A Proof Theory for Generic Judgments:
An extended abstract

Dale Miller) Alwen Tiu
INRIA/Futurs/Saclay &Ecole polytechnique Ecole polytechnique & Penn State University
dale.miller@inria.fr tiu@cse.psu.edu
Abstract need to discover invariants. Another manéensionalap-

proach, however, involves introducing a new, generic vari-

A powerful and declarative means of specifying com- able, say¢ : v, that has not been introduced before in the
putations containing abstractions involves meta-level, uni- proof, and to prove the formul®[c/z] instead. In natural
versally quantifiedyeneric judgmentsWe present a proof deduction and sequent calculus proofs, such new variables
theory for such judgments in which signatures are associ- are calleceigenvariables
ated to each sequent (used to account for eigenvariables of In Gentzen’s original presentation of the sequent cal-
the sequent) and to each formula in the sequent (used toculus [5], eigenvariables were immutable: reading proofs
account for generic variables locally scoped over the for- bottom-up, once an eigenvariable is introduced it is not used
mula). A new quantifiely, is introduced to explicity ma- as a site for substitution. In other words, Gentzen'’s eigen-
nipulate the local signature. Intuitionistic logic extended variables did not vary in proof construction: rather they
with V satisfies cut-elimination even when the logic is ad- acted more as fresh, scoped constants.
ditionally strengthened with a proof theoretic notion of defi- The generic interpretation of quantifiers generally entails
nitions. The resulting logic can be used to encode naturally the extensional interpretation: this is a simple consequence
a number of examples involving name abstractions, and weof the cut-elimination theorem as follows. Assume that the
illustrate using ther-calculus and the encoding of object- sequenl’ — Vz.B is proved using the introduction &f
level provability. on the right from the premisE — Blc/z], wherec is

an eigenvariable and(c) is a proof of this premise. Sim-

Keywords: proof search, reasoning about operational se-ilarly, assume that the sequeit, VB — C is proved
mantics, generic judgments, higher-order abstract syntax. using the introduction of/ on the left from the premise
IV, B[t/x] — C, wheret is some term. To reduce the rank
of the cut formulavz. B between the sequeniis— Vz.B
andI”,VxB — (|, the eigenvariable in the sequent cal-
culus proofII(c) must be substituted byto yield a proof

In specifying and reasoning about computations involv- 11(¢) of ' — Bi[t/x]: in this way, the cut-formula is now
ing abstractions, one needs to encode both the static structhe smaller formulaB[t/z]. In Gentzen, this role of in
ture of such abstractions and their dynamic structure during[y(¢) as a site for substitution only takes place in the meta-
computation. One successful approach to such an encodtheory of proofs and not in proofs themselves.
ing, generally calledigher-order abstract syntg22], uses Recent years have witnessed two different developments

A-terms to encode the static structure of abstractions andp, the role of eigenvariables in the specification of compu-
universally quantified judgments to encode their dynamic t5tion systems.

structure.

There are, of course, several ways to prove a univer-
sally quantified expressiolv,,z.B. An approach that can Eigenvariables as fresh, scoped constantsFocusing on
be called theextensionglattempts to proveB[¢/x] for all theirintensionalnature and guarantee of newness or fresh-
(closed) termg of type~. This rule might involve an in- ness in proof search, eigenvariables have been used to en-
finite number of premises if the domain of the typés code name restrictions in thecalculus [15], nonces in se-
infinite. If the type~ is defined inductively, a proof bin- curity protocols [1], reference locations in imperative pro-
ductioncan replace the need for infinite premises with finite gramming [2, 16], and constructors hidden within abstract
premises (thdasecases andéhductivecases) but with the data-types [12]. Eigenvariables also provide an essential

1. Eigenvariables and generic reasoning

Y:(oy:y)>Bly/z],I' —C tifier. In this paper, we do this by adding tRequantifier:
Y:0>V,2.B, T —C VL its role will be to declare variables to be new and of local
S:T — (0, :) > Bly/a] scope. The synta_x of tr_\e formu‘i_afy:c.B is like that for the ,
VR universal and existential quantifiers. Following Church’s
X:I'— o> V4B approach with the Simple Theory of Types [3] formulas are
given the type, and for all typesy not containing, V., is
Figure 1. Rules for the V-quantifier. a constant of typéy — o) — o. The expressiolV, \z.B
is usually abbreviated as simply.,«.B or asVz.B if the

¢)) ith d ded usi type information is either simple to infer or not important.
T e e et oS SeGUEnS Wit e reed 1 3ccoun o
gher- y : €19) are structures of the form
essentially constants, scoped over part of a computation.

¥:DBy,...,B, — By.
Eigenvariables as variables to instantiate Computation
in logic programming can be seen as a (restricted) form of Here, 5 is a signaturecontaining the list of all (explicitly
cut-free proof search. Cut and cut-elimination can then beyneq) eigenvariables of the sequent. We white- ¢ :
used to reason directly about computation: for example, if , 15 denote that is a simply typed\-term of type~ in
A has a cut-free proof (that s, it can be computed) and weyich there may appear the (fixed) logical and non-logical
know thatA > B can be proved (possibly with cuts), cut- constants as well as those eigenvariables.ikive shall also
elimination allows us to conclude thBthas a cut-free proof g5y is ax-term (of typey), and, ify is o, ¢ is aS-formula.
(that is, it can be computed). As we mentioned above, suchy, the displayed sequent above> 0 and By, B, . . ., Bn
direct reasoning on logic specification involves instantia- gre y'-formulas. Informally, the “extensional’ reading of
tions of eigenvariables. Similarly, focusing on thekten- s sequent would be that for every substituticthat maps
sionalnature guaranteed by cut-elimination, enrichments to 5 yariapler : ~ € X to a term of typey, if B;6 holds for all
the sequent calculus have been proposed by [7, 24, 6, 9]in; — 1 1 thenB,# holds.
which eigenvariables are intended as variables to be substi-
tuted. This enrichment to proof theory (discussed here in
Section 4) holds promise for providing proof systems for

