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In this progress report, we highlight the design of the functional programming language MLTS which
we have recently proposed elsewhere. This language uses the λ -tree syntax approach to encoding
data structures that contain bindings. In this setting, bound variables never become free nor escape
their scope: instead, binders in data structures are permitted to move into binding sites within pro-
grams. The concrete syntax of MLTS is based on the one for OCaml but includes additional binders
within programs that directly support the mobility of bindings. The natural semantics of MLTS can
be viewed as a logical theory within the logic G , which forms the basis of the Abella proof system
and which includes nominal abstractions and the ∇-quantifier. Here, we provide several examples
of MLTS programs. We also illustrate how many Abella relational specifications that are known to
specify functions can be rewritten as functions in MLTS.

1 Introduction

The λ -tree syntax approach to encoding data structures that contain binders (which includes a wide range
of syntactic expressions) has been successfully used in a wide range of specifications, programs, and
reasoning systems. Most of these systems, however, are based on logic programming or, more generally,
the proof search paradigms. One exception to that trend is Beluga [19], a functional programming
language that is based on contextual modal logic [16]. Beluga provides first-class treatments for not
only bindings but also contexts: the latter play important roles in mechanizing reasoning involving, for
example, type systems.

In this progress report, we report on a recently designed functional programming language we call
MLTS. With this language, we attempt a modest goal: can we extend an ML-like functional program-
ming language in order to allow a first-class treatment to data structures containing bindings? We are
focused on the specification of computation in a traditional sense: the concerns of supporting deduc-
tion (mechanized metatheory) are not an immediate goal. As a result, we have not attempted to build
into this language some specific notion of context. For us, one criterion of a successful design would
be that programs written on data structures without binding should be seen as programs in the original,
non-extended programming language.

Accompanying this progress report is the TryMLTS website [9] which contains the following: a full
length draft report [8] that describes MLTS in more detail, the full sources (λProlog, OCaml, JavaScript)
as a git repository, and a web-browser-based environment in which one can create and execute MLTS
programs online without needing to install any software. In our overview of MLTS, we repeat some of
the material from [8] in sections 2 and 3
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2 Design principles and new features

The programming language MLTS extends (the core of) the OCaml programming language with a treat-
ment of the λ -tree syntax approach to encoding data structures containing binders [15]. Briefly, the
λ -tree syntax approach to bindings involves the following three tenets: (1) Syntax is encoded as untyped
λ -terms (although simple types can be used, for example, to distinguish different syntactic categories).
(2) Equality of syntax must include α , β0, and η conversion.1 (3) Bound variables never become free:
instead, their binding scope can move. This latter tenet introduces the most characteristic aspect of λ -tree
syntax which is often called binder mobility [14]. MLTS is, in fact, an acronym for mobility and λ -tree
syntax. (We do not use the term higher-order abstract syntax since the literature of functional program-
ming and constructive type theory has used that term to also refer to the mapping of binding structures
into function spaces [3, 5, 10], which is a completely different approach to what we do here.) Note that
the intent of the first tenet mentioned above is to de-emphasize typing in the core notion of λ -tree syntax:
doing so allows it to be adapted to many different typing disciplines.

Our strategy for strengthening the expressiveness of ML-style languages has been to add to the
language more binding sites to which bindings can move: in fact, MLTS contains three new binders
to support the mobility needed for λ -tree syntax. In particular, MLTS has a syntax similar to that of
OCaml [18] except that we add to OCaml the following four new features.

1. Datatypes can be extended to contain new nominal constants and the (new X in body) program
phrase provides a binding that declares that the nominal X is new within the lexical scope given by
body.

2. The backslash (\ as an infix symbol that associates to the right) is used to form an abstraction of a
nominal over its scope. For example, (X\body) is a syntactic expression that hides the nominal X
in the scope body. Thus the backslash introduces an abstraction. The @, conversely, eliminates an
abstraction: for example, the expression ((X\body) @ Y) denotes the result of substituting the
abstracted nominal X with the nominal Y in body. Expressions involving @ are restricted to be of
the form (m @ X1 ... Xj) where m is a pattern (match) variable and X1, . . ., Xj are nominals
bound within the scope of the pattern binding on m.

3. A new typing constructor => is used to type bindings within term structures. This constructor is in
addition to the already familiar constructor -> used for typing functional expressions.

