A positive perspective on term representation: work in progress

Jui-Hsuan Wu (Ray) and Dale Miller
Inria Saclay \& LIX, Institut Polytechnique de Paris
LFMTP 2022, Haifa, Israel
1 August 2022

Outline

Introduction

Focusing, polarization, and synthetic inference rules

Annotating synthetic rules and proofs

Terms

- Terms (or expressions) exist in various settings.

Terms

- Terms (or expressions) exist in various settings.

Mathematics (equations, formulas, proofs, etc) / Programming languages (compilers, interpreters, etc) / Proof assistants.

Terms

- Terms (or expressions) exist in various settings.

Mathematics (equations, formulas, proofs, etc) / Programming languages (compilers, interpreters, etc) / Proof assistants.

- There are different formats for terms:

```
(1 + 2) + (1 + (1 + 2))
let x = 1 + 2 in let y = (1 + (1 + 2)) in x + y
let x = 1 + 2 in let y = 1 + x in x + y
```


Terms

- Terms (or expressions) exist in various settings.

Mathematics (equations, formulas, proofs, etc) / Programming languages (compilers, interpreters, etc) / Proof assistants.

- There are different formats for terms:

```
(1 + 2) + (1 + (1 + 2))
let x = 1 + 2 in let y = (1 + (1 + 2)) in x + y
let x = 1 + 2 in let y = 1 + x in x + y
```

- Even some graphical representations: (Labelled) Trees, Directed acyclic graphs (DAGs), etc.

Terms

- Terms (or expressions) exist in various settings.

Mathematics (equations, formulas, proofs, etc) / Programming languages (compilers, interpreters, etc) / Proof assistants.

- There are different formats for terms:

```
(1 + 2) + (1 + (1 + 2))
let x = 1 + 2 in let y = (1 + (1 + 2)) in x + y
let x = 1 + 2 in let y = 1 + x in x + y
```

- Even some graphical representations: (Labelled) Trees, Directed acyclic graphs (DAGs), etc.
- What to do with terms? Equality, substitution, evaluation, etc.

Proof theory for term representations

- A framework for describing/unifying/justifying different term structures.
\triangleright Possible interaction between different formats for terms!

Proof theory for term representations

- A framework for describing/unifying/justifying different term structures.
\triangleright Possible interaction between different formats for terms!
- Why proof theory?

Proof theory for term representations

- A framework for describing/unifying/justifying different term structures.
\triangleright Possible interaction between different formats for terms!
- Why proof theory?
\triangleright Highly principled and mathematically sound means for describing syntactic structures.

Proof theory for term representations

- A framework for describing/unifying/justifying different term structures.
\triangleright Possible interaction between different formats for terms!
- Why proof theory?
\triangleright Highly principled and mathematically sound means for describing syntactic structures.
\triangleright Proofs-as-terms, but not proofs-as-programs!

Proof theory for term representations

- A framework for describing/unifying/justifying different term structures.
\triangleright Possible interaction between different formats for terms!
-Why proof theory?
\triangleright Highly principled and mathematically sound means for describing syntactic structures.
\triangleright Proofs-as-terms, but not proofs-as-programs!
- Which proof system to use?

Proof theory for term representations

- A framework for describing/unifying/justifying different term structures.
\triangleright Possible interaction between different formats for terms!
- Why proof theory?
\triangleright Highly principled and mathematically sound means for describing syntactic structures.
\triangleright Proofs-as-terms, but not proofs-as-programs!
- Which proof system to use?
- Sequent calculus? Too little structure, too much non-essential information (rule permutation).

Proof theory for term representations

- A framework for describing/unifying/justifying different term structures.
\triangleright Possible interaction between different formats for terms!
-Why proof theory?
\triangleright Highly principled and mathematically sound means for describing syntactic structures.
\triangleright Proofs-as-terms, but not proofs-as-programs!
- Which proof system to use?
- Sequent calculus? Too little structure, too much non-essential information (rule permutation).
- Focused proof system LJF:
\triangleright Focusing: large-scale rules.
\triangleright Polarization: flexibility on forms of proofs (terms).

Focusing

- Introduced by Andreoli (1992) to reduce non-determinism in proof search for $L L$.

Focusing

- Introduced by Andreoli (1992) to reduce non-determinism in proof search for $L L$.

Rule	invertible	\leftrightarrow	non-invertible
Information	non-essential	\leftrightarrow	essential
Phase	negative \Uparrow	\leftrightarrow	positive \Downarrow

\Rightarrow Two-phase structure of focused proofs.

Focusing

- Introduced by Andreoli (1992) to reduce non-determinism in proof search for $L L$.

Rule	invertible	\leftrightarrow	non-invertible
Information	non-essential	\leftrightarrow	essential
Phase	negative \Uparrow	\leftrightarrow	positive \Downarrow

\Rightarrow Two-phase structure of focused proofs.

- Applied to LJ and LK: LJT, LJQ, LKT, LKQ, etc.

Focusing

- Introduced by Andreoli (1992) to reduce non-determinism in proof search for $L L$.
- Rule \quad invertible $\quad \leftrightarrow \quad$ non-invertible | Information | non-essential | \leftrightarrow | essential |
| :---: | :---: | :---: | :---: |
| Phase | negative \Uparrow | \leftrightarrow | positive \Downarrow |

\Rightarrow Two-phase structure of focused proofs.

- Applied to LJ and LK: LJT, LJQ, LKT, LKQ, etc.
- Polarization: LJF and LKF by Liang and Miller (2009).

Focusing

- Introduced by Andreoli (1992) to reduce non-determinism in proof search for $L L$.