the direct reasoning of logic specifications (see, for exam- ables) and severdbcal signatures, used to scope locally

ple, the above mentioned papers as well as [10, 11])_' fresh variables. More generally, sequents have the structure
These two approaches are, however, at odds with each

other. Consider, for example, the problem of representing
restriction of names or nonces usivigiuantification. (The
following example can be dualized in the event that a logi-
cal specification usesquantification instead of, as in, for
example, [1]). One can imagine that a proof of the expres-
sionVzVy.P(x,y) involves two different fresh “names” or
“nonces” whereas a proof of the expressionP(z, z) in-
volves just one such item. Of course, in logic, the implica-
tionVaVy.P(z,y) D Vz.P(z,) holds, so if there is a proof

To account for this new quantifier, we introduce into se-
guents a new element of context. Sequents will now have
one global signature (containing the sequent’s eigenvari-

Yo DBl,...,O'nDBn — 0o > By.

Here,o;, fori =0, ..., n are signatures and the other items
are as above. We shall consider sequents to be binding
structures in the sense that the signatures, both the global
and local ones, are abstractions over their respective scopes.
The variables i ando; will admit a-conversion by sys-
tematically changing the names of variables in signatures as
with the two different names, there must be one with those well as those in their scope, following the us_ual convention
of the A\-calculus. In general, however, we will assume that

names identified (via cut-elimination), and this is unlikely : . .
. . e . the local signatures; contain names different than those
to be the intended meaning of such quantification. This sug-. . . .
: : : . in the global signatur&. The expression > B is called a
gests that when using eigenvariables solely to provide scope

and freshness to names, one cannot reason directly with thgenene judgmenor s!mplyjudgmenr We. use scnpt letters
e X) . A, B, etc. to denote judgments. We write simgyinstead
specification using the center piece of proof theory: cut- : . .
elimination. of o > B if the signatures is empty.
The introduction rules foK are given in Figure 1. The
. variabley must be new to the variablesénandX (implicit
2. The V-quantifier in the definition of sequent). The expressiany :) de-
notes the signature containing the type declarationy
One approach to solving this problem of forcing one con- appended to the end of the list Notice that since the left
nective, thev-quantifier, to have two behaviors that are not and right rules are essentially the same, this quantifier will
entirely compatible, is to extend the logic with a new quan- be self dual.

Y:o>B,I' — D Y:ovC,I' — D >:I' — o> B >:I' —opC

SooBACT =DM SiosBACT =D N S:T —o0sBAC AR
:00B,I' —D X:ovC,I' — D Y I'—o> B YT —op(C
S 05BVC.T —D VL ST —oesBvC YR ST —osBvC VR
>:I' — o> B :ov(C T — D :o>B I —opC
oL OR

:oBDC,I'— D >:I'—orBDC
Y,obt:y E:UDB[t/x},F—»Cvﬁ ,h:T — o> B[(ho)/z]

Y:o>Vy2.B, I —C >:I'—o>Ve.B
Y, h:o>B[(ho)/x],T —C Y,obt:y Y:T — o> Blt/z]
:op>0dze.B,I' — C L ¥:I' —o>3,2.B
Z:B7B7F—>C Y:I' —C
E:JDL,FHBJ—L’ E:F—»JDTTR >:B,I' —C cL E:IS’,F—>CW£
. >:A— B >:B,I' —C ;
E:JDB,F—HJDBmIt Y:A I —C cu

Figure 2. The intuitionistic rules of FOA.

3. An intuitionistic logic with V instead of simplyy,. In the inference rules of Figure 2, we
write (ho) to denote(hzy . .. x,,).

For the sake of consistency with a naming convention
from the papers [8, 9], we shall refer to the inference system
defined with just the rules in Figure 2 &8 X (mnemonic
V, D, V,, and3, (again, the typey does not contain) and for a “firstiorder logic for)\-_e_:xpressions"). The proof sys-
their inference rules are given in Figure 2. Notice that no (€M resulting from the addition of the rules for(Figure 1)
inference rule in Figure 2 requires non-empty local signa- 'S calledFOAY.
tures: as a result, if all the local signatures in sequents ina Below are some theorems &fO\Y involving V. In
derivation built from those rules are set to empty, the result- these formulas, we useC' to abbreviateC > 1 and we
ing derivation is a standard derivation in intuitionistic logic. write B = C to denotg B D C) A (C D B).

