Combining Intuitionistic and Classical Logic: a proof system and semantics

Dale Miller INRIA-Saclay & LIX, École Polytechnique Palaiseau, France

Joint work with Chuck Liang, Hostra University, NY. See: Annals of Pure and Applied Logic, 164(2), 2013.

LATD 2014, Vienna, 17 July 2014

Two logics or one?

Clearly these are two different logics: wars have been fought over classical vs non-classical foundations for mathematics.

Both semantics and proof theory illustrate the special nature of the intuitionistic implication (and universal quantification).

 $\mathcal{M}, u \models A \supset B$ if forall $u \le v.\mathcal{M}, v \models A$ implies $\mathcal{M}, v \models B$.

Enforce single-conclusion on left-introduction (Gentzen).

$$\frac{\Gamma_1 \longrightarrow A, \Delta_1 \qquad \Gamma_2, \longrightarrow \Delta_2}{\Gamma_1, \Gamma_2, A \supset B \longrightarrow \Delta_1, \Delta_2} \supset L \quad \text{and} \quad \Delta_1 = \emptyset$$

Enforce single-conclusion on right-introduction.

$$\frac{\Gamma, A \longrightarrow B}{\Gamma \longrightarrow A \supset B, \Delta} \supset R$$

Naive schemes result with the collapse of intuitionistic implication into the classical one.

What is the cost of mixing these logics? Can one have perspicuous semantics and/or proof systems?

 $C \longrightarrow I$ via double negation translations.

 $I \longrightarrow C$ via the addition of a modal operator.

Linear logic can encode $A \supset B$ as either $!A \multimap B$ (intuitionistic) or as $!A \multimap ?B$ (classical).

There is Girard's LU logic [Girard 1993; Vauzeilles 1993]. Maybe too ambitious and includes linear logic.

"Fibred Semantics and the Weaving of Logics", Gabbay JSL 1996.

"Combining Classical and Intuitionistic Implications," Caleiro & Ramos, FroCos 2007.

PIL: Polarized Intuitionistic Logic

Red-Polarized: \land , 1, \lor , 0, \exists , \supset , \prod . (Syntactic variable *R*) **Green-Polarized:** \land^e , \top , \lor^e , \bot , \forall , \propto , Σ . (Syntactic variable *E*)

Purely intuitionistic connectives: \supset , Π , \propto and Σ Classically-oriented connectives: \lor , \land , \exists , \lor^e , \land^e and \forall

The formulas of PIL

Atomic formulas are (arbitrarily) classified as red. A negated $(-)^{\perp}$ atom is, thus, green.

 $(B)^{\perp}$ is the negation normal form of the De Morgan dual of B. De Morgan dualities are:

 $1/\bot$, $0/\top$, \supset/∞ , Π/Σ , \vee/\wedge^e , \wedge/\vee^e , \exists/\forall .

 $A^{\perp\perp}$ and A are a syntactic identical for all formulas A.

The dual of $A \supset B$ is $A \propto B^{\perp}$, and not $A^{\perp} \propto B^{\perp}$.

Classic negation A^{\perp} flips between green and red.

Intuitionistic negation $A \supset 0$ is always a red formula.

A terminal world in a Kripke model is a classical worlds: intuitionistic implication collapses into a classical one and the excluded middle becomes valid.

The terminal worlds c_1 and c_2 are classical: $c_1 \models p \lor \neg p$.

We shall allow there to be worlds *beyond* classical worlds.

Such worlds will make *all* classical formulas true (one kind of inconsistency) but not all intuitionistic formulas true.

A world may validate \perp (and, thus, all classical formulas) but never validate 0.

[An analogy from linear logic: for all B, $0 \vdash B$ while $\perp \vdash ?B$.]

Worlds beyond classical worlds will be called *imaginary worlds* (similar in spirit to naming $\sqrt{-1}$ as an imaginary number).

Propositional Kripke hybrid models

A propositional Kripke hybrid model is a tuple $\langle \mathbf{W}, \preceq, \mathbf{C}, \models \rangle$ s.t.

