the following definitions of
goal formulas and program clauses are simplified slightly from the definition found
in [40].

G:=A|G &G, |VxG|D=G|D—oQG,
D=A|G—OD|G:>D|VXD|D]&D2

Note that the intuitionistic conjunction used in hereditary Harrop formulas corre-
sponds here to &. A more significant difference is that both —o and = are available in
the positions where only occurrences of the intuitionistic implication appear in hered-
itary Harrop formulas. (Note that there is no difference here between G-formulas and
D formulas: they are both formulas freely generated using &, —o, =, and V.)

For the benefit of the reader familiar with the sequent calculus, we briefly describe
a proof system for Lolli since it illustrates two innovations that arise from accounting
for proofs in linear logic. The inference rules for Lolli are presented in Figure 2. This
proof system differs from those used by Gentzen in [28] and Girard in [30] in two
important ways.

1. The left-hand context is divided into two parts ¥;A (where both ¥ and A are
multisets of D formulas). The context ¥ denotes those formulas that can be used
any number of times during the search for a proof while those in A are controlled
is the sense that the structural rules of contraction and weakening are not applica-
ble to them. As a result, the context ¥ is often called the unbounded context and
A is often called the bounded context.

D

2. There are two kinds of sequents written as ¥;A - G and ¥;A — A (where, A

is restricted to being an atomic formula). These sequents can be mapped into the
more usual linear logic sequents by rewriting

D
Y AFGas !P,A+-G and V;AF—Aas !V A DFA.
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(Here, ! is defined to be the multiset {!D | D € ¥'}.) The formula that is placed
on top of the turnstile in the second class of sequents is the formula involved
with backchaining. The left-introduction rules are only applied to the formula
that labels such a turnstile.

In every inference rule, it is the case that the unbounded context of the conclusion
is a subset of the unbounded contexts over every premise sequent. Such an invariant
is not true of the bounded context: in particular, when the inference rule is one of the
left-introduction rules for —o and =-. In the case of the left-introduction for —o, the
bounded context in the conclusion must be divided into two multisets A; and A, and
the two premises use each one of these splits. Thus, as one moves from a conclusion
to a premise, the bounded contexts of sequents can reduce. In the case of the left-
introduction for =, the bounded context in the conclusion must again be split but the
only legal split is one where the left premise must have an empty bounded context:
that is, the entire bounded context must move to the right premise.

The use of two different kinds of sequents allows for a succinct presentation of
the two phase construction of proofs that we have already mentioned. Sequents of the
form ¥;A F G, where G is not atomic, can only be proved by a right-introduction
rule: hence, such sequents are used to describe the goal directed phase. The sequent
Y;A A, where A is an atomic formula, can only be proved by first choosing a for-
mula D from either ¥ or from A. In the decide! rule, D is chosen from the unbounded
context and D remains in the unbounded context of the premise sequent. In the decide
rule, D is chosen from the bounded context and that occurrence of D no longer re-
mains in the bounded context of the premise. In effect, the decide! rule contains a
built-in application of the contraction rule: note also that this rule is the only explicit
occurrence of contraction in this proof system.

The form of the init rule in Figure 2 reveals that it can only apply in the backchain-
ing phase, only when the bounded context is empty, and only when the formula la-
beling the sequent arrow must be the same atomic formula as the conclusion of the
sequent.

We can now illustrate how we can model the change in a register’s value. Assume
that ¥ contains the formula

D =VNVG[reg(N) —o (reg(N+1) -0 G) —o inc(G))]
Using the proof rules in Figure 2 we can write the following partial derivation.

Y;A,reg(5) -G

inc(G)
reg(4) Y;AlFreg(5)—G Y¥;- — inc(G)
¥;- — reg(4) >
Y;reg(4) b reg(4) ¥;A + inc(G)

D
¥;A,reg(4) — inc(G)
¥;A reg(4) F inc(G)
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Here, D' is the formula (reg(5) —o G) —o inc(G). Thus, the inference that this deriva-
tion gives rise to is simply
YA reg(5) -G
¥;A,reg(4) - inc(G)

Critical for the correct modeling of the change in state of this register is the splitting
of the linear context in the —o left introduction rule between its two premises and the
fact that the linear context must be empty in the initial rules.

8.3 Goal-directed search with multiple conclusion

A natural question is whether or not it is possible to view LO and the Lolli as sub-
languages of a larger linear logic programming language. While Lolli contains oc-
currences of many linear logic connectives, it does not allow occurrences of %, its
unit L, and its associated exponential ?. One thing to note is that if one adds to Lolli
just L, all connectives of linear logic can then be defined. For example, B % C can
be defined as (B—o L) —o C and ?B can be defined as (B—o 1) = L. In [67, 68],
the author proposed a new logic programming language, called Forum, which results
from adding |, %%, and ? to Lolli. Thus, Forum is essentially a presentation of all of
linear logic as a logic programming language.

