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Abstract

We introduce a propositional logic ICL, which adds to intuitionistic logic elements of classical reason-
ing without collapsing it into classical logic. This logic includes a new constant for false, which augments
false in intuitionistic logic and in minimal logic. The new constant requires a simple-yet-significant
modification of intuitionistic logic both semantically and proof-theoretically. We define a Kripke-style
semantics as well as a topological space interpretation in which the new constant is given a precise deno-
tation. We define a sequent calculus and prove cut-elimination. We then formulate a natural deduction
proof system with a term calculus, one that gives a direct, computational interpretation of contraction.
This calculus shows that ICL is fully capable of typing programming language control constructs such
as call/cc while maintaining intuitionistic implication as a genuine connective.
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1 Introduction

It is by now well known that much constructive content can be found in classical proofs and that the Curry-
Howard correspondence can be extended by accepting certain classical principles. Since Griffin ([Gri90])
showed the relationship between classical axioms such as ¬¬A ⇒ A and control operators, several con-
structive classical systems have been formulated, including Girard’s LC proof system [Gir91] and Parigot’s
classical deduction system, from which is derived λµ-calculus [Par92]. Several variants of λµ-calculus have
been proposed since (Herbelin and Saurin’s manuscript [HS09] includes a summary of these variants). How-
ever, the isomorphism between lambda abstraction and intuitionistic implication is a very strong one. If one
collapses intuitionistic logic into classical logic altogether and consider the whole arena of classical proofs,
then one is confronted with the fact that “classical implication” does not have the same strength as its
intuitionistic counterpart. For example, intuitionistic implication corresponds to the programming notion
of localized scope. In classical logic, however, (A ⇒ B) ∨ C is equivalent to B ∨ (A ⇒ C), which is to say
that the assumption A is not localized to the left disjunct. The classical implication A ⇒ B is equivalent
to the forms ¬A ∨ B and ¬(A ∧ ¬B) (among others), each of which yields different procedural information
in proofs involving them. The constructive meaning of classical logic is dependent on how we choose to
interpret classical implication.

On the other hand, if one embeds classical logic into intuitionistic logic via a double-negation translation,
then the constructive meaning of classical proofs is also changed, for one can only expect λ-terms from such
a translation, and not, for example, λµ-terms.

We propose here a new logic that can be described as an amalgamation of intuitionistic and classical
logics, one that does not collapse one into the other. We refer to this logic as intuitionistic control logic
(ICL). In contrast to intermediate logics, we add not new axioms to intuitionistic logic but a new logical
constant for false. Specifically, we distinguish between two symbols for false: 0 and ⊥. The constant 0 will
have the same meaning as false in intuitionistic logic. The two constants will allow us to define two forms
of negation: ∼ A using 0 and ¬A using ⊥. For example, A ∨ ¬A will be provable but not A ∨ ∼A. On
the other hand, neither form of negation will be “involutive,” thus preserving the strength of intuitionistic
implication. In the proof theory of ICL, ⊥ indicates points in a proof where contraction and multiplicative
disjunction can be used. Furthermore, during cut-elimination, when cut is permuted above a contraction
or the introduction of a multiplicative disjunction, a form of proof transformation similar to the structural
reductions of λµ-calculus takes place. We give a Kripke-style semantics for ICL, as well as an interpretation
in a topological space. The semantic presentation allows us to observe a general property concerning the
admissible rules of ICL. We formulate a sound and complete sequent calculus that admits cut. We then define
a natural deduction system with proof terms, where disjunctions are given a much more computationally
meaningful interpretation than mere “injections.” These results show that the computational content of
non-intuitionistic proofs can be obtained without collapsing all of intuitionistic logic into classical logic.

As our choice of symbols may suggest, the original impetus for using two constants for false can be traced
to linear logic. Several attempts to unify logics (including much of our own previous work) are based on ideas
derived from linear logic and related systems of Girard. In this paper, however, there will be no discussion
of “polarity,” nor will any notion of “duality” be assumed to exist a priori. Aside from the original impetus
for ⊥, the starting point of ICL is the semantics of intuitionistic logic. In terms of Tarski’s topological
interpretation of intuitionistic logic, specifically in the metric space of real numbers, the constant ⊥ can be
denoted by a set consisting of all real numbers minus a single point.

