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Abstract Gentzen’s sequent calculi LK and LJ are landmark proof systems. They
identify the structural rules of weakening and contraction as notable inference rules,
and they allow for an elegant statement and proof of both cut-elimination and con-
sistency for classical and intuitionistic logics. Among the undesirable features of
those sequent calculi is the fact that their inferences rules are very low-level and that
they frequently permute over each other. As a result, large-scale structures within
sequent calculus proofs are hard to identify. In this paper, we present a different
approach to designing a sequent calculus for classical logic. Starting with Gentzen’s
LK proof system, we first examine the proof search meaning of his inference rules
and classify those rules as involving either don’t care nondeterminism or don’t know
nondeterminism. Based on that classification, we design the focused proof system
LKF in which inference rules belong to one of two phases of proof construction
depending on which flavor of nondeterminism they involve. We then prove that the
cut-rule and the general form of the initial rule are admissible in LKF. Finally, by
showing that the rules of inference for LK are all admissible in LKF, we can give
a completeness proof for LKF provability with respect to LK provability. We shall
also apply these properties of theLKF proof system to establish other meta-theoretic
properties of classical logic, including Herbrand’s theorem.
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1 Introduction

In his attempt to prove the Hauptsatz (cut-elimination) for both intuitionistic and
classical logics, Gentzen (1935) moved away from natural deduction to the sequent
calculus since the latter allowed for defining the structural rules of weakening and
contraction on the right-hand side of sequents. If you are only interested in cut-
elimination and consistency, then the sequent calculus, as Gentzen presented it, is
a great tool. If, however, you are working on applying logic to, say, computation,
the structure of proofs plays a central role in such applications. For example, proofs
can be used to describe programs (in a functional programming setting), and cut-
free proofs can be used to describe computation traces (in a logic programming
setting).However, it is generally difficult to gleam from sequent calculus proofs useful
structure since that calculus feels too low-level. In particular, one must usually make
numerous and tedious arguments involving the permutabilities of inference rules
(Kleene 1952) to extract structural information from sequent calculus proofs. For
an example of reasoning with inference rule permutations in the sequent calculus,
see the proofs in (Miller 1989, Miller et al. 1991) where sequent calculus proofs are
used to describe a logic programming language.

In this paper, we examine a focused version of the LK sequent calculus proof
system, called LKF (Liang and Miller 2009). The key properties of LKF—cut-
elimination and relative completeness to LK—have been proved elsewhere (Liang
and Miller 2009; 2011) by using complex and indirect arguments involving linear
logic (Girard 1987), a focused proof system for linear logic due to Andreoli (1992),
and a focused proof systems LJF for intuitionistic logic. Here, we present LKF from
first principles: we make no use of intuitionistic or linear logics nor the meta-theory
of other proof systems.

After presenting the LK inference rules, we describe some of the shortcomings
of that proof system in Section 2. In Section 3, that criticism of LK motivates the
design of LKF. We then prove the following results about LKF.

1. The four variants of the cut rule in LKF are all admissible in (cut-free) LKF
(Section 4).

2. While the initial rule in LKF is limited to atomic formulas, the general form of
the initial rule is admissible (Section 5).

3. The rules of LK are admissible in LKF (Section 7).

Taken together, these results can be used to prove that LKF is complete for LK.
A similar proof outline for proving the completeness of focused proof systems has
been used by Laurent (2004) for linear logic, by Chaudhuri et al. (2008b) for an
intuitionistic version of linear logic, and by Simmons (2014) for a propositional
intuitionistic logic. The proofs of these meta-theoretic results for LKF rely almost
exclusively on tedious arguments about the permutability of inference rules. One of
the design goals forLKF has been to build a calculus that can be used directly to prove
other proof-theoretic results without the need to involve such tedious permutation
arguments. We illustrate this principle by proving the admissibility of cut in cut-free
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Structural rules

Γ, �, � ` Δ
Γ, � ` Δ cL

Γ ` Δ, �, �
Γ ` Δ, � cR Γ ` Δ

Γ, � ` Δ wL Γ ` Δ
Γ ` Δ, � wR

Identity rules

� ` � init
Γ ` Δ, � Γ, � ` Δ′

Γ, Γ′ ` Δ, Δ′ cut

Introduction rules

Γ, �8 ` Δ
Γ, �1 ∧ �2 ` Δ

∧8!
Γ ` Δ, � Γ ` Δ, �
Γ ` Δ, � ∧� ∧'

Γ ` Δ, t t'

Γ, � ` Δ Γ, � ` Δ
Γ, � ∨� ` Δ ∨!

Γ, f ` Δ f !
Γ ` Δ, �8

Γ ` Δ, �1 ∨ �2
∨8'

Γ ` Δ, � Γ, � ` Δ′
Γ, Γ′, � ⊃ � ` Δ, Δ′ ⊃ !

Γ, � ` Δ, �
Γ ` Δ, � ⊃ � ⊃ '

Γ, [B/G ]� ` Δ
Γ, ∀G.� ` Δ ∀!

Γ ` Δ, [H/G ]�
Γ ` Δ, ∀G.� ∀'

Γ, [H/G ]� ` Δ
Γ, ∃G.� ` Δ ∃!

Γ ` Δ, [B/G ]�
Γ ` Δ, ∃G.� ∃'

Fig. 1 The rules for LK. In the ∀' and ∃! rules, the variable H is not free in the conclusion.
In the ∧8! and ∨8' rules, 8 ∈ {1, 2}.

LK (Section 9.1) and by proving Herbrand’s theorem (Section 9.3), both proofs do
not explicitly involve permutation arguments.

2 The LK proof system

Formulas for first-order classical logic are defined as follows. Atomic formulas are of
the form %(C1, . . . , C=), where = ≥ 0, % is a predicate of arity =, and C1, . . . , C= is a list
of first-order terms. Formulas are built from atomic formulas using both the logical
connectives ∧, t, ∨, f, ⊃ as well as the two first-order quantifiers ∀ and ∃. We shall
assume the usual treatment of bound variables and substitution: in particular, the
expression [B/G]� denotes the result of performing a capture-avoiding substitution
of term B for all occurrences of the variable G in the formula �.

Figure 1 presents the LK sequent proof calculus of Gentzen (1935). The main
differences between the proof system in that figure and Gentzen’s presentation of
LK are the following.

1. In Gentzen’s system, contexts are lists of formulas, and the exchange rule, which
allowed two adjacent formulas to be swapped, was used. In Figure 1, contexts
(Γ and Δ) are multisets of formulas and the exchange rule is not used.

2. Gentzen did not have the logical units for true and false while here they are
explicitly written as t and f: they also have associated inference rules.
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3. Gentzen’s system contained negation as a primitive connective while we shall
treat it as an abbreviation: in particular, ¬� is defined to be � ⊃ f.

For this paper, we shall make the following distinction between proof and deriva-
tion. By proof, we mean a tree structure of inference rules and sequents such that
all premises are closed, in the sense that the inference rules at the leaves have zero
premises (such as the initial rule). By derivation, we mean a similar tree structure
of inference rules and sequents, but we do not assume that all leaves are closed:
derivations can have unproved premises.

Gentzen’s sequent calculus was designed to support the proof of cut-elimination
(for both classical and intuitionistic logics). As we suggested in the introduction,
sequent calculus is difficult to apply in a number of application areas. We describe
four major shortcomings of the LK sequent calculus.

2.1 The collision of cut and the structural rules

Consider the following instance of the cut rule.

Γ ` � Γ′, � ` �
Γ, Γ′ ` � cut (†)

If the right premise is proved by a left-contraction rule from the sequent Γ′, �, � `
�, then cut-elimination proceeds by permuting the cut rule to the right premises,
yielding the derivation

Γ ` �
Γ ` � Γ′, �, � ` �

Γ, Γ′, � ` � cut

Γ, Γ, Γ′ ` � cut

Γ, Γ′ ` � cL.

(An inference figure written with double lines indicates possibly several applications
of the rules listed as its justification.) In the intuitionistic variant of the sequent
calculus, it is not possible for the occurrence of � in the left premise of (†) to be
contracted since two formulas are not allowed on the right of the sequent arrow. If
the cut inference in (†) takes place in the classical proof system LK, it is possible
that the left premise is the conclusion of a contraction applied to Γ ` �,�. In that
case, cut-elimination can also proceed by permuting the cut rule to the left premise.

Γ ` �,� Γ′, � ` �
Γ, Γ′ ` �, � cut

Γ′, � ` �
Γ, Γ′, Γ′ ` �, � cut

Γ, Γ′ ` � cL, cR
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Thus, in LK, it is possible for both occurrences of � in (†) to be contracted and,
hence, the elimination of cut is non-deterministic since the cut rule can move to both
the left and right premises.

Such nondeterminism in cut-elimination is even more pronounced when we con-
sider the collision of the cut rule with weakening. Consider the derivation (taken
from (Girard et al. 1989; Appendix B)).

Ξ1
` �
` �, � wR

Ξ2
` �
� ` � wL

` �, � cut

` � cR

Cut-elimination here can yield either Ξ1 or Ξ2: thus, nondeterminism arising from
weakening can lead to completely different proofs of �. This kind of example does
not occur in the intuitionistic (single-sided) version of the sequent calculus.

These problems with cut-elimination and the structural rules were noted in Danos
et al. (1997) and by Lafont in (Girard et al. 1989). Lafont concludes that in order to
avoid this problem with cut-elimination, one could chose from among two solutions:
either make the sequent calculus asymmetric (leading to intuitionistic logic where
the structural rules are not available on the right) or forbid all structural rules (leading
to linear logic where structural rules are not available on the left and right). It is
possible, however, to remain in classical logic by employing a third solution that
uses both polarization and focused proof systems. Such an approach was proposed
by Girard (1991) in his LC proof system and by Danos et al. (1997) in their LK[

proof system. In this paper, we present the LKF proof system, which is also based
on the notions of polarization and focusing. As we shall see, the problems with the
nondeterminism in cut-elimination caused by the use of structural rules in classical
logic disappears inLKF for two reasons. First, weakening will be allowed only in the
initial rules of LKF where it cannot cause problems with cut-elimination. Second,
a cut takes place between a positive and a negative formula (the cut-formula and its
De Morgan dual) and, in LKF, contraction is only applied to positive formulas.

2.2 Permutations of inference rules

Adominating feature of sequent calculus proofs inLK is that many pairs of inference
rules permute over each other. For example, when an occurrence of ⊃ ! is below
∀', as in the derivation

Γ1 ` �,Δ1

Γ2, � ` [H/G]�,Δ2
Γ2, � ` ∀G.�,Δ2

∀'

Γ1, Γ2, � ⊃ � ` ∀G.�,Δ1,Δ2
⊃ !,

the order of these two rules can be switched to form the derivation
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Γ1 ` �,Δ1 Γ2, � ` [H/G]�,Δ2
Γ1, Γ2, � ⊃ � ` [H/G]�,Δ1,Δ2

⊃ !

Γ1, Γ2, � ⊃ � ` ∀G.�,Δ1,Δ2
∀'.

Similarly, the following two deviations are such that permuting the inference rules
in one derivation yields the other derivation.

Γ, �8 , � 9 ` Δ
Γ, �8 , �1 ∧ �2 ` Δ

Γ, �1 ∧ �2, �1 ∧ �2 ` Δ

Γ, �8 , � 9 ` Δ
Γ, �1 ∧ �2, � 9 ` Δ

Γ, �1 ∧ �2, �1 ∧ �2 ` Δ

The existence of such permutations of inference rules suggests that uncovering
structures in proofs will always be disturbed by the possibilities of such shallow
rearrangements of inference rules. For such reasons, people have often argued that
the “essence” of proof structures is better captured in some radically different proof
systems, such as, for example, expansion trees (Miller 1987), proof nets (Girard
1987, Laurent 2011), and deep inference (Guglielmi 2007). In this paper, we also
replace Gentzen-style sequent calculus with something else, namely LKF, but this
time, that replacement will still resemble sequent calculus but with more structure
added to both sequents and inference rules.

