A positive perspective on term representation: work in progress

Jui-Hsuan Wu (Ray) and Dale Miller

Inria Saclay & LIX, Institut Polytechnique de Paris

LFMTP 2022, Haifa, Israel

1 August 2022

Introduction

Focusing, polarization, and synthetic inference rules

Annotating synthetic rules and proofs

• Terms (or expressions) exist in various settings.

Terms (or expressions) exist in various settings.
 Mathematics (equations, formulas, proofs, etc) / Programming languages (compilers, interpreters, etc) / Proof assistants.

- Terms (or expressions) exist in various settings.
 Mathematics (equations, formulas, proofs, etc) / Programming languages (compilers, interpreters, etc) / Proof assistants.
- There are different formats for terms:

(1 + 2) + (1 + (1 + 2))let x = 1 + 2 in let y = (1 + (1 + 2)) in x + y let x = 1 + 2 in let y = 1 + x in x + y

- Terms (or expressions) exist in various settings.
 Mathematics (equations, formulas, proofs, etc) / Programming languages (compilers, interpreters, etc) / Proof assistants.
- There are different formats for terms:

(1 + 2) + (1 + (1 + 2))let x = 1 + 2 in let y = (1 + (1 + 2)) in x + y let x = 1 + 2 in let y = 1 + x in x + y

• Even some graphical representations:

(Labelled) Trees, Directed acyclic graphs (DAGs), etc.

- Terms (or expressions) exist in various settings.
 Mathematics (equations, formulas, proofs, etc) / Programming languages (compilers, interpreters, etc) / Proof assistants.
- There are different formats for terms:

(1 + 2) + (1 + (1 + 2))let x = 1 + 2 in let y = (1 + (1 + 2)) in x + y let x = 1 + 2 in let y = 1 + x in x + y

• Even some graphical representations:

(Labelled) Trees, Directed acyclic graphs (DAGs), etc.

• What to do with terms? Equality, substitution, evaluation, etc.

- A framework for describing/unifying/justifying different term structures.
 - ▷ Possible interaction between different formats for terms!

- A framework for describing/unifying/justifying different term structures.
 - ▷ Possible interaction between different formats for terms!
- Why proof theory?

- A framework for describing/unifying/justifying different term structures.
 - ▷ Possible interaction between different formats for terms!
- Why proof theory?
 - Highly principled and mathematically sound means for describing syntactic structures.

- A framework for describing/unifying/justifying different term structures.
 - Possible interaction between different formats for terms!
- Why proof theory?
 - Highly principled and mathematically sound means for describing syntactic structures.
 - Proofs-as-terms, but not proofs-as-programs!

- A framework for describing/unifying/justifying different term structures.
 - Possible interaction between different formats for terms!
- Why proof theory?
 - Highly principled and mathematically sound means for describing syntactic structures.
 - Proofs-as-terms, but not proofs-as-programs!
- Which proof system to use?

- A framework for describing/unifying/justifying different term structures.
 - Possible interaction between different formats for terms!
- Why proof theory?
 - Highly principled and mathematically sound means for describing syntactic structures.
 - Proofs-as-terms, but not proofs-as-programs!
- Which proof system to use?
 - Sequent calculus? Too little structure, too much non-essential information (rule permutation).

- A framework for describing/unifying/justifying different term structures.
 - Possible interaction between different formats for terms!
- Why proof theory?
 - Highly principled and mathematically sound means for describing syntactic structures.
 - Proofs-as-terms, but not proofs-as-programs!
- Which proof system to use?
 - Sequent calculus? Too little structure, too much non-essential information (rule permutation).
 - Focused proof system *LJF*:
 - ▶ Focusing: large-scale rules.
 - Polarization: flexibility on forms of proofs (terms).

• Introduced by Andreoli (1992) to reduce non-determinism in proof search for *LL*.

• Introduced by Andreoli (1992) to reduce non-determinism in proof search for *LL*.

	Rule	invertible	\leftrightarrow	non-invertible
•	Information	non-essential	\leftrightarrow	essential
	Phase	negative ↑	\leftrightarrow	positive \Downarrow

 \Rightarrow Two-phase structure of focused proofs.

• Introduced by Andreoli (1992) to reduce non-determinism in proof search for *LL*.

	Rule	invertible	\leftrightarrow	non-invertible
•	Information	non-essential	\leftrightarrow	essential
	Phase	negative ↑	\leftrightarrow	positive \Downarrow

 $\Rightarrow\,$ Two-phase structure of focused proofs.