Rule	invertible	\leftrightarrow	non-invertible
Information	non-essential	\leftrightarrow	essential
Phase	negative \Uparrow	\leftrightarrow	positive \Downarrow

\Rightarrow Two-phase structure of focused proofs.

- Applied to LJ and LK: LJT, LJQ, LKT, LKQ, etc.
- Polarization: LJF and LKF by Liang and Miller (2009).
- Large-scale rules (not phases!): synthetic inference rules.

Two-phase structure, borders, and large-scale rules

The LJF system with only implication

- Formulas are built using atomic formulas and implication.

The LJF system with only implication

- Formulas are built using atomic formulas and implication.
- We work with polarized formulas.
- Implications are negative.
- Atomic formulas are either positive or negative. (forward-chaining / backchaining)

The LJF system with only implication

- Formulas are built using atomic formulas and implication.
- We work with polarized formulas.
- Implications are negative.
- Atomic formulas are either positive or negative. (forward-chaining / backchaining)
- A polarized formula (resp. theory) is a formula (resp. theory) together with an atomic bias assignment $\delta: \mathcal{A} \rightarrow\{+,-\}$.

The LJF system with only implication

- Formulas are built using atomic formulas and implication.
- We work with polarized formulas.
- Implications are negative.
- Atomic formulas are either positive or negative. (forward-chaining / backchaining)
- A polarized formula (resp. theory) is a formula (resp. theory) together with an atomic bias assignment $\delta: \mathcal{A} \rightarrow\{+,-\}$.
- Different polarizations do not affect provability, but give different forms of proofs.
\triangleright If a sequent is provable in LJF for some polarization, then it is provable for all such polarizations.

The LJF system with only implication

Decide, Release, and Store Rules

$$
\begin{aligned}
& \frac{N, \Gamma \Downarrow N \vdash A}{N, \Gamma \vdash A} D_{l} \quad \frac{\Gamma \vdash P \Downarrow}{\Gamma \vdash P} D_{r} \quad \frac{\Gamma \Uparrow P \vdash A}{\Gamma \Downarrow P \vdash A} R_{l} \quad \frac{\Gamma \vdash N \Uparrow}{\Gamma \vdash N \Downarrow} R_{r} \\
& \frac{\Gamma, C \Uparrow \Theta \vdash \Delta^{\prime} \Uparrow \Delta}{\Gamma \Uparrow \Theta, C \vdash \Delta^{\prime} \Uparrow \Delta} S_{l} \quad \frac{\Gamma \Uparrow \Theta \vdash A}{\Gamma \Uparrow \Theta \vdash A \Uparrow} S_{r} \\
& \text { Initial Rules } \\
& \frac{A \text { positive }}{A, \Gamma \vdash A \Downarrow} I_{r} \quad \frac{A \text { negative }}{\Gamma \Downarrow A \vdash A} I_{l} \\
& \text { Introduction Rules for Implication } \\
& \frac{\Gamma \vdash B \Downarrow \Gamma \Downarrow B^{\prime} \vdash A}{\Gamma \Downarrow B \supset B^{\prime} \vdash A} \supset L \quad \frac{\Gamma \Uparrow \Theta, B \vdash B^{\prime} \Uparrow}{\Gamma \Uparrow \Theta \vdash B \supset B^{\prime} \Uparrow} \supset R
\end{aligned}
$$

Synthetic inference rules

Synthetic inference rule $=$ large-scale rule $=\Downarrow$-phase $+\Uparrow$-phase Definition
A left synthetic inference rule for B is an inference rule of the form

$$
\frac{\Gamma_{1} \vdash A_{1} \ldots \Gamma_{n} \vdash A_{n}}{\Gamma \vdash A} B
$$

justified by a derivation (in LJF) of the form

$$
\begin{gathered}
\Gamma_{1} \vdash A_{1} \quad \ldots \quad \Gamma_{n} \vdash A_{n} \\
\vdots \Uparrow \text { phase } \\
\vdots \Downarrow \text { phase } \\
\frac{\Gamma \Downarrow B \vdash A}{\Gamma \vdash A} D_{l}
\end{gathered}
$$

Axioms as rules

Definition

Let \mathcal{T} be a finite polarized theory of order 2 or less, We define $L J\langle\mathcal{T}\rangle$ to be the extension of $L J$ with the left synthetic inference rules for \mathcal{T}. More precisely, for every left synthetic inference rule

$$
\frac{B, \Gamma_{1} \vdash A_{1} \quad \cdots \quad B, \Gamma_{n} \vdash A_{n}}{B, \Gamma \vdash A} B
$$

with $B \in \mathcal{T}$, the inference rule

$$
\frac{\Gamma_{1} \vdash A_{1} \quad \ldots \quad \Gamma_{n} \vdash A_{n}}{\Gamma \vdash A} B
$$

is added to $L J\langle\mathcal{T}\rangle$.

Axioms as rules

Definition

Let \mathcal{T} be a finite polarized theory of order 2 or less, We define $L J\langle\mathcal{T}\rangle$ to be the extension of $L J$ with the left synthetic inference rules for \mathcal{T}. More precisely, for every left synthetic inference rule

$$
\frac{B, \Gamma_{1} \vdash A_{1} \quad \ldots \quad B, \Gamma_{n} \vdash A_{n}}{B, \Gamma \vdash A} B
$$

with $B \in \mathcal{T}$, the inference rule

$$
\frac{\Gamma_{1} \vdash A_{1} \quad \ldots \quad \Gamma_{n} \vdash A_{n}}{\Gamma \vdash A} B
$$

is added to $L J\langle\mathcal{T}\rangle$.
Theorem
$\mathcal{T}, \Gamma \vdash B$ provable in $L J \Leftrightarrow \Gamma \vdash B$ provable in $L J\langle\mathcal{T}\rangle$.

