A Logic for Reasoning with Higher-Order Abstract Syntax

Raymond McDowell and Dale Miller
Computer and I nformation Science Department
University of Pennsylvania
Philadelphia, PA 19104-6389 USA
mcdowell @saul .cis.upenn.edu, dale@saul .cis.upenn.edu

Abstract

Logical frameworks based onintuitionisticor linear log-
ics with higher-type quantification have been successfully
used to give high-level, modular, and formal specifications
of many important judgments in the area of programming
languages and inference systems. Given such specifica-
tions, it is natural to consider proving properties about the
specified systems in the framework: for example, given the
specification of evaluation for a functional programming
language, prove that the language is deterministic or that
the subject-reduction theorem holds. One challenge in de-
veloping a framework for such reasoning is that higher-
order abstract syntax (HOAS), an eegant and declarative
treatment of object-level abstractionand substitution, isdif-
ficult to treat in proofs involving induction. In this paper,
we present a meta-logic that can be used to reason about
judgments coded using HOAS, this meta-logic is an exten-
sion of a simpleintuitionisticlogic that admits higher-order
guantification over simply typed A-terms (key ingredients
for HOAS) as well as induction and a notion of definition.
Thelatter concept of a definition is a proof-theoretic device
that allows certain theories to be treated as“ closed” or as
defining fixed points. The resulting meta-logic can specify
variouslogical frameworks and a large range of judgments
regarding programming languages and inference systems.
Weillustratethis point through examples, including the ad-
missibility of cut for a simple logic and subject reduction,
determinacy of eval uation, and the equivalence of SOSand
natural semantics presentations of evaluation for a smple
functional programming language.

1. Introduction

Metalogics and type systems have been used to specify
the semantics of awiderange of logicsand computation sys-
tems[2, 4, 11, 34]. Thisisdoneby making judgments, such
as“theterm M denotesaprogram,” “the program M evalu-

atesto thevalue V", and “the program M hastype 7™, into
predicates that can be proved or types for which inhabitants
(proofs) are needed. Since these specification languages
often contain quantification at higher-order types and term
structures involving A-terms, succinct and elegant specifi-
cations can be written using higher-order abstract syntax, a
high-level and declarative treatment of object-level bound
variables and object-level substitution[28, 33]. In other ap-
proaches to syntactic representation where bound variables
are managed directly using either names or deBruijn-style
numbering, these details must be carefully addressed and
dealt with at most levels of a specification.

Recently, logical specification languages have been used
to not only describe how to perform computations but
also describe properties about the encoded computations
[3, 19, 21, 38]. By proving these properties in a formal
framework, we can benefit from automated proof assi stance
and gain greater confidence in our results. However, this
work has been donein languages that do not support higher-
order abstract syntax and so has not been able to benefit
from this representation technique. As a result, theorems
about substitution and bound variables can dominate the
task [38]. But meta-theoretic reasoning about systems rep-
resented in higher-order abstract syntax has been difficult
since the languages and logics that support this notion of
syntax do not provide facilities for the fundamental opera-
tionsof case analysisandinduction. Moreover, higher-order
abstract syntax leads to types and recursive definitions that
do not give rise to monotone inductive operators, making
inductive principles difficult to find.

These apparent difficulties can be overcome, and in this
paper we present a meta-logic in which we can naturally
reason about specifications in higher-order abstract syntax.
This metarlogic is a higher-order intuitionistic logic with
partia inductive definitions and natural number induction.
Induction on natural numbers alows us to derive other in-
duction principles via the construction of an appropriate
measure. A partia inductive definition [14] is a proof-
theoretic formalization that allows certain theories to be

trested as “closed” or as defining fixed points. This allows
us to perform case analyses on the defined judgments. We
usethi s definition mechanismto specify asmall, object-level
logic which in turn is used to specify the computation sys-
tems under consideration. In thisway, we can talk directly
about the structure of object-logic sequents and their prov-
ability. Thistechnique of representing alogicwithinalogic
isnot new (see, for example, [12, 31] for some early refer-
ences) and correspondsto the structure of common informal
reasoning.

In the next section we present our meta-logic and moti-
vateitsdesignthroughaninformal proof of subject reduction
for the untyped A-calculus. We proceed in Section 3 to use
this meta-logic to define an object-logic and describe some
of its meta-theory. Section 4 contains a specification in the
object-logic of the dynamic and static semantics for asim-
plefunctional programminglanguage. Weaso list avariety
of theorems about the language that we have proved in our
meta-logic. Finally, Section 5 discusses someother research
withsimilar goal sto our own, and Section 6 summarizes our
accomplishments and plansfor continuing the work.

2. Designing the meta-logic

In this paper we use an intuitionistic logic for our meta-
logic; in particular, we start with an intuitionistic version of
asubset of Church’'s Simple Theory of Types[5] (assuming
(Gn-conversion for the equality of terms). Formulas will
have the type o, thelogical constants for true and false are
T and L, for conjunctionand implicationare A and O , and
universal and existentia quantification at type r are V. and
3;. Inthis paper, will not contain o and will be either of
primitivetype or of order 1.

We use the following facts about cut-free intuitionistic
provability of sequentsinvolving just theseconnectives[29].
Let P be a finite set of formulas and let B, By, B> be
formulas. The sequent P — B3 A B, isprovable if and
only if the sequents? — B; and P — B, are provable,
and the sequent P — B1 D By isprovableif and only if
the sequent P, By — By isprovable. Furthermore, if P
does not contain any positive occurrences of an existential
quantifier, then the sequent » — V,x.B is provable if
and only if the sequent P — BJ[y/«] is provable, where
y is some (eigen)variable that does not free occur in P or
inV,z.B; the sequent P — 3,z.B is provable if and
only if thesequent » — BJt/«] isprovablefor someterm
t of type 7. Finaly, if A isan atomic formula, then the
sequent P — A isprovableif and only if itis possible to
backchain onaformulain: backchaining can bedescribed
as the process of repeatedly applying left-introductionrules
to a given formulain P and its positive subformulas until
theatom A isexposed. Inthe particular case of formulas of
theform Va(G1 A - A Gy D A') (n > 0), backchaining

involvesfinding asubstitution 6 for thevariables z such that
A’6 equals A and the sequents P — ;0 are provable for
ali=1... n. Wewrite? - B whenever the sequent
P — B hasacut-free proof.