• Applied to LJ and LK: LJT, LJQ, LKT, LKQ, etc.

• Introduced by Andreoli (1992) to reduce non-determinism in proof search for *LL*.

	Rule	invertible	\leftrightarrow	non-invertible
•	Information	non-essential	\leftrightarrow	essential
	Phase	negative ↑	\leftrightarrow	positive \Downarrow

 \Rightarrow Two-phase structure of focused proofs.

- Applied to LJ and LK: LJT, LJQ, LKT, LKQ, etc.
- Polarization: *LJF* and *LKF* by Liang and Miller (2009).

• Introduced by Andreoli (1992) to reduce non-determinism in proof search for *LL*.

	Rule	invertible	\leftrightarrow	non-invertible
•	Information	non-essential	\leftrightarrow	essential
	Phase	negative ↑	\leftrightarrow	positive \Downarrow

 \Rightarrow Two-phase structure of focused proofs.

- Applied to LJ and LK: LJT, LJQ, LKT, LKQ, etc.
- Polarization: *LJF* and *LKF* by Liang and Miller (2009).
- Large-scale rules (not phases!): synthetic inference rules.

Two-phase structure, borders, and large-scale rules

• Formulas are built using atomic formulas and implication.

- Formulas are built using atomic formulas and implication.
- We work with polarized formulas.
 - Implications are negative.
 - Atomic formulas are either positive or negative. (forward-chaining / backchaining)

- Formulas are built using atomic formulas and implication.
- We work with polarized formulas.
 - Implications are negative.
 - Atomic formulas are either positive or negative. (forward-chaining / backchaining)
- A polarized formula (resp. theory) is a formula (resp. theory) together with an atomic bias assignment δ : A → {+, -}.

- Formulas are built using atomic formulas and implication.
- We work with polarized formulas.
 - Implications are negative.
 - Atomic formulas are either positive or negative. (forward-chaining / backchaining)
- A polarized formula (resp. theory) is a formula (resp. theory) together with an atomic bias assignment δ : A → {+, -}.
- Different polarizations do not affect provability, but give different forms of proofs.
 - ▷ If a sequent is provable in LJF for some polarization, then it is provable for all such polarizations.

Synthetic inference rules

Synthetic inference rule = large-scale rule = \Downarrow -phase + \uparrow -phase

Definition

A left synthetic inference rule for B is an inference rule of the form

$$\frac{\Gamma_1 \vdash A_1 \quad \dots \quad \Gamma_n \vdash A_n}{\Gamma \vdash A} B$$

justified by a derivation (in LJF) of the form

$$\Gamma_1 \vdash A_1 \qquad \cdots \qquad \Gamma_n \vdash A_n$$

$$\stackrel{\uparrow}{=} \uparrow \text{ phase}$$

$$\stackrel{\downarrow \downarrow \text{ phase}}{\underbrace{\Gamma \downarrow B \vdash A}{\Gamma \vdash A} D_l$$

J.-H. Wu (Ray) and D. Miller

Definition

Let \mathcal{T} be a finite polarized theory of order 2 or less, We define $LJ\langle \mathcal{T} \rangle$ to be the extension of LJ with the left synthetic inference rules for \mathcal{T} . More precisely, for every left synthetic inference rule

$$\frac{B, \Gamma_1 \vdash A_1 \quad \dots \quad B, \Gamma_n \vdash A_n}{B, \Gamma \vdash A} B$$

with $B \in \mathcal{T}$, the inference rule

$$\frac{\Gamma_1 \vdash A_1 \quad \dots \quad \Gamma_n \vdash A_n}{\Gamma \vdash A} B$$

is added to $LJ\langle \mathcal{T} \rangle$.

Definition

Let \mathcal{T} be a finite polarized theory of order 2 or less, We define $LJ\langle \mathcal{T}\rangle$ to be the extension of LJ with the left synthetic inference rules for \mathcal{T} . More precisely, for every left synthetic inference rule

$$\frac{B, \Gamma_1 \vdash A_1 \quad \dots \quad B, \Gamma_n \vdash A_n}{B, \Gamma \vdash A} B$$

with $B \in \mathcal{T}$, the inference rule

$$\frac{\Gamma_1 \vdash A_1 \quad \dots \quad \Gamma_n \vdash A_n}{\Gamma \vdash A} B$$

is added to $LJ\langle \mathcal{T} \rangle$.

