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Terms

• Terms (or expressions) exist in various settings.

• There are different formats for terms:
(1 + 2) + (1 + (1 + 2))
let x = 1 + 2 in let y = (1 + (1 + 2)) in x + y
let x = 1 + 2 in let y = 1 + x in x + y

• Even some graphical representations:
(Labelled) Trees, Directed acyclic graphs (DAGs), etc.

• What to do with terms? Equality, substitution, evaluation, etc.
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Proof theory for term representations

• A framework for describing/unifying/justifying different term
structures.
B Possible interaction between different formats for terms!

• Why proof theory?

B Highly principled and mathematically sound means for
describing syntactic structures.

B Proofs-as-terms, but not proofs-as-programs!

• Which proof system to use?

• Sequent calculus? Too little structure, too much non-essential
information (rule permutation).

• Focused proof system LJF :
B Focusing: large-scale rules.
B Polarization: flexibility on forms of proofs (terms).
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Focusing

• Introduced by Andreoli (1992) to reduce non-determinism in proof
search for LL.

•

Rule invertible ↔ non-invertible
Information non-essential ↔ essential

Phase negative ⇑ ↔ positive ⇓

⇒ Two-phase structure of focused proofs.

• Applied to LJ and LK: LJT, LJQ, LKT, LKQ, etc.

• Polarization: LJF and LKF by Liang and Miller (2009).

• Large-scale rules (not phases!): synthetic inference rules.
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Two-phase structure, borders, and large-scale rules

−
+
−
+
−

...

large-scale rule

(= synthetic inference rule)
borders

decide: choose a formula to put under focus

ax
` A⊥, A

ax
` B, B⊥

⊗
` A⊥, B⊥, A⊗ B

⊕1
` A⊥, B⊥ ⊕ (C⊥ ⊗ D⊥), A⊗ B

ax
` A⊥, A

ax
` C , C⊥

ax
` D⊥, D

⊗
` C , D, C⊥ ⊗ D⊥

⊕2
` C , D, B⊥ ⊕ (C⊥ ⊗ D⊥)

�

` C � D, B⊥ ⊕ (C⊥ ⊗ D⊥)
⊗

` A⊥, B⊥ ⊕ (C⊥ ⊗ D⊥), A⊗ (C � D)
&

` A⊥, B⊥ ⊕ (C⊥ ⊗ D⊥), (A⊗ B) & (A⊗ (C � D))
�

` A⊥
� (B⊥ ⊕ (C⊥ ⊗ D⊥)), (A⊗ B) & (A⊗ (C � D))
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The LJF system with only implication

• Formulas are built using atomic formulas and implication.

• We work with polarized formulas.
• Implications are negative.
• Atomic formulas are either positive or negative.

(forward-chaining / backchaining)

• A polarized formula (resp. theory) is a formula (resp. theory)
together with an atomic bias assignment δ : A → {+,−}.

• Different polarizations do not affect provability, but give different
forms of proofs.
B If a sequent is provable in LJF for some polarization, then it is

provable for all such polarizations.
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The LJF system with only implication

Decide, Release, and Store Rules

N, Γ⇓ N ` A
N, Γ ` A Dl

Γ ` P ⇓
Γ ` P Dr

Γ⇑ P ` A
Γ⇓ P ` A Rl

Γ ` N ⇑
Γ ` N ⇓ Rr

Γ,C ⇑ Θ ` ∆′ ⇑∆
Γ⇑ Θ,C ` ∆′ ⇑∆ Sl

Γ⇑ Θ ` A
Γ⇑ Θ ` A ⇑ Sr

Initial Rules
A positive
A, Γ ` A ⇓ Ir

A negative
Γ⇓ A ` A Il

Introduction Rules for Implication

Γ ` B ⇓ Γ⇓ B′ ` A
Γ⇓ B ⊃ B′ ` A ⊃ L

Γ⇑ Θ,B ` B′ ⇑
Γ⇑ Θ ` B ⊃ B′ ⇑ ⊃ R
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Synthetic inference rules

Synthetic inference rule = large-scale rule = ⇓-phase + ⇑-phase

Definition
A left synthetic inference rule for B is an inference rule of the form

Γ1 ` A1 . . . Γn ` An

Γ ` A B

justified by a derivation (in LJF ) of the form

Γ1 ` A1 . . . Γn ` An
..... ⇑ phase
..... ⇓ phase

Γ⇓ B ` A
DlΓ ` A
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Axioms as rules

Definition
Let T be a finite polarized theory of order 2 or less, We define LJ〈T 〉 to
be the extension of LJ with the left synthetic inference rules for T . More
precisely, for every left synthetic inference rule

B, Γ1 ` A1 . . . B, Γn ` An B
B, Γ ` A

with B ∈ T , the inference rule

Γ1 ` A1 . . . Γn ` An B
Γ ` A

is added to LJ〈T 〉.
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Definition
Let T be a finite polarized theory of order 2 or less, We define LJ〈T 〉 to
be the extension of LJ with the left synthetic inference rules for T . More
precisely, for every left synthetic inference rule

B, Γ1 ` A1 . . . B, Γn ` An B
B, Γ ` A

with B ∈ T , the inference rule

Γ1 ` A1 . . . Γn ` An B
Γ ` A

is added to LJ〈T 〉.

