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An overview of a proof theoretical approach to
reasoning about computation

Dale Miller1

Abstract

Typing rules and structural operational semantics are often given via inference rules: that is, the justification
of a typing or an evaluation is actually a proof. Thus it is not surprising that proof theory can be used
to benefit the specification of and the reasoning about computation. An additional advantage of using
proof theory is that it can support such “intensional” aspects of computation as resources (say, via linear
logic) and bindings (say, via term-level and proof-level bindings). In this talk, I will overview recent work
on designing a proof theoretic framework for reasoning about both the static and dynamic semantics of
specifications languages and programming languages. A synthesis of the following topics will be provided:
λ-tree syntax, mobility of binders, ∇-quantification, two-level logic architecture, induction and coinduction,
and focusing proof systems.

An annotated, partial bibliography

The technical material for this overview is contained in a number of papers, some
of which are briefly described in the following annotated bibliography.

λ-tree syntax. An earlier illustration of the kinds of computations that are
possible in λProlog by directly manipulating λ-terms is contained in [MN87]. Later
this style of manipulation was called higher-order abstract syntax, but since that
term came to mean different things to different communities, the term λ-tree syntax
was introduced in [Mil00] to denote the original form of λ-term manipulation.
[MN87] D. Miller and G. Nadathur. A logic programming approach to manipulating formulas and

programs. In Seif Haridi, editor, Sym. on Logic Programming, pp. 379–388, 1987.

[Mil00] D. Miller. Abstract syntax for variable binders: An overview. In John Lloyd and et. al., editors,

Computational Logic - CL 2000, LNAI 1861, pp. 239–253. Springer, 2000.

Definitions and induction. In order to reason about what can and cannot
be proved from a given specification, it is necessary to be able to think of a logic
specification as being closed or defined. Induction can then also be described on
such definitions. A suitable proof theory presentation of these ideas can be applied
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to not only first-order terms (i.e., parse-tree syntax) but also simply typed λ-terms
(i.e., λ-tree syntax). McDowell developed a proof theory approach to definitions
and induction in his PhD thesis [McD97] and in [MM00]. A two-level approach to
reasoning about operational semantic was presented in [MM02]: since that paper
did not contain the ∇-quantifier, certain encoding techniques used in that paper
were rather heavy and painful.
[McD97] R. McDowell. Reasoning in a Logic with Definitions and Induction. PhD thesis, University of

Pennsylvania, December 1997.

[MM00] R. McDowell and D. Miller. Cut-elimination for a logic with definitions and induction. Theoretical

Computer Science, 232:91–119, 2000.

[MM02] R. McDowell and D. Miller. Reasoning with higher-order abstract syntax in a logical framework.

ACM Trans. on Computational Logic, 3(1):80–136, 2002. Extended version of a paper in LICS97.

∇-quantification and finite behaviors. A proof theoretic presentation of
“generic judgments” and the associated ∇-quantifier [MT05] were introduced, in
part, to help address the above mentioned encoding problem of [MM02]. The proof
theory of ∇ was developed in Tiu’s PhD thesis [Tiu04]. To help validate the design
of ∇, logic based specifications of the (finite) π-calculus were explored in detail in
subsequent papers, such as, [Tiu05] and [TM].
[Tiu04] A. Tiu. A Logical Framework for Reasoning about Logical Specifications. PhD thesis, Pennsylvania

State University, May 2004.

[MT05] D. Miller and A. Tiu. A proof theory for generic judgments. ACM Trans. on Computational

Logic, 6(4):749–783, October 2005. Extended version of LICS03 paper.

[Tiu05] A. Tiu. Model checking for π-calculus using proof search. In Mart́ın Abadi and Luca de Alfaro,

editors, CONCUR, LNCS 3653, pp. 36–50. Springer, 2005.

[TM] A. Tiu and D. Miller. Proof Search Specifications for Bisimulation and Modal Logics for the

π-calculus. Submitted May 2008.

∇-quantification and infinite behaviors. While ∇-quantification works well
with “finite” systems, a number of questions remained about how best to extend it
to infinite systems, i.e., systems in which induction and coinduction are needed to
establish proofs. Tiu’s thesis [Tiu04] provided general inference rules for induction
and coinduction but these did not interact sufficiently well with ∇-quantification.
Tiu has proposed [Tiu06] adding some structural rules to the ∇-quantifier and
these have allowed him to develop a more expressive form of induction. Baelde has
devised another approach to (co)induction [Bae08] that does not need to extend
(with structural rules) the original, “minimal” description of ∇ in [MT05]. Gacek
et. al. show that if the definition mechanism is lifted from atomic judgments to
generic judgments, the resulting logic gains an important aspect of expressiveness:
one that is particularly useful for reasoning about the context of object-level proof
contexts [GMN08].
[Tiu06] A. Tiu. A logic for reasoning about generic judgments. In A. Momigliano and B. Pientka, editors,

LFMTP 2006.

[Bae08] D. Baelde. On the expressivity of minimal generic quantification. In Andreas Abel and Christian

Urban, editors, LFMTP 2008: International Workshop on Logical Frameworks and Meta-Languages:

Theory and Practice, 2008.

[GMN08] A. Gacek, D. Miller, and G. Nadathur. Combining generic judgments with recursive definitions.
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In F. Pfenning, editor, 23th Symp. on Logic in Computer Science, 2008.

Implementations. An effective implementation of λProlog is available via the
Teyjus compiler [NM99]: this compiler is able to animate directly a number of
semantic specifications involving, for example, the λ-calculus or the π-calculus. The
Bedwyr system [BGMNT07] is a model checker that supports λ-tree syntax by
implementing proof search in a logic with finite fixed points and the∇-quantifier. To
account for (potentially) infinite behaviors, induction and coinduction play critical
roles. The Abella prover [Gac08] provides an interactive proof editor for a two-level
approach [MM02] to reasoning about operational semantics based on Tiu’s LG logic
[Tiu06] and the ability to define generic judgments. The Taci prototype theorem
prover [BSV08] is being developed to automate theorem proving in this domain and
to support Baelde’s approach [Bae08] to integrating ∇ and fixed points.
[NM99] G. Nadathur and D. Mitchell. System description: Teyjus — A compiler and abstract machine

based implementation of λProlog. In H. Ganzinger, editor, 16th Conference on Automated Deduction

(CADE), LNAI 1632, pp. 287–291, Trento, 1999. Springer.

[BGMNT07] D. Baelde, A. Gacek, D. Miller, G. Nadathur, and A. Tiu. The Bedwyr system for model

checking over syntactic expressions. In F. Pfenning, editor, 21th Conference on Automated Deduction

(CADE), LNAI 4603, pp. 391–397. Springer, 2007.

[BSV08] D. Baelde, Z. Snow, and A. Viel. Taci: an interactive theorem proving framework. Active

development of prototype, 2008.

[Gac08] A. Gacek. The Abella interactive theorem prover (system description). In Fourth International

Joint Conference on Automated Reasoning, 2008.
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