The interaction between the global and local signatures

We now consider Gentzen'’s LJ calculus [5] with the ad-
dition of global and local signatures and Besides this
new quantifier, the other logical connectives areT, A,

and the universal and existential quantifiers needs some ex- Vi-Bz = -V Ba
planations. In the rule fowZ (and, dually, for3R), the Va(Bz A Cx) = VaBr A VaCx
guantifier appears in the scope of the global signature Va(Bz V Cr) = VaBr V VaCr
and the local signature. This quantifier can be instan- Va(Bz © Cx) = VaBz S VaCa
tiated (reading the rule bottom-up) with a term built from VavyBary = YhVaBa(ht)
variables in both of these signatures. Similarly, in the rule Va3yBay = 3hVaBa(hz)
for VR (and, dually, for3L), the quantifier appears in the VavyBry O YyVaBry
scope of the global signatude and the local signature. VeT=T, Vel=1

This quantifier can be instantiated (reading the rule bottom-

up) with an eigenvariable whose intended range is over

all terms built from variables i and 0. Since, how- As a result of these equivalenceg, can alway be given
ever, the eigenvariable is stored in the global scope, its atomic scope within formulas (with the simple cost of rais-
dependency o would be forgotten unless we employ ing the quantified variables in its scope).

some particular encoding technique. For this purpose, we Below are some non-theoremsBOAY involving V.
useraising [14]: to denote a variable of typg, that can

range over some set of constants and over the variables in

o= (x1:7,...,%n : y) (n > 0), we can use instead the VaVyBry 5 VzBzz VaBr D JzBux
term (hz; ... x,) where the variablé. ranges over the set VzBzz D VaVyBry VaBr D VrBr
of constants only (the dependency @rcan be forgotten). VyVaBry O VaVyBry 3xBr D VaBx

Of course, the type of will be y7 — -+ — v, — 7 VaB =B VaBx D VB

4. Introduction rules for definitions
¥:T — (o> B)
Introduction rules are, generally, restricted to logical 2:I'—orA
connectives and quantifiers. The recent development of ANp: (o> B)0,Tp — Cp | dfn(S, p, o> A, 0, B)}
proof theoretic notion ofiefinitions[7, 24, 6, 9] provides SF AT C
. o> AL —
left and right introduction rules also for non-logical predi-
cate symbols, provided that they are “defined” in terms of) o)
other predicates appropriately. Given certain restrictions on ~ Figure 3. The definition introduction rules
the syntax of definitions, a proof system with such definition
introduction rules can enjoy gu_t-.el|m|nat|on. In this section, to those sets defined on this most basic function. A substi-
we take the treatment of definitions from [8, 9] and extend ,
it to handle local signatures. tution is ex_tended toa fL_Jr_wctlon from t_erms to_terms_ in the
usual fashion. Composition of substitutions is defined as
t(6 o o) = (t0)o, for all termst. Two substitution® and
o are considered equal if for all variables xo =, 6
(equal modulon-conversion). The empty substitution is
written ase. The application of a substitutighto a generic
judgmentz, ..., x, > B, written as(z1, ..., z, > B)0, is
X1,...,2n > B, if (Azy...) \x,.B)6 is equal (modulo\-
conversion) to\z; ... Az,,.B’. If T" is a multiset of generic
judgments, theld is the multise{ Jé | J € T'}. Finally, if
> is a signature theh# is the signature that results from re-
moving fromX the variables in the domain éfand adding
the variables that are free in the rangeof
The following relation will be useful for the introduction
rules for defined atoms.

0
defR, wheredfn(X,e,0> A, 6, B)

defl

Definition 1 A definitional clausés writtenVz[pt = B,
wherep is a predicate constant, every free variable of the
formula B is also free in at least one term in the lisbf
terms, and all variables free it are contained in the list

of variables. The atomic formujat is called theneadof the
clause, and the formul® is called thebody The symbol

£ is used simply to indicate a definitional clause: it is not
a logical connective. Alefinitionis a (perhaps infinite) set
of definitional clauses. The same predicate may occur in
the head of multiple clauses of a definition: it is best to
think of a definition as a mutually recursive definition of the
predicates in the heads of the clauses.

Although predicates are defined via mutual recur-
sion, circularities through implications (negations) must be
avoided. To do this, we stratify definitions by first associat-
ing to each predicate a natural numbelvl(p), thelevelof

Definition 3 The relationdfn(X, p, o > A, 8, B) holds for
the formulasA and B, the substitutionsy and 4, and
the (disjoint) signature¥® and o whenever the following

p. The notion of level is generalized to formulas as follows. holds:.the variables;, U hn are_distinc_t from th? vari-
ables inYX ando, the signatures is the list of variables

Definition 2 Given a formulaB, its levellvl(B) is defined ¥ = yi,...,yp (p > 0), the given definition contains a
as follows: clausevz,, ..., z,.[H' = B'], the formulasB and H are

1. W(p#) = vi(p) “raised” versions ofB’ and H’, that is,

2. (L) =W(T) =0 B =B'[(hg)/z1,...,(hn §)/zn]

3. WI(BAC)=W|(BVC)=max(lvl(B),vl(C)) H = H'[(h1§)/x1,. .., (hn §)/T]

4. vI(B D C) = max(lvl(B) + 1, v1(C)) and(\yy - - Ay, A)p = My - - - My, H)0.

5. Wl(Vz.B) = Wl(Vz.B) = Ivl(3z.B) = I(B). The right and left rules for atoms are given in Figure 3.

Specifying a set of sequents as the premise should be under-
stood to mean that each sequent in the setis a premise of the
rule. Notice that in thedefZ rule, the free variables of the
conclusion can be instantiated in the premises. In particular,
Introduction rules for defined atoms involve the use of a variable can possibly be removed fraivand several new
substitutions. We recall some basic definitions related to variables can be added.
substitutions. Asubstitutiond is a mapping (with appli- These rules for definitions add considerable expressive
cation written in postfix notation) from variables to terms, power to intuitionistic logic. For examplalefR is essen-
such that the sefx | =0 # x} is finite. Although sub- tially the backchainingrule found in logic programming,
stitutions are extended to mappings from terms to terms,while defl is essentially a case analysis on how an atom
generic judgments to generic judgments, etc, when we re-can be proved and can be used to estaliisite failure
fer to thedomainand therangeof a substitution, we refer Together, these two rules can be used to encode simulation

We shall require that for every definitional clavggpt =
B], WI(B) < lvl(p). This requirement allows us to prove
cut-elimination forFO\2V (see Section 5 and [9, 25]).

and bisimulation in certain abstract transition systems [11]. ¥ : - — - > G is provable using definitiol if and only if
Other uses involve reasoning about computational systemthe sequent: - — X > G’ is provable using definitio’.
[10].