Theorem
T , Γ ` B provable in LJ ⇔ Γ ` B provable in LJ〈T 〉.
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An example

Let T be the collection of formulas
D1 = a0 ⊃ a1, · · · ,Dn = a0 ⊃ · · · ⊃ an, · · · where ai are atomic.
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Backchaining and Forward-chaining

What are the proofs of a0 ` an?
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Backchaining and Forward-chaining

What are the proofs of a0 ` an?

When ai are all given the negative bias, we have:

Γ ` a0
Γ ` a1

Γ ` a0 Γ ` a1
Γ ` a2

· · ·
Γ ` a0 · · · Γ ` an−1

Γ ` an
· · ·

B a unique proof of exponential size
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What are the proofs of a0 ` an?

When ai are all given the negative bias, we have:

Γ ` a0
Γ ` a1

Γ ` a0 Γ ` a1
Γ ` a2

· · ·
Γ ` a0 · · · Γ ` an−1

Γ ` an
· · ·

B a unique proof of exponential size

When ai are all given the positive bias, we have:

Γ, a0, a1 ` A
Γ, a0 ` A

Γ, a0, a1, a2 ` A
Γ, a0, a1 ` A · · ·

Γ, a0, . . . , an−1, an ` A
Γ, a0, . . . , an−1 ` A · · ·

B a shortest proof of linear size
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Annotating rules and proofs

Consider the inference rules in the previous example and annotate them.

Γ ` a0

Γ ` a1

Γ ` a0 Γ ` a1

Γ ` a2
· · ·

Γ ` a0 · · · Γ ` an−1

Γ ` an

Consider the proofs of a0 ` a4.
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· · ·

Γ ` t0 : a0 · · · Γ ` tn−1 : an−1

Γ ` Ent0 · · · tn−1 : an
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The term annotating the unique proof is
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(E2 (E1 d0) (E1 d0)))
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(E2 (E1 d0) (E1 d0))))
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Annotating rules and proofs

Consider the inference rules in the previous example and annotate them.

Γ, x0 : a0, x1 : a1 ` t : A
Γ, x0 : a0 ` F1x0(λx1.t) : A

Γ, x0 : a0, x1 : a1, x2 : a2 ` t : A
Γ, x0 : a0, x1 : a1 ` F2x0x1(λx2.t) : A

· · ·

Γ, x0 : a0, · · · , xn−1 : an−1, xn : an ` t : A
Γ, x0 : a0, · · · , xn−1 : an−1 ` Fnx0 · · · xn−1(λxn.t) : A

Consider the proofs of d0 : a0 ` t : a4.
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Annotating rules and proofs

Consider the inference rules in the previous example and annotate them.

Γ, x0 : a0, x1 : a1 ` t : A
Γ, x0 : a0 ` F1x0(λx1.t) : A

Γ, x0 : a0, x1 : a1, x2 : a2 ` t : A
Γ, x0 : a0, x1 : a1 ` F2x0x1(λx2.t) : A

· · ·

Γ, x0 : a0, · · · , xn−1 : an−1, xn : an ` t : A
Γ, x0 : a0, · · · , xn−1 : an−1 ` Fnx0 · · · xn−1(λxn.t) : A

Consider the proofs of d0 : a0 ` t : a4.

The term annotating the shortest proof is

(F1 d0 (λx1.

(F2 d0 x1 (λx2.

(F3 d0 x1 x2 (λx3.

(F4 d0 x1 x2 x3 (λx4. x4))))))))
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Encodings of untyped λ-terms

We use a primitive type (atomic formula) D for untyped λ-terms.
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Encodings of untyped λ-terms
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Γ, x : D, y : D, z : D ` t : D
Φ

Γ, x : D, y : D ` Φ x y (λz .t) : D

Γ, x : D ` t : D Γ, y : D ` u : D
Ψ
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Two formats for untyped λ-terms

Two different polarity assignments give two different term structures:
• D is negative:

x nvar x x
Φ t u napp t u tu
Ψ (λx .t) nabs (x\ t) λx .t

→ Top-down / tree-like structure

• D is positive:

x pvar x x
Φ x y (λz .t) papp x y (z\ t) name z = xy in t
Ψ (λx .t) (λy .s) pabs (x\ t) (y\ s) name y = λx .t in s

→ Bottom-up / DAG structure

J.-H. Wu (Ray) and D. Miller A positive perspective on term representation: work in progress 15 / 23



Some examples for the positive-bias syntax

name y = app x x in name z = app y y in z

B Arguments of app are all names
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Cut-elimination for LJ〈T 〉

The following theorem1 states that cut is admissible for the extensions of
LJ with polarized theories based on synthetic inference rules.