An example

Let \mathcal{T} be the collection of formulas
$D_{1}=a_{0} \supset a_{1}, \cdots, D_{n}=a_{0} \supset \cdots \supset a_{n}, \cdots$ where a_{i} are atomic.

An example

Let \mathcal{T} be the collection of formulas
$D_{1}=a_{0} \supset a_{1}, \cdots, D_{n}=a_{0} \supset \cdots \supset a_{n}, \cdots$ where a_{i} are atomic.
If a_{i} are all given the negative bias,

An example

Let \mathcal{T} be the collection of formulas
$D_{1}=a_{0} \supset a_{1}, \cdots, D_{n}=a_{0} \supset \cdots \supset a_{n}, \cdots$ where a_{i} are atomic.
If a_{i} are all given the negative bias, the inference rules in $L J\langle\mathcal{T}\rangle$ include

$$
\frac{\Gamma \vdash a_{0} \quad \cdots \quad \Gamma \vdash a_{n-1}}{\Gamma \vdash a_{n}}
$$

An example

Let \mathcal{T} be the collection of formulas
$D_{1}=a_{0} \supset a_{1}, \cdots, D_{n}=a_{0} \supset \cdots \supset a_{n}, \cdots$ where a_{i} are atomic.
If a_{i} are all given the negative bias, the inference rules in $L J\langle\mathcal{T}\rangle$ include

$$
\frac{\Gamma \vdash a_{0} \quad \cdots \quad \Gamma \vdash a_{n-1}}{\Gamma \vdash a_{n}}
$$

An example

Let \mathcal{T} be the collection of formulas
$D_{1}=a_{0} \supset a_{1}, \cdots, D_{n}=a_{0} \supset \cdots \supset a_{n}, \cdots$ where a_{i} are atomic.
If a_{i} are all given the negative bias, the inference rules in $L J\langle\mathcal{T}\rangle$ include

$$
\frac{\Gamma \vdash a_{0} \quad \cdots \quad \Gamma \vdash a_{n-1}}{\Gamma \vdash a_{n}}
$$

If a_{i} are all given the positive bias,

An example

Let \mathcal{T} be the collection of formulas
$D_{1}=a_{0} \supset a_{1}, \cdots, D_{n}=a_{0} \supset \cdots \supset a_{n}, \cdots$ where a_{i} are atomic.
If a_{i} are all given the negative bias, the inference rules in $L J\langle\mathcal{T}\rangle$ include

$$
\frac{\Gamma \vdash a_{0} \quad \cdots \quad \Gamma \vdash a_{n-1}}{\Gamma \vdash a_{n}}
$$

If a_{i} are all given the positive bias, the inference rules in $L J\langle\mathcal{T}\rangle$ include

$$
\frac{\Gamma, a_{0}, \cdots, a_{n-1}, a_{n} \vdash A}{\Gamma, a_{0}, \cdots, a_{n-1} \vdash A}
$$

An example

Let \mathcal{T} be the collection of formulas
$D_{1}=a_{0} \supset a_{1}, \cdots, D_{n}=a_{0} \supset \cdots \supset a_{n}, \cdots$ where a_{i} are atomic.
If a_{i} are all given the negative bias, the inference rules in $L J\langle\mathcal{T}\rangle$ include

$$
\frac{\Gamma \vdash a_{0} \quad \cdots \quad \Gamma \vdash a_{n-1}}{\Gamma \vdash a_{n}}
$$

If a_{i} are all given the positive bias, the inference rules in $L J\langle\mathcal{T}\rangle$ include

$$
\begin{gathered}
\Gamma, a_{0}, \cdots, a_{n-1}, a_{n} \vdash A \\
\Gamma, a_{0}, \cdots, a_{n-1} \vdash A \\
\text { "forward-chaining" }
\end{gathered}
$$

Backchaining and Forward-chaining

What are the proofs of $a_{0} \vdash a_{n}$?

Backchaining and Forward-chaining

What are the proofs of $a_{0} \vdash a_{n}$?
When a_{i} are all given the negative bias, we have:
$\frac{\Gamma \vdash a_{0}}{\Gamma \vdash a_{1}} \quad \frac{\Gamma \vdash a_{0} \Gamma \vdash a_{1}}{\Gamma \vdash a_{2}} \quad \cdots \quad \frac{\Gamma \vdash a_{0} \cdots \Gamma \vdash a_{n-1}}{\Gamma \vdash a_{n}}$
\triangleright a unique proof of exponential size

Backchaining and Forward-chaining

What are the proofs of $a_{0} \vdash a_{n}$?
When a_{i} are all given the negative bias, we have:
$\frac{\Gamma \vdash a_{0}}{\Gamma \vdash a_{1}} \quad \frac{\Gamma \vdash a_{0} \Gamma \vdash a_{1}}{\Gamma \vdash a_{2}} \quad \cdots \quad \frac{\Gamma \vdash a_{0} \cdots \Gamma \vdash a_{n-1}}{\Gamma \vdash a_{n}}$
\triangleright a unique proof of exponential size
When a_{i} are all given the positive bias, we have:
$\frac{\Gamma, a_{0}, a_{1} \vdash A}{\Gamma, a_{0} \vdash A} \quad \frac{\Gamma, a_{0}, a_{1}, a_{2} \vdash A}{\Gamma, a_{0}, a_{1} \vdash A} \quad \cdots \quad \frac{\Gamma, a_{0}, \ldots, a_{n-1}, a_{n} \vdash A}{\Gamma, a_{0}, \ldots, a_{n-1} \vdash A}$
\triangleright a shortest proof of linear size

Annotating rules and proofs

Consider the inference rules in the previous example and annotate them.

$$
\begin{aligned}
& \frac{\Gamma \vdash a_{0}}{\Gamma \vdash a_{1}} \frac{\Gamma \vdash a_{0} \quad \Gamma \vdash a_{1}}{\Gamma \vdash a_{2}} \\
& \frac{\Gamma \vdash a_{0}}{} \cdots \quad \Gamma \vdash a_{n-1} \\
& \Gamma \vdash a_{n}
\end{aligned}
$$

Consider the proofs of $a_{0} \vdash a_{4}$.

