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Introduction

A large variety of computing systems, such as compilers, interpreters, static
analyzers, and theorem provers, need to manipulate syntactic objects like pro-
grams, types, formulas, and proofs. A common characteristic of these syntactic
objects is that they contain variable binders, such as quantifiers, scoping opera-
tors, and parameters. The presence of binders complicates formal specifications
and symbolic processing.

Consider, for example, a function definition of the form

flx)=lety=ein x+y.

When analyzing or transforming a program containing the call f(e’), we might
wish to replace f(e’) with the body of f in which « is substituted by e’. But we
cannot simply apply the substitution [z — €’] because a free variable could be
captured. For example, if ¢’ is the expression y, naive substitution would yield
the expression (let y = e in y + y), which is incorrect.

Binders are often treated in traditional specifications by adding side condi-
tions on variables. Consider, for example, the following (late semantics) rule of
the m-calculus [MPW92], expressing how bound input propagates in a context
of parallel processes:

z(y) P

=) y ¢ freevar(Q).

P|Q — P'|Q

Here, the scope of the binding for ¥ is intended to be over P’ only. The side
condition is necessary to avoid capturing possibly free occurrences of y in Q.
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Such side conditions on variables are a burden both for formal reasoning and
implementations.

The problem with both the above examples is that in the representation the
scoping nature of binders is lost: bound and free variables are represented in
the same way. Choosing a representation which provides means to encode and
operate directly on abstractions is highly desirable for building formal theories
and computer systems involving such syntactic objects. Fortunately, there have
been a large number of advances in the theory of syntax, particularly resulting
from the proof theory of intuitionistic logic, higher-type quantification, and
dependent A-calculus, that suggests an approach [MN87, PE&8], which we call
here the \-tree syntaz. In the literature, this approach is also known as higher-
order abstract syntax [PESS].

The conventional approach: parse trees

Expressions to be read by humans are often represented by strings. Strings,
however, contain whitespaces, brackets, keywords, and syntactic sugar that aid
in human readability but are not related to the intended semantics. On the
other hand, important semantic information is not represented directly. For
this reason, expressions are generally transformed prior to being manipulated
into parse trees (also called abstract syntax trees). For example, the first-order
formula represented by the string

“VaIy(p(z,y) D Jz q(f(x),a))”

would be parsed into a tree

Ve @y O (pry Gzlq(f2)a))))).

With such a representation of syntax, semantically important notions, like the
function-argument relationship, are immediate, whereas in the string represen-
tation that information must be extracted carefully by counting parentheses and
accounting for infix declarations.

As this example also illustrates, however, there are important aspects of the
intended meaning that are not captured by parse trees: the concepts of bound
variable, scope, a-conversion, and substitution are not directly supported. In
the above example, variables are represented by constructors of type variable (a
subcategory of terms), and the various aspects of binding are derived notions
that need to be carefully defined and implemented.

The A-tree syntax

The A-tree representation enriches parse trees in the following two ways.



First, bindings are encoded using A-abstractions, following Church’s tech-
nique for encoding universal and existential quantifiers [Chu40]. The abstracted
expressions are given new syntactic categories formed using the type arrow con-
structor. For example, Az. DO (p a z) (¢ (f =) a) represents an abstraction of
a term over a formula and has the type term — formula. The universal and
existential quantifiers in the example above can then be modified to take one
argument of type term — formula instead of the two arguments of type variable
and formula. In this way, the category variable is no longer necessary (being
subsumed by the corresponding notion in the A-calculus) and the expression
above would be represented by the following A-term of type formula:

V(A3 (Ay. > (pzy) B (. q (f 2)a)))))

Second, a-conversion is part of this representation in the sense that two
parse trees which differ only in the names of bound variables are identified as
A-trees. As a consequence, the names of bound variables are not accessible (just
as memory locations are not available in high-level languages) and operations
that, on parse trees, would require dealing with the many technical aspects of
variable names, are treated by using higher-level mechanisms described below.
Furthermore, the n-rule is also assumed since it is most natural in this simply
typed setting to identify an expression ¢ with Ax.tz whenever x is not free in t.

For another example of using A-tree syntax, consider the untyped A-calculus.
Let tm denote the syntactic category for untyped A-terms, let application be
denoted by the constructor app of type tm — tm — tm, and let abstraction be
denoted by the constructor abs of type (tm — tm) — tm. For example, the
untyped A-term Azx.zz would be encoded as the term abs(A\x. app = z) of type
tm. Two a-equivalent closed untyped A-terms translate to a-equivalent terms
of type tm. While this encoding is not surjective, it is the case that every close
term of type tm is afn-equivalent to a term that is an encoding of an untyped
A-term.

Computing on \-trees

We list two central issues that arise when computing with A-trees.

Determining the structure of A-trees. Matching or unification modulo
an-conversion, as we shall see, is not enough to decompose A-trees adequately.
Consider, for example, the problem of recognizing exactly those expressions that
represent universally quantified implications. One might consider the pattern
(V (Au. D P Q)), where P and @ are the meta-variables to be instantiated
by a successful match. Because substitution does not allow the capturing of
free variables, all instances of this pattern would be expressions in which the
universally quantified variable is vacuous. The pattern (V (Au. D (P u) (Q w)))



will work, however, if we admit B-conversion to simplify the instantiate pattern
(B-conversion is the rule that states that the expression (Az.t)s is equal to t
with s substituted for x). For example, this pattern will match with the A-tree
(V(Az. D (pzx)(qaa))) by instantiating P with Az.p z z and Q with Az.qa a
and then using o and S-conversion.