- W is a non-empty Kripke frame of possible worlds.
- \leq is a transitive and reflexive relation on **W**.
- $\bullet~$ C, the set of "classical worlds," is a subset of W.
- |= is a binary relation between elements of W and (red-polarized) atomic formulas.

The following conditions must also hold:

- \models is *monotone*: for $\mathbf{u}, \mathbf{v} \in \mathbf{W}$, $\mathbf{u} \preceq \mathbf{v}$ and $\mathbf{u} \models a$ implies $\mathbf{v} \models a$.
- $\triangle_{\mathbf{k}} = {\mathbf{k}}$ for all $\mathbf{k} \in \mathbf{C}$, i.e., there are no classical worlds properly above other classical worlds.

Defining forcing: red connectives first

The satisfiability or *forcing* relation extends \models from atoms to all propositional formulas by induction on the structure of formulas.

The key idea here is that a green formula is valid in a world \mathbf{u} if it is valid in all classical worlds above \mathbf{u} .

First, we define the red-polarity cases using the familiar Kripke formulation. Assuming $\mathbf{u}, \mathbf{v} \in \mathbf{W}$, we have:

•
$$\mathbf{u} \models 1$$
 and $\mathbf{u} \not\models 0$
• $\mathbf{u} \models A \lor B$ iff $\mathbf{u} \models A$ or $\mathbf{u} \models B$
• $\mathbf{u} \models A \land B$ iff $\mathbf{u} \models A$ and $\mathbf{u} \models B$
• $\mathbf{u} \models A \supset B$ iff for all $\mathbf{v} \succeq \mathbf{u}$, $\mathbf{v} \models A$ implies $\mathbf{v} \models B$

Defining forcing: green connectives second

First define forcing of green formulas but only over classical worlds: here, $c \in C$ and $v \in W.$

•
$$\mathbf{c} \models a^{\perp}$$
 iff $\mathbf{c} \nvDash a$ (a atomic).

- $\mathbf{c} \models \top$ and $\mathbf{c} \not\models \bot$
- $\mathbf{c} \models A \propto B$ iff for some $\mathbf{v} \succeq \mathbf{c}$, $\mathbf{v} \models A$ and $\mathbf{v} \not\models B^{\perp}$

•
$$\mathbf{c} \models A \lor^e B$$
 iff $\mathbf{c} \models A$ or $\mathbf{c} \models B$

•
$$\mathbf{c} \models A \wedge^e B$$
 iff $\mathbf{c} \models A$ and $\mathbf{c} \models B$

Extend \models to all green formulas *E* in *any* $\mathbf{u} \in \mathbf{W}$:

•
$$\mathbf{u} \models E$$
 if and only if for all $\mathbf{c} \in \triangle_{\mathbf{u}}$, $\mathbf{c} \models E$.

(If $\triangle_{\mathbf{u}}$ is empty, then all green formulas are satisfied in \mathbf{u} .)

The \models relation is well-defined: if $\mathbf{u} \in \mathbf{C}$ then the clauses above defining \models for classical worlds coincide since $\triangle_{\mathbf{u}} = {\mathbf{u}}$.

Some simple properties about forcing

Let $\mathbf{u}, \mathbf{v} \in \mathbf{W}$, $\mathbf{c} \in \mathbf{C}$, and let A be a (propositional) formula.

a. if $\mathbf{u} \leq \mathbf{v}$, then $\mathbf{u} \models A$ implies $\mathbf{v} \models A$ (monotonicity)

b.
$$\mathbf{c} \models A$$
 iff $\mathbf{c} \nvDash A^{\perp}$ (excluded middle)

- c. $\mathbf{u} \models A$ and $\mathbf{u} \models A^{\perp}$ for some A iff $\triangle_{\mathbf{u}}$ is empty (u is imaginary).
- d. $\mathbf{u} \not\models E$ for some green formula E iff $\triangle_{\mathbf{u}}$ is non-empty.

