
Foundational Proof Certificates
Making proof universal and permanent

Dale Miller

INRIA-Saclay & LIX, École Polytechnique

23 September 2013

Can we standardize, communicate, and trust formal proofs?

Joint work with Zakaria Chihani and Fabien Renaud.
Funded by the ERC Advanced Grant ProofCert.

Dale Miller Foundational Proof Certificates

Communicating and Checking Formal proofs

Our focus:
Computer agents communicating and checking formal proofs.

A formal proof is a document with a precise syntax that is
machine generated and machine checkable.

We do not assume that formal proofs are human-readable.

Trusted computer tools are used to check proofs so that humans
come to trust the truth of a formula.

Dale Miller Foundational Proof Certificates

Provers: computer agents that produce proofs

There is a wide range of provers.
• automated and interactive theorem provers
• computer algebra systems
• model checkers, SAT solvers
• type inference, static analysis
• testers

There is a wide range of “proof evidence.”
• proof scripts: steer a theorem prover to a proof
• resolution refutations, natural deduction, tableaux, etc
• winning strategies, simulations

Dale Miller Foundational Proof Certificates

Separate proofs from provenance

Most formal proofs are tied to some specific technology: change
the version number and a proof script does not check anymore.

A bridge between two provers can be doubly fragile.

There are many advantages if provers publish their proofs as
independently checkable objects:
• libraries, marketplaces, cooperation, etc.

We shall use the term “proof certificate” for those documents
denoting proofs that are circulated between provers and checkers.

Dale Miller Foundational Proof Certificates

Four desiderata for proof certificates

D1: A simple checker can, in principle, check if a proof
certificate denotes a proof.

D2: The proof certificate format supports a broad spectrum of
proof systems.

These two desiderata enable the creation of both marketplaces
and libraries of proofs.

Dale Miller Foundational Proof Certificates

D3: A proof certificate is intended to denote a proof in the
sense of structural proof theory.

Structural proof theory is a mature field that deals with deep
aspects of proofs and their properties.

For example: given certificates for

∀x(A(x) ⊃ ∃y B(x , y)) and A(10),

can we extract from them a witness t such that B(10, t) holds?

Dale Miller Foundational Proof Certificates

D4: A proof certificate can simply leave out details of the
intended proof.

Formal proofs are often huge. All means to reduce their size need
to be available.
• Allow abstractions and lemma.
• Separate computation from deduction and leave computation

traces out of the certificate.
• Permit holes in proofs: we now have a trade-offs between proof
size and proof reconstruction via (bounded) proof search.

Proof checking may involve significant computation in order to
reconstruct missing proof details.

Dale Miller Foundational Proof Certificates

Which logic?

First-order or higher-order?

Both!

Higher-order (à la Church 1940) seems a good choice since it
includes propositional and first-order.

Classical or intuitionistic logic? Both!

Imagine that these two logics fit together in one larger logic.
Following Gentzen (LK/LJ), Girard (LU), Liang & M (LKU, PIL).

Modal, temporal, spatial?

Many modal logics are adequately encoded into first-order logic . . .
but there is likely to always be a frontier that does not fit well.

Dale Miller Foundational Proof Certificates

Which logic?

First-order or higher-order? Both!

Higher-order (à la Church 1940) seems a good choice since it
includes propositional and first-order.

Classical or intuitionistic logic? Both!

Imagine that these two logics fit together in one larger logic.
Following Gentzen (LK/LJ), Girard (LU), Liang & M (LKU, PIL).

Modal, temporal, spatial?

Many modal logics are adequately encoded into first-order logic . . .
but there is likely to always be a frontier that does not fit well.

Dale Miller Foundational Proof Certificates

Which logic?

First-order or higher-order? Both!

Higher-order (à la Church 1940) seems a good choice since it
includes propositional and first-order.

Classical or intuitionistic logic?

Both!

Imagine that these two logics fit together in one larger logic.
Following Gentzen (LK/LJ), Girard (LU), Liang & M (LKU, PIL).

Modal, temporal, spatial?

Many modal logics are adequately encoded into first-order logic . . .
but there is likely to always be a frontier that does not fit well.

Dale Miller Foundational Proof Certificates

Which logic?

First-order or higher-order? Both!

Higher-order (à la Church 1940) seems a good choice since it
includes propositional and first-order.

Classical or intuitionistic logic? Both!

Imagine that these two logics fit together in one larger logic.
Following Gentzen (LK/LJ), Girard (LU), Liang & M (LKU, PIL).

Modal, temporal, spatial?

Many modal logics are adequately encoded into first-order logic . . .
but there is likely to always be a frontier that does not fit well.

Dale Miller Foundational Proof Certificates

Which logic?

First-order or higher-order? Both!

Higher-order (à la Church 1940) seems a good choice since it
includes propositional and first-order.