The proof system that arises from adding together the ~As a consequence of this proposition, the difference be-
inference rules in Figures 2 and 3is callE@)\2. Ifweadd tweenV and V (or, equivalently, between the global and
to FOA2 the rules in Figure 1, the resulting proof system l0cal signatures of a sequent) cannot be seen if one is sim-
is calledFOAAY (pronounced “fold nabla”. Itis this logic Pl attempting to “evaluatehc” logical programs by de-

that will involve us for the remainder of this abstract. termining the goals that they can prove. A difference be-
tween these two quantifiers only starts to appear mfﬂr-

definitions) if more interesting goals are considered: for ex-

ample, in Section 6, we illustrate the differences between

andV with the specification of simulation and bisimulation
Of course, the main meta-theorem BON2Y is cut- in the r-calculus.

elimination. A natural question to ask aboWt, in relation to its role

as local binder, is whether the relative orders among consec-

Proposition 4 Given a fixed stratified definition, a Sequent utive V's matters, or more precise|y, whether the formula
has a proof inFOA2Y if and only if it has a cut-free proof.

5. The meta-theory of FON2Y

VyVzBxy D VaVyBxy

Proof Outline. The proof of cut-elimination fo"O >N
[9] can be adapted to this setting. TR >N logic in- is provable infFOX2V . Of course, this formula is not prov-
cludes induction and hence the induction required to proveable in the logic without definitions. Consider the following
termination is much more complicated than is required for Definition and Proposition.
FOMAY, which does not incorporate induction. Here, an o o) o
induction involving the heights of proofs works similarly to Definition 6 A definition D is noetherianif for every def-
that done by Gentzen [5], with an additional measure in- inition clausevz.[pt = B] in D, it holds thatlvl(p) >
volving the level of cut formulas. The stratification of def- 1v1(B).
initions makes sure that the level of cut formulas decreases »)) o
when permuting up cut over definition rules. Other aspects ProPosition 7 G'V?” a noethen/a.n definition, the sequent
of the proof are similar. Central to the proof is the following > 1> > B —r B, whereo' is a permutation ob, is
substitution lemma aboWtON2Y proofs: if¥ : ' — C provable inFOAZY.
has a proof and be a substitution, then there is a deriva-
tion of X6 : I'0 — CO with the same or lesser height. A
complete proof of cut elimination can be found in [25].

In certain situations, the difference betwéémandv can-
not actually be observed. More specifically, consider the
following restrictions on formulas and definitions. Auc-
goal (named for Horn clauses) is a formula built from
A, V, and3. An hcv—goal is a formula built fromT, A,
v, 3, andV, while anhcY-goalis a formula built fromT,
A, V, 3, andV. A definition is arhc-definition(resp.,hcv-
definitionandhcY -definition) if the body of all of its clauses ~ 6- Example: ther-calculus
arehc-goals(resp. hc'-goalsandhc" -goalg. Notice that
all such definitions are trivially stratifiable. Numerous inter- Operational semantics of specification languages or pro-
esting computer science motivated specifications are examgramming languages is often given using inference rules,
ples ofhc”-definitions: we consider in more detail two such following the small-step approach (a.k.a., structured oper-
examples in Sections 6 and 7. The proof of the following ational semantic) or big-step approach (a.k.a. natural se-
proposition follows by a simple induction on the structure mantics). Frequently, the specification of such semantics re-
of FOX2Y proofs. quires new symbols to be created to be used for such things

as nonces in security protocols [1], locations for reference

Proposition 5 Let D be anhc”-definition and letD’ be cells [2, 16], or new communication channels [19]. Given
thehcY -definition resulting from replacing all occurrences the logic FOAAY, we now have the ability to scope vari-
of ¥ in the body of clauses dD with V. Similarly, letG ables within sequents either globally viaor locally via
be anhcv-goal and letG’ be thehcv—goal resulting from V. We illustrate these choices with a specification of the
replacing all occurrences of in G with V. The sequent r-calculus.

Proof By induction on the level oB with subordinate in-
duction on the size 0B. In the case wher®& is an atomic
formula, we applydefZ followed by defR. Since the defi-
nition is noetherian, we always get formulas of lower level
as a result. A detailed proof can be found in [25]. |

Thus, for noetherian definitionsV's can be inter-
changed. We conjecture that this is also true for non-
noetherian definitions as well.

