
Linear Logic as Logic Programming:

An Abstract?

Dale Miller

Computer Science Department, University of Pennsylvania

Philadelphia, PA 19104-6389 USA

dale@cis.upenn.edu

http://www.cis.upenn.edu/�dale

The theory of cut-free sequent proofs has been used to motivate and justify
the design of a number of logic programming languages. Two such languages,
�Prolog and its linear logic re�nement, Lolli [13], provide for various forms
of abstraction (modules, abstract data types, and higher-order programming)
but lack primitives for concurrency. The logic programming language, LO (Lin-
ear Objects) [2] provides some primitives for concurrency but lacks abstraction
mechanisms. Forum is a logic programming presentation of all of linear logic
that modularly extends �Prolog, Lolli, and LO. This language, therefore, allows
speci�cations to incorporate both abstractions and concurrency.

The motivation for Forum. Below are several examples of logic programming
languages. Here we use linear logic connectives as in [9], with the addition of)
for intuitionistic implication: A) B denotes !A��B.

1. Horn clauses, the logical foundation of Prolog, are formulas of the form
8�x(G) A) where G may contain occurrences of & and >. (We shall use �x
as a syntactic variable ranging over a list of variables and A as a syntactic
variables ranging over atomic formulas.) In such formulas, occurrences of)
and 8 are restricted so that they do not occur to the left of the implication
). As a result of this restriction, cut-free proofs involving Horn clauses do
not contain right-introduction rules for) and 8.

2. Hereditary Harrop formulas [17], the logical foundation of �Prolog, result
from removing the restriction on) and 8 in Horn clauses: that is, such
formulas can be built freely from >, &,), and 8. Some presentations of
hereditary Harrop formulas and Horn clauses allow certain occurrences of
disjunctions (�) and existential quanti�ers [17]: since such occurrences do
not add much to the expressiveness of these languages, they are not consid-
ered directly here.

3. The logic at the foundation of Lolli is the result of adding �� to the con-
nectives present in hereditary Harrop formulas: that is, Lolli programs are
freely built from >, &, ��,), and 8. As with hereditary Harrop formulas, it
is possible to also allow certain occurrences of � and 9, as well as the tensor

 and the modal !.

? Parts of this abstract are taken from the paper [16].

4. The formulas used in LO are of the form 8�x(G �� A1

..

...
.......
...
.......
....
....
........

.

..

..

..

...
...
..
..
.
..
.
..
..
................

...

............. � � �
..
...
.......
...
.......
....
....
........
.
..
..
..
...
...
..
..
.
..
.
..
..
................

...

............. An) where
n � 1 and G may contain occurrences of &, >,

..

...
.......
...
.......
....
....
........

.

..

..

..

...
...
..
..
.
..
.
..
..
................

...

............. , ?. Similar to the Horn
clause case, occurrences of �� and 8 are restricted so that they do not occur
to the left of the implication ��.

The reason that Lolli does not include LO is the presence of
..
..
.........
........
.....
....
........
.
..
..
..
..
...
..
..
..
.
..
..
..
...
............

...

.............. and ? in the
latter. This suggests the following de�nition for Forum, the intended super-
language: allow formulas to be freely generated from >, &, ?,

..

...
.......
...
.......
....
....
........
.
..
..
..
...
...
..
..
.
..
.
..
..
................

...

............. , ��,), and
8. For various reasons, it is also desirable to add the modal ? directly to this
list of connectives. Clearly, Forum contains the formulas in all the above logic
programming languages.

Since the logics underlying Prolog, �Prolog, Lolli, LO, and Forum di�er in
what logical connectives are allowed, richer languages modularly contain weaker
languages. This is a direct result of the cut-elimination theorem for linear logic.
Thus a Forum program that does not happen to use ?,

..

..

.........
...
.......
.......
........
.
..
..
..
..
...
..
..
..
..
..
..
..
.............

...

...

............ , ��, and ? will, in fact,
have the same cut-free proofs as are described for �Prolog. Similarly, a program
containing just a few occurrences of these connectives can be understood as a
�Prolog program that takes a few exceptional steps, but otherwise behaves as a
�Prolog program.

Forum is a presentation of all of linear logic since it contains a complete set
of connectives. The connectives missing from Forum are directly de�nable using
the following logical equivalences.

B? � B �� ? 0 � >�� ? 1 � ?�� ?

!B � (B)?)�� ? B � C � (B? &C?)? B
C � (B?
..
..
..........
.......
.....
....
........
.
..
..
..
..
...
..
..
..
.
..
.
..
...
.............

...

.............. C?)?

9x:B � (8x:B?)?

The collection of connectives in Forum are not minimal. For example, ? and
..
...
.......
...
.......
....
....
........
.
..
..
..
...
...
..
..
.
..
.
..
..
................

...

............. ,
can be de�ned in terms of the remaining connectives.

?B � (B �� ?))? and B
..
..
.........
...
.......
.......
........
.
..
..
..
..
...
..
..
..
..
..
..
..
.............

...

...

............ C � (B �� ?)��C

The proof that Forum is, in fact, a logic programming language requires
showing that if a sequent has a proof in linear logic, it has a proof that is, in
a certain formal sense, goal directed. The proof of this follows from a result of
Andreoli on focusing proofs [1]: for details, see [16].

Applications of Forum. Forum has been used to give speci�cations in various
domains. We list some major extended examples below.

1. Forum can be used as a logical framework for the speci�cation of both natural
deduction and sequential calculus proof systems. Single conclusion, intuition-
istic based systems, such as �Prolog and LF [10], have been used to provide
satisfactory treatments of natural deduction proof systems [7, 20, 22] but the
speci�cations of sequent calculus in these systems is less than satisfactory
[7, 21]. In [16], the multiple conclusion aspects of Forum allowed for natural
and
exible presentations of sequent calculus, and Gentzen's LJ calculus [8]
is studied in some depth there.