An introduction rule of LK is invertible if whenever there is an LK proof of
its conclusion, there are LK proofs of the premises. When attempting to build a
proof from the bottom-up, invertible rules can always be applied without losing
provability. If an introduction rule is not invertible, it is non-invertible. The LK
introduction rules can be classified as follows: the invertible rules are ∧', t', ∨!,
f!, ⊃ ', ∀', ∃! while the non-invertible rules are ∧8!, ∨8', ⊃ !, ∀!, ∃'. Note
that every connection has an invertible introduction rule on one side of the `, and
every occurrence of the corresponding introduction rule on the other side is non-
invertible. (This last statement is vacuously true for t and f since they have zero
introduction rules on the left and right, respectively.) Observing the invertibility of
introduction rules allows us to give some structure to the permutation of inference
rules. In particular, an invertible rule above any other rule can always be permuted
down. Furthermore, two non-invertible rules, one above the other, can always be
permuted as well.

We make one additional observation: if an occurrence of a non-atomic formula
on the left or right of a sequent can be the consequence of an invertible rule,
that formula occurrence never needs to have a structural rule applied to it. For
example, the contraction-left rule never needs to be applied to a disjunction since
the disjunction-left rule is invertible.

These three observations about invertible and non-invertible rules—the left-
right duality regarding invertibility; the permutations involving invertible and non-
invertible rules; and the connection between invertible rules and the structural rules—
will all be made explicit of the design of the LKF proof system.
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Γ, �1, �2 ` Δ
Γ, �1 ∧ �2 ` Δ

∧! Γ ` Δ
Γ, t ` Δ t!

Γ ` Δ, � Γ′ ` Δ′, �
Γ, Γ′ ` Δ, Δ′, � ∧� ∧' · ` t t'

Γ, � ` Δ Γ′, � ` Δ′
Γ, Γ′� ∨� ` Δ, Δ′ ∨! f ` · f!

Γ ` Δ, �1, �2
Γ ` Δ, �1 ∨ �2

∨' Γ ` Δ
Γ ` Δ, f f'

Fig. 2 The introduction rules for conjunction, disjunction, and their units using multiplicative
instead of additive rules.

2.3 Additive and multiplicative rules and connectives

The LK rules that have two premises can be classified as either additive, in which
case the side formulas (Γ, Δ) are the same in the conclusion as well as in both
premises, or multiplicative, in which case the side formulas in the premises (Γ, Δ
and Γ′, Δ′) are accumulated to form the side formulas in the conclusion. Of the four
inference rules in Figure 1 with two premises, the cut rule and the implication-left
rule are multiplicative while the disjunction-left rule and the conjunction-right rule
are additive.

Consider the alternative inference rules in Figure 2 for conjunction and disjunc-
tion. The rules in that figure with two premises are multiplicative. We can make the
following observations.

1. The rules above are inter-admissible, in the sense of preserving the provability
of sequents, with those for the same connectives given in Figure 1. Establishing
that fact requires using the structural rules of weakening and contraction.

2. The∧' rule in Figure 1 is invertible while the corresponding∧' rule in Figure 2
is not invertible. Similarly, the ∨8' rules in Figure 1 are not invertible while the
corresponding ∨' rule in Figure 2 is invertible.

3. If we are keen to separate the roles of structural rules from cut-elimination, then
we should not mix the various rules in Figures 1 and 2. For example, if we
replace the ∧8! rules in Figure 1 with ∧! in Figure 2, then the proof that a cut
of a conjunction can be eliminated will necessarily use a structural rule.

Although Gentzen used the additive rules for conjunction and disjunction, there
are reasons to admit other choices. For example, it is a popular choice to select in-
vertible right introduction rules for both conjunction and disjunction, which means
selecting the additive conjunction and the multiplicative disjunction. Ketonen intro-
duced such a variant of Gentzen’s original calculus and used it to give “a strikingly
elegant proof of completeness” (von Plato 2012). People working in automated
theorem proving often use the invertible rules since it simplifies implementations
of proof search. In particular, it is possible to define one-side sequent systems for
classical logic in such a way that all (right) introduction rules are invertible except
for the existential introduction rule. As a result, proof search algorithms can limit
backtracking to only the treatment of existential quantifiers.

The LKF proof system contains both the additive and multiplicative versions of
conjunction and disjunction (and their units).
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2.4 The need for synthetic inference rules

Our final criticism of LK is that its inference rules are too small, especially for
applications involving theories. For example, assume that we are working with a
theory (a set of assumptions) that has an axiom that declares that the binary predicate
path is transitive: that is, that the theory contains the formula

∀G∀H∀I (path(G, H) ⊃ path(H, I) ⊃ path(G, I)).

If that formula is invoked in anLK proof, there will be a minimal of five introduction
rules involved in that invocation. That seems unfortunate since it is more natural to
view that formula as denoting one of the following inference rules.

Γ ` Δ, path(G, H) Γ ` Δ, path(H, I)
Γ ` Δ, path(G, I) or

path(G, H), path(H, I), path(G, I), Γ ` Δ
path(G, H), path(H, I), Γ ` Δ

.

These synthetic rules would be a more appropriate way to invoke the transitivity
axiom. Such synthetic rules have been addressed before in the literature, particularly
as a back-chaining inference rule (Hallnäs and Schroeder-Heister 1990, Miller et al.
1991) or as a forward-chaining inference rule (Negri and von Plato 1998). One of
the immediate applications of LKF is as a formal framework for computing and
justifying the addition of such synthetic inference rules to LK.

3 The LKF proof system

The LKF proof system does not deal with formulas but with polarized formulas:
these are built from atomic formulas and negated atomic formulas (collectively called
literals), and polarized logical connectives as well as the first-order quantifiers ∀ and
∃. The polarized logical connectives come in two flavors: the positive connectives
are 5 +, ∨+, C+, ∧+, and ∃ while the negative connectives are C−, ∧−, 5 −, ∨−, and ∀.

Literals are also assigned a polarity as follows. An atomic bias assignment is a
function X(·) that maps atomic formulas to the set of two tokens {+,−}: if X(�) is
+ then that atomic formula is positive and if X(�) is − then that atomic formula is
negative. We extend X(·) to literals by setting X(¬�) to be the opposite polarity of
X(�). We may ask that all atomic formulas are positive, that they are all negative,
or we can mix polarity assignments. In particular, the atomic bias assignment X+(·)
assigns all atoms the positive polarity while X−(·) assigns all atoms the negative
polarity. We shall often suppress explicit reference to atomic bias assignments,
assuming that they have been specified and fixed. The only restriction we impose
on atomic bias assignments is that they are stable under substitution: that is, for all
atomic formulas � and all first-order substitutions, X(�) = X(\�). This restriction
is equivalent to saying that the value of X(·) is determined by the predicate that is
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the top-level symbol of �: that is, if � and �′ are two atoms formed with the same
predicate, then X(�) = X(�′).

A polarized formula is positive if it is a positive literal or has a top-level positive
connective (i.e, it is of the form �∧+ �, �∨+ �, ∃G.�, C+ or 5 +); similarly, a formula
is negative it is a negative literal or has a top-level negative connective.

Polarized formulas are in negation normal form (nnf), meaning that there is no
occurrences of implication ⊃ and that the negation symbol ¬ has only atomic scope.
When the negation symbol¬ is usedwith the non-atomic polarized formulas ofLKF,
we shall view it as the following function that transforms that polarized formula to
its De Morgan dual.

Definition 1 The negation symbol ¬ is defined as the following function when
applied to non-atomic polarized formulas.

• ¬¬0 = 0 for atomic formula 0
• ¬(� ∧+ �) = ¬� ∨− ¬�, ¬(� ∨− �) = ¬� ∧+ ¬�
• ¬(� ∨+ �) = ¬� ∧− ¬�, ¬(� ∧− �) = ¬� ∨+ ¬�
• ¬∃G.� = ∀G.¬�, ¬∀G.� = ∃G.¬�

It is easily shown that ¬¬� = � for all polarized formulas �. Clearly, negation
is treated differently between unpolarized formulas (where it is an abbreviation for
“implies false”) and polarized formulas (where it computes the De Morgan dual).

The sequent calculus LKF for polarized formulas is presented in Figure 3: this
presentation is a simplification of our original presentation given in (Liang andMiller
2009). This proof system uses one-sided sequents, but of two varieties, namely,
` Γ ⇑ Θ and ` � ⇓ Θ, where Γ is a multiset of formulas,Θ is a set of formulas, and �
is a single formula. In notation such as ` Γ, Γ′ ⇑ Θ,Θ′, the multiset Γ, Γ′ represents
the multiset sum of Γ and Γ′ while the set Θ,Θ′ represents the union of the two sets
Θ and Θ′: it is, of course, possible for Θ and Θ′ to share a non-empty intersection.
When moving a collection of formulas from the left to the right of ⇑, we coerce
multisets into sets in the obvious way. Note that by inspection, the set of formulas
on the right of the double arrows (⇑ and ⇓) in the conclusion of an inference rule is
always a subset of formulas on the right of the double arrows in the premises. We
say that the polarized formula � has an LKF proof if the sequent ` � ⇑ · has a proof
using the inference rules from Figure 3.

We borrow the terminology asynchronous and synchronous rules from Andreoli
(1992). A derivation composed only of asynchronous rules and the store rule will
be called an asynchronous phase, and a derivation composed only of synchronous
rules and the init rule will be called a synchronous phase. The sequents in an
asynchronous phase all involve ⇑-sequents while the sequents in a synchronous
phase all involve ⇓-sequents. An LKF proof is composed of alternations of these
two kinds of phases. In particular, the decide rule connects a synchronous phase
above its premise with an asynchronous phase below its conclusion, and the release
rule connects an asynchronous phase above its premise with a synchronous phase
below its conclusion.

The asynchronous phase can be used to encapsulate what is often called don’t
care nondeterminism. That is, if we consider the asynchronous phase as a large scale
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Asynchronous introduction rules

` C−, Γ ⇑ Θ C−
` �, Γ ⇑ Θ ` �, Γ ⇑ Θ
` �∧− �, Γ ⇑ Θ ∧−

` Γ ⇑ Θ
` 5 −, Γ ⇑ Θ

5 −
` �, �, Γ ⇑ Θ
` �∨− �, Γ ⇑ Θ ∨

−

` [H/G ]�, Γ ⇑ Θ
` ∀G.�, Γ ⇑ Θ ∀

Synchronous introduction rules

` C+ ⇓ Θ C+
` � ⇓ Θ ` � ⇓ Θ
` �∧+ � ⇓ Θ ∧+

` �8 ⇓ Θ
` �1 ∨+ �2 ⇓ Θ

∨+, 8 ∈ {1, 2}
` [B/G ]� ⇓ Θ
` ∃G.� ⇓ Θ ∃

Initial, store, release, and decide rules

` ? ⇓ ¬?,Θ init
` Γ ⇑ &,Θ
` &, Γ ⇑ Θ store

` # ⇑ Θ
` # ⇓ Θ release

` % ⇓ %,Θ
` · ⇑ %,Θ decide

Fig. 3 The inference rules for LKF. Here, % is a positive formula and ? is a positive literal;
# is a negative formula and& is a positive formula or negative literal. The rule for ∀ has the
usual eigenvariable restriction: H is not free in any formula in the concluding sequent.

inference rule having a sequent of the form ` # ⇑ Θ as its conclusion and sequents
of the form ` · ⇑ Θ′ as its premises, then that large scale rule is independent of the
sequence of rule applications within the asynchronous phase (see Lemma 2). On the
other hand, the synchronous phase is a sequence of applications of inference rules
with choices (particularly for the ∨+ and ∃ introduction rules), and different choices
will yield different synchronous phases: such phases, therefore, capture don’t know
nondeterminism.