2.1. Motivation from informal reasoning

In order to motivate the extensions to the core of the
meta-logic presented above, we consider a specification of
call-by-name evaluation and simple typing for the untyped
A-caculus. To do this, we will find it useful to distinguish
between meta-level and object-level structures. For exam-
ple, a the meta-level we introduce two types, tmand ty, to
denote object-level terms and types. To represent the un-
typed A-termsweintroducethetwo meta-level constantsabs
of type (tm — tm) — tmand app of typetm — tm — tm
to denote object-level abstraction and application, respec-
tively. Using such a coding places «-equival ence classes of
object-level terms in one-to-one correspondence with 5n-
equivalence classes in the meta-level. Object-level types
will be built up from asingle primitivetype using the arrow
type constructor; these are denoted at the meta-level by the
congtants gnd of type ty and arr of typety — ty — ty.

To specify call-by-nameeva uation, we use an infix pred-
icate |} of type tm — tm — o and the two formulas

Vr.[(abs r) | (abs r)]
Vm,n,v,r.fm{ (absv) A (rn)dv D (appmn)]

(Here we took the liberty of abbreviating alist of universal
quantifiers as a universal quantifier of alist of variables.
We also dropped the type subscript on quantifiers since the
context makestheir typeclear: here, al variablesare of type
tm except for » which is of type tm — tm.) Metalevel -
reduction oninstances of (r n) will perform the substitution
of theterm » into the abstraction .

To specify simple typing at the object-level, we use the
binary predicate typeof of metalevel typetm — ty — o
and the two formulas

Vm, n,t, u.[typeof m (arr ut) A typeof n u
D typeof (app m n) 1]
Vo t,u. Vo [typeof x t D typeof (rx) u]
D typeof (absr) (arrt u)]

Here, notice that the meta-level use of implication and uni-
versal quantification with the typing rule for abs provides
an el egant management of the typing of object-level bound
variables. Proofsthat these two predicates correctly capture
the notionsof call-by-name evaluation and of simpletyping
can be found in various places in the literature: see, for
example, [2, 34].

Now consider the following theorem and its proof. To
simplify the presentation we omit displaying on the | eft of
the turnstile the above formulas encoding evaluation and

typing.

Theorem 2.1 If P evaluatesto V and P hastypeT then V'
hastypeT".

Proof Given our specifications above, we prove thisthe-
orem by proving by induction on the height of the proof of
Pl Vthatforadl 7, if - typeof P T thent typeof V T.
Since P || V isatomic, its proof must end by backchain-
ing on one of the formulas encoding evaluation. If the
backchaining is on the eval formula for abs, then P and
V' are both equa to abs R, for some R, and the conse-
guent is immediate. If P || V was proved using the eva
formulafor gpp, then P is of the form app M N and for
some R, there are shorter proofs of M |} (abs R) and
(RN) | V. Sincet typeof (app M N) T, thistyping
judgment must have been proved using backchaining and,
hence, thereisa U such that - typeof M (arr U T) and
F typeof N U. Using the inductive hypothesis, we have
F typeof (abs R) (arr U T). Thisatomic formula must
have been proved by backchaining on the typeof formula
for abs, and, hence, - V. [typeof & U D typeof (Rz) T).
Since our logic of judgments is intuitionistic logic, we
can ingtantiate this quantifier with N and use cut and cut-
elimination to concludethat - typeof (R N) T. Using the
inductive hypothesis a second time yields - typeof V T
1

This proof is clear and natural, and we would like our
meta-logic to allow proofs quite similar to thisin structure.
This suggeststhat the following features would be valuable
in the meta-logic.

1. Twodistinct logics. Oneof thelogicswould correspond
to the one written with logical syntax above and would
capturejudgments, e.g. about typability and eval uation.
The second logic would represent aformalization of the
English text in the proof above. Atomic formulas of
that logic would be judgmentsin the object-logic.

2. Induction over at least natura numbers.

3. Instantiationof meta-level eigenvariables. Intheproof
above, for example, the meta-level variable P wasin-
stantiated in one part of the proof to abs R and in
another part of the proof to app M N. Noticethat this
instantiation of eigenvariables within a proof does not
happen in a strictly intuitionistic sequent calculus.

4. Analysis of the proof of an assumed judgment. In the
proof above this was done a few times, leading, for
example, from the assumption

F typeof (abs R) (arr U T)
to the assumption

F Va.[typeof U D typeof (Rx) T).

The specification of typeof alows the implication to
go in the other direction, but given the structure of
the specification of typeof, this direction can aso be
justified at the meta-level.

In our meta-logic, we accommodate the first two features
by specifying an object-logic within the meta-logic and by
introducing natural numbers and induction. The last two
features are accommodated by introducing a notion of def-
inition and two sequent calculus rules for the left and right
introduction of defined concepts. We address this latter
notion first.

2.2. Definitions

Definitionswill be written in the following style.

Var[pi(th) = Ha] - Vi pa(tn) = Hy)

For: = 1,...,n, p; is a predicate constant, every free
variable of theformula /; isalso freeinat |east onetermin
thelist ¢; of terms, and all variablesfreeint; are contained
inthelist z; of variables. The expression Vz;.[p;(t;) = H;]
is a clause of the definition and H; is the body and p;(¢;)
is the head of that clause. The symbol £ is used simply to
indicate definitions: it is not alogical connective. We do
not assume that the predicates ps, . . ., p, aredigtinct: itis
best to think of a definition as a mutual recursive definition
of predicates that are inthe set {p1, ..., p,}. Inthis paper
we only consider definitions containing a finite number of
clauses; in other work, however, infinite definitions play an
important role [25].