A A
—T r f match P e match
7T P—P [t =z]P — Q [t =2]P — Q@
A A A A
P— R Q— R P—R Q—R
+——sum ———sum ————sum S sum
P+@Q—R P+Q —R P+Q—R P+Q—R
A A A A
P— P Q— Q' P—M Q—N

par par

A A
PlQ—P'|Q PlQ—P|Q

A
Vn(Pn — P’'n)

P|Q — an(Mn | Q)

A
Vn(Pn — P'n)

par par

A
P|Q — An(P|Nn)

Ty
Vy(My — M'y)

) res) P open
vn.Pn — vn.P'n vn.Pn — Am vn.(P'nm) vy.My — M’
lx Tz Tz lx
output — close — close
outzy P2 p P|Q —— vn.(Mn| Nn) P|Q — vn.(Mn|Nn)
lz Ty Tzy lz
. P—M —Q P— P —N
- input — e @ com — e com
ine M — M PlQ — (My) | PlQ — P'[(Ny)

Figure 4. The rules for the (late)

Consider encodingr-calculus [19] using higher-order

mw-calculus.

p) — o encodes transitions involving bound values. Fig-

abstract syntax following [17, 18]. Since we are focused ure 4 (taken from [18]) contains the inference rules specify-

here on abstractions in syntax, we shall deal with dinly
nite w-calculus expression, that is, expressions witHart

ing the late version of the transitions for thecalculus [19].
In these rules, capital letters (possibly primed) are used to

defined constants. Extending this work to infinite process denote schema variables for inference rules: these schema
expressions should be possible by adding induction (as invariables have primitive types suchas, andp as well as

[11]) or co-induction to our proof system. We shall require
three primitive syntactic categoriest for channelsp for
processes, andfor actions. The output prefix is the con-
structoroutof typen — n — p — p and the input prefix
is the constructoin of typen — (n — p) — p: the=-
calculus expressionsy.P and z(y).P are represented as
(outz y P) and(in x \y.P), respectively. We usgand
+, both of typep — p — p and written as infix, to de-
note parallel composition and summation, anaf type
(n — p) — pto denote restriction. The-calculus ex-
pression(z) P will be encoded ag An.P, which itself is
abbreviated as simplyz. P. The match operatof, = -]- is

of typen — n — p — p. Whenr is written as a prefix,
it has typep — p. Whenr is written as an action, it has
typea The symbolg and{, both of typen — n — a, de-

note the input and output actions, respectively, on a name

channel with a named value: e.g.;ry denotes the action
of inputtingy on channel.

We use two predicates to encode the one-step transitior}or

semantics for the-calculus. The predicate% - of type
p — a— p — o encodes transitions involving free values

and the predicate — - of typep — (n— @ — (n—

functional types such as— aandn — p. These inference
rules can trivially be written as definition clauses: a few
such clauses are presented in Figure 5. Here, schema vari-
ables are universally quantified (implicitly) at the top-level
of such clauses. Notice that the complicated side conditions
in the original specification ofr-calculus are not present
here as they are now part of the meta-logic. For example,
the side condition that # y in the open rule is handled by
using two different quantifier scopes teandy and the rule

of logic that substitutions cannot capture bound variables.

Let £ be the complete definition for the one step transi-

tion for ther-calculus. Clearlyf is anhc" -definition. Let

let £’ be the result of replacing all occurrences\fin £
with V. Furthermore, letZ” be the result of replacing all
doccurrences of the symbél in the clauses of’ by reverse
implication: thus,£” is a set of formulas and is not a defi-
nition. If we are interested in only computing the one-step
transitions of the late-calculus, that is, proving the atomic

mulasP i» PorP A P’, then the following ob-
servations are easy to establish. Itrange over atomic
formulas. Proposition 5 implies that - — B is provable
in FOA2Y using definition if and only if - : -

- B

resulting process to takerastep. The sequence of actions

vn.Pn — vn.Qn = Vn(Pn A Qn) (I zz) andT is not possible withP,. The processe$
X A Xy and P, do, however, simulate each other (they are, in fact,
vy.Py —Q = Vy(Py — Qy) bisimilar). The only difference between these pairs of pro-
inXx M X M 2 7T cesses is, of course, that the first is prefixed with a bounded

input prefix while the second is prefixed with a bounded
output prefix. These different bounded prefixes are handled
in the simulation definition in Figure 6 using, in one case,
and the other case.

For example, consider proving the sequent

po—sim(z(y).(7] 2)) (x(y)-((7-2) + (2.9))),
which, as we discussed above, should fail. (For readability,

>

- XY 1X
PlQ—S|(TY) AXP 5 SAQ —T

Figure 5. Corresponding definition clauses

simP Q£ VAVP' [(P A, P> 3Q'(Q 2, Q")

ASImP' Q'] A . .
X u?] we shall user-calculus syntax directly instead of the ab-
vXVYP [(P— P')23Q.(Q — Q) stract syntax on which the actual logic is based.) The free
A Vw.sim (P'w) (Q"w)] A namesz andz are interpreted as meta-level constants. The
VXVP' [(P X P 530'.(Q X Q") attempt to prove this sequent reduces @é#R, v and> R)
A Vaw.sim (P'w) (Q'w)] to needing to prove the three sequents (1-3) in Figure 7. A

simple argument about the permutabilities of inference rules
[9] shows that if a sequent with an atom on the left has a
Figure 6. Definition of -calculus simulation proof, it has a proof with an instance of thlef rule that
introduces that atom. Thus, we can conclude that sequents
(1) and (3) are trivially provable since the required unifica-
cut-free proof of- : - — B in FOM® using definition tion problem indefC fqils for all clauses in the definit.io.n.
The second sequent is the consequence of a non-trivial oc-

L' does not contain occurrences @é¢f, and, as a result, L
- S] currence of thedefC rule, giving rise to the need to prove
the definition mechanism itself can be replaced: the sequengSe uent (4) in Figure 7 (here, the variablds instantiated
.. — Bis provable inFOA® with the definitionZ’ if q 9 '

: N : - : .
and only ifthe sequent £/ — Bis provable o, 1 ST o vious
Thus, only standard logic programming (such as in d g bprop

AProlog) is needed to compute the one-step transitions ofanOI then proving the sequent

ther-calculus, andv and definitions do not add expressive -1 — Yw.sim(w | 2) ((w.2) + (z.w))
power. To see what expressive power is contributed by both
V and definitions in a proof system, consider the problem of
computing the relationship of simulation for thecalculus.
(For simplicity, we shall consider only simulation and not
bisimulation: extending to bisimulation is not difficult but
does introduce several more cases and make our exampl
more difficult to read.)