Annotating rules and proofs

Consider the inference rules in the previous example and annotate them.

$$
\begin{array}{r}
\frac{\Gamma \vdash t_{0}: a_{0}}{\Gamma \vdash E_{1} t_{0}: a_{1}} \quad \frac{\Gamma \vdash t_{0}: a_{0} \quad \Gamma \vdash t_{1}: a_{1}}{\Gamma \vdash E_{2} t_{0} t_{1}: a_{2}} \\
\frac{\Gamma \vdash t_{0}: a_{0} \quad \cdots \quad \Gamma \vdash t_{n-1}: a_{n-1}}{\Gamma \vdash E_{n} t_{0} \cdots t_{n-1}: a_{n}}
\end{array}
$$

Consider the proofs of $a_{0} \vdash a_{4}$.

Annotating rules and proofs

Consider the inference rules in the previous example and annotate them.

$$
\begin{array}{r}
\frac{\Gamma \vdash t_{0}: a_{0}}{\Gamma \vdash E_{1} t_{0}: a_{1}} \quad \frac{\Gamma \vdash t_{0}: a_{0} \quad \Gamma \vdash t_{1}: a_{1}}{\Gamma \vdash E_{2} t_{0} t_{1}: a_{2}} \\
\frac{\Gamma \vdash t_{0}: a_{0} \quad \cdots \quad \Gamma \vdash t_{n-1}: a_{n-1}}{\Gamma \vdash E_{n} t_{0} \cdots t_{n-1}: a_{n}}
\end{array}
$$

Consider the proofs of $d_{0}: a_{0} \vdash t: a_{4}$.

Annotating rules and proofs

Consider the inference rules in the previous example and annotate them.

$$
\begin{array}{r}
\frac{\Gamma \vdash t_{0}: a_{0}}{\Gamma \vdash E_{1} t_{0}: a_{1}} \quad \frac{\Gamma \vdash t_{0}: a_{0} \quad \Gamma \vdash t_{1}: a_{1}}{\Gamma \vdash E_{2} t_{0} t_{1}: a_{2}} \\
\frac{\Gamma \vdash t_{0}: a_{0} \quad \cdots \quad \Gamma \vdash t_{n-1}: a_{n-1}}{\Gamma \vdash E_{n} t_{0} \cdots t_{n-1}: a_{n}}
\end{array}
$$

Consider the proofs of $d_{0}: a_{0} \vdash t: a_{4}$.
The term annotating the unique proof is

$$
\begin{aligned}
\left(E _ { 4 } \left(E_{3}\right.\right. & \left(E_{2}\left(E_{1} d_{0}\right)\left(E_{1} d_{0}\right)\right) \\
& \left.\left(E_{2}\left(E_{1} d_{0}\right)\left(E_{1} d_{0}\right)\right)\right) \\
\left(E_{3}\right. & \left(E_{2}\left(E_{1} d_{0}\right)\left(E_{1} d_{0}\right)\right) \\
& \left.\left.\left(E_{2}\left(E_{1} d_{0}\right)\left(E_{1} d_{0}\right)\right)\right)\right)
\end{aligned}
$$

Annotating rules and proofs

Consider the inference rules in the previous example and annotate them.

$$
\begin{array}{r}
\frac{\Gamma, a_{0}, a_{1} \vdash A}{\Gamma, a_{0} \vdash A} \frac{\Gamma, a_{0}, a_{1}, a_{2} \vdash A}{\Gamma, a_{0}, a_{1} \vdash A} \\
\frac{\Gamma, a_{0}, \cdots, a_{n-1}, a_{n} \vdash A}{\Gamma, a_{0}, \cdots, a_{n-1} \vdash A}
\end{array}
$$

Consider the proofs of $a_{0} \vdash a_{4}$.

Annotating rules and proofs

Consider the inference rules in the previous example and annotate them.

$$
\begin{gathered}
\frac{\Gamma, x_{0}: a_{0}, x_{1}: a_{1} \vdash t: A}{\Gamma, x_{0}: a_{0} \vdash F_{1} x_{0}\left(\lambda x_{1} \cdot t\right): A} \frac{\Gamma, x_{0}: a_{0}, x_{1}: a_{1}, x_{2}: a_{2} \vdash t: A}{\Gamma, x_{0}: a_{0}, x_{1}: a_{1} \vdash F_{2} x_{0} x_{1}\left(\lambda x_{2} \cdot t\right): A} \\
\frac{\Gamma, x_{0}: a_{0}, \cdots, x_{n-1}: a_{n-1}, x_{n}: a_{n} \vdash t: A}{\Gamma, x_{0}: a_{0}, \cdots, x_{n-1}: a_{n-1} \vdash F_{n} x_{0} \cdots x_{n-1}\left(\lambda x_{n} \cdot t\right): A}
\end{gathered}
$$

Consider the proofs of $d_{0}: a_{0} \vdash t: a_{4}$.