2 Syntax

We focus only on propositional logic in this presentation. We assume that there are countably many atomic
formulas. The connectives of ICL are ∧, ∨ and ⊃. There are also the logical constants >, 0 and ⊥.

Although there are three constants, one true and two versions of false, ICL should not be confused with a
“three-valued” logic. This will be clear from its semantics: there are uncountably many “truth assignments.”

We define two forms of negation as abbreviations for the following formulas
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Γ ` A ∧B; [∆]

Γ ` A; [∆]
∧E1

Γ ` A ∧B; [∆]

Γ ` B; [∆]
∧E2

Γ ` A ∨B; [∆] A,Γ ` C; [∆] B,Γ ` C; [∆]

Γ ` C; [∆]
∨E

Γ ` A ⊃ B; [∆] Γ ` A; [∆]

Γ ` B; [∆]
⊃E

Γ ` 0; [∆]

Γ ` A; [∆]
0E

Γ ` A; [∆] Γ ` B; [∆]

Γ ` A ∧B; [∆]
∧I

Γ ` A; [B,∆]

Γ ` A ∨B; [∆]
∨I1

Γ ` B; [A,∆]

Γ ` A ∨B; [∆]
∨I2

A,Γ ` B; [∆]

Γ ` A ⊃ B; [∆]
⊃I

Γ ` >; [∆]
>I

A,Γ ` A; [∆]
Id

Γ ` A; [A,∆]

Γ ` A; [∆]
Con

Γ ` A; [∆]

Γ ` ⊥; [A,∆]
Esc

Figure 1: The Natural Deduction System NJC, without terms

Intuitionistic Negation: ∼A = A ⊃ 0

Classical Negation: ¬A = A ⊃ ⊥

We wish to present ICL using a balance of syntax and semantics. Most of the proof theory of ICL will
be given after we have defined the meaning of formulas. However, for those who wish to see a proof system
before semantics, we first present in Figure 1 the natural deduction system NJC. This system is given without
terms, which are introduced in section 6. This is clearly a natural deduction system, although presented
using the syntax of sequents. In a sequent Γ ` A; [∆], the sets Γ and ∆ represent the left and right-side
contexts, for which weakening can be shown to be admissible. The notation B,∆ represents {B} ∪∆ and
does not preclude the possibility that B ∈ ∆; thus contraction is obviated in these contexts. The formula
A in Γ ` A; [∆] is called the current formula. There is always exactly one current formula. A formula A is
provable if ` A; [ ] is provable. The following is a sample proof:

A ` A; [ ]
Id

A ` ⊥; [A]
Esc

` ¬A; [A]
⊃I

` A ∨ ¬A; [ ]
∨I2

Except for the Esc and Con rules (for explicit contraction of the current formula), this proof system is
isomorphic to the usual natural deduction system (NJ) for intuitionistic logic. Formulas inside the [∆]
context play no role in provability without the Esc (escape) rule. In fact, without Esc a proof is still
entirely intuitionistic since the Con rule would become useless. Without Esc, the ∨-introduction rules are
no different from the additive forms found in NJ. An NJC proof can be considered to consist of segments
of intuitionistic proofs joined by Esc. It holds that a formula that does not contain ⊥ as a subformula is
provable if and only if it is intuitionistically provable (this will become clear in section 4, where we formulate
an equivalent sequent calculus that enjoys the subformula property). A formula containing ⊥ may also have
an intuitionistic proof if the proof does not use Esc: in such a case ⊥ will have the same meaning as false in
minimal logic. ICL loses the disjunction property for formulas that contain ⊥, but will gain much in return.

We leave further discussion of this system and other proof-theoretical properties to later sections.

3 Kripke Semantics

We give a Kripke-style semantics for ICL, in which some possible worlds may validate ⊥, but there will be no
model for ⊥. We consider only Kripke frames that are (finitely) rooted trees: it is known that intuitionistic
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propositional models can also be assumed to have this restriction. Such frames are the basis of models of
the form 〈W, r,�, |=〉, where � is a partial ordering relation on the set of possible worlds W and r ∈W is
the unique root such that r � u for all u ∈W. The binary relation |= maps elements of W to sets of atomic
formulas; |= is monotonic in that if u � v then u |= a implies v |= a. The |= relation is also extended to all
formulas in a way that observes the following rules. Here we use the symbols u and v to represent arbitrary
possible worlds in W and the symbol q to represent worlds that are properly above r (q � r).