For the cut rule to be eliminable from our meta-logic
(Theorem 2.2), it isnecessary to place further restrictionson
the form of definitions[36]. Schroeder-Heister shows that
it is sufficient to prohibit the use of implication in clause
bodies [36], and we adopt this solution here. It is possible
to loosen thisrestriction by either restricting occurrences of
the modal operators ! and ? in a linear logic setting [13]
or stratifying the defined predicates [23], but we shal not
require such flexibility in this paper.

The right-introduction rule for defined atomsis

(n>0)

wherep u = (pt)d for

r— Hf !
u some clause Vz.[pt = H]

F—pu ’

where ¢ is a substitution of terms for variables and I is
a multiset of formulas. This rule corresponds to the logic
programming notion of backchaining if we think of = in
definitions as reverse implication.

Theleft-introduction rulefor defined concepts uses com-
plete sets of unifiers (CSU) [18]:

0 € CSU(pu,pt) for }

{HG,FG — B0 some clauseVz.[pt = H]

suf —B def L

whered isasubstitution of termsfor variables, I isamultiset
of formulas, B isaformula, and the variables 2 are chosen
to be distinct from the variables free in thelower sequent of
therule. Specifying a set of sequents as the premise means
that each sequent in the set isa premise of therule.

Noticethat the number of premises of the def £ rule may
be either infinite or finite (including zero). If the formula
pu does not unify with the head of any definitional clause,
then the number of premises will be zero and p u, whichis
unprovable, is treated as false by this rule. If the formula
pu does unify with the head of a definitional clause, CSUs
may be infinite, as is the case with unifications involving
simply typed A-termsand variables of functional type (a.k.a
higher-order unification). Clearly an inference rule with
an infinite number of premises is impossible to automate
directly. There are many important situations where CSUs
are not only finite but are also singleton (containing a most
genera unifier) whenever terms are unifiable. One such
case is, of course, the first-order case. Another case is
when the application of functional variablesare restricted to
distinct bound variablesinthe sense of higher-order pattern
unification [26]. In this paper, all unification problems will
fal into this latter case and, hence, we can count on the
definition left-introduction rule to have afinite (and small)
number of premises.

Thisleft-introductionruleissimilar to definitional reflec-
tion[36] (not to be confused with another notion of reflection
often consi dered between ameta-ogic and object-logic) and
toaninferenceruleused by Girardinhisnoteon fixed points
[13]. This particul ar presentation of theruleisdueto Eriks-
son [9]. Noticethat in the def £ rule, the free variables of
the conclusion can be instantiated in the premises (see item
3inthelist of desired meta-logic features).

2.3. Natural number induction

Weincorporateinduction by introducing natural numbers
usingz : ntforzeroand s : nt — nt for successor and using
thepredicate nat : nt — o. Therulesfor thisnew predicate
are

[[—— nat [

[— natz natR I — nat (s I) natR
— Bz Bj—B(sj) BILT —C
nat I, — C natl

Here, 7, B, and C are schematic variablesof theseinference
rules, and j isavariablenot freein B. Thefirsttworulescan
be seen as right-introduction rules for nat while the third
rule, encoding induction over natural numbers, can be seen
as a |eft-introduction rule. In the left-introduction rule, B
ranges over formulaswith one variable extracted (say, using
A-abstraction) and represents the property that is proved by
induction; the third premise of that inference rule witnesses

the fact that, in general, B will express a property stronger
than C.

2.4. FONMN

The extension of intuitionistic logic that results from
adding the rulesfor definitionsand natural numbers we call
FOMNN_ an acronym for “first-order logic for A with defi-
nitionsand natural numbers’. Assuming that adefinitionis
given and fixed, we have the following results.

Theorem 2.2 (Cut-Elimination for FOX*N) If a sequent
is derivable in FOXAN, then it is derivable without using
the cut rule.

Proof The proofsof Schroeder-Heister in [36] regarding
cut-eliminationfor definitionsdo not appear to extend to our
setting where induction is included. A complete proof of
this theorem appears in [22, 23] and is modeled on proofs
by Tait and Martin-Lof that use the technica notions of
normalizability and computability. |

The following corollary isan immediate consequence of
this cut-€limination theorem.

Corollary 2.3 (Consistency of FOM*N) There is no deri-
vationin FOMN of the sequent — L.

Although cut-elimination holds for thislogic, we do not
have the subformula property since the invariant formula
B used in the nat£ ruleisnot necessarily a subformula of
the conclusion of that inference rule. In fact, the following
inference rule is derivable from the induction rule.

— B B, —C
nat I, — C

This inference rule resembles the cut rule except that it re-
quires a nat assumption. Although we fail to have the sub-
formulaproperty, the cut-elimination theorem till provides
astrong basis for reasoning about proofsin FOXN. Also
this formulation of the induction principle is natural and
close to the one used in actua mathematical practice: that
is, invariantsmust be, at times, clever inventionsthat are not
simply rearrangements of subformulas. Any automation of
FOXMN will amost certainly need to be interactive, at least
for retrieving instantiationsfor the invariant 5.

Asour first example of atheorem in our meta-logic, we
derive a complete induction principle.

Theorem 2.4 (Completeinduction) For any formula C' :
o and predicate B : nt — o, theformula
Vi.lnatj DOVk[nakD>k<jDBk]DBj]
DVYi[(BiD>C)D(nai>C)

isprovablein FOXN, where < is defined by the clauses

z<(sJ)EnaJ (s)<(s)EI<J

(Inthedefinition of <, we have not shown the quantification
of thevariables / and J around the clauses. Throughout this
paper we will implicitly assume the universal closure of al
definitional clauses.)

Wenow take themeta-logic FOX*N asour logical frame-
work. One can imagine adding stronger induction princi-
ples, such as transfinite induction, but we will not, in fact,
need such a principle for a great many of the theorems that
we wish to prove in the area of programming languages
and deductive systems. Many forms of induction, such as
structural induction and induction on the height of object-
level proofs (as used in the proof of Theorem 2.1 above)
are simple derived rules of FOX*N and do not need to be
considered as extensionsto thislogic.