While 0 and \perp are clearly distinct, 1 and \top are equivalent: they are simply red and green-polarized versions of the same truth value. Red and green formulas can be equivalent:

$$E \equiv E^{\perp} \supset \bot$$
 and $(R \supset \bot) \supset \bot \equiv R \lor^{e} \bot$.

A model \mathcal{M} satisfies A, or $\mathcal{M} \models A$, if $\mathbf{u} \models A$ for every $\mathbf{u} \in \mathbf{W}$. A formula is *valid* if it is satisfied in all models.

The excluded middle, in the form $a \vee^e a^{\perp}$, is valid.

The formula $\sim a \vee^e \sim a$ is not valid.

The same model shows that $a \vee^e \sim a$ is also not valid (s_2 is not needed here).

∃ ▶ ∢

The formula $(p \wedge^e q) \supset p$ is not valid. A countermodel is:

 $k: \{p,q\}$ \uparrow $s: \{\}$

Although every classical world above s satisfies p and q, s does not satisfy p.

The same model shows that several other formulas, including $(p \vee^e q) \supset (p \vee q)$, are not valid.

More generally, $E \supset p$ is never valid for green formulas E.

Every Kripke frame $\langle \bm{W}, \preceq, \bm{C}, \models \rangle$ corresponds to a Heyting algebra

$$\mathcal{H} = \langle \mathcal{U}(\mathbf{W}), \sqsubseteq, \sqcup, \sqcap,
ightarrow, \mathbf{0}
angle, \quad ext{where}$$

- $\bullet~\mathcal{U}(W)$ is the set of all upwardly closed subsets of W
- The relation ⊑ of H is set inclusion; join ⊔, meet ⊓, and 0 are union, intersection, and the empty set, resp.
- The relative pseudo-complement A → B is the largest x ∈ U(W) such that (A □ x) ⊑ B (here, it is the largest upwardly closed subset (*interior*) of (W − A) ∪ B).

The formula A is interpreted by a mapping h defined as

$$h(A) = \{\mathbf{u} \in \mathbf{W} : \mathbf{u} \models A\}$$

Each h(A) is upwardly closed. A formula A is valid if $h(A) = \mathbf{W}$.

The set of imaginary worlds \perp in **W** is the upwardly closed set

$$\mathbb{L} = \{\mathbf{u} \in \mathbf{W} : \ \bigtriangleup_{\mathbf{u}} \text{ is empty}\} = \{\mathbf{u} \in \mathbf{W} : \ \mathbf{u} \models \bot\} = h(\bot)$$

If there are no imaginary worlds in ${f W}$ then, indeed, ${\Bbb L}={f 0}.$

The following hold for *h*:

- $h(A \lor B) = h(A) \sqcup h(B)$, $h(A \land B) = h(A) \sqcap h(B)$, and $h(A \supset B) = h(A) \rightarrow h(B)$.
- $h(R^{\perp}) = h(R) \rightarrow \bot$ for all green formulas R^{\perp} .

From the semantic perspective the most important addition to intuitionistic logic found in PIL is \perp .

A example of a Kripke frame and a Heyting algebra

Kripke Frame with Heyting Algebra with \bot Boolean Algebra $2^{\sf C}$ ${\sf C}=\{{\sf c},{\sf k}\}$

For any subset K of classical worlds, $\bot \cup K$ is an upwardly closed.

We use two-sided sequents although the use of colors makes a one-sided sequent calculus possible.

We use the symbols \vdash_{o} and \vdash_{\bullet} to represent two modes of proof.

In all rules, Γ and Θ are multisets of formulas, E is a green formula, R is a red formula, and a is any atom.

The sequent $\Gamma \vdash_{\circ} A$ is interpreted as $\bigwedge \Gamma \supset A$. The sequent $\Gamma \vdash_{\circ} \Theta$ is interpreted as $\bigwedge \Gamma \supset \bigvee^{e} \Theta$. (If Δ is empty, then $\bigwedge \Delta$ is 1 and $\bigvee^{e} \Delta$ is \bot .)

Proofs end with sequents of the form $\Gamma \vdash_{\circ} A$ (A is any color).

A is a theorem of PIL if $\vdash_{\circ} A$ is provable.