• u |= >; u 6|= 0

• r 6|= ⊥

• q |= ⊥ for all q � r

• u |= A ∧B iff u |= A and u |= B

• u |= A ∨B iff u |= A or u |= B

• u |= A ⊃ B iff for all v � u, v 6|= A or v |= B.

We shall refer to this version of Kripke models as r-models. The only differences between forcing rules in
r-models and those of regular Kripke models for intuitionistic logic are in regard to ⊥. All worlds properly
above r force ⊥, but not r itself. The usual property of monotonicity is established inductively on formulas:

• if u � v then u |= A implies v |= A for all formulas A.

A formula is considered valid in a r-model if it is valid in all worlds: by monotonicity this means that it
is valid in r. If a formula A is valid in model M we write M |= A. A formula is valid in ICL if it is valid in
all models. A formula is consistent if it is valid in some model. Both 0 and ⊥ are inconsistent.

Since intuitionistic models can also be assumed to have rooted frames, it is easy to show that

Proposition 1 A formula that does not contain ⊥ as a subformla is valid in ICL if and only if it is valid
in intuitionistic logic.

Sample Truths and Falsehoods

As expected, many but not all axioms of classical logic become valid in ICL if written with ⊥.

A ∨ ¬A is valid.

Given the root r of a model, if r 6|= A, then r |= A ⊃ ⊥ because if q � r then q |= ⊥. In fact, it holds that
r |= A if and only if r 6|= ¬A. In contrast, the purely intuitionistic formula ∼A ∨A has the usual two-world
countermodel, since a r-model can be interpreted as a regular model of intuitionistic logic.

(¬P ⊃ P) ⊃ P is valid.

We refer to this formula as our version of Peirce’s law. The well-known formula ((P ⊃ Q) ⊃ P ) ⊃ P is
not valid in ICL because it is not valid in intuitionistic logic. It becomes valid if Q is replaced with ⊥. This
is provable by contradiction. Assume that for some possible world u in some model, u |= ¬P ⊃ P but that
u 6|= P . But since u |= P ∨ ¬P , this means that u |= ¬P , and thus by assumption it must be that u |= P .

In Section 6 we will show that the natural deduction proof of this formula does indeed allow us to simulate
the call/cc operator.

The De Morgan laws in terms of ¬ are valid

The case of the De Morgan law that is not intuitionistically provable is ¬(A∧B) ⊃ (¬A∨¬B). To show
its validity in ICL, it is enough to consider an arbitrary root world r. Since r 6|= ⊥, if r |= ¬(A ∧ B) then
r 6|= A ∧ B, which means that r 6|= A or r 6|= B. But r |= P ∨ ¬P for any P , and thus r |= ¬A or r |= ¬B.
The other cases of the De Morgan laws with respect to ∨ and ∧ are already valid intuitionistically (if one
treats ⊥ as in minimal logic), and thus are also valid in ICL.
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¬¬A ≡ (⊥ ∨A)

By “P ≡ Q” we mean that (P ⊃ Q)∧(Q ⊃ P ) is valid. This equivalence is also provable by the definition
of |=. The significance of this equivalence is that a double-negation, which indicates a shift to classical logic,
can be replaced by a form that requires a very different proof structure (see the Esc inference rule in Section
2, and in later sections.)

¬¬A ⊃ A is not valid.

For a countermodel, let r 6|= a for some atomic a and also let q 6|= a for some q � r. We always have that
q |= ¬¬a since q |= ⊥, but q 6|= ¬¬a ⊃ a.

One should not expect this axiom to be valid because ex falso quodlibet only holds for 0 in ICL (0 ⊃ A is
valid), but not for ⊥. Yet another explanation is that ⊃ is intuitionistic implication. We can define “classical
implication” as a derived connective:

• Classical Implication: A⇒ B = ¬A ∨B
If we replaced ⊃ with ⇒, then ¬¬A⇒ A becomes abbreviation for ¬¬¬A∨A, which is valid just as ¬A∨A
is valid. If we attempted to define classical negation in terms of⇒, we will find that both A⇒ ⊥ and A⇒ 0
are equivalent to ¬A. Thus ¬ is correctly identified as classical negation.