Annotating rules and proofs

Consider the inference rules in the previous example and annotate them.

$$
\begin{gathered}
\frac{\Gamma, x_{0}: a_{0}, x_{1}: a_{1} \vdash t: A}{\Gamma, x_{0}: a_{0} \vdash F_{1} x_{0}\left(\lambda x_{1} \cdot t\right): A} \frac{\Gamma, x_{0}: a_{0}, x_{1}: a_{1}, x_{2}: a_{2} \vdash t: A}{\Gamma, x_{0}: a_{0}, x_{1}: a_{1} \vdash F_{2} x_{0} x_{1}\left(\lambda x_{2} \cdot t\right): A} \\
\frac{\Gamma, x_{0}: a_{0}, \cdots, x_{n-1}: a_{n-1}, x_{n}: a_{n} \vdash t: A}{\Gamma, x_{0}: a_{0}, \cdots, x_{n-1}: a_{n-1} \vdash F_{n} x_{0} \cdots x_{n-1}\left(\lambda x_{n} \cdot t\right): A}
\end{gathered}
$$

Consider the proofs of $d_{0}: a_{0} \vdash t: a_{4}$.
The term annotating the shortest proof is

$$
\begin{array}{ll}
\left(F_{1} d_{0}\right. & \left(\lambda x_{1} .\right. \\
\left(F_{2} d_{0} x_{1}\right. & \left(\lambda x_{2} .\right. \\
\left(F_{3} d_{0} x_{1} x_{2}\right. & \left(\lambda x_{3} .\right. \\
\left.\left.\left.\left.\left.\left.\left(F_{4} d_{0} x_{1} x_{2} x_{3}\left(\lambda x_{4} \cdot x_{4}\right)\right)\right)\right)\right)\right)\right)\right)
\end{array}
$$

Encodings of untyped λ-terms

We use a primitive type (atomic formula) D for untyped λ-terms.

Encodings of untyped λ-terms

We use a primitive type (atomic formula) D for untyped λ-terms.
We fix a theory $\mathcal{T}=\{\Phi: D \supset D \supset D, \Psi:(D \supset D) \supset D\}$ and consider proofs of sequents of the form $\mathcal{T}, x_{1}: D, \cdots, x_{k}: D \vdash t: D$

Encodings of untyped λ-terms

We use a primitive type (atomic formula) D for untyped λ-terms.
We fix a theory $\mathcal{T}=\{\Phi: D \supset D \supset D, \Psi:(D \supset D) \supset D\}$ and consider proofs of sequents of the form $\mathcal{T}, x_{1}: D, \cdots, x_{k}: D \vdash t: D$

When D is given the negative bias, we have the following synthetic inference rules:

$$
\frac{\Gamma \vdash D \quad \Gamma \vdash D}{\Gamma \vdash D} \Phi
$$

$$
\frac{\Gamma, D \vdash D}{\Gamma \vdash D} \psi
$$

and the initial rule.

Encodings of untyped λ-terms

We use a primitive type (atomic formula) D for untyped λ-terms.
We fix a theory $\mathcal{T}=\{\Phi: D \supset D \supset D, \Psi:(D \supset D) \supset D\}$ and consider proofs of sequents of the form $\mathcal{T}, x_{1}: D, \cdots, x_{k}: D \vdash t: D$

When D is given the negative bias, we have the following synthetic inference rules:

$$
\begin{gathered}
\frac{\Gamma \vdash t: D \quad \Gamma \vdash u: D}{\Gamma \vdash D} \Phi \\
\frac{\Gamma, D \vdash D}{\Gamma \vdash D} \psi
\end{gathered}
$$

and the initial rule.

Encodings of untyped λ-terms

We use a primitive type (atomic formula) D for untyped λ-terms.
We fix a theory $\mathcal{T}=\{\Phi: D \supset D \supset D, \Psi:(D \supset D) \supset D\}$ and consider proofs of sequents of the form $\mathcal{T}, x_{1}: D, \cdots, x_{k}: D \vdash t: D$

When D is given the negative bias, we have the following synthetic inference rules:

$$
\begin{gathered}
\frac{\Gamma \vdash t: D \quad \Gamma \vdash u: D}{\Gamma \vdash \Phi t u: D} \Phi \\
\frac{\Gamma, D \vdash D}{\Gamma \vdash D} \psi
\end{gathered}
$$

and the initial rule.

Encodings of untyped λ-terms

We use a primitive type (atomic formula) D for untyped λ-terms.
We fix a theory $\mathcal{T}=\{\Phi: D \supset D \supset D, \Psi:(D \supset D) \supset D\}$ and consider proofs of sequents of the form $\mathcal{T}, x_{1}: D, \cdots, x_{k}: D \vdash t: D$

When D is given the negative bias, we have the following synthetic inference rules:

$$
\begin{gathered}
\frac{\Gamma \vdash t: D \quad \Gamma \vdash u: D}{\Gamma \vdash \Phi t u: D} \Phi \\
\frac{\Gamma, x: D \vdash t: D}{\Gamma \vdash D} \Psi
\end{gathered}
$$

and the initial rule.

Encodings of untyped λ-terms

We use a primitive type (atomic formula) D for untyped λ-terms.
We fix a theory $\mathcal{T}=\{\Phi: D \supset D \supset D, \Psi:(D \supset D) \supset D\}$ and consider proofs of sequents of the form $\mathcal{T}, x_{1}: D, \cdots, x_{k}: D \vdash t: D$

When D is given the negative bias, we have the following synthetic inference rules:

$$
\begin{gathered}
\frac{\Gamma \vdash t: D \Gamma \vdash u: D}{\Gamma \vdash \Phi t u: D} \Phi \\
\frac{\Gamma, x: D \vdash t: D}{\Gamma \vdash \Psi(\lambda x \cdot t): D} \Psi
\end{gathered}
$$

and the initial rule.

