Focusing, Axioms and Synthetic Inference Rules
(Extended Abstract)

Elaine Pimentel, Sonia Marin, Dale Miller, and Marco Volpe

1 Departamento de Matemática, UFRN, Brazil
elaine.pimentel@gmail.com
2 Dept. of Computer Science, University College London, UK
s.marin@ucl.ac.uk
3 Inria-Saclay & LIX, Ecole Polytechnique, Palaiseau, France
dale@lix.polytechnique.fr
4 Fortiss, Munich, Germany
emme.volpe@gmail.com

Proving a sequent in sequent-based systems often involves many choices. For example, at every node of a tree-derivation one could: apply an introduction rule over a non-atomic formula; apply a structural rule; introduce a lemma; apply initial rules, etc. Hence, there is a need for discipline in structuring such choices and taming proof-search. One such discipline is focusing [1].

Focused proof systems combines two devices: polarization and focused rule application. In classical/intuitionistic first order systems, polarized formulas are built using atomic formulas and polarized versions of logical connectives and constants. The positive and negative versions of connectives and constants have identical truth conditions but have different inference rules inside the polarized proof systems. For example, left introduction rules for positive connectives are invertible while left introduction rules for negative connectives are not necessarily invertible. The polarity of a non-atomic formula is determined by its top-level connective. Since every polarized formula is classified as positive or negative, a polarity to atomic formulas must also be provided. As it turns out, this assignment of polarity to atomic formulas can be arbitrary [1].

When focusing on a formula, the focus is transferred to the active formulas in the premises (focused rule applications). This process goes on in all branches of the derivation, until: an initial rule/introduction rule on constants is applied (and the derivation ends at that branch); either the polarity of the focused formula changes or the side (left/right) of the focus flips (but not both). In this case, focus is released and the formula is eagerly decomposed into its negative-left, positive-right and/or atomic subformulas, that are stored in the context. Reading derivations from the root upwards, this forces a sequent derivation to be organized into focused phases, each of them corresponding to an application of a synthetic inference rule [2], where the focused formula is rewritten into (some of) its subformulas.

There is a class of formulas corresponding to particularly interesting synthetic rules: the bipolars. Bipolars are negative formulas in which polarity can change at most once among its subformulas. This means that left-focusing on a bipolar
A gives rise to (possibly many) synthetic inference rules having simple shape, with leaves involving only atomic subformulas of A. We call a synthetic inference rule corresponding to the bipolar A a \textit{bipole} for A.

In this talk, we will present a careful study of bipoles, giving a fresh view to an old problem: how to incorporate inference rules encoding axioms into proof systems for classical and intuitionistic logics.

We start by considering LKF and LJF [6,7] as the basic focused proof systems for classical and intuitionistic logics, respectively. In such systems, leafs of focused phases can be composed of either: (i) a conclusion-sequent of the application of introduction rule on constants; (ii) a (focused) conclusion-sequent of the application of the initial rule; (iii) an (unfocused) sequent after the storage of the remaining formulas. As an example, consider the following first order formula, that relates the subset and membership predicates in set theory:

$$A = \forall y z. (\forall x. x \in y \supset x \in z) \supset y \subseteq z.$$

Assuming that the predicate \subseteq is given negative polarity, in the focused phase given by (left) focusing on A

$$\frac{\Gamma, x \in y \uparrow \vdash \top \cdot \uparrow x \in z, \Delta}{\Gamma \vdash x \in y \vdash x \in z \uparrow \Delta} \quad \text{store}_l, \text{store}_r$$

$$\frac{\Gamma \vdash \forall x. x \in y \supset x \in z \uparrow \Delta}{\Gamma \vdash \forall x. x \in y \supset x \in z \downarrow \Delta} \quad \forall_r, \supset_r$$

$$\frac{\Gamma \vdash \forall x. x \in y \supset x \in z \downarrow \Delta}{\Gamma \vdash \forall x. x \in y \supset x \in z \downarrow \Delta} \quad \text{release}_r$$

$$\frac{\Gamma \downarrow \vdash y \subseteq z \vdash \Delta}{\Gamma \downarrow \vdash y \subseteq z \vdash \Delta} \quad \text{init}_l, \supset_l$$

the right leaf has shape (ii) while the left one is of the form (iii). The formula between the \downarrow and \vdash is the focus of that sequent.

Observe that it must be the case that $y \subseteq z \in \Delta$ (since $y \subseteq z$ is atomic, negative and under focus), while $x \in y, x \in z$ end-up being stored into contexts. This is not by chance: restricted to bipoles, leaves of the shape (ii) forces atoms to belong to the context, while leaves of the shape (iii) adds atoms to the context. This implies that principal and active formulas in bipoles for A (if any) are atomic formulas. That is: bipoles can be seen, in a sense, as introduction rules for atoms. For example, the bipolar above corresponds to the (unpolarized) synthetic rule

$$\frac{x \in y, \Gamma \vdash x \in z, \Delta}{\Gamma \vdash y \subseteq z, \Delta}$$

which introduces $y \subseteq z$ from $x \in y$ and $x \in z$, where x is an eigenvariable.

Using such synthetic inference rules is one method for systematically generating proof systems for axiomatic extensions of classical/intuitionistic logics: focusing on a bipolar axiom yields a bipole.

A key step in transforming a formula into synthetic inference rules involves attaching a polarity to atomic formulas and to some logical connectives. Since there are different choices for assigning polarities, it is possible to produce
different synthetic inference rules for the same formula. Indeed, if in our running
example the predicate \subseteq is given positive polarity, the corresponding (unpolarized)
synthetic rule is

$$x \in y, \Gamma \vdash x \in z, \Delta \quad y \subseteq z, \Gamma \vdash \Delta.$$

with x an eigenvariable.

We show that this flexibility allows for the generalization of different ap-
proaches for transforming axioms into sequent rules present in the literature, such
as the works in [11,12,4,5]. In particular, bipolars correspond to (the first-order
version of) the N_2 class presented in [3], which subsumes the class of geometric
axioms studied in [11,10].

We finish the talk by showing how to emulate precisely rules for modalities
in labeled modal systems as synthetic connectives [9,8]. Such tight emulation
means that proof search/proof checking on the focused version of the translated
formulas models exactly proof search/proof checking in the correspondent labeled
system. As a result, we are able to show that we can use focused proofs to
precisely emulate modal proofs whenever Kripke frames are characterized by
bipolar properties.

References

 In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. Lecture Notes in
7. Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and classical
 systems. In: Beklemishev, L.D., Demri, S., Maté, A. (eds.) Advances in Modal
 pp. 266–280 (2015)
10. Negri, S.: Contraction-free sequent calculi for geometric theories with an application