Unlike in intuitionistic logic, ¬A ∨ B is in fact equivalent to ¬(A ∧ ¬B), so it is not necessary to use a
“negative” translation. Other equivalent forms of classical implication include A ⊃ (B ∨ ⊥) and A ⊃ ¬¬B.
These equivalences can all be verified semantically. However, ¬¬(A ⊃ B) is not an equivalent definition of
A ⇒ B. Intuitionistic implication does not collapse into ⇒ even in the scope of ¬¬. This means that it
is possible to mix classical and intuitionistic reasoning in ICL, e.g., the axiom schema ¬¬A ⇒ A may be
instantiated with a formula containing ⊃ without loosing its strength. In contrast, ∼∼(A ⊃ B) collapses to
a classical implication by Glivenko’s theorem.

∼¬A ⊃ A is valid.

The presence of both 0 and ⊥ allows us to consider additional forms of double-negation. The formulas
¬¬A ⊃ A, ∼∼A ⊃ A and ¬∼A ⊃ A are all invalid. However, ∼¬A ⊃ A, which is ((A ⊃ ⊥) ⊃ 0) ⊃ A,
is valid (but its converse is not valid). Proof-theoretically speaking, both contraction and ex falso quodlibet
are available in its derivation. This formula will allow us to emulate the C control operator (see Section 6).

The Hilbert axiom in the form (¬B ⊃ ¬A) ⊃ (A ⊃ B) is not valid.

The reasons generalize the case of ¬¬A ⊃ A. The axiom is valid if one replaces ⊃ with ⇒ (our definition
of A⇒ B as ¬A ∨B is therefore complete with respect to classical logic). Indeed the validity of this axiom
(with ⊃) would indicate a collapse into classical logic. ICL is a unified logic, where classical negation exists
alongside intuitionistic implication without either destroying the other.

A General Law of Admissible Rules

Although ¬¬A ⊃ A is not valid in all models, if in any model r |= ¬¬A then it must be that r 6|= ¬A,
which in turn means that r |= A because all q above r forces ¬A. Thus it is an admissible rule of ICL that
if ¬¬A is valid then A is also valid. In fact, we can prove a general property of admissible rules as follows

Proposition 2 If the classical implication A⇒ B is valid, then A is valid implies B is valid.

Proof If in any model r |= ¬A ∨B and r |= A, then it cannot be that r |= ¬A since r 6|= ⊥. Therefore it
must be that r |= B. 2

Thus, every classically valid implication corresponds to at least an admissible rule of ICL.

In intuitionistic logic, an admissible rule can also be obtained from a proof of ∼A∨B (by the disjunction
property). However, ∼A ∨ B does not represent classical implication. That would require a negative
translation such as ∼(A ∧ ∼B) or ∼∼(A ⊃ B). These formulas do not give us a general admissibility
property for intuitionistic logic.

The proof of this general rule of admissibility is an advantage of the Kripke semantics, which affords the
easiest proof, compared to other forms of semantics we have considered, and to proof theory.
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A,B,Γ ` C; [∆]

A ∧B,Γ ` C; [∆]
∧L

A,Γ ` C; [∆] B,Γ ` C; [∆]

A ∨B,Γ ` C; [∆]
∨L

Γ ` A; [∆] B,Γ ` C; [∆]

A ⊃ B,Γ ` C; [∆]
⊃L

0,Γ ` A; [∆]
0L ⊥,Γ ` ⊥; [∆]

⊥L

Γ ` A; [∆] Γ ` B; [∆]

Γ ` A ∧B; [∆]
∧R

Γ ` A; [B,∆]

Γ ` A ∨B; [∆]
∨R1

Γ ` B; [A,∆]

Γ ` A ∨B; [∆]
∨R2

A,Γ ` B; [∆]

Γ ` A ⊃ B; [∆]
⊃R

Γ ` >; [∆]
>R

A,Γ ` A; [∆]
Id

Γ ` A; [A,∆]

Γ ` A; [∆]
Con

Γ ` A; [∆]

Γ ` ⊥; [A,∆]
Esc

Figure 2: The Sequent Calculus LJC

4 Sequent Calculus and Cut-Elimination

The sequent calculus LJC is derived from NJC by replacing the elimination rules with left-introduction rules.
We retain the additive treatment of context; the notation A,Θ does not preclude the possibility that A ∈ Θ.
The right-side introduction rules of NJC are all preserved in LJC, including Esc, Con and Id. We give the
entire set of rules in Figure 2.