Theorem

 $\mathcal{T}, \Gamma \vdash B$ provable in $LJ \Leftrightarrow \Gamma \vdash B$ provable in $LJ \langle \mathcal{T} \rangle$.

J.-H. Wu (Ray) and D. Miller

Let \mathcal{T} be the collection of formulas $D_1 = a_0 \supset a_1, \cdots, D_n = a_0 \supset \cdots \supset a_n, \cdots$ where a_i are atomic.

Let \mathcal{T} be the collection of formulas $D_1 = a_0 \supset a_1, \cdots, D_n = a_0 \supset \cdots \supset a_n, \cdots$ where a_i are atomic.

If a_i are all given the negative bias,

Let \mathcal{T} be the collection of formulas $D_1 = a_0 \supset a_1, \cdots, D_n = a_0 \supset \cdots \supset a_n, \cdots$ where a_i are atomic.

If a_i are all given the negative bias, the inference rules in $LJ\langle T \rangle$ include

$$\frac{\Gamma \vdash a_0 \quad \cdots \quad \Gamma \vdash a_{n-1}}{\Gamma \vdash a_n}$$

Let \mathcal{T} be the collection of formulas $D_1 = a_0 \supset a_1, \cdots, D_n = a_0 \supset \cdots \supset a_n, \cdots$ where a_i are atomic.

If a_i are all given the negative bias, the inference rules in $LJ\langle T \rangle$ include

$$\frac{\Gamma \vdash a_0 \quad \cdots \quad \Gamma \vdash a_{n-1}}{\Gamma \vdash a_n}$$
"backchaining"

Let \mathcal{T} be the collection of formulas $D_1 = a_0 \supset a_1, \cdots, D_n = a_0 \supset \cdots \supset a_n, \cdots$ where a_i are atomic.

If a_i are all given the negative bias, the inference rules in $LJ\langle T \rangle$ include

$$\frac{\Gamma \vdash a_0 \quad \cdots \quad \Gamma \vdash a_{n-1}}{\Gamma \vdash a_n}$$

"backchaining"

If a_i are all given the positive bias,

Let \mathcal{T} be the collection of formulas $D_1 = a_0 \supset a_1, \cdots, D_n = a_0 \supset \cdots \supset a_n, \cdots$ where a_i are atomic.

If a_i are all given the negative bias, the inference rules in $LJ\langle T \rangle$ include

$$\frac{\Gamma \vdash a_0 \quad \cdots \quad \Gamma \vdash a_{n-1}}{\Gamma \vdash a_n}$$

"backchaining"

If a_i are all given the positive bias, the inference rules in $LJ\langle T \rangle$ include

$$\frac{\Gamma, a_0, \cdots, a_{n-1}, a_n \vdash A}{\Gamma, a_0, \cdots, a_{n-1} \vdash A}$$

Let \mathcal{T} be the collection of formulas $D_1 = a_0 \supset a_1, \cdots, D_n = a_0 \supset \cdots \supset a_n, \cdots$ where a_i are atomic.

If a_i are all given the negative bias, the inference rules in $LJ\langle T \rangle$ include

$$\frac{\Gamma \vdash a_0 \quad \cdots \quad \Gamma \vdash a_{n-1}}{\Gamma \vdash a_n}$$
"backchaining"

If a_i are all given the positive bias, the inference rules in $LJ\langle T \rangle$ include

$$\frac{\Gamma, a_0, \cdots, a_{n-1}, a_n \vdash A}{\Gamma, a_0, \cdots, a_{n-1} \vdash A}$$

"forward-chaining"

Backchaining and Forward-chaining

What are the proofs of $a_0 \vdash a_n$?
Backchaining and Forward-chaining

What are the proofs of $a_0 \vdash a_n$?

When a_i are all given the negative bias, we have:

 $\frac{\Gamma \vdash a_0}{\Gamma \vdash a_1} \qquad \frac{\Gamma \vdash a_0 \quad \Gamma \vdash a_1}{\Gamma \vdash a_2} \qquad \cdots \qquad \frac{\Gamma \vdash a_0 \quad \cdots \quad \Gamma \vdash a_{n-1}}{\Gamma \vdash a_n} \qquad \cdots$

▶ a unique proof of exponential size

Backchaining and Forward-chaining

What are the proofs of $a_0 \vdash a_n$?