To illustrate howV andV in the body of this definition
clause differ, consider following four-calculus expres-
sions. (Here we are using the usual abbreviations: when
the name, say is used as a prefix, it denotes the prefix ... __, 3Q'[((2.2) + (2.2)) N Q' Asim(0]0) Q']
z(w) wherew is vacuous in its scope; when the naraés
used as a prefix, it denotes the prefix wherea is some
fixed value; the expression(y).P abbreviateqy)zy.P;
and when a prefix is written without a continuation, the con-
tinuation O is assumed. Thus, for exampje|, z denotes

is provable inFOA* using definition£’. Furthermore, a

Similarly to our first step, proving this reduces to the three
sequents (5), (6), and (7). Applyirdef_ rule to sequents
(6) and (7) produces one premise for each case, which even-
tually leads to proving the sequentsu : - — simw w

-1+ — ub>Simz z; both are trivially provable. A proof
Ko (5) usingdefL has two premises: one with instantiated
to T, wto z, andP’ to 0 | 0, and one withA instantiated to
1 wa andP’ to 0| z (w is not instantiated). The first of these
premise sequents is the sequent

This is not provable since there is notransition from
((z.2) 4+ (2.2)). As aresult, since this sequent is not prov-
able we may conclude that the original sequent is not prov-
able. The reason for this failure is also clear from this at-

7a.0 | 2(w).0.) tempt of a proof construction: although both and P,
make an initial input step, the first of the resulting pair of
P =2(y).(7 | 2) Py =z(y).((g.2) + (2.9)) processes can makeratep but the second cannot.
Py =Z(y).(7 | 2) P, =Z(y).((g.2) + (2.9)) Turning to the case of expressioRs and P;, consider

The process>, is simulated byP; but the converse is not proving the sequent

true since afte; preforms an(| xz), it is possible for the <o —sim(Z(y). (7] 2)) (Z(y)-((7.2) + (2.9))),

A, P (w(yl)[-V(ZJ |2)) — P' — 3Q"[(x(y)-((7-) (2 7)) —— Q' AsimP’ Q] (1)

N, P (2(y)-(¥] 2)) T P — 3Q[(w().(7.2) + (=) — Q’ AVw.sim(P'w) (Q"w)] (2)
NP s (@(y).(7]) = PP — 3Q'[(e(y)-((5.2) + (2:9)) — @ A Va.sim(P'z) (Q'a) (3)
s —3Q(x ()-((5:2) + (2.9))) QQ'/\VwAS'm(w\Z)(Q'w)] (4)

w, A, P’ l]\(]w| z) — P — 3Q'[((w.2) + (z w)) — Q' AsimP’ Q'] (5)
vavp’:(@IZ)fP’HEQ [((@.2) + (2.))QQ’AWS””(P’) (Q'u)] (6)

w, N, P": (0] z) — P' — 3Q'[((0-2) + (2.0)) QQ’AVu sim(P'u) (Q"w)] (7)

o SQ1(#(Y)-(5.2) + (2.9)) —— @ :\AV@U sim(w | 2) (Q'w)] 4)

A, P wi}é@i})\ z) — (P'w) — w>3IQ[((w.2) + ()) — Q' Asim(P'w) Q'] ()
N,P’:wD(QIZ)T(T) (P'w) — w>3Q"[((w.) ()) I @ A sim (P'wu) (Q'w)] (6")
N, P rwe (0] z) — (P'w) — wr3Q[((w. @) QQ’/\VuSIm(wu) (Q'u)] (7)

Figure 7. Some sequents

which, as we discussed above, should succeed. A proofat the logic level. Notice that the resulting definition is not
attempt of this sequent proceeds similar to the previous ex-Horn anymore since we have an implication in the body of
ample, yielding the sequei’) in Figure 7. Proving this the clause representing the above inference rule. As a con-
reduces to the three seque(i$), (6'), and(7’): notice that sequence, Proposition 5 is not applicable to this definition.
w is not given global scope in the sequents but local scope
and that the eigenvariabled (P’, andN') are raised with
respect to their counterparts (&), (6), and(7)). Sequents
(6") and(7’) are proved as if6) and(7). In this case, how-

7. Example: an object-logic encoding

ever, a proof of(5’) using def. has exactly one premise, Consider the problem of proving the formula
where A instantiated to\w. T wa and P’ to Aw.0 | z. The
resulting sequent is YuVolg (u,t1) (v,t2) (v,t3)],
B B Twa i . . .
c— wp3Q[((0.2) + (2.@)) — Q' Asim(0]z) Q'] wheregq is a three place predicaté,, -) is used to form

pairs, t; andty, are some first-order terms, and the only

This sequent, like all the remaining ones in this proof at- assumptions for the predicateare the (universal closure
tempt, now have a simple proof. of the) three atomic formulas; X X Y, ¢ X Y X and