The most direct way to view all of linear logic as a logic programming language
suggests attempting to generalize the notion of uniform proof from single-conclusion
to multiple-conclusion sequents. This can be done if we insist that goal-reduction
should continue to be independent of not only the logic program but also other goals,
i.e., multiple goals should be reducible simultaneously. Although the sequent calculus
does not directly allow for simultaneous rule application, it can be simulated easily
by referring to permutations of inference rules [47]. In particular, we can require
that if two or more right-introduction rules can be used to derive a given sequent,
then all possible orders of applying those right-introduction rules can be obtained
from any other order simply by permuting right-introduction inferences. It is easy to
see that the following definition of uniform proofs for multiple-conclusion sequents
generalizes that for single-conclusion sequents: a cut-free, sequent proof = is uniform
if for every subproof ¥ of = and for every non-atomic formula occurrence B in the
right-hand side of the end-sequent of ¥, there is a proof ¥’ that is equal to ¥ up to
permutation of inference rules and is such that the last inference rule in ¥’ introduces
the top-level logical connective occurring in B [66, 68]. The notion of an abstract
logic programming language can be generalized to include this extended notion of
uniform proof.

8.4 Focusing
As it turns out, the completeness of multiple conclusion uniform proofs for Forum

had actually been proved a couple of years before the introduction of Forum. The
Ph.D. dissertation of Andreoli [2] introduced a new sequent calculus proof system
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for linear logic, called a focused proof system, that was composed of two kinds of se-
quents and two phases of proof construction. That proof system resembles the proof
system in Figure 2 and the formula that is placed over the turnstile in that figure
corresponds to the focus that exists in one of the phases of focused proofs. The com-
pleteness of focused proofs (see also [3]) provided the completeness result for Forum
[68] (see also [10]). However, Andreoli’s presentation of a focused proof system of
linear logic provided important and deeper insights into the structure of proof search
in the sequent calculus. In particular, Andreoli’s analysis of the two phases of rule
application was based on a notion of polarity of logical connectives and that polarity
is flipped by de Morgan duality. (Polarity of a logical connective is related to whether
or not its right introduction rule is invertible or not.) The use of two phases of proof
construction was a powerful addition to the results of pure proof theory. Several sub-
sequent efforts have been made to provide focused proof systems for classical and
intuitionistic logic all of which appear to be captured by the LKF and LJF focused
proofs system of Liang and the author [54].

Influence: Logic programming on proof theory

When the notion of uniform proof, with its two phases for structuring proof
search, was extended to linear logic, a richer analysis of proof structure was
developed using focused proofs.

8.5 Other linear logic programming languages

Besides LO, Lolli, and Forum, various other subsets of linear logic have been stud-
ied as logic programming languages. The Lygon system of Harland and Pym [36] is
based on a notion of multiple-conclusion goal-directed proof search different from
the one described above [93]. The operational semantics for proof search in Lygon is
different and more complex than the alternating of goal-reduction and backchaining
found in, say, Forum. Various other specification logics have also been developed,
often designed directly to deal with specific application areas. In particular, the lan-
guage ACL by Kobayashi and Yonezawa [48, 49] captures simple notions of asyn-
chronous communication by identifying the primitives for sending and receiving of
messages with two complementary linear logic connectives. Lincoln and Saraswat
have developed a linear logic version of concurrent constraint programming [55, 98],
and Fages, Ruet, and Soliman have analyzed similar extensions to the concurrent
constraint paradigm [22, 96].

Let G and H be formulas composed of L, %%, and V. Closed formulas of the
form Vx[G —o H] (where H is not L) have been called process clauses in [66] and
are used there to encode a calculus similar to the 7-calculus: the universal quantifier
in goals are used to encode name restriction. These clauses, when written in their
contrapositive form (replacing, for example, %% with ®), have been called linear Horn
clauses by Kanovich and have been used to model computation via multiset rewriting
[44]. A generalization of process clauses was presented in [69] and was applied to the
description of security protocols.
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Some aspects of dependent typed A-calculi overlap with notions of abstract logic
programming languages. Within the setting of intuitionistic, single-side sequents,
uniform proofs are similar to S7-long normal forms in natural deduction and typed
A-calculus. The LF logical framework [37] can be mapped naturally [23] into a
higher-order extension of hereditary Harrop formulas [74]. Inspired by such a connec-
tion and by the design of Lolli, Cervesato and Pfenning developed a linear extension
to LF called Linear LF [13].