When a_i are all given the negative bias, we have:

 $\frac{\Gamma \vdash a_0}{\Gamma \vdash a_1} \qquad \frac{\Gamma \vdash a_0 \quad \Gamma \vdash a_1}{\Gamma \vdash a_2} \qquad \cdots \qquad \frac{\Gamma \vdash a_0 \quad \cdots \quad \Gamma \vdash a_{n-1}}{\Gamma \vdash a_n} \qquad \cdots$

▶ a unique proof of exponential size

When a_i are all given the positive bias, we have:

$$\frac{\Gamma, a_0, a_1 \vdash A}{\Gamma, a_0 \vdash A} \qquad \frac{\Gamma, a_0, a_1, a_2 \vdash A}{\Gamma, a_0, a_1 \vdash A} \qquad \cdots \qquad \frac{\Gamma, a_0, \dots, a_{n-1}, a_n \vdash A}{\Gamma, a_0, \dots, a_{n-1} \vdash A}$$

▷ a shortest proof of linear size

Consider the inference rules in the previous example and annotate them.

$$\frac{\Gamma \vdash a_0}{\Gamma \vdash a_1} \qquad \frac{\Gamma \vdash a_0 \quad \Gamma \vdash a_1}{\Gamma \vdash a_2} \qquad \cdots \\ \frac{\Gamma \vdash a_0 \quad \cdots \quad \Gamma \vdash a_{n-1}}{\Gamma \vdash a_n}$$

Consider the proofs of $a_0 \vdash a_4$.

٠

Consider the inference rules in the previous example and annotate them.

$\Gamma \vdash t_0 : a_0$	$\Gamma \vdash t_0 : a_0 \qquad \Gamma \vdash t_1 : a_1$		
$\overline{\Gamma \vdash E_1 t_0 : a_1}$	$\Gamma \vdash E_2 t_0 t_1 : a_2$		
$\Gamma \vdash t_0 : a_0$	$\cdots \Gamma \vdash t_{n-1} : a_{n-1}$		
Г⊢	$E_n t_0 \cdots t_{n-1}$: a_n		

Consider the proofs of $a_0 \vdash a_4$.

Consider the inference rules in the previous example and annotate them.

$\Gamma \vdash t_0 : a_0$	$\Gamma \vdash t_0 : a_0 \qquad \Gamma \vdash t_1 : a_1$		
$\overline{\Gamma \vdash E_1 t_0 : a_1}$	$\Gamma \vdash E_2 t_0 t_1 : a_2$		
$\Gamma \vdash t_0 : a_0$	$\cdots \Gamma \vdash t_{n-1} : a_{n-1}$		
Г⊢	$E_n t_0 \cdots t_{n-1}$: a_n		

Consider the proofs of $d_0 : a_0 \vdash t : a_4$.

Consider the inference rules in the previous example and annotate them.

$\Gamma \vdash t_0 : a_0$	Γ⊢ <u>t</u> ₀ : <i>a</i> ₀	$\Gamma \vdash t_1 : a_1$	
$\overline{\Gamma \vdash E_1 t_0 : a_1}$	$\Gamma \vdash E_2 t_0 t_1 : a_2$		
$\Gamma \vdash t_0 : a_0$	··· Γ ł	$-t_{n-1}:a_{n-1}$	
Γ⊢	$E_n t_0 \cdots t_{n-1}$	1:an	

Consider the proofs of $d_0 : a_0 \vdash t : a_4$.

The term annotating the unique proof is

Consider the inference rules in the previous example and annotate them.

$$\frac{\Gamma, a_0, a_1 \vdash A}{\Gamma, a_0 \vdash A} \qquad \frac{\Gamma, a_0, a_1, a_2 \vdash A}{\Gamma, a_0, a_1 \vdash A} \qquad \cdots$$
$$\frac{\Gamma, a_0, \cdots, a_{n-1}, a_n \vdash A}{\Gamma, a_0, \cdots, a_{n-1} \vdash A}$$

Consider the proofs of $a_0 \vdash a_4$.