The ⊥L rule is only needed if one wishes to apply the Id rule only to atomic formulas. One could consider
an alternative proof system where ⊥L and Esc are replaced by the following rules:

⊥,Γ `; [∆]
⊥L

Γ `; [∆]

Γ ` ⊥; [∆]
⊥R

Γ ` A; [∆]

Γ `; [A,∆]
Esc

That is, allow weakening on the current formula, but only when it is ⊥. However, from a computational
standpoint (see Section 6) this alternative does not introduce any additional content into proofs. It will also
unnecessarily complicate the technical arguments to follow. Therefore we will retain LJC as defined.

Contractions inside Γ and ∆ are obviated by the use of sets. The admissibility of weakening is formalized
in the following lemma:

Lemma 3 If Γ ` A; [∆] is provable, then Γ′Γ ` A; [∆∆′] is also provable. Furthermore, the proofs can
have the same height and structure.

By “same structure” we mean that the two proofs are isomorphic: the same inference rules on the same
principal formulas are used in each step. This lemma is proved by induction on the height of proofs.

The equivalence between LJC and NJC will follow from cut-elimination: since the rules that are unique
in NJC/LJC occur on the right hand side of sequents, the translation between elimination rules and left-
introduction rules follow the same arguments as for intuitionistic logic.

Sequent calculus rules have the subformula property (analytic tableau). With this property it can easily
be shown that there are unprovable sequents, including ` ⊥; [ ].

Cut-Elimination

Along with the usual reasons, we require cut-elimination to make an important argument in the proof
of semantic completeness. We need to show that in every maximally ⊥-consistent set of formulas Γ, given a
formula A, exactly one of A or ¬A is in Γ. This argument follows from the provability of A ∨ ¬A and the
admissibility of cut. Then the addition of any formula to Γ will result in a ⊥-inconsistent set: these sets will
represent the possible worlds properly above the root r.
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The cut rule for LJC is the following:

Γ ` A; [∆] A,Γ′ ` B; [∆′]
ΓΓ′ ` B; [∆∆′]

cut

We augment the usual inductive measure for cut-elimination proofs by using a lexicographical ordering on
the tuple (s, nc, h), which is associated with each cut. Each value has the following meaning, in order of
importance:

1. s: the size of the cut formula (the number of atoms, constants and connectives)

2. nc: the number of explicit contractions (Con rules) on the the cut formula in the subproofs of the cut.

3. h: the sum of the heights of the two subproofs of the cut.

We note that any consecutive applications of the Con rule on the same formula are redundant, since we use
sets to represent the right-side context inside [ ]. Thus on any branch of a proof tree it can be assumed that
there is at most one Con rule for each formula.

Not surprisingly, many cases of the proof are the same as for intuitionistic sequent calculus (LJ and
variants). Although we have verified all cases, in this presentation we focus on the cases that are different
from intuitionistic logic.

We distinguish parametric cuts, where at least one cut formula is not principal, and key cuts where
the cut-formula is principal in both rules. By “principal formula” we mean the formula introduced by an
introduction rule, or the formula that is subject to a contraction Con rule, or ⊥ in the case of Esc. As usual
we start with the uppermost cuts, which has only cut-free subproofs.

First, we verify the parametric cases by showing that these cases are all reducible to cuts with smaller
height measures. This will also imply that all cuts can be reduced to the key cases. It is noteworthy that
the special rules Esc and Con do not cause any extra difficulty in the parametric cases. For example:

Γ ` A; [∆]

A,Γ′ ` B; [∆′]

A,Γ′ ` ⊥; [B,∆′]
Esc

ΓΓ′ ` ⊥; [B,∆∆′]
cut

permutes to
Γ ` A; [∆] A,Γ′ ` B; [∆′]

ΓΓ′ ` B; [∆∆′]
cut

ΓΓ′ ` ⊥; [B,∆∆′]
Esc

The other parametric cases are similar and offer no surprises. In all cases the height measure of cuts is
reduced. Thus we can assume that all cuts can be reduced to key cases.