Theorem (Cut admissibility for LJ〈T 〉)
Let T be a finite polarized theory of order 2 or less. Then the cut rule is
admissible for the proof system LJ〈T 〉.

1Sonia Marin, Dale Miller, Elaine Pimentel, and Marco Volpe. From axioms to
synthetic inference rules via focusing. Annals of Pure and Applied Logic 173(5).
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Theorem (Cut admissibility for LJ〈T 〉)
Let T be a finite polarized theory of order 2 or less. Then the cut rule is
admissible for the proof system LJ〈T 〉.

The proof is based on a cut elimination procedure for LJF
B This defines the notion of substitution for terms.

When we restrict to atomic cut formulas, the cut elimination procedure
can be presented in a big-step style.
B Cuts are permuted with synthetic rules instead of LJF rules.

1Sonia Marin, Dale Miller, Elaine Pimentel, and Marco Volpe. From axioms to
synthetic inference rules via focusing. Annals of Pure and Applied Logic 173(5).
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Untyped λ-terms (substitution)

The cut-elimination procedure of LJF gives us the following definitions of
substitutions.

t ype nsubst , p sub s t tm −> ( v a l −> tm) −> tm −> o .

n sub s t T ( x \ nvar x ) T.
n sub s t T ( x \ nvar Y) ( nvar Y) .
n sub s t T ( x \ napp (R x ) (S x ) ) ( napp R ’ S ’ ) :−

nsubs t T R R’ , n sub s t T S S ’ .
n sub s t T ( x \ nabs y \ R x y ) ( nabs y \ R’ y ) :−

p i y \ nsubs t T ( x \ R x y ) (R ’ y ) .

p sub s t ( papp U V K) R ( papp U V H) :− p i x \ psubs t
(K x ) R (H x ) .

p sub s t ( pabs S K) R ( pabs S H) :− p i x \ psubs t
(K x ) R (H x ) .

p sub s t ( pvar U) R (R U) .

J.-H. Wu (Ray) and D. Miller A positive perspective on term representation: work in progress 18 / 23



An example

appy

appz

output

x

appy’

appz’

output

a

name y = app x x in
name z = app y y in z

name y’ = app a a in
name z’ = app y’ y’ in z’

name y’ = app a a in
name z’ = app y’ y’ in
name y = app z’ z’ in
name z = app y y in z
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Equality on terms

We have now two different formats for untyped λ-terms.

When should two such expressions be considered the same?
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When should two such expressions be considered the same?

”White box” approach:
B Look at the actual syntax of proof expressions.
⇒ not working since we have two different sets of synthetic
inference rules.

”Black box” approach:
B Describe traces by probing a term: exponential cost.

↪→ Bisimulation on graphical representations.
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Graphical representations

The positive-bias syntax is closely related to some graphical
representations.
B name introduces new nodes and gives them a label.
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Graphical representations

The positive-bias syntax is closely related to some graphical
representations.
B name introduces new nodes and gives them a label.

Here is an example:

·

@ x1

@ x2

λ x3

name x3 =
abs (x\ name x1 = app x x in

name x2 = app x1 x1 in x2) in x3

Bisimulation on graphs allows to check sharing equality in linear time2.

2Andrea Condoluci, Beniamino Accattoli, and Claudio Sacerdoti Coen. Sharing
equality is linear. PPDP 2019.
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Graphical representations and parallel naming

Parallel naming can be captured by graphical representations:

x x y y

@
y1 y2

z

@

@ name y1 = app x x in name y2 = app y y in
name z = app y1 y2 in z

name y2 = app y y in name y1 = app x x in
name z = app y1 y2 in z

y y

@

λ

y1

z
name z = abs (x\ name y1 = app y y in y1) in
z

name y1 = app y y in name z = abs (x\ y1) in
z

J.-H. Wu (Ray) and D. Miller A positive perspective on term representation: work in progress 22 / 23



Related and future work

• Generalize to full LJF .

• Multi-focusing:
B Parallel actions (parallel naming).
B Maximal multi-focused proofs ↔ graphical structures.
B Conjecture: MMF proofs are isomorphic to some graphical

structure in the case for untyped λ-terms.
• Big-step cut-elimination for arbitrary cut formulas.
B At the level of synthetic rules (not phases!).

• Connection with the literature in programming language theory
(A-normal form, etc).

• There exist some other frameworks for term structures, such as
terms-as-graphs by Grabmayer. Are there some connections or
overlaps?

• Proof-theoretic methods for checking term equality.
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