4. Rules within match-expressions can also contain the (nab X in rule) binder: in the scope of
this binder, the symbol X can match existing nominals introduced by the new binder and the \

operator. Note that X is bound over the entire rule (including both the left and right-side of the
rule).

All three bindings expressions—(X\body), (new X in body) and (nab X in rule)—are sub-
ject to alphabetic renaming of bound variables, just as the names of variables bound in let declarations
and function definitions. Since nominals are best thought of as constructors, we follow the OCaml con-
vention of capitalizing their names. We are assuming that in all parts of MLTS, the names of nominals
(of bound variables in general) are not available to programs since α-conversion (the alphabetic change
of bound variables) is always applicable. Thus, compilers are free to implement nominals in any number
of ways, even ways in which they do not have, say, print names.

1By β0 conversion we mean the subset of β -conversion where β -redexes ((λx.B)t) are restricted so that t is a bound variable
that is not free in λx.B [13].



Gérard & Miller 3

let rec size term =

match term with

| App(n, m) -> 1 + (size n) + (size m)

| Abs(r) -> 1 + (new X in size (r @ X))

| nab X in X -> 1;;

size (Abs (X\ (Abs (Y\ (App(X,Y))))));;

1 + new X in (size (Abs (Y\ (App(X,Y)))));;

1 + new X in 1 + new Y in (size (App(X,Y)));;

1 + new X in 1 + new Y in 1 + (size X) + (size Y);;

1 + new X in 1 + new Y in 1 + 1 + 1;;

Figure 1: An MLTS program for computing the size of untyped λ -terms along with a series of expres-
sions that presents the naive computation that the size of a particular λ -term is 5.

The restriction on the structure of expressions of the form (m @ X1 ... Xj) are essentially the
same as those required by pattern unification (a.k.a. Lλ -unification) [13]: as a result, pattern matching in
this setting is a simple generalization of usual first-order matching. Given the η-rule, if r is of => type,
the expressions r and (X\ r @ X) are interchangeable.

3 Some MLTS example programs

We now present several examples of MLTS programs in this section. All of these examples are available
via the website [9].

Untyped λ -terms can be defined in MLTS as the following datatype:

type tm =

| App of tm * tm

| Abs of tm => tm ;;

The use of the => type constructor here indicates that the argument of Abs is an abstraction of a tm over
a tm. Just as the type tm denotes a syntactic category of untyped λ -terms, the type tm => tm denotes
the syntactic category of terms abstracted over such terms.

The MLTS program in Figure 1 computes the size of an untyped λ -term and shows a sequence
of rewritings that provides a naive model of how that function computes. For example, the expression
(size (Abs(X\ (Abs(Y\ App(X, Y))))) evaluates to 5 (see Figure 1). In the second match rule in
the definition of size, the match-variable r is bound to an expression built using the backslash. On the
right of that rule, r is applied to a single argument which is a newly provided constructor of type tm. The
first call to size will bind the pattern variable r to (X\ (Abs (Y\ (App(X,Y))))). The third match
rule contains the nab binder that allows the token X to match any nominal. Note that in the evaluation
(rewriting) steps denoting a size computation, no bound variable actually becomes free: instead, the
binding within Abs-terms move to the binding in new expressions.

As a second example, consider a program that returns the boolean true if and only if its argument is a
λ -abstraction for which the bound variable is vacuous in its scope; otherwise, it returns false. Figure 2
contains three implementations of this boolean-valued function. Note that, in the implementation of
vacp2, once the outermost match rule determines that the argument is a λ -abstraction, a new nominal is
created and used to play the role of the λ -abstracted variable. The internal aux function is then defined
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let rec vacp1 t = match t with

| Abs(X\X) -> false

| nab Y in Abs(X\Y) -> true

| Abs(X\ App(m @ X, n @ X)) -> (vacp1 (Abs m)) && (vacp1 (Abs n))

| Abs(X\ Abs(Y\ r @ X Y)) -> new Y in vacp1(Abs(X\ r @ X Y))

| t -> false ;;

let vacp2 t = match t with

| Abs(r) -> new X in

let rec aux term = match term with

| X -> false

| nab Y in Y -> true

| App(m, n) -> (aux m) && (aux n)

| Abs(u) -> new Y in aux (u @ Y)

in aux (r @ X)

| t -> false ;;

let vacp3 t = match t with

| Abs(X\s) -> true

| t -> false ;;

Figure 2: Three implementations of the function that determines if its argument is a vacuous λ -term.