The key cases, where the cut formulas are the conclusions of introduction rules, proceed as in intuitionistic
sequent calculus. An exception is the ∨ case, because we have chosen to give this connective a computationally
more meaningful interpretation (had we chosen the additive form of ∨, then this case will be the same as
in LJ). This case is handled similarly to the case of contraction, where the right-side cut formula is the
conclusion of Con (see below). The fact that the principal formula persists in the premises is handled in a
typical way. The extra “copies” of the principal formula in the premises are first cut away by cuts with lower
height measures, followed by cuts on the subformulas of the principal formula, which reduces the “main
instance.” We show one representative case:

A,Γ ` B; [∆]

Γ ` A ⊃ B; [∆]
⊃R

A ⊃ B,Γ′ ` A; [∆′] B,A ⊃ B,Γ′ ` D; [∆′]

A ⊃ B,Γ′ ` D; [∆′]
⊃L

ΓΓ′ ` D; [∆∆′]
cut

We have made explicit the persistence of the principal formula in the left premise. This cut reduces to:

Γ ` A ⊃ B; [∆] A ⊃ B,Γ′ ` A; [∆′]

ΓΓ′ ` A; [∆∆′]
cut

A,Γ ` B; [∆]

ΓΓ′ ` B; [∆∆′]
cut

Γ ` A ⊃ B; [∆] B,A ⊃ B,Γ′ ` D; [∆′]

B,ΓΓ′ ` D; [∆∆′]
cut

ΓΓ′ ` D; [∆∆′]
cut

The uppermost cuts have smaller height measures while the lower cuts have smaller cut formulas.
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The above case is in fact no different from that of a typical intuitionistic cut-elimination proof. We now
show the cases that distinguish NJC from regular intuitionistic logic. The leading case of interest is when
the cut formula is ⊥ and is the conclusion of an Esc rule:

Γ ` A; [∆]

Γ ` ⊥; [A,∆]
Esc ⊥,Γ′ ` B; [∆′]

ΓΓ′ ` B; [A,∆∆′]
cut

This cut is reduced as follows. We identify in the right subproof inference rules in which the instance of ⊥ on
the left-hand side is active. Since no left-introduction rule exists for ⊥, this means that it must be an initial
rule: ⊥,Γ1 ` ⊥; [∆1]. If no such initial rules exist for this particular instance of ⊥, then the conclusion of
the cut follows from weakening. Each such instance is replaced by a copy of the left subproof of the cut,
after weakening. The transformation that takes place has the following form:

Γ ` A; [∆]

Γ ` ⊥; [A,∆]
Esc

⊥,Γ1 ` ⊥; [∆1]

...

⊥,Γ′ ` B; [∆′]

ΓΓ′ ` B; [A,∆∆′]
cut

−→

ΓΓ1 ` A; [∆∆1]

ΓΓ1 ` ⊥; [A,∆∆1]
Esc

...

ΓΓ′ ` B; [A,∆∆′]

The provability of the new premise follows from the admissibility of weakening. That is, a parametric cut
between Γ ` ⊥; [A,∆] and ⊥,Γ′ ` B; [∆′] can be permuted upwards until the occurrence of ⊥ is active in a
Id/⊥L rule. Thus the transformed structure is a valid proof.

The other crucial case of cut elimination pertains directly to the explicit contraction rule Con. Any
consecutive applications of Con on the same formula can be merged (since the [ ] context is a set). We then
transform all instances of cut where the right-side cut formula is the conclusion of a Con rule:

Γ ` A; [A,∆]

Γ ` A; [∆]
Con

A,Γ′ ` B; [∆′]

ΓΓ′ ` B; [∆∆′]
cut

The subproof above Con may contain instances of Esc with active formula A. In fact, these instances can
be “stacked:”

Γ1 ` A; [A,∆1]

Γ1 ` ⊥; [A,∆1]
Esc

...
Γ2 ` A; [A,∆2]

Γ2 ` ⊥; [A,∆2]
Esc

...
Γ ` A; [A,∆]

Γ ` A; [∆]
Con

Note however, once A has been added to the [ ]-context (viewing the proof from the bottom), further
contractions on A are superfluous, and thus we can assume that no further Con rules on A will appear in
the subproof. Furthermore, in the uppermost instance of Esc, A can be deleted from the [ ]-context, since
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it will not be “used” again. This cut is transformed as follows (for each branch of the left subproof):

Γ1 ` A; [∆1] A,Γ′ ` B; [∆′]

Γ1Γ′ ` B; [∆1∆′]
cut

Γ1Γ′ ` ⊥; [B,∆1∆′]
Esc

...