While the weakening and contraction rules are not explicitly given in LKF, both
of these rules occur implicitly. The decide rule does an implicit contraction on
the formula %: hence, the only formulas contracted in an LKF proof are positive
formulas. The init and the C+ rules do implicit weakening on the formulas in Θ: thus
weakening is available for positive formulas and negative literals. Thus, a negative,
non-literal formula is never weakened nor contracted: in that sense, such formulas
are treated linearly, in the sense of linear logic (Girard 1987).

The four binary logical connectives of LKF—∨+, ∨−, ∧+, ∧−—can be classified
using three different attributes: positive or negative; additive or multiplicative; and
conjunctive or disjunctive. By fixing any two of these attributes, the third attribute
is uniquely determined. For example, a connective that is both additive and positive
must be the disjunction ∨+. Note also that the De Morgan dual of a logical con-
nective flips its polarity and conjunctive/disjunctive status but does not change its
additive/multiplicative status.

The proof system for LKF given in Figure 3 has no cut rule; thus the proofs
built using the rules in Figure 3 are cut-free proofs. Cut-rules for LKF and a cut-
elimination theorem will be presented in the next section.
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Let � be a polarized formula and let �̌ be the depolarized version of �: that is, �̌
is the unpolarized formula that results from removing the superscript + and − from
the logical connectives in �. Since � is in negation normal form, the formula �̌ will
have occurrences of negations but might have implications of the form � ⊃ f for
atomic �. Depolarizing a multiset or set of polarized formulas Γ is the set Γ̌ resulting
from depolarized the formulas in Γ.

Theorem 1 (Soundness of LKF) Let � be a polarized formula and let Γ and Θ be a
multiset and set, respectively, of polarized formulas. If ` Γ ⇑ Θ is provable in LKF
then ` Γ̌, Θ̌ is provable in LK. If ` � ⇓ Θ is provable in LKF then ` �̌, Θ̌ is provable
in LK.

Proof This theorem can be proved by a straightforward mutual induction on
the structure of (cut-free) LKF proofs. Most cases of this mutual induction are
straightforward. For example, the introduction rule for ∨+ in LKF corresponds to the
introduction rule for ∨ inLK, while the introduction rule for ∨− inLKF corresponds
to the multiplicative version of the introduction rule for ∨ in Figure 2. The init rule
in LKF corresponds, however, to the following LK derivation.

? ` ? init

? ` ?, f , Θ̌
wR

` ?, ? ⊃ f, Θ̌
⊃ '

Finally, decide in LKF corresponds to the cR rule, and store and release do not
contribute to the LK proof. 2

The converse of this soundness theorem is more challenging to prove: we shall
state and prove such completeness as Theorem 8 in Section 8. In anticipation of
that result, we state a version of that completeness theorem here. Let � be a first-
order polarized formula and let X(·) be any atomic bias assignment and let � be the
unpolarized formula �̌. If � is provable in LK (in the sense that ` � is provable
in LK) then � is provable in LKF. A consequence of this completeness theorem
is the following: let � be an unpolarized formula that is provable in LK, then for
every polarized formula � (and atomic bias assignment) such that �̌ is �, then �
has an LKF proof. Note that if there are = occurrences of propositional connectives
in �, there are 2= formulas � such that �̌ = �. Clearly, polarization does not affect
provability, but it can have a large impact on the structure of (focused) proofs.

We now state two properties about (cut-free) LKF proofs.

Lemma 1 (Admissibility of Weakening) If ` Γ ⇑ Θ and ` � ⇓ Θ are (cut-free)
provable and if Θ′ is a set of positive formulas and negative literals then ` Γ ⇑ Θ,Θ′
and ` � ⇓ Θ,Θ′ are also provable.

This lemma is proved easily by induction on the structure of proofs. The proof further
shows that weakening also does not affect the structure of proofs in that the same
inference rules are applied at each step.
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The following lemma captures the fact that the asynchronous phase of inference
rules can deal with don’t-care-nondeterminism: any formula to the left of the ⇑ can
be selected to be processed first.

Lemma 2 If there is a (cut-free) proof of ` �, Γ ⇑ Θ then there is a (cut-free) proof
that ends with either an introduction of � or a store rule on �.

Proof This lemma holds because the asynchronous introduction rules permuted
over each other in such a way that the same premises remain. The formal proof of
this lemma is by induction on the sum of the sizes of formulas in Γ. The size of a
formula is the number of occurrences of literals, connectives, and quantifiers in the
formula. In particular, � and ¬� are of the same size. In the base case, Γ is empty,
and the result is trivial. For the inductive case, let Γ = �, Γ′ and assume that the
sequent ` �, �, Γ′ ⇑ Θ is the conclusion of an inference rule d which is either an
introduction or store on �. We then proceed to show that the d rule can be permuted
above the introduction or store of �. There are several cases to consider.
Case: � and � are both either positive formulas or negative literals. In this case, d is
store on � with premise ` �, Γ′ ⇑ Θ, �. By inductive hypothesis on the smaller Γ′,
the next rule above must be a store on �, with premise ` Γ′ ⇑ Θ, �, �. But clearly
we can switch the order of the two store rules:

` Γ′ ⇑ Θ, �, �
` �, Γ′ ⇑ Θ, � store

` �, �, Γ′ ⇑ Θ store

Case: � is a positive formula or negative literal and � is a non-literal negative
formula. In this case, we consider the structure of �. For example, if � is �1 ∨− �2,
then the premise of d is ` �, �1, �2, Γ

′ ⇑ Θ. Since the size of �1, �2, Γ
′ is smaller

than the size of �1 ∨− �2, Γ
′, the inductive hypothesis provides a proof where the

rule above d is the store rule applied to � with premise ` �1, �2, Γ
′ ⇑ Θ, �. Starting

from that sequent, we can switch the store and ∨− rules, resulting in

` �1, �2, Γ
′ ⇑ Θ, �

` �1 ∨− �2, Γ
′ ⇑ Θ, � ∨

−

` �, �1 ∨− �2, Γ
′ ⇑ Θ store

The cases of � is C−, �1 ∧− �2, ∀G.�′ and 5 − are similar.
Case: � is a positive formula or negative literal and � is a non-literal negative
formula. This case is analogous to the above case. We illustrate with the case that �
is �1 ∧− �2. Since the d rule is store on �, its premise is ` �1 ∧− �2, Γ

′ ⇑ Θ, �. By
the inductive hypothesis, the next rule above is the introduction for ∧−:

` �1, Γ
′ ⇑ Θ, � ` �2, Γ

′ ⇑ Θ, �
` �1 ∧− �2, Γ

′ ⇑ Θ, � ∧−

` �1 ∧− �2, �, Γ
′ ⇑ Θ store
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These rules can be permuted to yield the desired form

` �1, Γ
′ ⇑ Θ, �

` �1, �, Γ
′ ⇑ Θ store

` �2, Γ
′ ⇑ Θ, �

` �2, �, Γ
′ ⇑ Θ store

` �1 ∧− �2, �, Γ
′ ⇑ Θ ∧−

Case: � and � are both non-literal negative formulas. There are several cases
to consider, but they are all similar. For example, if � and � are �1 ∨− �2 and
� = �1∨−�2, respectively, and the last rule introduces �, we just need to show that the
two∨−-introductions permute over each other, which follows easily from the fact that
both proofs can be constructed from the commonpremise of ` �1, �2, �1, �2, Γ

′ ⇑ Θ.
In the case where � is �1 ∨− �2 and � is �1 ∧− �2, introducing �1 ∧− �2 results in
the premises ` �1 ∨− �2, �1, Γ

′ ⇑ Θ and ` �1 ∨− �2, �2, Γ
′ ⇑ Θ, both of which have

a smaller inductive measure, which allows us to assume that the next rule above will
introduce �1 ∨− �2 and we can therefore build the proof

` �1, �2, �1, Γ
′ ⇑ Θ ` �1, �2, �2, Γ

′ ⇑ Θ
` �1, �2, �1 ∧− �2, Γ

′ ⇑ Θ ∧−

` �1 ∨− �2, �1 ∧− �2, Γ
′ ⇑ Θ ∨

−

The remaining cases are treated in a similar fashion. 2

Definition 2 We say that a (cut-free) proof of ` �, Γ ⇑ Θ is eager with respect to �
if the last inference rule introduces � or is a store rule on �. We say that the proof
is delayed with respect to � if either

1. Γ is empty, or
2. the last inference rule does not introduce �, is not a store rule on �, and each

immediate subproof above ` �, Γ ⇑ Θ is also delayed with respect to �.

In other words, a proof is delayed with respect to � if � is only subject to an
introduction or store rule on � when it appears in a conclusion of the form ` � ⇑ Θ.
Note also that a proof of ` � ⇑ Θ is both eager and delayed with respect to �.

Lemma 2 implies that a proof can be transformed into either the eager or the
delayed form.

4 Cut Elimination for LKF

Given that LKF has two kinds of sequents and each of these has two zones for
holding formulas, we introduce in Figure 4 a total of four cut rules in order to state
and prove the cut-elimination theorem for LKF. The cutD rule (called the unfocused
cut rule) applies only to ⇑-sequents while the cut 5 rule (called the focused cut rule)
involves one ⇓-sequent. Both of those cut rules also have a “delayed” version in
which one of the occurrences of the cut formula is “locked” on the right of a double
arrow.
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` �, Γ ⇑ Θ ` ¬�, Γ′ ⇑ Θ′

` Γ, Γ′ ⇑ Θ,Θ′
cutD

` � ⇓ Θ ` ¬�, Γ′ ⇑ Θ′

` Γ′ ⇑ Θ,Θ′
cut 5

` Γ ⇑ Θ, % ` ¬%, Γ′ ⇑ Θ′

` Γ, Γ′ ⇑ Θ,Θ′ dcutD
` � ⇓ Θ, % ` ¬% ⇑ Θ′

` � ⇓ Θ,Θ′
dcut 5

Fig. 4 The Cut Rules of LKF. Here, � and � are arbitrary polarized formulas and % is a
positive polarized formula.

It is important to note that in the delayed cuts, the cut formula % is positive and
not a negative literal: in particular, if % were a negative literal in the dcut 5 rule and
if � = ¬% then dcut 5 is not admissible since focusing on a positive literal requires
the proof to end in an initial rule.

A simple observation shows that the cut-rules in Figure 4 do not suffer the collision
problemsmentioned in Section 2.1. Aswe noted in the previous section, only positive
formulas are contracted (by the decide rule) in LKF proofs: as a result, exactly one
of the pair of formulas � and ¬� involved in a cut rule will be positive, and only
one of them can be contracted. Similarly, weakening only appears within the init
rule in LKF proofs and, as a result, the problematic case involving weakening also
disappears.

The general strategy for proving cut-elimination in LKF extended with these
cut rules is familiar: we reduce cuts to “key cases” in which the cut formula is
principal in both premises. The proof proceeds by simultaneous induction over the
permutabilities of all four cuts. The inductivemeasure is the lexicographical ordering
consisting of the size of the cut formula followed by the sum of the heights of the
subproofs above the cut. We apply the procedure to the topmost cuts first, thus
assuming that the cuts to be reduced have cut-free subproofs.

Lemma 2 is used to simplify the cut-elimination proof. However, the application
of this lemma for proof transformation may affect the height of proofs (because of
the C− rule). These transformations must be applied carefully in order to preserve
the inductive measure. For the cut-elimination proof, we further require that the
following conditions be placed on the cut rules.

1. In cutD , the subproof of the premise with the positive cut formula must be eager
with respect to the cut formula; the subproof of the premise with the negative
cut formula must be delayed with respect to the cut formula.

2. In dcutD , the subproof of the premise with the negative cut formula must be
delayed with respect to the cut formula.

3. In cut 5 , the subproof of the sequent ` ¬�, Γ′ ⇑ Θ′, where ¬� is the cut formula,
must be eager with respect to ¬� regardless of the polarity of �.