Classical or intuitionistic logic? Both!

Imagine that these two logics fit together in one larger logic.
Following Gentzen (LK/LJ), Girard (LU), Liang & M (LKU, PIL).

Modal, temporal, spatial?

Many modal logics are adequately encoded into first-order logic . . .
but there is likely to always be a frontier that does not fit well.

Dale Miller Foundational Proof Certificates

Earliest notion of formal proof

Frege, Hilbert, Church, Gödel, etc, made extensive use of the
following notion of proof:

A proof is a list of formulas, each one of which is either
an axiom or the conclusion of an inference rule whose
premises come earlier in the list.

While granting us trust, there is little useful structure here.

Dale Miller Foundational Proof Certificates

The first programmable proof checker

LCF/ML (1979) viewed proofs as
slight generalizations of such lists.

ML provided types, abstract
datatypes, and higher-order
programming in order to increase
confidence in proof checking.

Many provers today (HOL, Coq,
Isabelle) are built on LCF.

Dale Miller Foundational Proof Certificates

Atoms and molecules of inference

Atoms of inference
• Gentzen’s sequent calculus first provided these: introduction,

identity, and structural rules.

• Girard’s linear logic refined our understanding of these further.

• To account for first-order structure, we also need fixed points
and equality.

Rules of Chemistry
• Focused proof systems show us that certain pairs of atoms stick

together while others pairs form boundaries.

Molecules of inference
• Collections of atomic inference rules that stick together form

synthetic inference rules (molecules of inference).

Dale Miller Foundational Proof Certificates

Satisfying the desiderata

D1: Simple checkers.
Only the atoms of inference and the rules of chemistry (both small
and closed sets) need to be implemented in the checker.

D2: Certificates supports a wide range of proof systems.
The molecules of inference can be engineered into a wide range of
existing inference rules.

D3: Certificates are based on proof theory.
Immediate by design.

D4: Details can be elided.
Search using atoms will match search in the space of molecules,
ie., don’t invent new molecules in the checker.

Dale Miller Foundational Proof Certificates

Safe proof reconstruction via logic programming

Logic programming can check proofs in
sequent calculus.

Proof reconstruction requires
unification and (bounded) proof search.

The λProlog programming language
[M & Nadathur, 1986, 2012] also
include types, abstract datatypes, and
higher-order programming.

Dale Miller Foundational Proof Certificates

An analogy between SOS and FPC

Structural Operational Semantics

1 There are many programming languages.

2 SOS can define the semantics of many of them.

3 Logic programming can provide prototype interpreters.

4 Compliant compilers can be built based on the semantics.

Dale Miller Foundational Proof Certificates

An analogy between SOS and FPC

Structural Operational Semantics

1 There are many programming languages.

2 SOS can define the semantics of many of them.

3 Logic programming can provide prototype interpreters.

4 Compliant compilers can be built based on the semantics.

Dale Miller Foundational Proof Certificates

An analogy between SOS and FPC

Structural Operational Semantics

1 There are many programming languages.

2 SOS can define the semantics of many of them.

3 Logic programming can provide prototype interpreters.

4 Compliant compilers can be built based on the semantics.

Dale Miller Foundational Proof Certificates

An analogy between SOS and FPC

Structural Operational Semantics

1 There are many programming languages.

2 SOS can define the semantics of many of them.

3 Logic programming can provide prototype interpreters.

4 Compliant compilers can be built based on the semantics.

Dale Miller Foundational Proof Certificates

An analogy between SOS and FPC

Structural Operational Semantics

1 There are many programming languages.

2 SOS can define the semantics of many of them.

3 Logic programming can provide prototype interpreters.

4 Compliant compilers can be built based on the semantics.

Dale Miller Foundational Proof Certificates

An analogy between SOS and FPC

Structural Operational Semantics

1 There are many programming languages.

2 SOS can define the semantics of many of them.

3 Logic programming can provide prototype interpreters.

4 Compliant compilers can be built based on the semantics.

Foundational Proof Certificates

1 There are many forms of proof evidence.

2 FPC can define the semantics of many of them.

3 Logic programming can provide prototype checkers.

4 Compliant checkers can be built based on the semantics.

Dale Miller Foundational Proof Certificates

Synchronous/positive/non-invertible rules and their experts

truee(Ξ)

Ξ

` Θ ⇓ t+

Ξ1

` Θ ⇓ B1

Ξ2

` Θ ⇓ B2

∧e(Ξ,Ξ1,Ξ2)

Ξ

` Θ ⇓ B1 ∧+ B2

Ξ′

` Θ ⇓ Bi i ∈ {1, 2}

∨e(Ξ,Ξ′, i)

Ξ

` Θ ⇓ B1 ∨+ B2

Ξ′

` Θ ⇓ [t/x]B

∃e(Ξ,Ξ′, t)