We may, however, wish to have many different object-
logicsto reason about. We now discuss how an object-level
logic can be accommodated inside FOXAN,

3. Representing an obj ect-logic

Looking back to theinformal proof of subject reduction
(Theorem 2.1), thefirst observation stated that we needed to
have two logics, which, in fact, means that we need to have
three “languages’: the meta-logic for reasoning and induc-
tive proofs (FOA2N), the object-logic of judgments, and
finally the language of untyped A-terms and typesfor them.
We shall now define a simple object-level language that is
capable of representing a large number of judgments re-
garding programming systems and deductive systems. This
logic, asecond-order fragment of minimal logic, isencoded
using thetwo meta-logi ctypes atmfor atoms (atomic propo-
sitions) and prp for genera propositionsand the following
constants.

—~
~——

atm — prp

1 prp

& prp — prp — prp
= ! atm — prp — prp
A, @ (7 — prp) — prp
V, t (r— prp) — prp

We shall use the type i to denote the ground type for terms
in our object-logic (e.g. thetypes tm and ty of our example
will both be mapped to i). The syntactic variable r above,
representing the object-logic quantification types, will be
restricted to range over types built from i and —. The
constant {) coerces atoms into propositions: object-level
predicates (atomic judgments) will be constants that build
meta-level terms of type am. There are few meta-level
predicatesthat we need to deal with provability at the object-
logic. These are given below. Since object-level sequents
require lists of atomic propositions, we aso introduce the

typeatm_Ist and two constructorsnil and :: for buildinglists.

nil : atm.lst
atm — atm_st — atm_Ist

prog . atm— prp — o
seq . nt— atm_st — prp — o
element atm — atm_st — o

The meta-level atomic formula prog A B will encode the
fact that theuniversal closureof B = A ispart of theobject-
level theory. Thepredicate seqrepresentsobject-level deriv-
ability of a sequent with respect to the theory stored in the
prog clauses. The first argument is used as an induction
measure and is written as a subscript for convenience. Fi-
nally, the predicate element representslist membership. The
definition D (seq) for seq and element is

seqqs 1y L (4) £ 3Jb.[prog AbAseq; L]
seqp (A" L) (A) = element A (A’ :: L)
L1 2 7T
seq; -
seqis 1y L (B& C) = seq; L BAseq; LC
A
seqes 1y L (A = B) i seq; (A L) B
sedais) LN B) 2 Voufseqs L(Ba)
seqes 1y L (V, B) £ 3J,z[seq; L (Bx)]
element A(A:L) = T
element A (A’ 2 L) = element A L

The object-level theory declared by progwill vary according
to the logic specification under consideration, as illustrated
in the next section. At the object-level, a specification is
used as a theory and not as a definition: there are no defini-
tionsinvolved at the object-level. The clauses shown for A
and \/ are actually schemas giving the form of the clauses
for any type . Including instances of the schemeas for all
types would result in an infinite number of clauses. For
any application, however, we will only need afinite number
of instances; for the examples in this paper we need only
consider the types i and i — 1. For convenience we will
abbreviatethe formula3i.[nat ¢ Aseq; L BlasL 1> B (or
as > B when L isnil).

We now state the following properties about this pre-
sentation of the object-logic. If B is aterm of type prp,
then let B beits (obvious) trandation into a formula of in-
tuitionistic logic. If L isaterm of type atm_Ist, let . be
its (obvious) trandation to a multiset of atomic formulas of
intuitionistic logic. The following adequacy result follows
from the cut-elimination theorem for intuitionisticlogic and
therestriction to clausal second-order clauses.

Theorem 3.1 (Adequacy) Let D(prog) be the definition
{Vzy.[prog A1 G1 £ T),...,Va,.[progd, G, = T}

(n > 0) which represents an object-level logic specifica-
tion, and let P be the corresponding logic specification in
intuitionistic logic (i.e. the set of formulas Va; [G5 D A;],
forall i € {1,...,n}). Let D be a definition that extends
D(seq) U D(prog) with clauses that do not define nat, seg,
dement, or prog. Thenthesequent — L > B isprovablein
FOMN withdefinitionD if and only if 5 isanintuitionistic
consequence of L U P.

A complete proof can be found in [22]. The following
theorem states that we can prove in the meta-logic that the
usual structural rules and the cut rule are admissible for our
object-logic.

Theorem 3.2 (Object-level cut, exchange, weakening,
contraction) The following formulas are provable in
FOXAN with respect to the definition D(seq).

Va,b,{f(a2l) bb D I 1>{a) D [>b
Vi, b,l,l'.[nati D Va.[dlemental O édement al']
D oseg; b D oseq; Y]

Since our object-logicis restricted to second-order, it is
sufficient to show that cuts on atomic formulas are eim-
inable, and this only requires natural number induction in
the meta-logic. If we consider higher-order object-logics,
we would need richer induction schemes in our meta-logic.
Fortunately, second-order object-logics are appropriate for
the vast majority of specifications using higher-order ab-
stract syntax.

4. Representing static and dynamic semantics

We now develop in this object-logic the specification of
judgments regarding the typing and evaluation of A-terms.
We have chosen thelanguage of A-termsto correspond to our
example in Section 2.1 and to keep the initial presentation
brief and simple. We then show how to extend this spec-
ification to the programming language PCF. The required
meta-logic constants for A-termsare abs : (i — i) — i and
app .1 — 1 — i, and for smple types (over one primitive
type) we need gnd : i and arr 1 1 — i — i. Our object-
logic predicates representing typability, natural semantics,
and transition semantics are denoted by the meta-logic con-
stantstypeof , |}, ~, and~*, dl of typei — i — atm. The
obj ect-1ogi c specifications for these are the usual ones, writ-
teninthe L, subset of higher-order logic [26] and are those
common to specifications written in, say, AProlog [15] and
EIf [32]. Thisobject-level specification isrepresented at the
metar-level as the definition D(lambda) shown in Table 1.
(We have dropped the = T body of these clauses) This
definition can beinterpretedin alogic programming fashion
to compute object-level substitutions, simpletype checking,

and call-by-name evauation in both SOS and natura se-
mantic styles. (Call-by-valueis just as easily represented
and used.) We now show that this same definition can be
integrated into aframework in which properties about these
judgments can be proved.