The third requirement may appear inconsistent with the others when ¬� is negative
in cut 5 : however, the transition from cutD or dcutD to a cut 5 only occurs when the



Focusing Gentzen’s LK proof system (Draft: February 1, 2021) 15

cut formula is decomposed into subformulas, which reduces the stronger inductive
measure. For the dcut 5 rule, the subproof above the negative cut formula ¬% can
be considered both eager and delayed with respect to ¬% because it is the only
formula to the left of ⇑. By Lemma 2, any proof can be transformed into the required
forms so that the reducibility of the restricted cuts also implies the reducibility of
the unrestricted versions. In other words, before the application of any cut, we can
always apply Lemma 2 to assume that the subproofs are in the required forms. The
cut elimination arguments will show that all restrictions are preserved when any of
the four cut rules are permuted to other cut rules.

We detail the permutation of each of the four cuts. We sometimes do not repeat
cases that are obvious, and we generally ignore the quantifiers as the first-order
quantifiers add nothing to the argument: their treatment is completely standard.

4.1 Permutations of cutu

The cutD rule has the general form, repeated here for convenience:

` �, Γ ⇑ Θ ` ¬�, Γ′ ⇑ Θ′
` Γ, Γ′ ⇑ Θ,Θ′

cutD

Assume without loss of generality that � is positive and, therefore, ¬� is negative. It
is also required that the left subproof above cutD is eager with respect to the positive
�, i.e., it ends in a store rule on the cut formula �. Furthermore, the right subproof
above the negative cut formula ¬�, is required to be delayed with respect to ¬�.
These assumptions mean that this cut can be transformed immediately into a dcutD:

` Γ ⇑ Θ, �
` �, Γ ⇑ Θ store ` ¬�, Γ′ ⇑ Θ′

` Γ, Γ′ ⇑ Θ,Θ′
cutD

−→ ` Γ ⇑ Θ, � ` ¬�, Γ′ ⇑ Θ′
` Γ, Γ′ ⇑ Θ,Θ′ dcutD

Clearly the restriction on the delayed form of the subproof above the negative cut
formula ¬� is preserved for the dcutD rule. The inductive measure is reduced by the
smaller height of the left subproofs above the cut.

4.2 Permutations of dcutu

The delayed, unfocused dcutD rule has the form

` Γ ⇑ Θ, % ` ¬%, Γ′ ⇑ Θ′
` Γ, Γ′ ⇑ Θ,Θ′ dcutD
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where the cut formula % is positive. It is required that the subproof above the right
premise is delayed with respect to the cut formula ¬%. These cuts are permuted
to the point where % is selected for focus, at which point the cut transforms into
a combination of cut 5 and dcut 5 . In other words, the “goal” or “target” of all
permutations of dcutD is to be able to apply the following transformation when the
left premise of the dcutD is the decide rule.

` % ⇓ Θ, %
` · ⇑ Θ, % ` ¬% ⇑ Θ′

` · ⇑ Θ,Θ′ dcutD
−→
` % ⇓ Θ, % ` ¬% ⇑ Θ′

` % ⇓ Θ,Θ′
dcut 5 ` ¬% ⇑ Θ′

` · ⇑ Θ,Θ′
cut 5

In the transformed proof, the upper dcut 5 has subproofs of lesser height measure,
while the lower cutD is a key case cut where the cut formula is principal in both
subproofs. That is, cut-free proofs for ` % ⇓ Θ,Θ′ and ` ¬% ⇑ Θ′ must both
end with the cut formulas % and ¬% subject to an inference rule. The key-case cuts
immediately decompose into cuts on subformulas of a smaller size than % (or reduces
completely by weakening in case of % being a positive literal). Thus, the inductive
measure of both cuts is reduced.

Note that the eager restriction on the right subproof above cut 5 is trivially
preserved since ¬% is the only formula on the left of ⇑.

All other permutations of dcutD make progress toward this case. We organize
these permutations into two stages.

The first stage performs permutations over inference rules in the right subproof
of dcutD . The right subproof above dcutD ends in ` ¬%, Γ′ ⇑ Θ′. We permute dcut 5
until it has such a right subproof with an empty Γ′. The fact that this subproof is
delayed with respect to ¬% means that if it ends in a conclusion ` ¬%, �, Γ′ ⇑ Θ′ we
can assume that the last rule either introduces � or is a store rule on � (and not on
¬%). There are many subcases depending on the form of �:
Case: � is a positive formula or negative literal. In this case, the rule above in a store
on �, resulting in the following permutation.

` Γ ⇑ Θ, %
` ¬%, Γ′ ⇑ Θ′, �
` ¬%, �, Γ′ ⇑ Θ′ store

` �, Γ, Γ′ ⇑ Θ,Θ′ dcutD
−→

` Γ ⇑ Θ, % ` ¬%, Γ′ ⇑ Θ′, �
` Γ, Γ′ ⇑ Θ,Θ′, � dcutD

` �, Γ, Γ′ ⇑ Θ,Θ′ store

The “delayed” restriction on the right subproof above dcutD is preserved by definition:
an immediate subproof of a delayed proof is also delayed. This property applies
similarly to all subsequent cases.
Case: � is �1 ∨− �2. In this case, we can transform

` Γ ⇑ Θ, %
` ¬%, �1, �2, Γ

′ ⇑ Θ′
` ¬%, �1 ∨− �2, Γ

′ ⇑ Θ′ ∨
−

` �1 ∨− �2, Γ, Γ
′ ⇑ Θ,Θ′ dcutD

into the following derivation.
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` Γ ⇑ Θ, % ` ¬%, �1, �2, Γ
′ ⇑ Θ′

` �1, �2, Γ, Γ
′ ⇑ Θ,Θ′ dcutD

` �1 ∨− �2, Γ, Γ
′ ⇑ Θ,Θ′ ∨

−

Case: � is �1 ∧− �2. In this case, we can transform

` Γ ⇑ Θ, %
` ¬%, �1, Γ

′ ⇑ Θ′ ` ¬%, �1, Γ
′ ⇑ Θ′

` ¬%, �1 ∧− �2, Γ
′ ⇑ Θ′ ∧−

` �1 ∧− �2, Γ, Γ
′ ⇑ Θ,Θ′ dcutD

into the following derivation.

` Γ ⇑ Θ, % ` ¬%, �1, Γ
′ ⇑ Θ′

` �1, Γ, Γ
′ ⇑ Θ,Θ′ dcutD

` Γ ⇑ Θ, % ` ¬%, �2, Γ
′ ⇑ Θ′

` �2, Γ, Γ
′ ⇑ Θ,Θ′ dcutD

` �1 ∧− �2, Γ, Γ
′ ⇑ Θ,Θ′ ∧−

The other cases for � are proved similarly. This stage ends when the right subproof
concludes with a sequent of the form ` ¬% ⇑ Θ′.

The second stage performs permutation over inference rules in the left subproof
of dcutD . The cases of asynchronous introduction rules are analogous to the cases
demonstrated above and are equally straightforward. Generally speaking, the per-
mutation of cut above introduction rules is always straightforward. The important
cases to point out are the decide, release, and store rules. A store rule ending the
left subproof is also a trivial case because it cannot affect the cut formula. The
interesting case is when the left subproof ends in the form ` · ⇑ Θ, %. The rule above
this sequent must be decide. There are two cases depending on whether or not the
formula selected for focus is the cut formula % or not. If it is not the cut formula but,
say, another formula &, then we can permute inference rules as follow.

` & ⇓ &,Θ, %
` · ⇑ &,Θ, % decide ` ¬% ⇑ Θ′

` · ⇑ &,Θ,Θ′ dcutD
−→
` & ⇓ &,Θ, % ` ¬% ⇑ Θ′

` & ⇓ &,Θ,Θ′
dcut 5

` · ⇑ &,Θ,Θ′ decide

If the formula selected for focus is %, then we have reached the targeted transition to
key-case cuts as already described above.

4.3 Permutations of dcut f

The general form of dcut 5 is

` � ⇓ Θ, % ` ¬% ⇑ Θ′
` � ⇓ Θ,Θ′

dcut 5



18 Chuck Liang and Dale Miller

with % positive. This cut permutes over synchronous introduction rules until reaching
an init or release rule on its left premise, at which point the cut will transition to a
dcutD with lower subproofs:

` � ⇑ Θ, %
` � ⇓ Θ, % release ` ¬% ⇑ Θ′

` � ⇓ Θ,Θ′
dcut 5

−→
` � ⇑ Θ, % ` ¬% ⇑ Θ′

` � ⇑ Θ,Θ′ dcutD

` � ⇓ Θ,Θ′ release

Besides the cases of initial rules, all other permutations of dcut 5 make progress
towards this case. Since ¬% is the only formula to the left of ⇑, the “delayed”
requirement of dcutD is trivially met. The right-side subproof with the negative cut
formula stays intact during these permutations. We consider two cases where � is a
positive formula: the other cases are treated similarly. If � is a positive literal, then
` � ⇓ Θ, % must be the conclusion of an initial rule. Since % is also positive, it must
be the case that � ∈ Θ. Thus ` 1 ⇓ Θ,Θ′ is also the conclusion of an initial rule. If
� is �1 ∨+ �2, then we have the following transformation (here, 8 is 1 or 2):

` �8 ⇓ Θ, %
` �1 ∨+ �2 ⇓ Θ, %

∨+ ` ¬% ⇑ Θ′
` �1 ∨+ �2 ⇓ Θ,Θ′

dcut 5
−→

` �8 ⇓ Θ, % ` ¬% ⇑ Θ′
` �8 ⇓ Θ,Θ′

dcut 5

` �1 ∨+ �2 ⇓ Θ,Θ′
∨+

4.4 Permutations of cut f

The cut 5 rule has the general form

` � ⇓ Θ ` ¬�, Γ′ ⇑ Θ′
` Γ′ ⇑ Θ,Θ′

cut 5

It is required that the subproof above the unfocused sequent ` ¬�, Γ′ ⇑ Θ′ is eager
with respect to ¬�.

If � is negative, then the left subproof above cut 5 must be the conclusion of a
release rule, and the cut permutes to a cutD with shorter subproofs:

` � ⇑ Θ ` ¬�, Γ′ ⇑ Θ′
` Γ′ ⇑ Θ,Θ′

cutD

As for the restrictions on cutD , ¬� must be positive if � is negative, so the subproof
above the positive cut formula stays eager with respect to that formula, and the
subproof above ` � ⇑ Θ is trivially delayed above the negative cut formula.

If � is positive, then the left subproof above cut 5 must be either init or an
introduction of the cut formula �. We illustrate three cases below: the other cases
are similar.

1. If � is a positive literal ? then the left premise of cut 5 , ` ? ⇓ Θ, is the conclusion
of an initial rule with ¬? ∈ Θ. The other, eager subproof of ` ¬?, Γ′ ⇑ Θ′, must
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end in a store rule on ¬?, with premise ` Γ′ ⇑ Θ′,¬?. But since ¬? ∈ Θ, the
provability of ` Γ′ ⇑ Θ,Θ′ follows from weakening.

2. If � is �1 ∨+ �2, then ¬� is ¬�1 ∧− ¬�2. This key case requires transforming
the derivation

` �8 ⇓ Θ
` �1 ∨+ �2 ⇓ Θ

∨+
` ¬�1, Γ

′ ⇑ Θ′ ` ¬�2, Γ
′ ⇑ Θ′

` ¬�1 ∧− ¬�2, Γ
′ ⇑ Θ′ ∧−

` Γ′ ⇑ Θ,Θ′
cut 5

into the derivation

` �8 ⇓ Θ ` ¬�8 , Γ′ ⇑ Θ′
` Γ′ ⇑ Θ,Θ′

cut 5

The inductive measure is reduced by the size of the cut formulas. Here we
can apply Lemma 2 to the subproof above ` ¬�8 , Γ′ ⇑ Θ′ so that it becomes
eagerwith respect to (each) ¬�8 without regard to how the transformation might
affect the height of proofs, because the lexicographical inductive measure is still
reduced. This argument similarly applies to the other key cases.