Consider the inference rules in the previous example and annotate them.

$$\frac{\Gamma, x_{0}: a_{0}, x_{1}: a_{1} \vdash t: A}{\Gamma, x_{0}: a_{0} \vdash F_{1}x_{0}(\lambda x_{1}.t): A} \qquad \frac{\Gamma, x_{0}: a_{0}, x_{1}: a_{1}, x_{2}: a_{2} \vdash t: A}{\Gamma, x_{0}: a_{0}, x_{1}: a_{1} \vdash F_{2}x_{0}x_{1}(\lambda x_{2}.t): A}$$
$$\frac{\Gamma, x_{0}: a_{0}, \cdots, x_{n-1}: a_{n-1}, x_{n}: a_{n} \vdash t: A}{\Gamma, x_{0}: a_{0}, \cdots, x_{n-1}: a_{n-1} \vdash F_{n}x_{0} \cdots x_{n-1}(\lambda x_{n}.t): A}$$

Consider the proofs of $d_0 : a_0 \vdash t : a_4$.

Consider the inference rules in the previous example and annotate them.

$$\frac{\Gamma, x_{0}: a_{0}, x_{1}: a_{1} \vdash t: A}{\Gamma, x_{0}: a_{0} \vdash F_{1}x_{0}(\lambda x_{1}.t): A} \qquad \frac{\Gamma, x_{0}: a_{0}, x_{1}: a_{1}, x_{2}: a_{2} \vdash t: A}{\Gamma, x_{0}: a_{0}, x_{1}: a_{1} \vdash F_{2}x_{0}x_{1}(\lambda x_{2}.t): A}$$
$$\frac{\Gamma, x_{0}: a_{0}, \cdots, x_{n-1}: a_{n-1}, x_{n}: a_{n} \vdash t: A}{\Gamma, x_{0}: a_{0}, \cdots, x_{n-1}: a_{n-1} \vdash F_{n}x_{0} \cdots x_{n-1}(\lambda x_{n}.t): A}$$

Consider the proofs of $d_0 : a_0 \vdash t : a_4$.

The term annotating the shortest proof is

We use a primitive type (atomic formula) D for untyped λ -terms.

We use a primitive type (atomic formula) D for untyped λ -terms.

We fix a theory $\mathcal{T} = \{ \Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D \}$ and consider proofs of sequents of the form $\mathcal{T}, x_1 : D, \cdots, x_k : D \vdash t : D$

We use a primitive type (atomic formula) D for untyped λ -terms.

We fix a theory $\mathcal{T} = \{ \Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D \}$ and consider proofs of sequents of the form $\mathcal{T}, x_1 : D, \cdots, x_k : D \vdash t : D$

When D is given the negative bias, we have the following synthetic inference rules:

$$\frac{\Gamma \vdash D \quad \Gamma \vdash D}{\Gamma \vdash D} \Phi$$

$$\frac{\Gamma, D \vdash D}{\Gamma \vdash D} \Psi$$

We use a primitive type (atomic formula) D for untyped λ -terms.

We fix a theory $\mathcal{T} = \{ \Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D \}$ and consider proofs of sequents of the form $\mathcal{T}, x_1 : D, \cdots, x_k : D \vdash t : D$

When D is given the negative bias, we have the following synthetic inference rules:

$$\frac{\Gamma \vdash t : D \quad \Gamma \vdash u : D}{\Gamma \vdash D} \Phi$$

$$\frac{\Gamma, D \vdash D}{\Gamma \vdash D} \Psi$$

We use a primitive type (atomic formula) D for untyped λ -terms.

We fix a theory $\mathcal{T} = \{ \Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D \}$ and consider proofs of sequents of the form $\mathcal{T}, x_1 : D, \cdots, x_k : D \vdash t : D$

When D is given the negative bias, we have the following synthetic inference rules:

$$\frac{\Gamma \vdash t : D \quad \Gamma \vdash u : D}{\Gamma \vdash \Phi \ t \ u : D} \Phi$$

$$\frac{\Gamma, D \vdash D}{\Gamma \vdash D} \Psi$$

We use a primitive type (atomic formula) D for untyped λ -terms.

We fix a theory $\mathcal{T} = \{ \Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D \}$ and consider proofs of sequents of the form $\mathcal{T}, x_1 : D, \cdots, x_k : D \vdash t : D$

When D is given the negative bias, we have the following synthetic inference rules:

$$\frac{\Gamma \vdash t : D \quad \Gamma \vdash u : D}{\Gamma \vdash \Phi \ t \ u : D} \Phi$$

$$\frac{\Gamma, \mathbf{x}: D \vdash t: D}{\Gamma \vdash D} \Psi$$

We use a primitive type (atomic formula) D for untyped λ -terms.