Notice that although we have now encountered higher-, y x x. Clearly, this query succeeds only if termsand
order unification problems and higher-order substitutions, ¢, are equal [18]. One natural way to formalizing this rea-
the unification problems generated from this particular ex- soning involves first encoding provability of an object-level
ample fall within thenigher-order pattern unificatioor Ly~ first-order logic inFOA2Y and then to reason directly on
unification problems [13, 21]. This subset of the unifica- this encoding. Lebbjbe the type of object-level formulas
tion of simply typed\-terms has complexity similar to that and let the object-level logic constants heof type obj, &
of first-order unification: it is decidable (in linear time) and and= of type obj — obj — obj, and¥ and3 be the quan-
has most general unifiers when unifiers exist. Proof searchfiers at type(i — obj) — obj (for some fixed type rang-
for a sequent that starts out with first-order quantification jng over first-order object-level terms). To encode provabil-
will remain “essentially” first-order, even though raising in- ity we use four predicatesov - of type obj — o encodes

troduces variables of higher-order type. first-order provability,bd(-,) of type obj — obj — o en-
The encoding ofr-calculus above can also be extended codes “backchaining’atom- describes object-level atomic
to include the mismatch operator by using negation. formulas, andprog- describes object-level logic programs
A clauses. Figure 8 presents an encoding of provability for
(x=y)D> L P—Q mismatch a first-order logic programming language that is restricted

A to hc”. Figure 9 contains such additional clauses for the
[z #ylP — Q T
example we are considering here.
Operationally, mismatch is modeled as failure of unification ~ Notice that while the object-level logic heretis” (since

result, this third premise is the sequent- — Y =Y,

pvT =2 T which is provable usinglefR.
pv(G&G) = pvGApvG' The more common approach to encoding object-logic
pv(VG) £ Vaz.pv(Gz) provability into a meta-logic uses the meta-level universal
pv(é Q) 2 3 pv(Gz) guantifier instead of th& for the clause encoding the prov-
o . ability of object-level universal quantification: that is, the
pv A = 3D.atomA A progD A bd D, A) clause)
bd(A, A) - atomA pv(Vz.G z) £ Valpv (G z)].
bdG = D,A) = bdD,A)ApvG :
-~ N . L -
bA¥ D, A) £ 3t bdD1, A) is used instead. In this case, attempting a proof of this for

mula reduces to an attempt to prove the sequent

Figure 8. Interpreter for an object-level logic. X, Y, Z:vpv(g (s1,X) (s2,Y) (1, Z)) —pY = 2,

and weres; andss are two terms. To complete the proof,
these two terms must be chosen to be different. While this
sequent can be proved, doing so requires the assumption
that there are two such terms (the domain is non-empty and
not a singleton). Our encoding usiig allows this (meta-
level) proof to be completed in a more natural way without
this assumption.

X=X

atom(q XY 2)
prog(VXVY ¢ X XY)
prog(VXVY ¢ XY X)
prog(V XVY qY X X)

(> 11> > e 1>

H — = - A

Figure 9. Additional definition clauses. _
8. Related work and conclusion

we are concerned with the provability of a universally quan- \ye have maintained the approach to specification in

e e V
tified formula), the meta-level definition fe ™. _ which meta-level and proof-level abstractions are used to
The query that captures our intended example is the fol-gncode abstractions both of the static structure of expres-

lowing formula sions (e.g., using meta-levakabstractions to encode the
I B input prefix in ther-calculus) and the dynamic structure
Va, y, z[pv (YuVolg (u,2) (v,9) (v,2)]) Dy = 2] of computation (e.g., name generation as eigenvariables).

While this style of syntactic representation has been suc-
cessfully used to enumerate judgments about operational
semantics and to encode object-logic provability, proof
level abstractions (eigenvariables) seem inadequate when
one wishes to reason about computation directly (as out-
X,Y,Z: (s,7) b pv(q (5, X) (r,Y) (r, Z)) — bY = Z. Ii_nec_i in Section 1). Since this sj[yle of _sy_ntactic representa-
tion is best understood declaratively within proof theory, we
A series ofdeL rules will now need to be applied in orderto have explored a simple mechanism within sequent calculus
work through the encoding for the object-level interpreter. {0 €xpand the notion of abstraction in the building of proofs.
In the end, three separate unification problems will be at- " [18], we provided some experiments in specification that
tempted, one for each of the three ways to prove the predi-thiS paper attempts to formalize using proof theory.

along with the definition consisting of the clauses in Fig-
ures 8 and 9. Attempting a proof of this formula leads to
the following sequent (after applying some right rules and a
pair of deff andV L rules):

categ. In particular, thedefZ rule will attempt to unify the It is natural to ask about possible connections between
termAsAr.(q (s, X) (r,Y) (r, Z)) with each of the follow- the V-quantifier here and the new quantifier of Pitts and
ing three terms: Gabbay [4, 23]. Both are self dual and both have simi-
lar sets of applications in mind. There are significant dif-
AsAr (g (X' sr) (X' sr) (Y sr)) ferences, however¥ has a natural proof theory with a
AsAr.(q (X' s7) (Y sr) (X' sr)) cut-elimination theorem but has no set theoretic semantics,
AsAr.(q (Y sr) (X' sr) (X' s7)) while Pitts and Gabbay have a model theory based on set

theory but no cut-elimination result. Whil¢ neither im-
The first two unification problems fail and hence the corre- plies nor is implied byv or 3, the quantifier of Pitts and
sponding occurrences ofefl succeed. The third of these Gabbay is entailed by and entails3.
unification problems is solvable, however, wi¥l instan- To work with larger examples than those shown here, one
tiated toAsAr.(r, Z), Y’ instantiated to\sAr.(s, Z), Y in- needs an implementation 651OA\2V. The Isabelle theorem
stantiated taZ (or vice versa), anck uninstantiated. Asa prover should provide a promising setting for building an

interactive theorem prover given the work reported in [20]. [13] D. Miller. A logic programming language with lambda-
A natural next step is to attempt adding directy@@ >V
induction and co-induction: induction should work much as
it does iNFOAAN [9]. Some related work on co-induction
appears in [20].