3. if � = �1 ∧+ �2 then ¬� = ¬�1 ∨− ¬�2 and the proof is transformed as follows:

` �1 ⇓ Θ ` �2 ⇓ Θ
` �1 ∧+ �2 ⇓ Θ

∧+
` ¬�1,¬�2, Γ

′ ⇑ Θ′
` ¬�1 ∨− ¬�2, Γ

′ ⇑ Θ′ ∨
−

` Γ′ ⇑ Θ,Θ′
cut 5

↓

` �2 ⇓ Θ
` �1 ⇓ Θ ` ¬�1,¬�2, Γ

′ ⇑ Θ′
` ¬�2, Γ

′ ⇑ Θ,Θ′
cut 5

` Γ′ ⇑ Θ,Θ′
cut 5

The two cuts introduced are both on smaller cut-formulas compared to the
original cut: the inductive hypothesis is first applied to the upper cut to obtain a
cut-free proof, then to the lower one.

With these permutation results in hand, we can now prove the cut-admissibility
theorem for LKF.

Theorem 2 The rules cutD , cut 5 , dcutD and dcut 5 are admissible in LKF.

Proof The formal proof is a nested induction argument: first on the number of
cuts in each proof, the second on the lexicographical measure for each cut. The
corresponding procedure is: select a top-most cut with cut-free subproofs and apply
Lemma 2 so that the subproofs satisfy the requirements concerning the eager and
delayed properties. Then apply the transformations to reduce the cut. Apply this
procedure repeated until all cuts are eliminated. 2



20 Chuck Liang and Dale Miller

5 Admissibility of the general init rule

The initial rule of LKF requires � to be a literal in order to prove the sequent
` � ⇓ ¬�,Θ. Just as important as the admissibility of cut is the admissibility of
the more general form of init: that is, the sequent ` �,¬� ⇑ Θ is provable for
every polarized formula �. For unfocused sequent calculus, the proof of this result
is straightforward because of the perfect duality between the introduction rules
for dual logical connectives. In particular, assuming that � is negative, apply its
(invertible) introduction rule followed by the introduction rule for ¬� (reading rules
from conclusion to premises). The inductive hypothesis can then be applied directly
to the premises. In a focused setting, however, the proof becomes more difficult since
multiple asynchronous or synchronous connectives are introduced in a single phase.
To solve this problem, we introduce the following relation (also used in (Liang and
Miller 2011)).

Definition 3 Let ↑ be the binary relation between a polarized formula and multisets
of polarized formulas defined inductively as follows:

• � ↑ {�} if � is a positive formula or negative literal.
• 5 − ↑ {}.
• � ∨− � ↑ Φ,Φ′ if � ↑ Φ and � ↑ Φ′.
• � ∧− � ↑ Φ if � ↑ Φ or � ↑ Φ.
• ∀G.� ↑ Φ if � ↑ Φ.

Clearly each such Φ contains only positive formulas and negative literals. Note that
the formulas C− and � ∨− C− are not ↑-related to any multiset of polarized formulas.

The following lemmas establish the properties of the asynchronous and syn-
chronous phases in a form that allows us to derive the admissibility of the general
init rule.

Lemma 3 For all formulas �, multisets of formulas Γ, and sets of formulas Θ, if
` Φ, Γ ⇑ Θ is provable for all Φ such that � ↑ Φ, then ` �, Γ ⇑ Θ is also provable.

Proof The proof is by induction on the size of �. If a polarized formula � is not
↑-related to any multiset of polarized formulas then we say that ↑ is undefined for �.
Note that if ↑ is undefined for � then the lemma implies that ` �, Γ ⇑ Θ is provable.

• If � is a positive formula or negative literal, the property is trivial since only
� ↑ {�} holds and Φ contains only �.

• If � is the constant 5 −, then the property holds by the 5 − rule.
• If � is the constant C−, then ` C−, Γ ⇑ Θ is provable by the rule for C−.
• Let � be the formula � ∧− �. If ↑ is undefined for �, then it is undefined for �

and for �, and the inductive hypothesis states that ` �, Γ ⇑ Θ and ` �, Γ ⇑ Θ are
provable. Otherwise, if ` Φ, Γ ⇑ Θ is provable for allΦ such that � ↑ Φ, then it is
provable for all Φ such that � ↑ Φ or � ↑ Φ. The inductive hypothesis yields the
provability of both ` �, Γ ⇑ Θ and ` �, Γ ⇑ Θ. In either case, the ∧− rule yields a
proof of ` � ∧− �, Γ ⇑ Θ.
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• Let � be the formula � ∨− �. Assume that ` Φ, Γ ⇑ Θ is provable for all Φ such
that � ∨− � ↑ Φ. This assumption is equivalent to assuming that ` Φ′,Φ′′, Γ ⇑ Θ
is provable for all Φ′ and Φ′′ such that � ↑ Φ′ and � ↑ Φ′′. Now assume that
� ↑ Φ′ and � ↑ Φ′′ hold. By the above hypothesis, we have ` Φ′,Φ′′, Γ ⇑ Θ is
provable. By the inductive hypothesis applied to �, we know that ` �,Φ′′, Γ ⇑ Θ is
provable and by the inductive hypothesis applied to�, we know that ` �,�, Γ ⇑ Θ
is provable. The ∨− rule thus yields a proof of ` � ∨− �, Γ ⇑ Θ.

• For � be the formula ∀G.�, we assume that G is not free in Γ, Θ. If � ↑ Φ then
� ↑ Φ. If ↑ is undefined for � then it is also undefined for �. In either case the
inductive hypothesis states that if ` Φ, Γ ⇑ Θ is provable for allΦ such that � ↑ Φ,
then ` �, Γ ⇑ Θ is provable. The property is then established by applying the ∀
rule.

2

The next lemma connects the synchronous phase with the ↑-relation.

Lemma 4 For all polarized formulas � and multisets of polarized formulas Φ, if
� ↑ Φ then ` ¬� ⇓ Φ is provable.

Proof The proof proceeds by induction on the size of �, which is the same as the
size of ¬�.

• If � is C−, then the property holds vacuously.
• If � is a negative literal then the property holds by the initial rule init.
• If � is 5 −, the property holds by the rule for C+.
• If � is � ∧− � then ¬� is ¬� ∨+ ¬�). Assuming that � ↑ Φ then either � ↑ Φ

or � ↑ Φ. Assume without loss of generality that � ↑ Φ: by inductive hypothesis
` ¬� ⇓ Φ is provable. Thus, ` ¬� ∨+ ¬� ⇓ Φ is provable using the ∨+ rule.

• If � is �∨−� then ¬� is ¬�∧+¬�). Assuming that � ↑ Φ then there are multisets
Φ′ and Φ′′ such that � ↑ Φ′ and � ↑ Φ′′. By the inductive hypotheses, we know
that ` ¬� ⇓ Φ and ` ¬� ⇓ Φ′ are provable. Apply weakening (Lemma 1) to both
sequents and we get that ` ¬� ⇓ Φ,Φ′ and ` ¬� ⇓ Φ,Φ′ are provable. Thus
` ¬� ∧+ ¬� ⇓ Φ,Φ′ is provable using the ∧+ rule.

• If � is ∀G.� the ¬� is ∃G.¬�. If � ↑ Φ then � ↑ Φ. By inductive hypothesis we
have ` ¬� ⇓ Φ and by the ∃ rule, we have ` ∃G.¬� ⇓ Φ.

• If � is a positive formula, then the inductive hypothesis also applies to the proper
subformulas of ¬�, which is negative and of the same size as �. Thus if ¬� ↑ Φ
then the cases above show that ` � ⇓ Φ is provable. By weakening ` � ⇓ �,Φ is
also provable, and we can form the derivation

` � ⇓ �,Φ
` · ⇑ �,Φ 342834

` Φ ⇑ � BC>A4

is provable where a sequence of BC>A4 rules are applied to the positive formulas
and negative literals inΦ. This holds for allΦ such that ¬� ↑ Φ, so by Lemma 3,
` ¬� ⇑ � is provable, and by applying the release rule, we finally have a proof
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of ` ¬� ⇓ �. This establishes the property for positive � for which only � ↑ {�}
holds.

2

The following theorem states the admissibility of the general form of the init rule.

Theorem 3 ` �,¬� ⇑ · is provable for all polarized formulas �.

Proof Assume without loss of generality that � is positive. Then � ↑ {�} and
Lemma 4 states that ` ¬� ⇓ � is provable. Since ¬� is negative, this sequent must
be the conclusion of a release rule in a cut-free proof, so ` ¬� ⇑ � is provable.
Applying the store rule on � to this sequent gives a proof of ` �,¬� ⇑ ·. 2

6 Generalized invertibility

The following results about the invertibility of the negative introduction rules is now
easily proved using the admissibility of cut. The following corollary is the converse
of Lemma 3.

Corollary 1 If ` �, Γ ⇑ Θ is provable and � ↑ Φ, then ` Φ, Γ ⇑ Θ is provable.

Proof Given the assumption � ↑ Φ, Lemma 4 implies that the sequent ` ¬� ⇓ Φ
is provable. Using a cut rule, we therefore have the following proof.

` �, Γ ⇑ Θ ` ¬� ⇓ Φ
` Γ ⇑ Θ,Φ

cut 5

` Φ, Γ ⇑ Θ store

The final result follows from the admissibility of cut (Theorem 2). 2
From the generalized invertibility property and Lemma 3, we can derive the

invertibility of the individual asynchronous introduction rules.

Lemma 5 The introduction rules for the negative connectives are invertible; i.e., the
provability of the conclusion of each rule implies the provability of all of its premises.

Proof First, consider the case for ∨−. Assume that ` �, �, Γ ⇑ Θ is provable
and assume that � is ↑-related to exactly the multisets Φ1

�
, . . . ,Φ=

�
and that � is

↑-related to exactly Φ1
�
, . . . ,Φ<

�
, where =, < ≥ 0. By the definition of ↑, we know

that � ∨− � ↑ Φ8
�
Φ:
�
for each 8 and : such that 1 ≤ 8 ≤ = and 1 ≤ : ≤ <. (Note that

if either = or < is 0 then this statement is vacuously true.) Corollary 1 implies that
` Φ8

�
Φ:
�
, Γ ⇑ Θ is provable. By Lemma 3, this means that ` �, �, Γ ⇑ Θ is provable.

To consider the case for ∧− assume that ` �∧ �, Γ ⇑ Θ is provable and (as above)
� is ↑-related to Φ1

�
, . . . ,Φ=

�
and � is ↑-related to Φ1

�
, . . . ,Φ<

�
, where =, < ≥ 0.

Then � ∧ � ↑ Φ8
�
for each 8 such that 1 ≤ 8 ≤ = and � ∧ � ↑ Φ:

�
for each : such

that 1 ≤ : ≤ <. By Corollary 1, this implies that ` Φ8
�
, Γ ⇑ Θ is provable for each 8
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such that 1 ≤ 8 ≤ = and ` Φ:
�
, Γ ⇑ Θ is provable for each : such that 1 ≤ : ≤ <. By

Lemma 3, ` �, Γ ⇑ Θ and ` �, Γ ⇑ Θ are provable.
The cases for C− and ∀ are similar and omitted. 2
Given Lemmas 3 and 4, we often use the following argument schema to establish

the provability of ` �1, . . . , �=, Γ ⇑ Θ: If ↑ is undefined for any �8 then Lemma
3 already shows that the sequent is provable. Otherwise, assume that for each 8 ∈
{1, . . . , =} there is an =8 greater than or equal to 1 such that �8 is ↑-related to exactly
Φ1
8
, . . . ,Φ

=8
8
. Show that for each possible selection of Φ:1

1 , . . . ,Φ
:=
= , the sequent

` Γ ⇑ Θ,Φ:1
1 , . . . ,Φ

:=
= is provable. Then ` �1, . . . , �=, Γ ⇑ Θ is provable by Lemma

3 plus enough applications of the store rule to move each member of Φ:8
8
to the left

side of ⇑. Furthermore, if Γ consists of a single positive formula % (% can also be
in Θ with Γ empty) and ` % ⇓ %,Θ,Φ:1

1 , . . . ,Φ
:=
= is provable, then using the decide

rule
` % ⇓ %,Θ,Φ:1

1 , . . . ,Φ
:=
=

` · ⇑ %,Θ,Φ:1
1 , . . . ,Φ

:=
=

decide

the provability ` �1, . . . , �=, % ⇑ Θ also follows from Lemma 3 and the store rule.
The provability of the focused sequent above decide often follows from Lemma 4.