Encodings of untyped λ-terms

We use a primitive type (atomic formula) D for untyped λ-terms.
We fix a theory $\mathcal{T}=\{\Phi: D \supset D \supset D, \Psi:(D \supset D) \supset D\}$ and consider proofs of sequents of the form $\mathcal{T}, x_{1}: D, \cdots, x_{k}: D \vdash t: D$

When D is given the positive bias, we have the following synthetic inference rules:

$$
\begin{gathered}
\frac{\Gamma, D, D, D \vdash D}{\Gamma, D, D \vdash D} \Phi \\
\frac{\Gamma, D \vdash D \quad \Gamma, D \vdash D}{\Gamma \vdash D} \psi
\end{gathered}
$$

and the initial rule.

Encodings of untyped λ-terms

We use a primitive type (atomic formula) D for untyped λ-terms.
We fix a theory $\mathcal{T}=\{\Phi: D \supset D \supset D, \Psi:(D \supset D) \supset D\}$ and consider proofs of sequents of the form $\mathcal{T}, x_{1}: D, \cdots, x_{k}: D \vdash t: D$

When D is given the positive bias, we have the following synthetic inference rules:

$$
\begin{aligned}
& \frac{\Gamma, x: D, y: D, z: D \vdash t: D}{\Gamma, D, D \vdash D} \Phi \\
& \frac{\Gamma, D \vdash D \quad \Gamma, D \vdash D}{\Gamma \vdash D} \psi
\end{aligned}
$$

and the initial rule.

Encodings of untyped λ-terms

We use a primitive type (atomic formula) D for untyped λ-terms.
We fix a theory $\mathcal{T}=\{\Phi: D \supset D \supset D, \Psi:(D \supset D) \supset D\}$ and consider proofs of sequents of the form $\mathcal{T}, x_{1}: D, \cdots, x_{k}: D \vdash t: D$

When D is given the positive bias, we have the following synthetic inference rules:

$$
\begin{gathered}
\Gamma, x: D, y: D, z: D \vdash t: D \\
\Gamma, x: D, y: D \vdash \Phi x y(\lambda z . t): D \\
\hline \frac{\Gamma, D \vdash D \quad \Gamma, D \vdash D}{\Gamma \vdash D} \psi
\end{gathered}
$$

and the initial rule.

Encodings of untyped λ-terms

We use a primitive type (atomic formula) D for untyped λ-terms.
We fix a theory $\mathcal{T}=\{\Phi: D \supset D \supset D, \Psi:(D \supset D) \supset D\}$ and consider proofs of sequents of the form $\mathcal{T}, x_{1}: D, \cdots, x_{k}: D \vdash t: D$

When D is given the positive bias, we have the following synthetic inference rules:

$$
\begin{align*}
& \frac{\Gamma, x: D, y: D, z: D \vdash t: D}{\Gamma, x: D, y: D \vdash \Phi x y(\lambda z \cdot t): D} \tag{Ф}\\
& \frac{\Gamma, x: D \vdash t: D \quad \Gamma, y: D \vdash u: D}{\Gamma \vdash D}
\end{align*}
$$

and the initial rule.

Encodings of untyped λ-terms

We use a primitive type (atomic formula) D for untyped λ-terms.
We fix a theory $\mathcal{T}=\{\Phi: D \supset D \supset D, \Psi:(D \supset D) \supset D\}$ and consider proofs of sequents of the form $\mathcal{T}, x_{1}: D, \cdots, x_{k}: D \vdash t: D$

When D is given the positive bias, we have the following synthetic inference rules:

$$
\begin{align*}
& \frac{\Gamma, x: D, y: D, z: D \vdash t: D}{\Gamma, x: D, y: D \vdash \Phi \times y(\lambda z \cdot t): D} \Phi \\
& \frac{\Gamma, x: D \vdash t: D \quad \Gamma, y: D \vdash u: D}{\Gamma \vdash \psi(\lambda x . t)(\lambda y \cdot u): D} \psi
\end{align*}
$$

and the initial rule.

Two formats for untyped λ-terms

Two different polarity assignments give two different term structures:

- D is negative:

x	nvar x	x
$\phi t u$	napp t u	$t u$
$\Psi(\lambda x . t)$	nabs $(\mathrm{x} \backslash \mathrm{t})$	$\lambda x . t$
\rightarrow Top-down $/$ tree-like structure		

- D is positive:

x	pvar x	x
$\Phi x y(\lambda z . t)$	papp $\mathrm{x} \mathrm{y}(\mathrm{z} \backslash \mathrm{t})$	name $z=x y$ in t
$\Psi(\lambda x . t)(\lambda y . s)$	pabs $(x \backslash t)(y \backslash s)$	name $y=\lambda x . t$ in s
\rightarrow Bottom-up / DAG structure		

Some examples for the positive-bias syntax

name $\mathrm{y}=\operatorname{app} \mathrm{x} \mathrm{x}$ in name $\mathrm{z}=\operatorname{app} \mathrm{y} \mathrm{y}$ in z
\triangleright Arguments of app are all names

Some examples for the positive-bias syntax

```
name y = app x x in name z = app y y in z
    A Arguments of app are all names
name y1 = app x x in name y2 = app x x in
name z = app y1 y2 in z
    \triangleright ~ R e d u n d a n t ~ n a m i n g ~
```


Some examples for the positive-bias syntax

```
name y = app x x in name z = app y y in z
    Arguments of app are all names
name y1 = app x x in name y2 = app x x in
name z = app y1 y2 in z
    Redundant naming
name y1 = app x x in name y2 = app y y in
name z = app y1 y1 in z
    \triangleright ~ V a c u o u s ~ n a m i n g
```