We fix a theory $\mathcal{T} = \{ \Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D \}$ and consider proofs of sequents of the form $\mathcal{T}, x_1 : D, \cdots, x_k : D \vdash t : D$

When D is given the negative bias, we have the following synthetic inference rules:

$$\frac{\Gamma \vdash t : D \quad \Gamma \vdash u : D}{\Gamma \vdash \Phi \ t \ u : D} \Phi$$

$$\frac{\Gamma, x: D \vdash t: D}{\Gamma \vdash \Psi \ (\lambda x.t): D} \Psi$$

We use a primitive type (atomic formula) D for untyped λ -terms.

We fix a theory $\mathcal{T} = \{ \Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D \}$ and consider proofs of sequents of the form $\mathcal{T}, x_1 : D, \cdots, x_k : D \vdash t : D$

When D is given the positive bias, we have the following synthetic inference rules:

$$\frac{\Gamma, D, D, D \vdash D}{\Gamma, D, D \vdash D} \Phi$$

$$\frac{\Gamma, D \vdash D \quad \Gamma, D \vdash D}{\Gamma \vdash D} \ \Psi$$

We use a primitive type (atomic formula) D for untyped λ -terms.

We fix a theory $\mathcal{T} = \{ \Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D \}$ and consider proofs of sequents of the form $\mathcal{T}, x_1 : D, \cdots, x_k : D \vdash t : D$

When D is given the positive bias, we have the following synthetic inference rules:

$$\frac{\Gamma, x: D, y: D, z: D \vdash t: D}{\Gamma, D, D \vdash D} \Phi$$

$$\frac{\Gamma, D \vdash D \quad \Gamma, D \vdash D}{\Gamma \vdash D} \ \Psi$$

We use a primitive type (atomic formula) D for untyped λ -terms.

We fix a theory $\mathcal{T} = \{ \Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D \}$ and consider proofs of sequents of the form $\mathcal{T}, x_1 : D, \cdots, x_k : D \vdash t : D$

When D is given the positive bias, we have the following synthetic inference rules:

$$\frac{\Gamma, x: D, y: D, z: D \vdash t: D}{\Gamma, x: D, y: D \vdash \Phi \times y (\lambda z.t): D} \Phi$$

$$\frac{\Gamma, D \vdash D \quad \Gamma, D \vdash D}{\Gamma \vdash D} \Psi$$

We use a primitive type (atomic formula) D for untyped λ -terms.

We fix a theory $\mathcal{T} = \{ \Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D \}$ and consider proofs of sequents of the form $\mathcal{T}, x_1 : D, \cdots, x_k : D \vdash t : D$

When D is given the positive bias, we have the following synthetic inference rules:

$$\frac{\Gamma, x: D, y: D, z: D \vdash t: D}{\Gamma, x: D, y: D \vdash \Phi \times y (\lambda z.t): D} \Phi$$
$$\frac{\Gamma, x: D \vdash t: D \quad \Gamma, y: D \vdash u: D}{\Gamma \vdash D} \Psi$$

We use a primitive type (atomic formula) D for untyped λ -terms.

We fix a theory $\mathcal{T} = \{ \Phi : D \supset D \supset D, \Psi : (D \supset D) \supset D \}$ and consider proofs of sequents of the form $\mathcal{T}, x_1 : D, \cdots, x_k : D \vdash t : D$

When D is given the positive bias, we have the following synthetic inference rules:

$$\frac{\Gamma, x: D, y: D, z: D \vdash t: D}{\Gamma, x: D, y: D \vdash \Phi \times y (\lambda z. t): D} \Phi$$
$$\frac{\Gamma, x: D \vdash t: D \quad \Gamma, y: D \vdash u: D}{\Gamma \vdash \Psi (\lambda x. t) (\lambda y. u): D} \Psi$$

Two formats for untyped λ -terms

Two different polarity assignments give two different term structures:

• *D* is negative:

X	nvar x	X
Φtu	napp t u	tu
$\Psi(\lambda x.t)$	nabs (x\ t)	$\lambda x.t$

 \rightarrow Top-down / tree-like structure

• *D* is positive:

xpvar xx $\Phi \times y (\lambda z.t)$ papp x y (z\t)name z = xy in t $\Psi (\lambda x.t) (\lambda y.s)$ pabs (x\t) (y\s)name y = $\lambda x.t$ in s \rightarrow Bottom-up / DAG structure

```
name y = app x x in name z = app y y in z

▶ Arguments of app are all names
```

```
name y = app x x in name z = app y y in z
> Arguments of app are all names
name y1 = app x x in name y2 = app x x in
```

```
name y1 = app x x in name y2 = app x x in
name z = app y1 y2 in z
▷ Redundant naming
```

```
name y = app x x in name z = app y y in z
> Arguments of app are all names
name y1 = app x x in name y2 = app x x in
name z = app y1 y2 in z
> Redundant naming
name y1 = app x x in name y2 = app y y in
name z = app y1 y1 in z
> Vacuous naming
```

```
name y = app x x in name z = app y y in z
 Arguments of app are all names
name y1 = app x x in name y2 = app x x in
name z = app y1 y2 in z
 ▶ Redundant naming
name y1 = app x x in name y2 = app y y in
name z = app y1 y1 in z
 ▷ Vacuous naming
name y1 = app x x in name y2 = app y y in
name z = app y1 y2 in z
name z = abs (x\ name y1 = app y y in y1) in z
 Parallel naming
```

```
name y = app x x in name z = app y y in z
 Arguments of app are all names
name y1 = app x x in name y2 = app x x in
name z = app y1 y2 in z
 ▶ Redundant naming
name y1 = app x x in name y2 = app y y in
name z = app y1 y1 in z
 ▶ Vacuous naming
name y1 = app x x and y2 = app y y in
name z = app y1 y2 in z
name z = abs (x\ name y1 = app y y in y1) in z
 Parallel naming
```

```
name y = app x x in name z = app y y in z
 Arguments of app are all names
name y1 = app x x in name y2 = app x x in
name z = app y1 y2 in z
 ▶ Redundant naming
name y1 = app x x in name y2 = app y y in
name z = app y1 y1 in z
 ▷ Vacuous naming
name y1 = app x x and y2 = app y y in
name z = app y1 y2 in z
name y1 = app y y in name z = abs (x\ y1) in z
 ▶ Parallel naming
```

Cut-elimination for $LJ\langle \mathcal{T} \rangle$

The following theorem¹ states that cut is admissible for the extensions of LJ with polarized theories based on synthetic inference rules.

Theorem (Cut admissibility for $LJ\langle \mathcal{T} \rangle$)

Let \mathcal{T} be a finite polarized theory of order 2 or less. Then the cut rule is admissible for the proof system $LJ\langle \mathcal{T} \rangle$.

¹Sonia Marin, Dale Miller, Elaine Pimentel, and Marco Volpe. **From axioms to synthetic inference rules via focusing**. *Annals of Pure and Applied Logic* 173(5).

Cut-elimination for $LJ\langle \mathcal{T} \rangle$

The following theorem¹ states that cut is admissible for the extensions of LJ with polarized theories based on synthetic inference rules.

Theorem (Cut admissibility for $LJ\langle \mathcal{T} \rangle$)

Let \mathcal{T} be a finite polarized theory of order 2 or less. Then the cut rule is admissible for the proof system $LJ\langle \mathcal{T}\rangle$.

The proof is based on a cut elimination procedure for LJF

▷ This defines the notion of substitution for terms.

¹Sonia Marin, Dale Miller, Elaine Pimentel, and Marco Volpe. **From axioms to synthetic inference rules via focusing.** *Annals of Pure and Applied Logic 173(5).*

Cut-elimination for $LJ\langle \mathcal{T} \rangle$

The following theorem¹ states that cut is admissible for the extensions of LJ with polarized theories based on synthetic inference rules.

Theorem (Cut admissibility for $LJ\langle \mathcal{T} \rangle$)

Let \mathcal{T} be a finite polarized theory of order 2 or less. Then the cut rule is admissible for the proof system $LJ\langle \mathcal{T} \rangle$.

The proof is based on a cut elimination procedure for LJF

▷ This defines the notion of substitution for terms.

When we restrict to **atomic** cut formulas, the cut elimination procedure can be presented in a big-step style.

▷ Cuts are permuted with synthetic rules instead of *LJF* rules.

¹Sonia Marin, Dale Miller, Elaine Pimentel, and Marco Volpe. **From axioms to** synthetic inference rules via focusing. *Annals of Pure and Applied Logic* 173(5).

Untyped λ -terms (substitution)

The cut-elimination procedure of LJF gives us the following definitions of substitutions.

type nsubst, psubst tm -> (val -> tm) -> tm -> o. nsubst T (x\ nvar x) T. nsubst T (x\ nvar Y) (nvar Y). nsubst T (x\ napp (R x) (S x)) (napp R' S') :nsubst T R R', nsubst T S S'. nsubst T (x\ nabs y\ R x y) (nabs y\ R' y) :pi y\ nsubst T (x\ R x y) (R' y).