7 Returning to LK

In this section, we show how the unfocused LK proof system can be faithfully
captured within LKF. We do this in three steps: (1) we translate the two-sided
proof system LK into a one-sided system; (2) we show that a more general form of
contraction is admissible in LKF; and (3) we prove that the unfocused introduction
rules of (the one-side version of) LK are admissible in LKF. As a consequence,
LKF is complete for LK.

Gentzen’s original version of LK used the additive versions of conjunction and
disjunction, namely ∧− and ∨+, while his implication ⊃ was multiplicative. Gentzen
himself noted (Gentzen (1935), Remark 2.4) that LK is ’dual’ in the sense that the
left and right inference rules are symmetrical with the exception of ⊃. In LKF, the
multiplicative connective ∨− can be used to decompose � ⊃ � into ¬�∨− �. Hence,
the De Morgan dual of implication ¬(� ⊃ �) can be written as �∧+ ¬�. As a result,
we can remove implications and negated implications by mapping them to these
multiplicative connectives.

Definition 4 The LK -polarization (·)± of classical formulas is defined as follows
(recall that the negation of polarized formulas is given in Definition 1):

• For atomic 0, 0± = 0 and (¬0)± = ¬0.
• (� ∧ �)± = �± ∧− �±; (� ∨ �)± = �± ∨+ �±; t± = C−; f± = 5 +;
• (� ⊃ �)± = ¬�± ∨− �±

We also assume that all atomic formulas are polarized positively.
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Structural rules and Identity rules

` Δ, �, �
` Δ, � cR ` Δ

` Δ, � wR ` �, ¬� init
` �, Δ ` ¬�, Δ′

` Δ, Δ′ cut

Introduction rules

` C−, Δ C−
` �,Θ ` �,Θ
` �∧− �,Θ ∧− ` C+ C

+ ` �,Θ ` �,Θ′
` �∧+ �,Θ,Θ′ ∧+

` �8 ,Θ

` �1 ∨+ �2,Θ
∨+ ` Θ

` 5 −,Θ 5 −
` �, �,Θ
` �∨− �,Θ ∨

−

` Δ, [H/G ]�
` Δ, ∀G.� ∀

` Δ, [B/G ]�
` Δ, ∃G.� ∃

Fig. 5 The rules for LKi. In the ∀ rule, the variable H is not free in the conclusion. In the ∨+
rule, 8 ∈ {1, 2}.

Figure 5 contains the inference rules for LKi, a sequent calculus intermediate
betweenLK andLKF in the sense that it is a one-sided sequent calculus that contains
polarized formulas but it is not focused. An LK sequent �1, . . . , �= ` �1, . . . , �< is
represented in this setting as ` ¬�1

±, . . . ,¬�=±, �1
±, . . . , �<

±. Each inference rule
ofLK is translated directly into this setting: replace each sequent in the premises and
conclusion of the rule with their one-sided, polarized versions. Left-introductions
rules on �8 are thus represented as one-sided introduction rules on ¬�8±.

Theorem 4 Let =, < ≥ 0 and let �1, . . . , �=, �1, . . . , �< be unpolarized formulas.
If the sequent ` ¬�1

±, . . . ,¬�=±, �1
±, . . . , �<

± ⇑ · is provable in LKF then the
sequent �1, . . . , �= ` �1, . . . , �< is provable in LK.

Proof Note that an LKF proof of ` ¬�1
±, . . . ,¬�=±, �1

±, . . . , �<
± ⇑ · can

easily be translated to an LKi proof of ` ¬�1
±, . . . ,¬�=±, �1

±, . . . , �<
±. Such an

LKi proof can then be converted to a proof of the two-sided sequent �1, . . . , �= `
�1, . . . , �< in LK. In this later transformation, when the multiplicative connectives
∨− and ∧+ are introduced in the LKi proof, implications are introduced on the right
or left in the LK proof. 2

We shall now proceed to prove that the rules of LKi are admissible in LKF by
presenting new admissible LKF rules derived from the LKi rules. When naming
the new admissible LKF rules, we will add parentheses around the name of the LKi
rule. For example, the init rule of LKi yields the admissible LKF rule

` �,¬�, Γ ⇑ · (init).

The admissibility of (init) follows immediately from Theorem 3. The admissibility
of (wR), namely,
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` Δ ⇑ Θ
` �,Δ ⇑ Θ,Θ′ (wR)

follows from Lemma 1 and a simple induction on the structure of �. We delay the
proof of the admissibility of the LKi cut rule until Section 9.1. We now proceed to
prove the admissibility of contraction and the introduction rules of LKi.

UnlikeLK andLKi,LKF does not include explicit rules for contraction. InLKF,
the rule of contraction is only applied to positive formulas and only within the decide
rule. We now show that contraction for all polarized formulas is admissible in LKF.

Lemma 6 The following rule is admissible in LKF for all formulas �.

` �, �, Γ ⇑ Θ
` �, Γ ⇑ Θ (cR)

Proof Assume that ` �, �, Γ ⇑ Θ has an LKF proof. Using Lemma 2, we can
assume that this proof is eager for the first occurrence of �. If � is a positive formula
or negative literal, then the only rule that can be applied to it is store, which means
that the sequent ` �, Γ ⇑ �,Θ has an LKF proof. Again, this sequent has a proof
eager for � and, thus, must be proved by the store rule, which implies that ` Γ ⇑ �,Θ
has an LKF proof. By using that sequent as the premise of the store rule we have an
LKF proof of ` �, Γ ⇑ Θ.

Consider the cases where � is a non-literal negative formula. The case where �
is C− is immediate. The case where � is 5 − follows using Lemma 5 twice. If � is
� ∨− � then, using Lemmas 2 and 5 twice, it is the case that ` �, �, �, �, Γ ⇑ Θ
is provable. The result follows by using the inductive assumption twice along with
the ∨− rule. If � is � ∧− � then, using Lemmas 2 and 5 twice, it is the case that
both ` �, �, Γ ⇑ Θ and ` �,�, Γ ⇑ Θ are provable. The result follows by using
the inductive assumption twice along with the ∧− rule. Finally, the case where � is
universally quantified is similar and omitted here. 2

From results in the preceding sections, we can show the admissibility of the
unfocused introduction rules (corresponding to the rules of LKi) in LKF.

Theorem 5 (Admissibility of unfocused introduction rules) All the introduction
of LKi are admissible in LKF.

Proof Throughout this proof, we use the admissibility of cut combined with the
argument schema outlined at the end of Section 6.

The ∨+-introduction rule for LKi is admissible in LKF in the form

` �8 , Γ ⇑ Θ
` �1 ∨+ �2, Γ ⇑ Θ

(∨+)

for 8 ∈ {1, 2}. Admissibility follows from using the admissibility of the cutD rule in
the derivation

` �8 , Γ ⇑ Θ ` ¬�8 , �1 ∨+ �2 ⇑ ·
` �1 ∨+ �2, Γ ⇑ Θ

cutD .



26 Chuck Liang and Dale Miller

To show the provability of the right premise above the cut we apply the argument
schema of Section 6. Let ¬�8 ↑ Φ1, . . . ,¬�8 ↑ Φ= be an exhaustive list of multisets
of formulas ↑-related to ¬�8 , for = ≥ 0. If = = 0 then the sequent is provable by
Lemma 3. Otherwise, = is positive. For eachΦ: (: ∈ 1 . . . =), construct the following
subproof

` �8 ⇓ �1 ∨+ �2,Φ
:

` �1 ∨+ �2 ⇓ �1 ∨+ �2,Φ
:
∨+

` · ⇑ �1 ∨+ �2,Φ
:

decide

` �1 ∨+ �2,Φ
: ⇑ ·

store

The provability of the top sequent follows from Lemma 4 and the provability of
` ¬�8 , �1 ∨+ �2 ⇑ · follows from all such subproofs by Lemma 3.

The ∧+-introduction rule for LKi is admissible in LKF in the form

` �, Γ ⇑ Θ ` �, Γ ⇑ Θ
` � ∧+ �, Γ ⇑ Θ (∧+).

This rule is also justified using the admissibility of cutD as follows.

` �, Γ ⇑ Θ
` �, Γ ⇑ Θ ` ¬�,¬�, � ∧+ � ⇑ ·

` ¬�, � ∧+ �, Γ ⇑ Θ
cutD

` � ∧+ �, Γ, Γ ⇑ Θ
cutD

` � ∧+ �, Γ ⇑ Θ (cR)

The provability of the top right sequent uses the argument schema described above:
let ¬� ↑ Φ1

¬�, . . . ,¬� ↑ Φ
=
¬� and ¬� ↑ Φ1

¬�, . . . ,¬� ↑ Φ<¬� be exhaustive lists
of multiset of set related to ¬� and ¬�, respectively. If either = or < is 0, then
the sequent is already provable. Otherwise for each pair Φ8¬�,Φ

:
¬� construct the

subproof

` � ⇓ � ∧+ �,Φ8¬�,Φ
:
¬� ` � ⇓ � ∧+ �,Φ8¬�,Φ

:
¬�

` � ∧+ � ⇓ � ∧+ �,Φ8¬�,Φ
:
¬�

∧+

` · ⇑ � ∧+ �,Φ8¬�,Φ
:
¬�

decide

` � ∧+ �,Φ8¬�,Φ
:
¬� ⇑ ·

store

The provability of the top sequents follows from Lemma 4 and from these subproofs
the provability of ` ¬�,¬�, � ∧+ � ⇑ · follows by Lemma 3.

To prove the admissibility of the introduction of ∃, we similarly rewrite

` �[B/G], Γ ⇑ Θ
` ∃G.�, Γ ⇑ Θ (∃) −→ ` �[B/G], Γ ⇑ Θ ` ¬�[B/G], ∃G.� ⇑ ·

` ∃G.�, Γ ⇑ Θ
cutD

The provability of the right premise again uses the argument schema of Section 6:
let ¬�[B/G] ↑ Φ1, . . . ,¬�[B/G] ↑ Φ= be the exhaustive list of multisets that are
↑-related to ¬�[B/G]. If = = 0, then the premise is already provable. Otherwise, for
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each Φ8 we have
` �[B/G] ⇓ ∃G.�,Φ8

` ∃G.� ⇓ ∃G.�,Φ8 ∃

` · ⇑ ∃G.�,Φ8 decide

` ∃G.�,Φ8 ⇑ ·
store

from which the provability of ` ¬�[B/G], ∃G.� ⇑ · follows.
The LKi introduction rule for C+ yields the following admissible rule, which can

be justified by the associated LKF derivation.

` C+, Γ ⇑ Θ (C
+) −→

` C+ ⇓ C+ C
+

` · ⇑ C+ decide

` C+ ⇑ · store

` C+, Γ ⇑ Θ (wR)

2

The negative introduction rules already apply on the left side of ⇑. Thus every
unfocused inference rule can be emulated on the left side ⇑, and the completeness
of LKF with respect to the intermediate LKi, and to the original LK is therefore
established.

Theorem 6 (Weak completeness of LKF) If the sequent �1, . . . , �= ` �1, . . . , �<
is provable in LK then the sequent ` ¬�1

±, . . . ,¬�=±, �1
±, . . . , �<

± ⇑ · is provable
in LKF.

We have labeled this theorem as “weak completeness” since it states that if an
unpolarized formula is provable inLK, then there is some polarization of that formula
(namely (·)±) which is provable in LKF. Theorem 8 in the next section is a stronger
version of the completeness theorem since it states that every polarization of an
unpolarized theorem is provable in LKF.