Matching and unification of simply typed A-terms modulo af8n-conversion
are complex operations. For example, matching at second order is NP-complete
and unification at higher-types is undecidable. If we examine more closely the
example above, however, we find that we do not need full 3-conversion: we only
need the weaker (y-conversion rule that states that the expression (Az.t)x is
equal to t. If meta-variables are applied only to distinct bound variables, then
«a and [y are complete with respect to 3, and matching and unification are
decidable and unitary [Mil91], and can be solved in linear time [Qia93].

Recursion over A\-trees. In order to compute with A-trees, it must be pos-
sible to define recursion over them. This requires understanding how one “de-
scends” into the A-abstraction Az.t in a way that is independent from the choice
of the name x. One successful solution to this problem is to use the generic
and hypothetical judgments that are found in intuitionistic logic and associated
dependent typed A-calculi. In logic settings, computations are specified with
relations (atomic judgments) and generic and hypothetical judgments employ
universal quantification and implication, respectively.

Consider, for example, the judgment that an untyped A-term has a certain
simple type. We first introduce the category ty to denote the syntactic domain
of simple types; provide constructors i of type ty and arr of type ty — ty — ty;
and introduce the atomic judgment (predicate) typeof that asserts that its first
argument (a term of type tm) has its second argument (a term of type ty) as a
simple type. The following two inference rules specify the typeof judgment.

typeof M (arr A B) typeof N A Vx(typeof © A D typeof (R x) B)
typeof (app M N) B typeof (abs R) (arr A B)

The first of these inference rules is essentially a simple Horn clause while the
second has both a universal quantifier (for the generic judgment) and an im-
plication (for the hypothetical judgment). Inference rules such as the second
one are easily expressible in hereditary Harrop formulas [MNPS91], the logi-
cal foundations of Isabelle [Pau90] and AProlog [NMS88], and in the dependent
typed A-calculus [HHP93], which has been mechanized in Elf [Pfe89].

The conventional approach to specifying such a typing judgment would in-
volve an explicit context of typing assumptions and an explicit treatment of
bound variables names, either as strings or de Bruijn numbers. The hypotheti-
cal judgment (the meta-level implication) implicitly handles the typing context,
and the generic judgment (the universal quantifier) implicitly handles the bound
variable names by via the use of meta-level eigenvariables.



An additional example

We show here how to use A-trees to encode the m-calculus [MPW92]. We need
two syntactic categories: name for channels and proc for processes. The output
prefix is the constructor out of type name — name — proc — proc and the
input prefix is the constructor in of type name — (name — proc) — proc:
the m-calculus expressions Zy.P and x(y).P are represented as (out z y P)
and (in x (\y.P)), respectively. We use | (written as infix) of type proc —
proc — proc to denote parallel composition and v of type (name — proc) —
proc to denote restriction. To encode the labeled transition system of the -
calculus [MPW92], we introduce another type action with three constructors
for it: 7 denotes the silent action and | and T, both of type name — name —
action, denote the input and output, respectively, on one named channel with
a named value. The transition semantics uses two predicates: ——, which
takes three arguments of type proc, action, and proc; and ——, which takes
three arguments of type proc, name — action, and name — proc. The first of
these predicates encodes transitions involving free values and the second encodes
transitions involving bound values. Below we specify a few transition rules for
the m-calculus.

o output — input
out x y P— P inx M — M
Tay lw Tz
Vy(My — M'y) P—M Q—N
ro. open — close
vM — M’ P|Q — vAn((Mn)|(Nn))
A lz Tzy
P—M P—M Q— Q'
par L-com

—
PIQ — xa((Mn)|Q) PIQ — (My)|Q’

One advantage of this style of specification over the traditional one [MPW92]
is the absence of complicated side-conditions on variables: they are handled
directly by the logical mechanisms described above. In particular, the par
rule above implements the rule displayed in the introduction but without the
need of an explicit side condition. When examining the specification of the
full w-calculus, most inference rules require only meta-level Gy and not full
(B-conversion. If one considers the subset of the m-calculus that arises from
dropping those the rules requiring S-conversion (L-com in the inference rules
above), the resulting calculus happens to be a natural subset of the m-calculus,
independently investigated in the literature under the name 7; [San96].

Future work

There are several challenging topics related to A-tree syntax. We list a few of
them here.



Implementation. While some work on designing and implementing support
for this style of representation has been completed [NW98], it is still unknown
how well these ideas will work in large scale applications. Logic programming
languages [MN87, Pfe89] and rewriting systems [Nip91] are the only program-
ming language paradigms that have successfully supported A-tree syntax: it
would be interesting to see if other programming languages can encompass this
approach to representation.

Semantics. For conventional specifications using parse trees syntax, well un-
derstood semantic tools are available, such as those of initial algebras and models
for equality. Similar tools have not yet been developed to handle A-tree syntax.
Since the logic that surrounds A-tree syntax is that of intuitionistic logic, Kripke
models are likely to be useful.

Techniques. Good techniques for reasoning inductively have still to be for-
mulated for A-tree syntax. A starting point could be the work of McDowell
[McD97, MM97], which proposes a logic that includes A-tree syntax and natural
number induction.

Properties. When specifications comply with certain restrictions, interesting
properties for the specified formalism can be inferred. For instance, if a transi-
tion system is in the tyft/tyxt format then bisimulation is a congruence [GV92].
It would be interesting to study analogous results for specifications involving
A-trees. Note that restrictions like the ones imposed by the tyft/tyxt format
are probably too restrictive for A-tree specifications since they are tailored for
term-decomposition in parse trees only.
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