2. In [14], the operational semantics of the �-calculus [18] is speci�ed. Important
notions like scope extrusion, mobility, and testing are given simple proof
theoretic treatments there.

3. The operational semantics of programming languages provides another area
where Forum provides natural speci�cations.

(a) Linear logic provides a simple mechanism for modeling state. Algol-like
references and state is speci�ed in [15, 16] and in this thesis, [5], Chirimar
shows how the richer notion of state in Standard ML can be expressed.

(b) Concurrency primitives similar to those found in Concurrent ML [23] are
presented in [15, 16].

(c) In [5] Chirimar presents speci�cations of exceptions and continuations
(similar to those found in some implementations of SML). He also shows
that these can be added modularly to his speci�cation of call-by-value
evaluation and state. With these speci�cations, he proves various equiv-
alences among program phrases involving references and higher-order
features.

(d) Cervesato and Pfenning [4] similarly specify and analyzed ML-style ref-
erences in a linear logic language that is similar to the Lolli subset of
Forum.

4. Also in his thesis, Chirimar speci�es both the sequential and the concurrent
(piped-line) operational semantics of the DLX RISC processor [11]. He is able
to capture the call-forwarding and early branch resolution optimizations and
proves them to be equivalent. He also studies the problem of code equivalence
via the Forum speci�cation, and, in particular, analyzes the problem of code
rescheduling for DLX.

5. In [3, 6], Bugliesi, Delzanno, Liquori, and Martelli specify and analyze an
object-oriented programming language using Forum.

It should also be added that the area of natural language parsing should
provide lots of other examples of where linear logic can be used to advantage.
For example, Josh Hodas used Lolli to provide a declarative treatment of Filler-
Gap Dependency Parsers [12]. See also a similar project in [19].

References

1. Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Jour-

nal of Logic and Computation, 2(3):297{347, 1992.

2. J.M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in

inheritance. New Generation Computing, 9(3-4):445{473, 1991.

3. Michele Bugliesi, Giorgio Delzanno, Luigi Liquori, and Maurizio Martelli. A linear

logic calculus of objects. In M. Maher, editor, Proceedings of the Joint International

Conference and Symposium on Logic Programming. MIT Press, September 1996.

4. Iliano Cervesato and Frank Pfenning. A linear logic framework. In Proceedings,

Eleventh Annual IEEE Symposium on Logic in Computer Science, pages 264{275,

New Brunswick, New Jersey, July 1996. IEEE Computer Society Press.

5. Jawahar Chirimar. Proof Theoretic Approach to Speci�cation Languages. PhD

thesis, University of Pennsylvania, February 1995. Available on the web from

http//www.cis.upenn.edu/~dale/forum/.

6. Giorgio Delzanno and Maurizio Martelli. Objects in forum. In Proceedings of the

International Logic Programming Symposium, 1995.

7. Amy Felty. Implementing tactics and tacticals in a higher-order logic programming

language. Journal of Automated Reasoning, 11(1):43{81, August 1993.

8. Gerhard Gentzen. Investigations into logical deductions. In M. E. Szabo, editor,

The Collected Papers of Gerhard Gentzen, pages 68{131. North-Holland Publishing

Co., Amsterdam, 1969.

9. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1{102, 1987.

10. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for de�ning

logics. Journal of the ACM, 40(1):143{184, 1993.

11. J. Hennesy and D. Patterson. Computer Architecture A Quantitative Approach.

Morgan Kaufman Publishers, Inc., 1990.

12. Joshua Hodas. Specifying �ller-gap dependency parsers in a linear-logic program-

ming language. In K. Apt, editor, Proceedings of the Joint International Confer-

ence and Symposium on Logic Programming, pages 622{636, 1992.

13. Joshua Hodas and Dale Miller. Logic programming in a fragment of intuitionistic

linear logic. Information and Computation, 110(2):327{365, 1994.

14. Dale Miller. The �-calculus as a theory in linear logic: Preliminary results. In

E. Lamma and P. Mello, editors, Proceedings of the 1992 Workshop on Extensions

to Logic Programming, number 660 in LNCS, pages 242{265. Springer-Verlag, 1993.

15. Dale Miller. A multiple-conclusion meta-logic. In S. Abramsky, editor, Ninth

Annual Symposium on Logic in Computer Science, pages 272{281, Paris, July 1994.

16. Dale Miller. Forum: A multiple-conclusion speci�cation language. Theoretical

Computer Science, 165:201{232, 1996.

17. Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform

proofs as a foundation for logic programming. Annals of Pure and Applied Logic,

51:125{157, 1991.

18. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,

Part I. Information and Computation, pages 1{40, September 1992.

19. Fernando C. N. Pereira. Prolog and natural-language analysis: into the third

decade. In Proceedings of the 1990 North American Conference on Logic Pro-

gramming. MIT Press, 1990.

20. Frank Pfenning. Logic programming in the LF logical framework. In G�erard Huet

and Gordon D. Plotkin, editors, Logical Frameworks. Cambridge University Press,

1991.

21. Frank Pfenning. Structural cut elimination. In Proceedings, Tenth Annual IEEE

Symposium on Logic in Computer Science, pages 156{166, San Diego, California,

26{29 1995. IEEE Computer Society Press.

22. Frank Pfenning and Ekkehard Rohwedder. Implementing the meta-theory of de-

ductive systems. In Proceedings of the 1992 Conference on Automated Deduction,

June 1992.

23. John H. Reppy. CML: A higher-order concurrent language. In ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages 293{305,

June 1991.

This article was processed using the LATEX macro package with LLNCS style