Some examples for the positive-bias syntax

```
name y = app x x in name z = app y y in z
    \triangleright ~ A r g u m e n t s ~ o f ~ a p p ~ a r e ~ a l l ~ n a m e s
name y1 = app x x in name y2 = app x x in
name z = app y1 y2 in z
    \triangleright Redundant naming
name y1 = app x x in name y2 = app y y in
name z = app y1 y1 in z
    \ Vacuous naming
name y1 = app x x in name y2 = app y y in
name z = app y1 y2 in z
name z = abs (x\ name y1 = app y y in y1) in z
    \triangleright Parallel naming
```


Some examples for the positive-bias syntax

```
name y = app x x in name z = app y y in z
    \triangleright ~ A r g u m e n t s ~ o f ~ a p p ~ a r e ~ a l l ~ n a m e s
name y1 = app x x in name y2 = app x x in
name z = app y1 y2 in z
    \triangleright Redundant naming
name y1 = app x x in name y2 = app y y in
name z = app y1 y1 in z
    \ Vacuous naming
name y1 = app x x and y2 = app y y in
name z = app y1 y2 in z
name z = abs (x\ name y1 = app y y in y1) in z
    \triangleright Parallel naming
```


Some examples for the positive-bias syntax

```
name y = app x x in name z = app y y in z
    \triangleright ~ A r g u m e n t s ~ o f ~ a p p ~ a r e ~ a l l ~ n a m e s
name y1 = app x x in name y2 = app x x in
name z = app y1 y2 in z
    \triangleright ~ R e d u n d a n t ~ n a m i n g ~
name y1 = app x x in name y2 = app y y in
name z = app y1 y1 in z
    \ Vacuous naming
name y1 = app x x and y2 = app y y in
name z = app y1 y2 in z
name y1 = app y y in name z = abs (x\ y1) in z
    \triangleright ~ P a r a l l e l ~ n a m i n g ~
```


Cut-elimination for $L J\langle\mathcal{T}\rangle$

The following theorem ${ }^{1}$ states that cut is admissible for the extensions of $L J$ with polarized theories based on synthetic inference rules.

Theorem (Cut admissibility for $L J\langle\mathcal{T}\rangle$)
Let \mathcal{T} be a finite polarized theory of order 2 or less. Then the cut rule is admissible for the proof system $L J\langle\mathcal{T}\rangle$.

[^0]
Cut-elimination for $L J\langle\mathcal{T}\rangle$

The following theorem ${ }^{1}$ states that cut is admissible for the extensions of $L J$ with polarized theories based on synthetic inference rules.

Theorem (Cut admissibility for $L J\langle\mathcal{T}\rangle$)
Let \mathcal{T} be a finite polarized theory of order 2 or less. Then the cut rule is admissible for the proof system $L J\langle\mathcal{T}\rangle$.

The proof is based on a cut elimination procedure for LJF
\triangleright This defines the notion of substitution for terms.

[^1]
Cut-elimination for $L J\langle\mathcal{T}\rangle$

The following theorem ${ }^{1}$ states that cut is admissible for the extensions of $L J$ with polarized theories based on synthetic inference rules.

Theorem (Cut admissibility for $L J\langle\mathcal{T}\rangle$)

Let \mathcal{T} be a finite polarized theory of order 2 or less. Then the cut rule is admissible for the proof system $L J\langle\mathcal{T}\rangle$.

The proof is based on a cut elimination procedure for LJF
\triangleright This defines the notion of substitution for terms.
When we restrict to atomic cut formulas, the cut elimination procedure can be presented in a big-step style.
\triangleright Cuts are permuted with synthetic rules instead of LJF rules.

[^2]Untyped λ-terms (substitution)

The cut-elimination procedure of LJF gives us the following definitions of substitutions.

```
type nsubst, psubst tm }->\mathrm{ (val }->\mathrm{ tm) }->\mathrm{ tm }->\mathrm{ (> o.
nsubst T (x\ nvar x) T.
nsubst T (x\ nvar Y) (nvar Y).
nsubst T (x\ napp (R x) (S x)) (napp R' S') :-
    nsubst T R R', nsubst T S S'.
nsubst T (x\ nabs y\ R x y) (nabs y\ R' y) :-
    pi y\ nsubst T (x\ R x y) (R' y).
psubst (papp U V K) R (papp U V H) :- pi x\ psubst
    (K x) R (H x).
psubst (pabs S K) R (pabs S H) :- pi x\ psubst
    (K x) R (H x).
psubst (pvar U) R (R U).
```


An example

$$
\begin{aligned}
& \text { name } y=\text { app } x \times \text { in } \\
& \text { name } z=\text { app } y \text { y in } z
\end{aligned}
$$

An example

$$
\begin{aligned}
& \text { name } y=\text { app } x \times \text { in } \\
& \text { name } z=\text { app } y \text { y in } z
\end{aligned}
$$

```
name y' = app a a in
name z' = app y' y' in z'
```


An example

$$
\begin{aligned}
& \text { name } y=\text { app } x \times \text { in } \\
& \text { name } z=\text { app } y \text { y in } z
\end{aligned}
$$

```
name y' = app a a in
name z' = app y' y' in
name y = app z' z' in
name z = app y y in z
```

name $y^{\prime}=$ app a a in
name $z^{\prime}=\operatorname{app} y^{\prime} y^{\prime}$ in z^{\prime}

Equality on terms

We have now two different formats for untyped λ-terms.
When should two such expressions be considered the same?

Equality on terms

We have now two different formats for untyped λ-terms.
When should two such expressions be considered the same?
"White box" approach:
\triangleright Look at the actual syntax of proof expressions. \Rightarrow not working since we have two different sets of synthetic inference rules.

Equality on terms

We have now two different formats for untyped λ-terms.
When should two such expressions be considered the same?
"White box" approach:
\triangleright Look at the actual syntax of proof expressions. \Rightarrow not working since we have two different sets of synthetic inference rules.
"Black box" approach:
\triangleright Describe traces by probing a term: exponential cost.
\hookrightarrow Bisimulation on graphical representations.