Welist severa formulasthat can be proved in this meta
logic.

Theorem 4.1 The following formulas are provable in
FOXAN from the definition that accumulates D(seq),

D(lambda) and theclause X = X £ T defining the pred-
icate=:i — i — o.

Determinacy of semantics:

Vim, mq, ma.[>{m | m1) D >{m | m2)

omg = mz]
Vim, ma, ma.[>{m ~ m1) D >{m~ my)
omg = mz]

Ym, rq, 7“2.[l><m ~ (abs 7“1)> D) l><m ~F (abs r2)>
D (absri) = (absry)]

Equivalence of semantics:

Vm, r.[>(m | (@bsr)) D >(m~* (absr))]
Vm, r.[>{m~" (absr)) D >(m | (absr))]

Subject reduction:

Vm,n.[>{m{ n)

D Vi(> (typeof mt) D >(typeof n t))]
Vm, n.[>{m ~ n)

D Vi(> (typeof mt) D >(typeof n t))]
Vi, n.[>{m ~" n)

D Vi(> (typeof mt) D >(typeof n t))]

Although the meta-level proofs are not difficult and gen-
eraly follow closely an informa proof, we do not include
them heresincethey take at | east acouplepagesto presentin
detail. Thefirst subject reduction theoremisaformalization
of Theorem 2.1; its FOXN proof is given in Appendix A.
All thesetheorems and the corresponding onesfor PCF men-
tioned below have been constructed formally using the Pi
proof editor of Eriksson [10].

We now extend this encoding of the static and dynamic
semantics for untyped A-termsto PCF. The necessary meta-
logic constants for PCF types are

num . | bool : | arr
Those for PCF terms are

zero . 1

1s_zero 1—1
true 1 if 1—1—1—1
false | i abs i—(i—1)—1i
succ I 1—1 app 1—1—1
pred © 1—1 rec i—(i—1)—1i

prog (typeof (abs R) (arr T U)) A n.[(typeof nT) = (typeof (Rn) U})]
prog (typeof (app M N)T) V u.[{typeof M (arr uT)) & {typeof N u)]

prog ((abs R) || (abs R)) 1
prog ((app M N)4 V) \Vr[(M U (abs 7)) & {(r N) § V)]

prog ((app (abs R) M)~ (RM)) 1
prog ((app M N)~ (app M' N)) (M~ M')

prog (M ~* M) 1
prog (M ~* N) V' (M~ m') & (m' ~* N}

Table 1. D(lambda): Object-logic encoding of typing and evaluation of A-terms.

prog (typeof zero num) 1

prog (typeof true bool) 1

prog (typeof false bool) 1

prog (typeof (suce M) num) (typeof M num)

prog (typeof (pred M) num) (typeof M num)

prog (typeof (is_zero M) bool) (typeof M num)

prog (typeof (if M N1 N2) T) (typeof M bool) & (typeof N1 T) & (typeof N T)
prog (typeof (abs T R) (arr T U)) A n.[(typeof n T) = (typeof (Rn) U)]
prog (typeof (app M N) T) V w.[{typeof M (arr uT)) & {typeof N u)]
prog (typeof (rec T R) T) A n.[(typeof n T) = (typeof (Rn) T)]

prog (zero |} zero) 1

prog (true |} true) 1

prog (false | false) 1

prog ((suce M) | (succ V)) (M V)

prog ((pred M) | zero) (M |} zero)

prog ((pred M) | V) (M) (suce V))

prog ((is-zero M) |} true) (M |} zero >

prog ((is-zero M) |} false) V. [{M | (suce v))]

prog ((if M N1 No) | V) (M |} true) & (N1 | V)

prog ((if M N1 No) | V) (M || false) & (N |} V)

prog ((abs T R) || (abs T' R)) 1

prog ((app M N) U V) \/r VLM U (abs € 1)) & {(r) 4 V)]

prog ((rec T R) | V) (R(rec T R)) J V)

Table 2. D(pef): Object-logic encoding of typing and evaluation for PCF.

Since both types and terms of PCF are represented by the
object logic type i, we have underlined the occurrences of
i that correspond to PCF types to improve the readability
of these declarations. The first argument to abs and rec
represent the PCF type tag for the variable bound by the
abstraction and recursion constructs.

The object-logic predicates representing typability and
natural semantics are denoted by the same meta-logic con-
stantsasabove, typeof : i —i— atmandl}: i — 1 — atm,
plus the additional constant value : i — atm. The object-
level specification is represented at the meta-level as the
definition D(pcf) shown in Table 2. The transition seman-
ticsfor PCF can be represented by asimilar extension of the
corresponding specification for A-terms given in Table 1.
The typetagsin PCF terms alow the unicity of typing

Vim, t1,t2.[> {typeof mt1) D D>(typeof mty)
Dt = tz]

to hold in addition to formulas corresponding to those of
Theorem 4.1.

The use of object-level sequents may seem at first a
rather drastic step to take to embed the kind of hypothet-
ical judgments common with higher-order abstract syntax
into a metarlogic. Such a representation is, however, used
in various areas of programming language semantics. For
example, Mitchell, in his textbook [30], uses typing judg-
ments of theform ' > M : & and performs induction over
their (sequent-style) derivation.