The LP Sequent Calculus: proof rules

Structural Rules and Identity

$$\frac{\Gamma \vdash_{\bullet} E}{\Gamma \vdash_{\bullet} E} Signal \qquad \frac{A^{\perp}, \Gamma \vdash_{\bullet} \Theta}{\Gamma \vdash_{\bullet} A, \Theta} Store \qquad \frac{A^{\perp}, \Gamma \vdash_{\bullet} A}{A^{\perp}, \Gamma \vdash_{\bullet}} Load \qquad \frac{}{a, \Gamma \vdash_{\bullet} a} I$$

Right-Red Introduction Rules

$$\frac{\Gamma \vdash_{\circ} A \quad \Gamma \vdash_{\circ} B}{\Gamma \vdash_{\circ} A \land B} \land R \qquad \frac{\Gamma \vdash_{\circ} A_{i}}{\Gamma \vdash_{\circ} A_{1} \lor A_{2}} \lor R \qquad \frac{A, \Gamma \vdash_{\circ} B}{\Gamma \vdash_{\circ} A \supset B} \supset R$$

Left-Red Introduction Rules

$$\frac{A, B, \Gamma \vdash_{\circ} R}{A \land B, \Gamma \vdash_{\circ} R} \land L \quad \frac{A, \Gamma \vdash_{\circ} R}{A \lor B, \Gamma \vdash_{\circ} R} \lor L \quad \frac{A \supset B, \Gamma \vdash_{\circ} A}{A \supset B, \Gamma \vdash_{\circ} R} \supset L$$

Right-Green Introduction Rules

$$\frac{\Gamma \vdash_{\bullet} A \quad \Gamma \vdash_{\bullet} B}{\Gamma \vdash_{\bullet} A \wedge^{e} B} \wedge^{e} R \qquad \frac{\Gamma \vdash_{\bullet} A, B}{\Gamma \vdash_{\bullet} A \vee^{e} B} \vee^{e} R \qquad \frac{\Gamma \vdash_{\bullet} A \quad \Gamma \vdash_{\bullet} B}{\Gamma \vdash_{\bullet} A \propto B} \propto R$$

 $\frac{\Gamma \vdash_{\bullet}}{\Gamma \vdash_{\bullet} \perp} \perp R \qquad \frac{\Gamma \vdash_{\bullet} \top}{\Gamma \vdash_{\bullet} \top} \top R$

Rules for Constants

$$\frac{\Gamma \vdash_{\circ} R}{\Gamma \vdash_{\circ} 1} \ 1R \qquad \frac{\Gamma \vdash_{\circ} R}{1, \Gamma \vdash_{\circ} R} \ 1L \qquad \frac{\Gamma \vdash_{\circ} R}{0, \Gamma \vdash_{\circ} R} \ 0L$$

A version of the double negation shift

If the formula A contains only red connectives and positive atoms, then the only LP proofs of $\vdash_{o} A$ are essentially the cut-free LJ proofs of Gentzen.

Overview of the LC proof system: polarities

The classical fragment of the LP is essentially Girard's LC proof system for classical logic [APAL 1993].

In LC, every formula is polarized as either *positive* or *negative*.

Atoms are positive. De Morgan duals flip polarities.

Compound (propositional) formulas are given their polarities as follows:

Α	В	$A \wedge B$	$A \lor B$	$A \supset B$
+	+	+	+	-
-	+	+	-	+
+	-	+	-	-
_	_	-	-	-

Overview of the LC proof system: sequents

Sequents of LC are one sided sequents $\vdash \Gamma$; Δ where Γ and Δ are multisets of formulas and Δ is either empty or a singleton.

When Δ is the singleton *S*, then *S* is the *stoup* of $\vdash \Gamma; \Delta$.