Ξ

` Θ ⇓ ∃x .B

Dale Miller Foundational Proof Certificates

Synchronous/positive/non-invertible rules and their experts

truee(Ξ)

Ξ ` Θ ⇓ t+

Ξ1 ` Θ ⇓ B1 Ξ2 ` Θ ⇓ B2 ∧e(Ξ,Ξ1,Ξ2)

Ξ ` Θ ⇓ B1 ∧+ B2

Ξ′ ` Θ ⇓ Bi i ∈ {1, 2} ∨e(Ξ,Ξ′, i)

Ξ ` Θ ⇓ B1 ∨+ B2

Ξ′ ` Θ ⇓ [t/x]B ∃e(Ξ,Ξ′, t)

Ξ ` Θ ⇓ ∃x .B

Dale Miller Foundational Proof Certificates

Asynchronous/negative/invertible rules and their clerks

Ξ′ ` Θ ⇑ Γ fc(Ξ,Ξ′)

Ξ ` Θ ⇑ f −, Γ
Ξ′ ` Θ ⇑ A,B, Γ ∨c(Ξ,Ξ′)

Ξ ` Θ ⇑ A ∨− B, Γ

Ξ ` Θ ⇑ t−, Γ
Ξ1 ` Θ ⇑ A, Γ Ξ2 ` Θ ⇑ B, Γ ∧c(Ξ,Ξ1,Ξ2)

Ξ ` Θ ⇑ A ∧− B, Γ

Ξ′ ` Θ ⇑ [y/x]B, Γ ∀c(Ξ,Ξ′) y not free in Ξ,Θ, Γ,B

Ξ ` Θ ⇑ ∀x .B, Γ

Dale Miller Foundational Proof Certificates

The Structural Rules

Ξ′ ` Θ, 〈l ,C 〉 ⇑ Γ storec(Ξ,C ,Ξ′, l)

Ξ ` Θ ⇑ C , Γ store

Ξ1 ` Θ ⇑ B Ξ2 ` Θ ⇑ ¬B cute(Ξ,Θ,Ξ1,Ξ2,B)

Ξ ` Θ ⇑ · cut

Ξ′ ` Θ ⇑ N releasee(Ξ,Ξ′)

Ξ ` Θ ⇓ N release
inite(Ξ,Θ, l) 〈l ,¬Pa〉 ∈ Θ

Ξ ` Θ ⇓ Pa
init

Ξ′ ` Θ ⇓ P decidee(Ξ,Θ,Ξ′, l) 〈l ,P〉 ∈ Θ positive(P)

Ξ ` Θ ⇑ · decide

Here, P is a positive formula; N a negative formula; Pa a positive
literal; C a positive formula or negative literal.

Dale Miller Foundational Proof Certificates

Meta-theory of LKF (black bits on the previous 3 slides)

Let B be a formula and B̂ (an annotation of B) result from B by
placing + or − on t, f , ∧, and ∨ (there are exponentially many
such placements).

Theorem. If B is a classical theorem then every annotation B̂ has
an LKF proof. Conversely, if some annotation B̂ has an LKF proof
then B is a classical theorem. [Liang & M, TCS 2009].

• Different polarizations do not change provability but can
radically change the proofs.
• Negative (non-atomic) formulas are treated linearly (never

weakened nor contracted).
• Only positive formulas are contracted (in the Decide rule).

A similar proof system for intuitionistic logic exists (LJF) and the
LKU proof system [Liang & M, 2011] unifies these (and MALLF)
into one framework.

Dale Miller Foundational Proof Certificates

Inferences as logic program clauses

∀Θ∀Γ. async(Θ, [t−|Γ]).

∀Θ∀Γ∀A∀B. async(Θ, [(A ∧−B)|Γ]) :- async(Θ, [A|Γ]), async(Θ, [B|Γ]).

∀Θ∀Γ∀A∀B. sync(Θ,A ∨+ B) :- sync(Θ,A); sync(Θ,B).

∀Θ∀Γ∀P. async(Θ, []) :- memb(P,Θ), pos(P), sync(Θ,P).

∀Θ∀B∀C . async(Θ, []) :- negate(B,C),

async(Θ,B), async(Θ,C).

Dale Miller Foundational Proof Certificates

Example: Decision procedure using cnf

cnf : cert

idx : form -> index

fc(cnf, cnf). ∧c(cnf, cnf, cnf).

∀C . storec(cnf,C , cnf, idx(C)). ∨c(cnf, cnf).

∀Θ∀l . decidee(cnf,Θ, cnf, l). releasee(cnf, cnf).

∀Θ∀l∀N. inite(cnf,Θ, l).