5. Related wor k

Thereareseveral other approachesto dealingwith higher-
order abstract syntax directly in aformalized meta-language.
Despeyroux, Felty, and Hirschowitz [7, 6] show that induc-
tion principlesfor arestricted form of second-order abstract
syntax can bederived inthe Coq proof devel opment system.
To keep the definitions monotone, they introduce a separate
type for variables and explicit coercions from variables to
other types. For example, their constructor for A-abstraction
would havetype(var — tm) — tm. Sinceobject-level vari-
ablebindingisdtill represented by meta-level A-abstraction,
the object-language till inherits «-equivalence from the
meta-language. Becausethe abstractionisover thetype var,
they lose several key benefits of higher-order abstract syn-
tax: meta-level 5-reduction cannot be used for object-level
substitution and the power of meta-level cut-diminationis
reduced significantly (both of these features were key as-
pects of the proof of Theorem 2.1). In addition, the Coq
type (var — tm) includes functions besi des those express-
ible as A-terms, so the type tmincludes expressions that do
not encode terms of the object-language. They avoid these
exotic terms through the definition and use of a vadidation
predicate.

Despeyroux, Pfenning, and Schiurmann [8] address the
problem of exotic terms by using a modal operator to dis-
tinguish the types of parametric functions (expressible as
A-terms) from the types of arbitrary functions. As aresult,
their calculus alows primitive recursive functionals while
preserving the adequacy of higher-order abstract syntax en-
codings. Thisrepresents a start toward alogical framework
supporting meta-theoretic reasoning, higher-order abstract
syntax, and the judgments-as-types principle. In such a
framework a derivation would be represented as a func-
tion whose type is the derived property. Thus the — type
constructor must be rich enough to include the mappings
from derivations to derivations such as the redlizations of
case anaysis and induction. Their work is orthogonal to
our work presented in this paper. We are not attempting
to support the judgments-as-types principle, so the types of
our meta-logic are only used to encode syntactic structure.
Thus we can restrict these types to include only A-terms,
ensuring the adequacy of encodingsin higher-order abstract
syntax. They, on the other hand, do not address the issue of
induction principlesfor higher-order abstract syntax.

Schrmann [37] offers another framework supporting
higher-order abstract syntax and meta-theoretic analysis.
He constructs a meta-logic MLF to reason about deduc-
tive systems represented in the Horn fragment of LF. This
meta-logicincludesarecursion rulethat isused for induction
and case andysis. Thisapproach issimilar in spirit to ours
in that there are three levels: the deductive system(s) un-
der consideration, the logic in which the deductive systems
are encoded, and the logic in which meta-theoretic analysis
takes place. His metarlogic MLF, however, is designed for
a specific, fixed intermediate logic, the Horn fragment of
LF. In our case, themeta-logic isagenera framework capa-
ble of representing and reasoning about a variety of logics.
In addition, the validity of Schurmann’s work depends on
cut-eliminationfor MLF, whichis still an open question.

Still another strategy for meta-theoretic reasoning about
higher-order abstract syntax encodings is to perform each
case of aproof inthemeta-l ogic, but verify the compl eteness
of the proof outsidethe logical framework. Rohwedder and
Pfenning [34, 35] investigatethedesign and implementation
of such external validity conditions.

Matthews seeks to reconcile the advantages of LF-style
encodings with the facilities for meta-theoretic anaysis
found in theories of inductive definitions [20]. His ap-
proach has some similarity to our own, in that he creates a
three-level hierarchy, with each level being encoded in the
previous. Asin our approach, histop level contains a def-
inition facility and induction principles for reasoning about
encodings at the next level. However, hislogic at the inter-
mediate level contains only an implication connective and
no quantifiers. Thus he does not address the treatment of
object-level bound variables, amajor feature of higher-order

abstract syntax and, consequently, of our work.

6. Conclusion

Inthispaper we have presented asingleand simply moti-
vated meta-logic FOAXAN. Within thislogic we have shown
how to encode a simple second-order intuitionisticlogic and
in that logic we have encoded and reasoned with typing and
evaluation judgments for a simple functiona programming
language. The main contribution of this research is that
the encodings at both levels can be done using higher-order
abstract syntax, and we are able to reason naturaly in our
framework about these encodings.

The meta-logic FOMMN has aso been used to reason
about simulation and bisimulation in abstract transition sys-
temsand CCS[25]. Thesetransition systemsdid not contain
binding operators, and so both the specification and reason-
ing was done in the meta-logic. We have aready begun
using the techniques presented in the current paper to ex-
tend that work to the setting of applicative bisimulation[1].
It would a so beinteresting to use Howe' stechnique[17] to
prove the congruence of bisimulationin our framework.

In FOXMN we can easily represent object-logics other
than theintuitionisticoneused here. Encoding fragments of
second-order linear logic, along the lines of Lolli [16] and
Forum [27], can be done simply by changing the definition
of seq givenin Section 3. These various intuitionistic and
linear logicsare known to be ableto capture awide range of
judgments in the areas of functional, imperative, and con-
current programming languages. Our meta-logic FOXAN
should be able to formalize many proofs about judgments
made within those logics, and we plan to demonstrate this
in our futurework.

Acknowledgments

Wewould like to thank Frank Pfenning for helpful feed-
back on early presentations of this work and Lars-Henrik
Eriksson for making his Pi derivation editor [10] available
to help check the formal proofsdescribed here. The authors
have been funded in part by the grants ONR N00014-93-1-
1324, NSF CCR-92-09224, NSF CCR-94-00907, and ARO
DAAHO04-95-1-0092.

A. Subject reduction

We describe here aformal proof of subject reduction, i.e.
aproof of the sequent

— VpVo.[>(p | v)
D Vt.(>(typeof pt) D >(typeof v t))]

using the encoding of typability and natural semantics in
Section 4. Aswe step through the proof we will correlateit
with theinformal proof of Theorem 2.1. Applying the VR,
DR, 3L, and AL rulesto the above sequent yields

nat i, seq; nil {p | v},
>(typeof pt) — >(typeof v 1)

(Recall that t>(p | v) is an abbreviation for 3i.[nat i A
seq; nil {p | v}].)