to search the body of that λ -abstraction for that new nominal. The third implementation, vacp3, is not
(overtly) recursive since the entire effort of checking for the vacuous binding can be done during pattern
matching. The first match rule of this third implementation is essentially asking the question: is there
an instantiation for the (pattern) variable s so that the equation Abs(λx.s) equals t? This question can
be posed as asking if the logical formula ∃s.(Abs(λx.s)) = t can be proved. In this latter form, it should
be clear that since substitution is intended as a logical operation, the result of substituting for s never
allows for variable capture. Hence, every instance of the existential quantifier yields an equation with
a left-hand side that is a vacuous abstraction. For this kind of pattern matching to work as described,
determining this match requires a recursive analysis of the term t. Of course, if one feels that pattern
matching must execute in time independent of the terms being matched, then this use of a pattern variable
could easily be made illegal (just as repeated pattern variables are made illegal in most pattern matching
mechanisms).

For the third and final example of this section, consider the simple and direct implementation of

let rec subst t x u =

match (t, x) with

| nab X in (X, X) -> u

| nab X Y in (Y, X) -> Y

| (App(m, n), x) -> App(subst m x u, subst n x u)

| (Abs r, x) -> Abs(Y\ subst (r @ Y) x u)

Figure 3: An implementation of (capture-avoiding) substitution: subst t x u returns the result of
replacing the nominal x in t with u.
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substitution given in Figure 3. There are at least two features of this definition that are worth noting.
First, the order of the clauses can be changed without affecting the function’s computation. For example,
a successful match using the second clause necessarily implies that X and Y are different nominals: thus,
there is no overlap between the first and second clause. Second, this substitution is capture-avoiding
because the MLTS rewriting mechanism is capture-avoiding: in particular, the binding on Y cannot
capture any nominals that may appear in the argument u. Such rewriting is always possible since α-
conversion is available and the choice of Y can be picked to avoid all nominals in u.

4 Formal specifications of typing and natural semantic evaluation

MLTS programs can be given types in much the same way as other ML-like programming languages
are given types. As one expects, λProlog provides a simple implementation of type inference and type
checking for MLTS programs. An actual λProlog implementation for type inference is about 50 lines of
code (although it does not currently capture full let-polymorphism).

Typing is not used during evaluation but typing is an invariant of evaluation (as is usual for ML-style
programming languages). A different kind of typing is, however, important to evaluation. In particular,
we need to be able to distinguish between a syntactic category (say, denoting program expressions) and
an abstraction of one such category over another. For this we adopt the notion of arity types from Martin-
Löf [17]. Essentially, the backslash binder allows to raise the arity of an object by one. Conversely, the
Abs constructor from Section 3 expects to be applied to an argument that has arity 1 and it returns an
expression that is arity 0. If an MLTS program does not manipulate any data structures containing
bindings, then all pattern variables in such programs will all have arity 0. Observe that this remains true
even for higher-order programs such as map, foldr, etc: thus, expressions that have higher-order types
(using ->) can still be of arity 0.

The natural semantic specification of MLTS evaluation [8] can be given as a small set of clauses
within the G logic [6]. The nab and the new bindings correspond naturally to nominal abstraction
and to the ∇-quantifier, both of which are available in G . Since λProlog does not contain any feature
that corresponds to nab, our prototype implementation of natural semantics in λProlog was a bit more
involved and is about 250 lines of code. The λProlog implementations of type inference and evaluation
are both available from the website [9].

5 Similarities with Abella

It is often the case that a relation specified in, say, Prolog or λProlog, encodes a function. In the paper
[7], the authors used focusing to describe how functional computations can be performed using relational
specification when those relational specifications are known to compute functions. A different question to
consider in this setting, however, is: can we transform the syntax of a relational specification of a function
and produce a functional program of that encoded function? For example, one can imagine transforming
the usual Prolog [4] append relation into a, say, OCaml function for computing the appending of two
input lists. A possible additional ingredient to such a transformation might also be a formal proof that
the append relational specification actually determines a function when we view the first two arguments
as inputs and the third argument as output. We shall not attempt to formalize such a transformation here.
Instead we consider how a naive approach to transforming, say, Prolog to OCaml might be extended in
order to transform some Abella [1, 2] specification to MLTS. For the examples below, we make the
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arbitrary assumption that if a relation is actually a function, it is the last argument of the relation that
depends on the other arguments as inputs.