(K x) R (H x).
psubst (pabs S K) R (pabs S H) :- pi x\ psubst
(K x) R (H x).
psubst (pvar U) R (R U).

An example

name y =	арр х	x	in
name z =	арр у	у	in z

An example

An example

name	y =	app	х	х	in
name	z =	app	у	у	in z

name y' = app a a in
<pre>name z' = app y' y' in</pre>
<pre>name y = app z' z' in</pre>
name z = app y y in z

We have now two different formats for untyped λ -terms.

When should two such expressions be considered the same?
We have now two different formats for untyped λ -terms.

When should two such expressions be considered the same?

"White box" approach:

Look at the actual syntax of proof expressions.
 ⇒ not working since we have two different sets of synthetic inference rules.

We have now two different formats for untyped λ -terms.

When should two such expressions be considered the same?

"White box" approach:

Look at the actual syntax of proof expressions.
 anot working since we have two different sets of synthetic inference rules.

"Black box" approach:

- ▷ Describe *traces* by probing a term: exponential cost.
 - \hookrightarrow Bisimulation on graphical representations.

Graphical representations

The positive-bias syntax is closely related to some graphical representations.

▶ name introduces new nodes and gives them a label.

Graphical representations

The positive-bias syntax is closely related to some graphical representations.

name introduces new nodes and gives them a label.
Here is an example:

Graphical representations

The positive-bias syntax is closely related to some graphical representations.

name introduces new nodes and gives them a label.
Here is an example:

Bisimulation on graphs allows to check sharing equality in linear time².

J.-H. Wu (Ray) and D. Miller

²Andrea Condoluci, Beniamino Accattoli, and Claudio Sacerdoti Coen. Sharing equality is linear. *PPDP 2019.*

Graphical representations and parallel naming

Parallel naming can be captured by graphical representations:

• Generalize to full *LJF*.

- Generalize to full LJF.
- Multi-focusing:
 - ▶ Parallel actions (parallel naming).
 - \triangleright Maximal multi-focused proofs \leftrightarrow graphical structures.
 - Conjecture: MMF proofs are isomorphic to some graphical structure in the case for untyped λ-terms.

- Generalize to full LJF.
- Multi-focusing:
 - ▶ Parallel actions (parallel naming).
 - \triangleright Maximal multi-focused proofs \leftrightarrow graphical structures.
 - Conjecture: MMF proofs are isomorphic to some graphical structure in the case for untyped λ-terms.
- Big-step cut-elimination for arbitrary cut formulas.
 - ▶ At the level of synthetic rules (not phases!).

- Generalize to full LJF.
- Multi-focusing:
 - ▶ Parallel actions (parallel naming).
 - \triangleright Maximal multi-focused proofs \leftrightarrow graphical structures.
 - Conjecture: MMF proofs are isomorphic to some graphical structure in the case for untyped λ-terms.
- Big-step cut-elimination for arbitrary cut formulas.
 - ▶ At the level of synthetic rules (not phases!).
- Connection with the literature in programming language theory (A-normal form, etc).

- Generalize to full LJF.
- Multi-focusing:
 - ▶ Parallel actions (parallel naming).
 - \triangleright Maximal multi-focused proofs \leftrightarrow graphical structures.
 - Conjecture: MMF proofs are isomorphic to some graphical structure in the case for untyped λ-terms.
- Big-step cut-elimination for arbitrary cut formulas.
 - ▶ At the level of synthetic rules (not phases!).
- Connection with the literature in programming language theory (A-normal form, etc).
- There exist some other frameworks for term structures, such as terms-as-graphs by Grabmayer. Are there some connections or overlaps?

- Generalize to full LJF.
- Multi-focusing:
 - ▶ Parallel actions (parallel naming).
 - \triangleright Maximal multi-focused proofs \leftrightarrow graphical structures.
 - Conjecture: MMF proofs are isomorphic to some graphical structure in the case for untyped λ-terms.
- Big-step cut-elimination for arbitrary cut formulas.
 - ▶ At the level of synthetic rules (not phases!).
- Connection with the literature in programming language theory (A-normal form, etc).
- There exist some other frameworks for term structures, such as terms-as-graphs by Grabmayer. Are there some connections or overlaps?
- Proof-theoretic methods for checking term equality.