Dale Miller Foundational Proof Certificates

Example: Resolution as a proof certificate

A clause: ∀x1 . . . ∀xn[L1 ∨ · · · ∨ Lm]

• C3 is a resolution of C1 and C2 if we chose the mgu of two
complementary literals, one from each of C1 and C2, etc.

Let `d Θ ⇑ Γ mean that ` Θ ⇑ Γ has a proof with decide depth d .

Polarize using ∨− and ∧+.

• If C3 is a resolvent of C1 and C2 then `2 ¬C1,¬C2 ⇑ C3.

Dale Miller Foundational Proof Certificates

Example: Resolution as a proof certificate (cont)

Translate a refutation of C1, . . . ,Cn into an LKF proof with small
holes as follows:

Ξ
` ¬C1,¬C2 ⇑ Cn+1

...
` ¬C1, . . . ,¬Cn,¬Cn+1 ⇑ ·
` ¬C1, . . . ,¬Cn ⇑ ¬Cn+1

Store

` ¬C1, . . . ,¬Cn ⇑ ·
Cutp

Here, Ξ can be replaced with a “hole” annotated with bound 2.

To capture more of the parallel structure present in a refutation
dag, a “multicut” can be used here.

Dale Miller Foundational Proof Certificates

Example: Resolution

idx : int -> index dl : list int -> cert

lit : form -> index ddone : cert

∀L. ∨c(dl(L), dl(L)).

∀L. fc(dl(L), dl(L)). ∀L. ∀c(dl(L), dl(L)).

∀L. truee(dl(L)) ∀L. ∃e(T , dl(L), dl(L))

∀L. inite(dl(L),Θ, l) ∀Θ∀l . inite(ddone,Θ, l)

∀C∀L. storec(dl(L),C , dl(L), (lit C)).

∀L. releasee(dl(L), dl(L)). ∀L. ∧e(dl(L), dl(L), dl(L))

∀I∀J. decidee(dl([I , J]),Θ, dl([J]), idx(I)).

∀I∀J. decidee(dl([I , J]),Θ, dl([I]), idx(J)).

∀I . decidee(dl([I]),Θ, dl([]), idx(I)).

∀P. decidee(dl([]),Θ, ddone, lit(P)).

Dale Miller Foundational Proof Certificates

rdone : cert

rlist : list (int * int * int) -> cert

rlisti : int -> list (int * int * int) -> cert

∀I∀Θ. decidee(rlist([]),Θ, rdone, idx(I)) :- 〈idx(I), true〉 ∈ Θ.

∀I , . . . ,Θ.cute(rlist([〈I , J,K 〉|R]),Θ, dl([I , J]), rlisti(K ,R),N) :-

〈idx(K),C 〉 ∈ Θ, negate(C ,N).

∀R. fc(rlist(R), rlist(R)).

∀C∀l∀R. storec(rlisti(l ,R),C , rlist(R), l).

truee(rdone)

Dale Miller Foundational Proof Certificates

Adequacy of encoding

What are we really checking? Only soundness.

Consider resolution again. If ` ¬C1,¬C2 ⇑ C0 is provable, C0 may
not be the resolvent of C1 and C2.

For example, the resolution of
∀x [p(x) ∨ r(f (x))] and ∀x [¬p(f (x)) ∨ q(x)] is
∀x [r(f (f (x))) ∨ q(x)]. But

` ∃x [¬p(x)∧¬r(f (x))],∃x [p(f (x))∧¬q(x)]⇑r(f (f (f (a))))∨q(f (a))∨s(f (a)).

This formula is similar to a resolvent except it uses a unifier that is
not most general and it has an additional literal.

Dale Miller Foundational Proof Certificates

What relations is there between LF and FPC?

We should be able to encode LF, LFSC (LF with side conditions)
and LF modulo (Dedukti) as FPCs using focused LJF system.

Alone LF does not seem to have the right “atoms of inference.”

• Canonical normal forms provide only one polarization: negative
connectives and atoms (async on right, sync on left).
• They lack a notion of sharing and are redundant in their use of

types.
• They lack a natural treatments of parallel proof steps.

Classical provability can be encoded via double-negation
translations, but to mimic classical proofs with high fidelity, flexible
polarizations are needed.

Dale Miller Foundational Proof Certificates

Future projects via ProofCert

Stage one
• LKU is a unifying framework for LKF, LJF, MALLF.

Mechanically formalize its meta-theory.
• Treat typed λ-calculi fully: LF, LFSC, λP-modulo (Deduki)
• Design many more FPCs: Frege systems, linear reasoning,

expansion trees, equality reasoning, DPLL, SAT, etc.
• Deployment. Competitions? TPTP?

Stage two
• Fixed points. Neither the proof theory nor unification (proof

reconstruction) are well understood yet.

Stage three
• Incorporate partial proofs and counterexamples.

Dale Miller Foundational Proof Certificates