An overview of linear logic programming up until 2004 can be found in [71].

Influence: Proof theory on logic programming

Linear logic allowed for the development of new logic programming languages
that modularly extend and enhance previously designed logic programming
languages.

9 First-order and higher-order quantification

While most work in proof theory and logic programming has addressed only first-
order quantification, several researchers have defined and implemented logic pro-
gramming languages that include higher-order quantification.

Church, the inventor of the A-calculus, is also the inventor of the most popu-
lar version of higher-order logic in use in computational logic presently. In particular,
Church’s Simple Theory of Types (STT) [15] defines the syntax of both terms and for-
mulas using simply typed A-terms (simple types have been introduced in Section 4).
STT used only one form of binding, and that is the one used to form A-abstractions:
all other bindings—for example, the universal and existential quantifiers—are built
using the A-binder. In STT, it was possible to quantify over variables of primitive
type (first-order quantification) as well as types—such as list — list, nat — o, and
(list — 0) — o—that contain the arrow constructor and the primitive type o (higher-
order quantification).

When implementing computer systems that need to manipulate syntactic expres-
sions in artificial and natural languages, the strings containing those syntactic expres-
sions need to be parsed. The result of such a parse is generally a parse tree or abstract
syntax tree representation capturing the structure of the parsed expression. Most tradi-
tional programming languages—functional, imperative, logic—have convenient and
flexible means to process tree structures. However, a majority of syntactic expressions
that need to be parsed and manipulated contain more than recursive tree structures:
they also contain binding structures. While binding structures can, of course, be en-
coded in tree structures (using techniques such as de Bruijn’s nameless dummies [9])
no traditional programming language contains direct support for such an important
feature of many syntactic expressions.

A good starting point for treating bindings in logic programming would then seem
to involve a proper merging of Church’s logic with Gentzen’s sequent calculus. Such
a merging also involves continuing Church’s identification of bindings to one addi-
tional level. That is, term-level bindings (A-abstractions) and formula-level bindings
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(quantifiers) need to also be merged with proof-level bindings, which are the eigen-
variables of the sequent calculus. It is possible to consider eigenvariables to be bind-
ings around sequents: that is, if ¥ is a set of distinct variables then the expression
¥:I' - A can be interpreted as the formal binding of the variables in ¥ over the
formulas in both I" and A.

To illustrate this merging of bindings at these three levels, consider specifying
the binary predicate typeof whose arguments are encodings of an untyped A-term
and of a simple type, respectively. The intended meaning of this predicate is that
(typeof [B] [7]) holds if and only if the untyped A-term B can be typed with 7.
For this example, we will write [¢] to denote some encoding of untyped A-terms
into simply typed terms: the key for this encoding is that bindings in the untyped
terms are encoded as binders in the encoded terms. We also assume that there is
some encoding, also written [7], of simple type expressions into (first-order) terms.
Consider the following derivation involving the specification of typeof.

¥ ,x: A, typeof x [o] - typeof [B] [B]
¥ At Vx(typeofx [et] D typeof [B] [B])
¥ : A typeof [Ax.B] [a — B]

Informally, this partial derivation can be seen as reducing the attempt to show that the
term Ax.B has type @ — 3 to the attempt to show that if (the eigenvariable) x has type
o then B has type . In this case, the binder named x moves from ferm-level (Ax) to
Sformula-level (Vx) to proof-level (as an eigenvariable in ¥, x). Thus an integration of
Church’s STT and Gentzen’s sequent calculus supports the mobility of binders.

VR

Influence: Logic programming on proof theory

One approach to writing logic programs that manipulate bindings with data
allows bindings to move from terms, to formulas, to proofs. Proof theory can
account for this mobility of binders by identifying eigenvariables as proof-level
binders.

AProlog was the first programming language to embraced this notion of binder
mobility [ 70, 72] although this notion is also present in specification languages based
on dependently typed A-calculus [18, 37, 90]. The Isabelle theorem prover [89] also
supports binder mobility using the technical device of V-lifting to link proof-level
bindings to formula-level quantification.

10 Conclusion

There have been significant reciprocal influences between researchers working on
structural proof theory and those working on logic programming. While it is not sur-
prising to find that the older and more mature topic of proof theory provided the bulk
of that influence, it is still the case that problems identified within logic programming
forced proof theorists to deepen and extend their results. The development of two-
phase proof constructions that resulted in focused proof systems might be the most
prominent example; the encoding of binder mobility has been a second such example.
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