8 Choosing the polarization of formulas

We are now able to prove that every polarization of a formula provable in LK is
provable in LKF. Formally, we say that the polarized formula � (together with an
atom bias assignment X(·)) is a polarization of � if �̌ is �.

We write � ≡ � to mean that both ` ¬�, � ⇑ · and ` ¬�, � ⇑ · are provable. We
first show that the positive and negative versions of each connective are equivalent.

Lemma 7 For every pair of polarized formulas � and �, it is the case that �∨+ � ≡
� ∨− � and � ∧+ � ≡ � ∧− �.

Proof To prove the first equivalence, we need proofs of ` ¬�∧−¬�, �∨−� ⇑ · and
` ¬� ∧+ ¬�, � ∨+ � ⇑ · The first of these is straightforward given the admissibility
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of the general initial rule. The provability of the second sequent is equally simple
given the admissibility of the unfocused introduction rules shown in Section 7, as
demonstrated by the following derivation.

` ¬�, � ⇑ ·
` ¬�, � ∨+ � ⇑ · (∨

+) ` ¬�, � ⇑ ·
` ¬�, � ∨+ � ⇑ · (∨

+)

` ¬� ∧+ ¬�, � ∨+ � ⇑ · (∧+)

Showing � ∧+ � ≡ � ∧− � is similar, and the equivalences between the positive and
negative versions of the units are straightforward. 2

Definition 5 Let ◦ represent one of the binary connectives ∨−, ∨+, ∧−, or ∧+ and let
� be a syntactic variable ranging over arbitrary polarized formulas. Let ( range over
subformula contexts which are defined inductively by

( = [·] | ( ◦ � | � ◦ ( | ∃G.( | ∀G.(.

Here, [·] is a constant denoting a primitive subformula context. The notation ([�]
denotes the polarized formula that results from replacing [·] in ( with �.

Theorem 7 Let ( be a subformula context. If � ≡ � then ([�] ≡ ([�].

Proof We prove the general property: if ` ¬�, � ⇑ · is provable then for any
subformula context (, ` ¬([�], ([�] ⇑ · is also provable.

The proof of this property essentially repeats the arguments for eliminating the
generalized initial rule. However, instead of replicating Lemmas 3 and 4, we can
take advantage of the admissibility of unfocused rules for the positive connectives.

We proceed by induction on (. In the base case, ( = [·] and the property
is immediate. If, instead, ( = � ∨− (′ then ([�] = � ∨− (′[�], and ¬([�] =
¬� ∧+ ¬(′[�]: we construct

` ¬�, �, (′[�] ⇑ · ` ¬(′[�], (′[�], � ⇑ ·
` ¬� ∧+ ¬(′[�], �, (′[�] ⇑ · (∧+)

` ¬� ∧+ ¬(′[�], � ∨− (′[�] ⇑ · ∨
−

The left premise follows from the general initial rule admissibility and the right
premise is provable by inductive hypothesis (plus weakening). All the other cases
are proved in a similar fashion. 2

Theorem 8 (Strong completeness of LKF) Let � be an unpolarized formula that
is provable in LK and let � be a polarization of �. Then � is provable in LKF.

Proof Let � be an unpolarized formula that is provable in LK and let � be
a polarized version of � and let X(·) be any atomic bias assignment. By weak
completeness (Theorem 6), we know that �± is provable in LKF. Since the only
difference between �± and � are polarized formulas is that the + and − signs on
logical connectives might be different and, by construction, the atoms in � are all
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given positive bias. Using the equivalences in Lemma 7 and Theorem 7, we can
conclude that � is provable, assuming that all atoms are positively biased.

What remains to be shown is that provability is preserved by imposing the atomic
bias assignment X(·). Translating a proof with a negative atom 0 into one where 0
is considered positive is the same as translating a proof with ¬0 considered positive
to one where ¬0 is considered negative, so we only need to show one direction
of the translation. Assume that 0 is considered negative in a proof. A strategy for
reconstructing the proof where 0 is considered positive is to use delays together
with cut. In particular, we define the polarized formula �X as the result of replacing
every occurrence of 0 in � with 0 ∨− 5 − (and therefore every occurrence of ¬0 by
¬0 ∧+ C+). The strategy is to show that every proof of ` � ⇑ · with 0 considered
negative corresponds to a proof of ` �X ⇑ · with 0 considered positive. Then by the
cut rule

` �X ⇑ · ` ¬�X , � ⇑ ·
` � ⇑ ·

cutD

we derive a proof of � without delays and with 0 considered positive. We can
easily generalized the proof of a single formula to the proof of a sequent since (by
invertibility) a multiset {�1, . . . , �=} is equivalent to �1 ∨− �2 . . . ∨− �=.

The rules that may have a literal as principal formula are store, release, decide,
and init. We show how each rule is emulated in a proof of �X :

• Both 0 and ¬0 can be subject to a store, in which case the emulations are as
follow.

` Γ ⇑ 0,Θ
` 0, Γ ⇑ Θ store −→

` Γ ⇑ 0,Θ
` 0, Γ ⇑ Θ store

` 0, 5 −, Γ ⇑ Θ 5 −

` 0 ∨− 5 −, Γ ⇑ Θ ∨
−

` Γ ⇑ ¬0,Θ
` ¬0, Γ ⇑ Θ store −→ ` Γ ⇑ ¬0 ∧+ C+,Θ

` ¬0 ∧+ C+, Γ ⇑ Θ ∨
−

Thus, in a proof of �X , 0 will appear on the right side of ⇑ and ⇓ as 0 but ¬0 will
appear as ¬0 ∧+ C+.

• The release rule is applicable when 0 is considered negative and is still applicable
to 0 ∨− 5 − when 0 is considered positive. Since 0 is a literal, the only rule that
can apply above release is store.

` · ⇑ 0,Θ
` 0 ⇑ Θ store

` 0 ⇓ Θ release
−→

` · ⇑ 0,Θ
` 0 ⇑ Θ BC>A4

` 0, 5 − ⇑ Θ 5 −

` 0 ∨− 5 − ⇑ Θ ∨
−

` 0 ∨− 5 − ⇓ Θ release

• In the init rule, 0 is negative: it is emulated as indicated.
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` ¬0 ⇓ 0,Θ init −→

` 0 ⇓ ¬0, 0,Θ init

` · ⇑ ¬0, 0,Θ decide

` ¬0 ⇑ 0,Θ store

` ¬0 ⇓ 0,Θ release ` C+ ⇓ 0,Θ C+

` ¬0 ∧+ C+ ⇓ 0,Θ ∧+

• Finally, when 0 is considered negative, the decide rule can only be applied to ¬0,
and must be preceded from above by an init, and so is emulated as follows

` ¬0 ⇓ ¬0, 0,Θ
` · ⇑ ¬0, 0,Θ decide −→ ` ¬0 ∧+ C+ ⇓ ¬0 ∧+ C+, 0,Θ

` · ⇑ ¬0 ∧+ C+, 0,Θ decide

The proof of the remaining premise is easily to find.

Finally, in order to show that ` ¬�X , � ⇑ · is provable with 0 considered positive,
we induct on the structure of �:

• If � is 0 or ¬0, consider the following derivations.

` 0 ⇓ 0,¬0 init

` · ⇑ 0,¬0 decide

` 0,¬0 ⇑ · store

` 0, 5 −,¬0 ⇑ · 5
−

` 0 ∨− 5 −,¬0 ⇑ · ∨
−

` ¬0 ∧+ C+ ⇓ ¬0 ∧+ C+, 0
` · ⇑ ¬0 ∧+ C+, 0 decide

` ¬0 ∧+ C+, 0 ⇑ · store

The proof of ` ¬(0 ∨− 5 −), 0 ⇑ · on the right is preceded from above by the same
subproof as in the imitation of decide for ¬0 ∧+ C+.

• If � is � ∨− �, we apply the admissible unfocused rules to simplify the proof:

` ¬� X , �, � ⇑ · ` ¬� X , �, � ⇑ ·
` ¬� X ∧+ ¬� X , �, � ⇑ ·

(∧+)

` ¬� X ∧+ ¬� X , � ∨− � ⇑ ·
∨−

The premises are provable by inductive hypotheses and by weakening.
• If � is � ∨+ �:

` ¬� X , � ⇑ ·
` ¬� X , � ∨+ � ⇑ ·

(∨+) ` ¬� X , � ⇑ ·
` ¬� X , � ∨+ � ⇑ ·

(∨+)

` ¬� X ∧− ¬� X , � ∨+ � ⇑ ·
∧−

The premises are provable by inductive hypotheses.
• The cases of � ∧+ � and � ∧− � are symmetrical to the above. The cases of ∃

and ∀ are also similar and cases where 0 does not appear in � follows directly
from the admissibility of the general initial rule.

2
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Pimentel et al. (2016) give a similar analysis of how changing the polarity of
atoms within the intuitionistic focused proof system LJF (Liang and Miller 2009)
affects the structure of such proofs.

9 Four applications of LKF

Part of the motivation for developing the LKF proof system is that its meta-theory
should help in proving other proof-theoretic results about first-order classical logic.
To support this claim, we present four applications of LKF.

9.1 The admissibility of cut in LK

We can prove that the admissibility of cut holds for LK given that we have proved
cut-admissibility for the more complex proof system LKF. While it is no surprise
that this can be done, it is reassuring to see that that result for LK follows so directly
from the results for LKF.

Theorem 9 The cut rule for LK is admissible in the cut-free fragment of LK.

Proof Assume that the sequents Γ ` Δ, � and Γ′, � ` Θ′ have cut-free LK-proofs.
By the weak completeness of LKF (Theorem 6), the sequents ` ¬(Γ)±, (Δ)±, �± ⇑ ·
and ` ¬(Γ′)±,¬(�±), (Δ′)± ⇑ · both have (cut-free) LKF proofs. By the admissi-
bility of cut for LKF (Theorem 2), we know that ` ¬(Γ)±,¬(Γ′)±, (Δ)±, (Δ′)± ⇑ ·
has a (cut-free) LKF proof. Finally, by Theorem 4, we know that Γ, Γ′ ` Δ,Δ′ has a
cut-free LK proof. 2

9.2 Synthetic inference rules

Following up on the suggestion in Section 2.4, we show now how to define larger-
scale, synthetic inference rules in using the LKF proof system.

A sequent of the form ` · ⇑ Θ is called a border sequent. The only LKF proof
rule that can have a border sequent as a conclusion is the decide rule.

Definition 6 (Synthetic inference rule) A synthetic inference rule is an inference
rule involving only border sequents. They are of the form

` · ⇑ Θ1 . . . ` · ⇑ Θ=
` · ⇑ Θ

which is justified by a derivation of the form
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` · ⇑ Θ1 . . . ` · ⇑ Θ=
Π

` · ⇑ Θ

Here, = ≥ 0, and the derivation Π contains exactly one occurrence of the decide rule
and that occurrence is the last inference rule (having the conclusion ` · ⇑ Θ). If that
decide rule selects as its focus the formula � ∈ Θ, we say that this derivation is a
synthetic inference rule for �.

Consider again using the formula (from Section 2.4)

∀G∀H∀I.(path(G, H) ⊃ path(H, I) ⊃ path(G, I))

as an assumption in a given fixed theory. In the one-sided sequent setting of LKF,
consider instead negating this assumption, namely,

∃G∃H∃I.(path(G, H) ∧+ path(H, I) ∧+ ¬path(G, I))

and with moving it to the right-hand side of a border sequent. Assuming that this
negative formula is a member of Θ, then consider the following derivation.