Asin the informal proof, we proceed with an induction
ontheheight of the proof of p |} v, whichisrepresented here
by i. We will use the derived rule for complete induction
(Theorem 2.4) and our invariant will be

Ai.VpNu.[seq; nil {p || v)
D Vi.(>(typeof pt) D D>(typeof v t))]

which we will denote by INV. The proof of the conclusion
from the invariant applied to ¢ istrivial, so it only remains
to provethe induction step

nat j,Vk.[natk D k < j D (INVk)] — (INV j)
We usethe VR and DR ruleto obtain

nat j,Vk ...,
seq; nil (p |} v), >(typeof pt) — D>(typeof v 1)

Intheinformal proof we usethefact that the proof of the
atomicformulap |} » must endwithabackchain. Wededuce
this here by applying the def L rule to seq; nil {p |} v),
whichyields

nat (s jo),Vk ...,
3d.[prog (p |} v) d A seq;, nil d],
> (typeof pt) — >(typeof v t)

We then apply the 3£ and AL rules, and then the def £ rule
to prog (p | v) d which yieldsthe two sequents

nat (s jo),Vk ...,
seq;, nil 1,
I>(typeof (abs r)t) — B (typeof (absr)t)

nat (s jo),Vk ...,
seq;, nil \/ r.[(m | (abs r))
&((rn) 4 v)],
>>(typeof (app m n)t) — b (typeof v t)
This use of the def £ rule corresponds to the case analysis
of the formula used to prove p |} v. Asin the informa
case, the abs case (represented here by the first sequent) is
immediate. The proof of the second sequent, representing
the gpp case, beginswith the use of the def £, 3£, and AL,
bringing us to the sequent
nat (s3j1),Vk ...,
seq;, nil (m |} (abs r)),
seq;, nil {((rn) v
i

> (typeof (app m n)t) — D> (typeof v t)

(We use the term s2 j; as an abbreviation for s (s (s j1)).)
Theinformal proof continueswith an analysisof theproof
of typeof (app m n) t. Again we accomplish thisthrough
two uses of the def £ rule, thefirst to indicate that the proof
must end with abackchain, and the second to determine the
applicable backchain formulas. In this case there is only
one applicable formula, so we are |eft to prove the sequent

..., nat (s jg),
seq;, nil \/ w.[(typeof m (arr ut))

& (typeof n u)] — D> (typeof v t)

Additional uses of the def £, 3£ and AL rules brings us to
the sequent

..., nat (s3}),
seq;, nil {typeof m (arr ut)),
seq;s nil {typeof n u) — >(typeof v t)

In the informal proof we now apply the induction hy-
pothesis to the evaluation and typing judgments for m. We
accomplish this here by applying the appropriate left rules
to the induction hypothesis V& This requires the proof
of the three sequents

nat (s3j1) — nat j1 nat (s3j1) — < (s3j1)

nat (s3j1),Vk ...,
seq;, nil {((rn) | v),
I>(typeof (abs r) (arr ut)),
nat (s }), seq;; nil {typeof n u) — >{typeof v t)

The first two of these represent the fact that the measure
of the evaluation proof for m is a natura number that is
smaller than the measure of the original eval uation proof for
p. These can be proved by simple inductions.

The proof of the third sequent proceeds with two appli-
cations of the def £ rule, corresponding to the analysis of
the proof of typeof (abs r) (arr u t) intheinformal proof.
Thisyields the sequent

...,nat (s jg),
seq;u nil N\ z.[(typeof = u) ,
= (typeof (rxz) t)]

.. — D{typeof v 1)

Thisisfollowed by additiona applicationsof the def £, VL,
3£, and AL rulesto give us

..., nat (s31),
seq;y ((typeof n u) :: nil)

(typeof (rn)t),...— p(typeof v)

Theinformal proof proceedswith auseof thecut rule, and
here we use the derived object-level cut rule (Theorem 3.2)
withtheelided assumption seq;, nil (typeof n u) toobtain

..., D{typeof (rn)t) — p{typeof v 1)

Theinformal proof concludes by applying the induction
hypothesis to the evaluation and typing judgments for m'.
Again we accomplish this by applying the appropriate left
rules to the induction hypothesisVk . . ., which requires the
proof of the three sequents

nat (s3j1) — nat j; nat (s3j1) — j1 < (5% j1)

>(typeof vt) — B (typeof v t)

The first two sequents can be proved by simple inductions,
and the third sequent isimmediate.

References

[1] Samson Abramsky. The lazy lambda calculus. In
D. Turner, editor, Research Topicsin Functional Pro-
gramming, pages 65-117. Addison Wesley, 1990.

[2] ArnonAvron,FurioHonsdll, lan A. Mason, and Robert
Pollack. Using typed lambda calculus to implement
formal systems on a machine. Journal of Automated
Reasoning, 9:309-354, 1992.

[3] David A. Basin and Robert L. Constable. Metal ogical
frameworks. In G. Huet and G. D. Plotkin, editors,
Logical Environments, pages 1-29. Cambridge Uni-
versity Press, 1993.

[4] Jawahar Chirimar. Proof Theoretic Approach to Spec-
ification Languages. PhD thesis, University of Penn-
sylvania, February 1995.

[5] Alonzo Church. A formulation of the simpletheory of
types. Journal of Symbolic Logic, 5:56-68, 1940.

[6] Joelle Despeyroux, Amy Felty, and Andre
Hirschowitz. Higher-order abstract syntax in Cog. In
Second International Conference on Typed Lambda
Calculi and Applications, pages 124138, April 1995.

[7] Joelle Despeyroux and Andre Hirschowitz. Higher-
order abstract syntax with induction in Cog. In Fifth
International Conference on Logic Programming and
Automated Reasoning, pages 159-173, June 1994,

[8] Joelle Despeyroux, Frank Pfenning, and Carsten
Schirmann. Primitive recursion for higher-order ab-
stract syntax. In Third International Conference on
Typed Lambda Calculi and Applications, April 1997.