Graphical representations

The positive-bias syntax is closely related to some graphical representations.
\triangleright name introduces new nodes and gives them a label.

Graphical representations

The positive-bias syntax is closely related to some graphical representations.
\triangleright name introduces new nodes and gives them a label.
Here is an example:

$$
\begin{aligned}
& \text { name } \mathrm{x} 3= \\
& \text { abs }(\mathrm{x} \backslash \text { name } \mathrm{x} 1=\text { app } \mathrm{x} x \text { in } \\
& \\
& \quad \text { name } \mathrm{x} 2=\text { app } \mathrm{x} 1 \mathrm{x} 1 \text { in } \mathrm{x} 2) \text { in } \mathrm{x} 3
\end{aligned}
$$

Graphical representations

The positive-bias syntax is closely related to some graphical representations.
\triangleright name introduces new nodes and gives them a label.
Here is an example:

$$
\begin{aligned}
& \text { name } x 3= \\
& \text { abs }(x \backslash \text { name } x 1=\text { app } x \times \text { in } \\
& \\
& \text { name } x 2=\text { app } x 1 \times 1 \text { in } x 2) \text { in } x 3
\end{aligned}
$$

Bisimulation on graphs allows to check sharing equality in linear time ${ }^{2}$.

[^3]
Graphical representations and parallel naming

Parallel naming can be captured by graphical representations:

> name $\mathrm{y} 1=\operatorname{app} \mathrm{x} x$ in name $\mathrm{y} 2=\operatorname{app} \mathrm{y} y$ in name $\mathrm{z}=\operatorname{app} \mathrm{y} 1 \mathrm{y} 2$ in z
> name $\mathrm{y} 2=\operatorname{app} \mathrm{y} y$ in name $\mathrm{y} 1=\operatorname{app} \mathrm{xx}$ in name $\mathrm{z}=\operatorname{app} \mathrm{y} 1 \mathrm{y} 2$ in z

name $z=a b s(x \backslash$ name $y 1=\operatorname{app} y y$ in $y 1)$ in z
name $\mathrm{y} 1=\operatorname{app} \mathrm{y} y$ in name $\mathrm{z}=\mathrm{abs}(\mathrm{x} \backslash \mathrm{y} 1)$ in z

Related and future work

- Generalize to full LJF.

Related and future work

- Generalize to full LJF.
- Multi-focusing:
\triangleright Parallel actions (parallel naming).
\triangleright Maximal multi-focused proofs \leftrightarrow graphical structures.
\triangleright Conjecture: MMF proofs are isomorphic to some graphical structure in the case for untyped λ-terms.

Related and future work

- Generalize to full LJF.
- Multi-focusing:
\triangleright Parallel actions (parallel naming).
\triangleright Maximal multi-focused proofs \leftrightarrow graphical structures.
\triangleright Conjecture: MMF proofs are isomorphic to some graphical structure in the case for untyped λ-terms.
- Big-step cut-elimination for arbitrary cut formulas.
\triangleright At the level of synthetic rules (not phases!).

Related and future work

- Generalize to full LJF.
- Multi-focusing:
\triangleright Parallel actions (parallel naming).
\triangleright Maximal multi-focused proofs \leftrightarrow graphical structures.
\triangleright Conjecture: MMF proofs are isomorphic to some graphical structure in the case for untyped λ-terms.
- Big-step cut-elimination for arbitrary cut formulas.
\triangleright At the level of synthetic rules (not phases!).
- Connection with the literature in programming language theory (A-normal form, etc).

Related and future work

- Generalize to full LJF.
- Multi-focusing:
\triangleright Parallel actions (parallel naming).
\triangleright Maximal multi-focused proofs \leftrightarrow graphical structures.
\triangleright Conjecture: MMF proofs are isomorphic to some graphical structure in the case for untyped λ-terms.
- Big-step cut-elimination for arbitrary cut formulas.
\triangleright At the level of synthetic rules (not phases!).
- Connection with the literature in programming language theory (A-normal form, etc).
- There exist some other frameworks for term structures, such as terms-as-graphs by Grabmayer. Are there some connections or overlaps?

Related and future work

- Generalize to full LJF.
- Multi-focusing:
\triangleright Parallel actions (parallel naming).
\triangleright Maximal multi-focused proofs \leftrightarrow graphical structures.
\triangleright Conjecture: MMF proofs are isomorphic to some graphical structure in the case for untyped λ-terms.
- Big-step cut-elimination for arbitrary cut formulas.
\triangleright At the level of synthetic rules (not phases!).
- Connection with the literature in programming language theory (A-normal form, etc).
- There exist some other frameworks for term structures, such as terms-as-graphs by Grabmayer. Are there some connections or overlaps?
- Proof-theoretic methods for checking term equality.

[^0]: ${ }^{1}$ Sonia Marin, Dale Miller, Elaine Pimentel, and Marco Volpe. From axioms to synthetic inference rules via focusing. Annals of Pure and Applied Logic 173(5).

[^1]: ${ }^{1}$ Sonia Marin, Dale Miller, Elaine Pimentel, and Marco Volpe. From axioms to synthetic inference rules via focusing. Annals of Pure and Applied Logic 173(5).

[^2]: ${ }^{1}$ Sonia Marin, Dale Miller, Elaine Pimentel, and Marco Volpe. From axioms to synthetic inference rules via focusing. Annals of Pure and Applied Logic 173(5).

[^3]: ${ }^{2}$ Andrea Condoluci, Beniamino Accattoli, and Claudio Sacerdoti Coen. Sharing equality is linear. PPDP 2019.