Ξ1
` path(A, B) ⇓ Θ

Ξ2
` path(B, C) ⇓ Θ

Ξ3
` ¬path(A, C) ⇓ Θ

` path(A, B) ∧+ path(B, C) ∧+ ¬path(A, C) ⇓ Θ ∧+ × 2

` ∃G∃H∃I.(path(G, H) ∧+ path(H, I) ∧+ ¬path(G, I)) ⇓ Θ ∃ × 3

` · ⇑ Θ decide

In order to determine the shape of the proofs Ξ1, Ξ2, and Ξ3, we must declare the
polarization given to atoms with the path predicate. If all such atoms have a negative
polarity assigned to them, then both Ξ1 and Ξ2 end with the release and store rules
while the proof Ξ3 must be trivial (just containing the init rule) and path(A, C) must
be a member of Θ. We can write the synthetic rule justified by the above derivation
as

` · ⇑ path(A, B),Θ ` · ⇑ path(B, C),Θ
` · ⇑ path(A, C),Θ

However, if all path-atoms have a positive polarity assigned to them, then Ξ3 end
with the release and store rules while the proof Ξ1 and Ξ2 must be trivial and both
path(A, B) and path(B, C) must be members of Θ. We can write the synthetic rule
justified by the above derivation as

` · ⇑ path(A, B), path(B, C), path(A, C),Θ
` · ⇑ path(A, B), path(B, C),Θ

Note that these synthetic inference rules are the one-sided version of the back-
chaining and forward-chaining synthetic inference rules for path displayed in Sec-
tion 2.4.
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The paper (Marin et al. 2020) develops the proof theory of synthetic inferences for
both classical and intuitionistic logic by using the focused proof systems LKF and
LJF. That paper also shows that cut and the general initial rule are both admissible
in the LK and LJ proof system augmented with such synthetic inference rules based
on geometric formulas.

9.3 Herbrand’s theorem

The completeness of LKF proofs yields a surprisingly simple proof of Herbrand’s
theorem, particularly the variant of Herbrand’s theorem based on formulas with
only existential quantifiers in prefix position. A richer connection between a more
general form of Herbrand’s theorem, based on expansion trees (Miller 1987), and
LKF proofs can be found in (Chaudhuri et al. 2016).

Theorem 10 (Herbrand’s theorem) Let � be an (unpolarized) quantifier-free for-
mula of first-order classical logic, = ≥ 1, and G1, . . . , G= be a list of first-order
variables containing all free variable of �. The formula ∃G1 . . . ∃G=.� is provable
in LK if and only if there is an < ≥ 1 and substitutions \1, . . . , \< for the variables
G1, . . . , G= such that �\1 ∨ · · · ∨ �\< is provable in LK.

Proof Let �̂ be a polarized version of � in which all logical connectives and units
in � are polarized negatively. (For convenience, we abbreviate ∃G1 . . . ∃G= with ∃Ḡ.)
Since ∃Ḡ.� is provable in LK, the sequent ` ∃Ḡ.�̂ ⇑ · must have an LKF proof, say
Ξ. Clearly, the last inference rule of Ξ is the store rule with premise ` · ⇑ ∃Ḡ.�̂.
Given our choice of polarization, it is easy to show that every border sequent in Ξ
is of the form ` · ⇑ ∃Ḡ.�̂,L, where L is a set of literals. Thus, there are only two
different ways that the decide rule is applied in Ξ. If the decide rule is used with a
positive literal, the premise is immediately proved using the init rule. Otherwise, the
decide rule starts the synchronous phase with the choice of ∃Ḡ.�̂ and the subproof
determined by that occurrence of the decide rule ends with the following inference
rules.

` �̂\ ⇑ ∃Ḡ.�̂,L
` �̂\ ⇓ ∃Ḡ.�̂,L

release

` ∃Ḡ.�̂ ⇓ ∃Ḡ.�̂,L
∃ × =

That is, every non-trivial synchronous phase encodes a substitution. Let < ≥ 1
be the number of such non-trivial synchronous phases and let \1, . . . , \< be the
substitutions that those phases encode.

Now let � be the polarized formula � equal to �̂\1 ∨+ . . . ∨+ �̂\< and consider
building an LKF proof of ` � ⇑ ·. In order to ensure that � is polarized positively, if
< = 1, we take � to be � ∨+ 5 + (essentially encoding a unary version of the binary
∨+). It is now a simple matter to convert the proof Ξ of ` ∃Ḡ.�̂ ⇑ · into a proof
of ` �̂\1 ∨+ . . . ∨+ �̂\< ⇑ · by copying the asynchronous phases directly and by
replacing all the non-trivial synchronous phase in Ξ as follows.
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` �̂\8 ⇑ ∃Ḡ.�̂,L
` �̂\8 ⇓ ∃Ḡ.�̂,L

release

` ∃Ḡ.�̂ ⇓ ∃Ḡ.�̂,L
∃ × =

=⇒
` �̂\8 ⇑ �,L
` �̂\8 ⇓ �,L

release

` �̂\1 ∨+ . . . ∨+ �̂\< ⇓ �,L
∨+

In this way, the phase-by-phase structure of Ξ can be used to build an LKF proof for
` �̂\1 ∨+ . . . ∨+ �̂\< ⇑ ·. 2

9.4 Hosting other focused proof systems

Proof systems with focusing-like behaviors can sometimes be hosted inside LKF.
Such hosting is usually done by translating unpolarized classical logic formulas into
polarized formulas in which delays have been inserted. These delays are written as
m−(�) and m+(�) and are such that they are both logically equivalent to the formula �
and are such that m−(�) is negative and m+(�) is positive. The expression m−(�) can be
defined to be either 5 −∨− �, C−∧− �, or ∀G� (where G is not free in �). Similarly, the
expression m+(�) can be defined to be either 5 + ∨+ �, C+ ∧+ �, or ∃G� (where G is not
free in �). The LKQ and LKT proof systems of (Danos et al. 1995) can be seen as
LKF proofs in which the following polarization functions are used. Below we define
the left and right translations of unpolarized formulas containing only implications
and atoms to polarized formulas. Here, � ranges over atomic formulas.

LKT

Atoms are negative

LKQ

Atoms are positive
(�); = ¬� (�); = ¬�
(�)A = � (�)A = �

(� ⊃ �); = (�)A ∧+ (�); (� ⊃ �); = (�)A ∧+ m−((�);)
(� ⊃ �)A = (�); ∨− m+((�)A ) (� ⊃ �)A = m+((�); ∨− (�)A )

It is then the case that (cut-free) proofs in LKT of an unpolarized formula � using
only implications correspond to LKF proofs of (�)A (using the LKT definition)
and (cut-free) proofs in LKQ of an unpolarized formula � using only implications
correspond to LKF proofs of (�)A (using the LKQ definition). LKT focuses only
on the left and LKQ only on the right of two-sided sequents. These systems are also
examples of “less aggressive” focused systems that designate a “stoup” formula:
these systems impose fewer restrictions than the formula under focus in LKF. The
delays emulate the one-sided focusing character of these system as well as adopt the
stoup to a strongly focused system.

10 Other variants for focusing in classical logic

There have been several variations on focusing systems studied in the literature. The
LKF proof system we have given here can be called a strongly focused system:
the decide rule can only be invoked after every negative non-atomic formula has
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Synchronous introduction rules

` C+ ⇓ Γ
` �1,Θ1 ⇓ Γ ` �2,Θ2 ⇓ Γ
` �1 ∧+ �2,Θ1,Θ2 ⇓ Γ

` �8 ,Θ ⇓ Γ
` �1 ∨+ �2,Θ ⇓ Γ

8 ∈ {1, 2}
` [B/G ]�,Θ ⇓ Γ
` ∃G.�,Θ ⇓ Γ

Release and decide rules

` Δ ⇑ Γ
` Δ ⇓ Γ release†

` Δ ⇓ Δ̄, Γ
` · ⇑ Δ̄, Γ decide‡

The † proviso requires that Δ consists of only negative formulas. In the decide rule, Δ is a
non-empty multiset of positive formulas and Δ̄ is its underlying set of formula. The ‡ proviso
is discussed in the text.

Fig. 6 Variations in some of the LKF inference rules.

been removed from sequent. If we do not insist that all negative formulas have been
removed in this way, the resulting variant is called a weakly focused proof system
following (Laurent 2004, Simmons and Pfenning 2011). Girard’s LC proof system
is an early example of a weakly focused proof system for classical logic (Girard
1991). A variant on strong focusing is a system where one chooses a predetermined
suspension criterion and then allows explicitly suspected negative formulas to remain
in the conclusion of the (suitably modified) decide rule: suspensions of this kind are
useful when the logic contains fixed point expressions (Gérard and Miller 2017).

Let LKFm be the proof system that results from replacing the inference rules
for LKF with the extended version of the synchronous introduction rules and the
release and decide rules given in Figure 6. If the ‡ proviso on the decide rule requires
that the multiset Δ contains exactly one positive formula, then LKFm is the same
as LKF. It is for this reason that we say that LKF is single focused: in such proofs,
the zone to the left of the ⇓ always contains exactly one formula (the focus of that
sequent). If the ‡ proviso restricts Δ to be just a non-empty set of positive formulas,
then the resulting proof system is multifocused and that proof system contains more
proofs than the single conclusion system. These were first considered in (Delande
and Miller 2008, Delande et al. 2010) (in the context of linear logic) and the notion
of maximal multifocused proofs have been used to describe canonical proof system
in linear logic (Chaudhuri et al. 2008a) and classical logic (Chaudhuri et al. 2016)
and to relate sequent calculus proofs to natural deduction proofs (Pimentel et al.
2016).

Note that the version of the ∧+ introduction rule in LKFm is not necessarily
invertible, while the version of that introduction rule in LKF is invertible: it appears
that the true status of ∧+ introduction as belonging to the synchronous phase only
becomes apparent in the multifocused setting. Note also that it is immediate to prove
the completeness of LKFm given the completeness of LKF.

Two simple changes to the LKF proof system yields a focused proof system for
multiplicative additive linear logic MALL (Girard 1987). First, the set of formulas
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to the right of the double arrows must be changed to multisets. Second, the four
following four inference rules must replace the corresponding inference rules from
LKF (Figure 3).

� atomic
` � ⇓ ¬� init

` % ⇓ Γ
` · ⇑ %, Γ decide ` C+ ⇓ · C

+ ` � ⇓ Θ1 ` � ⇓ Θ2
` � ∧+ � ⇓ Θ1,Θ2

∧+

Here, the init and C+ rules does not do an implicit weakening, the decide rule does not
do an implicit contraction, and the side formulas of ∧+ are treated multiplicatively.
The resulting proof system, calledMALLF in (Liang and Miller 2011), is a focused
proof system for MALL. Of course, the usual presentation of MALL results from
replacing the logical connectives C−, C+, 5 −, 5 +, ∧−, ∧+, ∨+, and ∨− need to be written
as >, 1, ⊥, 0, &, ⊗, `, and ⊕, respectively. The fact that this proof system is sound
and complete forMALL immediately follows from the results about focusing in full
linear logic given by Andreoli (1992).

Another variation uses a list, not a multiset, of formulas to the left of the ⇑: that is,
the order by which the asynchronous inference rules are attempted is proscribed in
a fixed fashion: this variation was used by Andreoli (1992) in his first focused proof
system for linear logic and is useful for the actual implementation of proof search
algorithms for focused proof systems.

The LKF proof system was designed to support automated proof checking and
proof search (Chihani et al. 2017) as well as to provide new means to prove meta-
theoretic results for first-order classical logic (see Section 9). Other researchers have
been focused instead on supporting the Curry-Howard correspondence (proofs-as-
programs) perspective, and they have designed still other variants of focusing for
classical logic. In particular, see the LC proof system (Girard 1991), and the LK[

d

(Danos et al. 1995; 1997), and the proof system used to define the _̄` ˜̀-calculus
(Curien and Herbelin 2000).

11 Conclusion

We have presented the proof system LKF and have proved that it is sound and
complete for LK and that the cut rule and the initial rule are admissible. The proofs
of these theorems were all done directly using permutation arguments. While the
LKF system exhibits features from linear logic, the proofs here do not assume any
background in linear logic or in intuitionistic logic.We expect thatLKFwill provide a
convenient framework for provingmany proof-theoretic proofs of first-order classical
logic.

Acknowledgments: We thank Marianna Girlando for her comments on an earlier
version of this paper.
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