Figure 4 presents Abella relational specifications that correspond closely to functional specifications
we have presented in Section 3. Whatever informal understanding one might have of transforming Prolog
to OCaml, it seems that the following two observations can be added. If the Abella specification contains
nabla-in-the-head, then the corresponding clause in the MLTS program contains a nab binder. If the
Abella specification contains a nabla in the body of a clause, then the corresponding clause in the MLTS
program contains either a new binder or an explicit λ -binder (the backslash).

Although details of pattern matching and the treatment of auxiliary definitions are different between
Abella and functional programming, there are a number of similarities. We offer these similarities in part
as a way to help motivate the particular choices used in the design of MLTS.

We have left one MLTS program in Section 3 without a corresponding specification in Abella,
namely, the vacp3 function. The most natural Abella specification corresponding to that function would
be the following.

Define vacp3 : tm -> bool -> prop by

vacp3 (abs x\T) tt ;

vacp3 (abs T) ff ;

vacp3 (app M N) ff ;

nabla x, vacp3 x ff.

The relation defined here does not, in fact, encode a function since the first two clauses overlap. For
example, it is possible to prove that this vacp3 relation is multi-valued.

Theorem vacp3-multivalued :

forall B, vacp3 (abs x\ abs y\y) B -> (B = tt \/ B = ff).

intros. case H1. left. search. right. search.

It seems the only way to specify the boolean valued function for determining vacuousness is via a
recursion over syntax.

6 Conclusion and future work

In 1990, the second author proposed an extension to ML, called MLλ [12]. Although there is some
overlap between that early proposal and the one for MLTS, MLλ did not have two critical features:
nominals and nab binder in match patterns. The lack of these features greatly weakened that earlier
proposal. Recent advances in proof-theoretic treatments of binding have allowed us to provide a greatly
improved design.

Our immediate goals with MLTS are two fold. First, we wish to develop more examples in the
metaprogramming areas of automating logic and building compilers. Second, we wish to explore whether
or not an abstract machine such as the SECD machine [11] can be built to provide an effective model of
computation for MLTS.

One of the things we will most certainly encounter with applying MLTS to metaprogramming tasks is
the need to encode and manipulate contexts. Currently, contexts are treated like any other data structures:
list of nominals, list of pairs of nominals and type expression, etc. Almost certainly, we will find that
many different kinds of contexts will share a number of features that we might wish to incorporate into
MLTS: we plan to consider such extensions to the language as we gain familiarity with such applications.



Gérard & Miller 7

Define size : tm -> nat -> prop by

size (app M N) (s S) :=

exists S1 S2 , size M S1 /\ size N S2 /\ plus S1 S2 S;

size (abs R) (s S) := nabla x, size (R x) S;

nabla x, size x (s z).

Define vacp1 : tm -> bool -> prop by

vacp1 (abs x\x) ff ;

nabla y, vacp1 (abs x\y) tt ;

vacp1 (abs x\ app (M x) (N x)) B := exists B1 B2,

vacp1 (abs M) B1 /\ vacp1 (abs N) B2 /\ and B1 B2 B;

vacp1 (abs x\ abs y\ R x y) B :=

nabla y, vacp1 (abs x\ R x y) B ;

vacp1 (app M N) ff ;

nabla x, vacp1 x ff.

Define vacp2aux : tm -> tm -> bool -> prop by

nabla x, vacp2aux x x ff ;

nabla x y, vacp2aux x y tt ;

nabla x, vacp2aux x (app (M x) (N x)) B := exists B1 B2,

nabla x, (vacp2aux x (M x) B1 /\ vacp2aux x (N x) B2) /\

and B1 B2 B;

nabla x, vacp2aux x (abs y\ R x y) B :=

nabla x y, vacp2aux x (R x y) B.

Define vacp2 : tm -> bool -> prop by

vacp2 (abs T) B := nabla x, vacp2aux x (T x) B ;

vacp2 (app M N) ff ;

nabla x, vacp2 x ff.

Define subst : tm -> tm -> tm -> tm -> prop by

nabla x, subst x x U U;

nabla x y, subst y x (U y) y;

nabla x, subst (app (M x) (N x)) x U (app SM SN) :=

nabla x, subst (M x) x U SM /\ nabla x, subst (N x) x U SN;

nabla x, subst (abs (R x)) x U (abs SR) :=

nabla x y, subst (R x y) x (U y) (SR y).

Figure 4: The Abella specification of four relations, which when viewed as MLTS could match the
specifications in Section 3.
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