Weakening and contraction are available in the Γ context. Here, P and Q are positive and N is negative.

$$\frac{\vdash \Gamma; P}{\vdash \neg P; P} \text{ initial} \qquad \frac{\vdash \Gamma; P}{\vdash \Gamma, P;} \text{ dereliction}$$

$$\frac{\vdash \Gamma; P \vdash \Delta, N;}{\vdash \Gamma, \Delta; P \land N} \qquad \frac{\vdash \Gamma; P}{\vdash \Gamma; P \lor Q} \qquad \frac{\vdash \Gamma; Q}{\vdash \Gamma; P \lor Q}$$

$$\frac{\vdash \Gamma, A, B; \Delta}{\vdash \Gamma, A \lor B; \Delta} \text{ where } A \lor B \text{ is negative}$$

Drop the intuitionistic connectives \supset , \propto , Π and Σ . There are two copies of conjunction and disjunction: \lor , \land , \lor^e , \land^e .

Positive formulas are red-polarized and negative ones are green-polarized.

The polarity of an LC formula is also dependent on the polarity of its subformulas. When A and B are both positive, $A \lor B$ in LC corresponds to $A \lor B$ in PIL; otherwise, it is $A \lor^e B$.

LC sequents with a stoup correspond to the \vdash_{o} while a sequent without a stoup correspond to \vdash_{o} .

LC introduction rules on the stoup formula correspond to right-red introduction rules in LP; the introduction rules for "negative" connectives *in the presence of a stoup* correspond to left-red rules while those without a stoup correspond to right-green rules.

Here, P is positive and N is negative.

$$\begin{array}{cccc} & \vdash \Gamma, N, P; S \\ \hline \vdash \Gamma, N \lor P; S \\ & \longmapsto \end{array} & \begin{array}{c} & \Gamma, P, N \vdash_{\circ} S \\ \hline \Gamma, P \land N \vdash_{\circ} S \end{array} \land L \\ \\ & \stackrel{\vdash \Gamma, N, P;}{\vdash \Gamma, N \lor P;} \\ & \longmapsto \end{array} & \begin{array}{c} & \frac{\Gamma \vdash_{\bullet} N, P}{\Gamma \vdash_{\bullet} N \lor^{e} P} \lor^{e} R \\ \\ \\ & \frac{\vdash \Gamma_{1}; P \vdash \Gamma_{2}, N;}{\vdash \Gamma_{1}, \Gamma_{2}; P \land N} \\ & \longmapsto \end{array} & \begin{array}{c} & \frac{\Gamma_{1}, \Gamma_{2} \vdash_{\circ} N}{\Gamma_{1}, \Gamma_{2} \vdash_{\circ} N} \xrightarrow{Signal} \\ \\ & \Gamma_{1}, \Gamma_{2} \vdash_{\circ} P \land N \end{array} \end{array}$$

An approach to intermediate logics

Excluded middle

 $p \lor (p \supset 0)$ versus $p \lor^e p^{\perp}$

æ

- < 注 ≻ < 注 ≻

Excluded middle

 $p \lor (p \supset 0)$ versus $p \lor^e p^{\perp}$

Peirce's formula is provable in the form

 $((p \supset q) \supset p) \supset p,$

where \supset is classical implication, defined as $A \supset B = A^{\perp} \vee^{e} B$.

Excluded middle

 $p \lor (p \supset 0)$ versus $p \lor^e p^{\perp}$

Peirce's formula is provable in the form

 $((p \supset q) \supset p) \supset p,$

where \supset is classical implication, defined as $A \supset B = A^{\perp} \vee^{e} B$.

Markov's principle

$$(\forall n(P(n) \lor \neg P(n))) \supset (\neg \forall n \neg . P(n)) \supset \exists n. P(n)$$

 $[(\Box x. \sim P(x) \lor \sim (P(x)^{\perp})) \supset (\sim \sim \exists x. P(x))] \supset \Sigma x. P(x)$

Other results for PIL

- Semantic proof of cut elimination.
- Tableau style proof system. Multiple conclusion proof system.
- Decision procedure.
- Kripke hybrid model semantics for first-order quantification.

Future work

- Extend PIL to arithmetic
- Systematic investigation of various intermediate logics.
- Curry-Howard interpretation, delimited control operators (see LICS 2013).
- Mechanization of proof search (focusing proof systems).