[9] Lars-Henrik Eriksson. A finitary version of the calcu-
lus of partia inductive definitions. In L.-H. Eriksson,
L. Hallnés, and P. Schroeder-Heister, editors, Proceed-
ings of the January 1991 Workshop on Extensions to
Logic Programming, volume 596 of LNAI, pages 89—
134. Springer-Verlag, 1992.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Lars-Henrik Eriksson. Pi: aninteractivederivationed-
itor for the calculus of partia inductivedefinitions. In
A. Bundy, editor, Proceedings of the Twelfth Interna-
tional Conference on Automated Deduction, volume
814 of LNAI, pages 821-825. Springer-Verlag, June
1994,

Amy Felty. Implementing tactics and tacticals in a
higher-order logic programming language. Journal of
Automated Reasoning, 11(1):43-81, August 1993.

Amy Fety and Dae Miller. Specifying theorem
proversin ahigher-order | ogic programming language.
In E. Lusk and R. Overbeck, editors, Ninth Interna-
tional Conference on Automated Deduction, pages 61—
80. Springer-Verlag, May 1988.

Jean-Yves Girard. A fixpoint theorem in linear
logic. A message posted on thelinear @cs.stanford.edu
mailing list, http://www.cdl.sri.com/linear/mailing-
list-traffic/www/07/mail _3.html, February 1992.

LarsHallnas. Partial inductivedefinitions. Theoretical
Computer Science, 87:115-142, 1991.

John Hannan and Dale Miller. From operationa se-
manti csto abstract machines. Mathematical Structures
in Computer Science, 2(4):415-459, 1992.

JoshuaHodas and Dale Miller. Logic programmingin
a fragment of intuitionistic linear logic. Information
and Computation, 110(2):327-365, 1994.

Douglas J. Howe. Proving congruence of bisimulation
in functional programming languages. Information
and Computation, 124(2):103-112, 1996.

Gérard Huet. A unification agorithm for typed A-
caculus. Theoretical Computer Science, 1:27-57,
1975.

Lena Magnusson and Bengt Nordstrom. The ALF
proof editor and its proof engine. In H. Baren-
dregt and T. Nipkow, editors, Types for Proofs and
Programs, number 806 in LNCS, pages 213-237.
Springer-Verlag, 1994.

Seén Matthews. A practical implementation of sim-
ple consequence relations using inductive definitions.
In Proceedings of the 14th Conference on Automated
Deduction. Springer-Verlag, July 1997.

Sean Matthews, Alan Smaill, and David Basin. Experi-
ence with 'Sy as aframework theory. In G. Huet and
G. D. Plotkin, editors, Logical Environments, pages
61-82. Cambridge University Press, 1993.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Raymond McDowell. Proving meta-theoremsin alog-
ica framework. Dissertation proposal, University of
Pennsylvania, November 1996.

Raymond McDowell and Dale Miller. Cut-dlimination
for a logic with definitions and induction. Draft
manuscript submitted to the proceedings of the
TYPES 96 workshop, March 1997.

Raymond McDowell, Dae Miller, and Catuscia
Palamidessi. Encoding transition systems in sequent
calculus: Preliminary report. In Proceedings of the
1996 Workshop on Linear Logic, volume 3 of Elec-
tronic Notes in Theoretical Computer Science. Else-
vier, 1996.

Raymond McDowell, Dae Miller, and Catuscia
Palamidessi. Encoding transition systems in sequent
caculus. Draft manuscript submitted to Theoretical
Computer Science. Preliminary version appeared as
[24], April 1997.

Dale Miller. A logic programming language with
lambda-abstraction, function variables, and simple
unification. Journal of Logic and Computation,
1(4):497-536, 1991.

Dade Miller. Forum: A multiple-conclusion spec-
ification language. Theoretical Computer Science,
165:201-232, 1996.

Dade Miller and Gopalan Nadathur. A logic pro-
gramming approach to mani pul ating formulasand pro-
grams. In S. Haridi, editor, IEEE Symposiumon Logic
Programming, pages 379-388, September 1987.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and
Andre Scedrov. Uniform proofs as a foundation for
logic programming. Annalsof Pure and Applied Logic,
51:125-157, 1991.

John C. Mitchell. Foundationsfor Programming Lan-
guages. MIT Press, 1995.

Lawrence C. Paulson. Natura deduction as higher-
order resolution. Journal of Logic Programming,
3:237-258, 1986.

Frank Pfenning. Elf: alanguage for logic definition
and verified meta-programming. In Fourth Annual
| EEE Symposiumon LogicinComputer Science, pages
313-321, June 1989.

Frank Pfenning and Conal Elliot. Higher-order ab-
stract syntax. In Proceedings of the ACM-SIGPLAN
Conference on Programming Language Design and
I mplementation, pages 199-208, June 1988.

[34]

[35]

[36]

[37]

[38]

Frank Pfenning and Ekkehard Rohwedder. Implement-
ing themeta-theory of deductivesystems. In D. Kapur,
editor, Proceedings of the Eleventh Inter national Con-
ference on Automated Deduction, volume 607 of LNAI,
pages 537-551. Springer-Verlag, June 1992.

Ekkehard Rohwedder and Frank Pfenning. Mode and
termination analysis for higher-order logic programs.
In Proceedings of the European Symposium on Pro-
gramming, pages 296-310, April 1996.

Peter Schroeder-Heister. Rules of definitional reflec-
tion. In M. Vardi, editor, Eighth Annual |EEE Sympo-
siumon Logic in Computer Science, pages 222-232.
|EEE Computer Society Press, June 1993.

Carsten Schirmann. A computational meta logic for
the Horn fragment of LF. Master’s thesis, Carnegie
Méllon University, December 1995.

Myra Vaninwegen. The Machine-Assisted Proof of
Programming Language Properties. PhD thesis, Uni-
versity of Pennsylvania, May 1996.

Papers by McDowell are available via anonymous ftp
from ftp.cis.upenn.edu in pub/papersmcdowell or via
the WWW at http://www.cis.upenn.edu/"mcdowell. Pe-
pers by Miller are available via anonymous ftp from
ftp.cis.upenn.edu in pub/papers/miller or via the WWW at
http://www.cis.upenn.edu/"da e.