Acknowledgments The authors wish to thank Catuscia
Palamidessi for valuable discussions regarding aur

calculus examples. We would also like to thank the anony-

(14]

(15]

mous reviewers of this paper for their helpful suggestions [16]

on an earlier draft of this paper. This work has been sup-
ported in part by NSF grants CCR-9912387, INT-9815645,
and INT-9815731. The second author gratefully acknowl- (1

edges support from LIX dcole polytechnique.

References

(1]

I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell,
and A. Scedrov. A meta-notation for protocol analysis. In
R. Gorrieri, editorProceedings of the 12th IEEE Computer
Security Foundations Workshop — CSFW’pages 55-69,
Mordano, Italy, 28-30 June 1999. IEEE Computer Society
Press.

[2] J. Chirimar.Proof Theoretic Approach to Specification Lan-

guages PhD thesis, University of Pennsylvania, February
1995.

[3] A. Church. A formulation of the simple theory of types.

(4]

(5]

Journal of Symbolic Logic5:56—-68, 1940.

M. J. Gabbay and A. M. Pitts. A new approach to abstract
syntax with variable bindingrormal Aspects of Computing
13:341-363, 2001.

G. Gentzen. Investigations into logical deductions. In M. E.
Szabo, editor,The Collected Papers of Gerhard Gentzen
pages 68-131. North-Holland Publishing Co., Amsterdam,
1969.

[6] J.-Y. Girard. A fixpoint theorem in linear logic. Email to the

(7]

(8]

9]

(10]

(11]

(12]

linear@cs.stanford.edu mailing list, February 1992.

L. Hallnas and P. Schroeder-Heister. A proof-theoretic ap-
proach to logic programming. ii. Programs as definitions.
Journal of Logic and Computatiori(5):635-660, October
1991.

R. McDowell. Reasoning in a Logic with Definitions and In-
duction PhD thesis, University of Pennsylvania, December
1997.

R. McDowell and D. Miller. Cut-elimination for a logic with
definitions and induction. Theoretical Computer Science
232:91-119, 2000.

R. McDowell and D. Miller. Reasoning with higher-order
abstract syntax in a logical frameworlhCM Transactions
on Computational Logic3(1):80-136, January 2002.

R. McDowell, D. Miller, and C. Palamidessi. Encoding tran-
sition systems in sequent calculuheoretical Computer
Science294(3):411-437, 2003.

D. Miller. Lexical scoping as universal quantification. In
Sixth International Logic Programming Conferengeges
268-283, Lisbon, Portugal, June 1989. MIT Press.

10

(18]

(19]

(20]

(21]

[22]

(23]

(24]

[25]

abstraction, function variables, and simple unificatidour-

nal of Logic and Computatiqri(4):497-536, 1991.

D. Miller. Unification under a mixed prefixlournal of Sym-
bolic Computationpages 321358, 1992.

D. Miller. The w-calculus as a theory in linear logic: Pre-
liminary results. In E. Lamma and P. Mello, editoRo-
ceedings of the 1992 Workshop on Extensions to Logic Pro-
gramming number 660 in LNCS, pages 242-265. Springer-
Verlag, 1993.

D. Miller. Forum: A multiple-conclusion specification lan-
guage. Theoretical Computer Sciencd 65(1):201-232,
Sept. 1996.

7] D. Miller and C. Palamidessi. Foundational aspects of syn-

tax. In P. Degano, R. Gorrieri, A. Marchetti-Spaccamela,
and P. Wegner, editorddCM Computing Surveys Sympo-
sium on Theoretical Computer Science: A Perspectioe
ume 31. ACM, Sep 1999.

D. Miller and A. Tiu. Encoding generic judgments. Rmo-
ceedings of FSTTC®&umber 2556 in LNCS, pages 18-32,
December 2002.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile
processes, Part linformation and Computatigrpages 1—
40, September 1992.

A. Momigliano, S. Ambler, and R. Crole. A hybrid encoding
of Howe’s method for establishing congruence of bisimilar-
ity. In LFM’02, volume 70.2 oENTCS 2002.

T. Nipkow. Functional unification of higher-order patterns.
In M. Vardi, editor,LICS93 pages 64—74. IEEE, June 1993.
F. Pfenning and C. Elliott. Higher-order abstract syn-
tax, InProceedings of the ACM-SIGPLAN Conference on
Programming Language Design and Implementatid@M
Press, pages 199-208, June 1988.

A. M. Pitts. Nominal logic, a first order theory of names and
binding. Information and ComputationTo appear. (A pre-
liminary version appeared in tieroceedings of the 4th In-
ternational Symposium on Theoretical Aspects of Computer
Softwarg(TACS 2001), LNCS 2215, Springer-Verlag, 2001,
pp 219-242.).

P. Schroeder-Heister. Cut-elimination in logics with defini-
tional reflection. In D. Pearce and H. Wansing, editbisn-
classical Logics and Information Processjnvglume 619 of
LNCS pages 146-171. Springer, 1992.

A. Tiu. Cut-elimination for a logic with generic
judgments. April 2003. Draft available via
http://www.cse.psu.edu/ tiu/foldn2.pdf