Γ2Γ′ ` A; [B,∆2∆′] A,Γ′ ` B; [∆′]

Γ2Γ′ ` B; [B,∆2∆′]
cut

Γ2Γ′ ` ⊥; [B,∆2∆′]
Esc

...

ΓΓ′ ` A; [B,∆∆′] A,Γ′ ` B; [∆′]

ΓΓ′ ` B; [B,∆∆′]
cut

ΓΓ′ ` B; [∆∆′]
Con

For each new cut introduced, we can assume that the right-side cut formula A is not again the conclusion
of Con, since such contractions are redundant in the original proof and can be eliminated. Thus the new
cuts introduced have fewer contractions on the cut formula in their subproofs, thus reducing the inductive
measure. The key case for ∨ is similar: we permute the cuts into points of the subproofs indicated by Esc.
Each new cut has a smaller cut formula (also see Section 6). This completes the cut-elimination proof. 2

5 Soundness and Completeness

The soundness of the proof systems with respect to the Kripke semantics is not as straightforward as one
might expect. We must be careful in interpreting a sequent as a single formula. In intuitionistic logic,
(A ⊃ B) ∨ D is not equivalent to A ⊃ (B ∨ D), but the corresponding equivalence does hold in classical
logic. It would be a mistake to interpret the right-hand side of sequents, A; [∆], as a disjunction over A and
the formulas in ∆ since we do not know if the sequent in question has an intuitionistic proof.

Let Γ̂ represent the ∧-conjunction over all formulas in Γ. If Γ is empty, then Γ̂ represents >. Let ∆̌
represent the ∨-disjunction over all formulas in ∆. If ∆ is empty, then ∆̌ represents 0. The semantic
interpretation of a sequent as a formula is defined as follows:

M |= (Γ ` A; [∆]) if and only if M |= (¬∆̌ ∧ Γ̂) ⊃ A

This interpretation is adequate for soundness, for an end-sequent ` A; [ ] is interpreted as ((0 ⊃ ⊥)∧>) ⊃ A,
which is equivalent to A.

The reader may observe that this interpretation of sequents is similar to a double-negation translation.
However, the “translation” is only used for the sake of a semantic argument, and has no impact on the
structure of proofs. We do not believe that there is a translation from ICL to intuitionistic logic (or even
to linear logic - see Section 8) that would preserve the structure of proofs, including at least some of the
structure of the cut-elimination procedure.

Theorem 4 (Soundness) If a formula is provable then it is valid in all r-models.

Proof By induction on the structure of LJC proofs (NJC can also be used). Given the interpretation of
sequents, the cases of most of the inference rules use the same arguments as for intuitionistic logic: that is
to say that they are straightforward. We show the cases that are unique to ICL.

For the Esc rule, if the premise is provable then by inductive hypothesis (¬∆̌ ∧ Γ̂) ⊃ A is valid in all
models. We need to show the same for the formula (¬(A ∨ ∆̌) ∧ Γ̂) ⊃ ⊥. For any world u in any model, if
u |= ¬(A∨ ∆̌)∧ Γ̂ then u |= Γ̂ and u |= ¬(A∨ ∆̌). This implies that if u |= A then u |= ⊥, and if u |= ∆̌ then
u |= ⊥. The same is true for all v � u, and thus u |= ¬A and u |= ¬∆̌. But then u |= A by the inductive
hypothesis, so u |= ⊥.
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For one of the ∨R (∨I) rules, assume that (¬(A∨ ∆̌)∧ Γ̂) ⊃ B is valid. We need to show that (¬∆̌∧ Γ̂) ⊃
A ∨ B is also valid. For any possible world u, we know that u |= A ∨ ¬A. Thus if u |= ¬∆̌ ∧ Γ̂ but u 6|= A,
then u |= ¬A. We can derive from this that u |= ¬(A ∨ ∆̌), and thus u |= B and therefore u |= A ∨B.

The case for the contraction Con rule is similar: we show the result by contradicting the assumption that
u 6|= A, since that would imply u |= ¬A, which by inductive hypothesis implies that u |= A. 2

Our completeness proof for LJC makes critical use of cut-elimination. The organization of our proof is
loosely based on Fitting [Fit69]. We use the notation Γ 6` A; [∆] to indicate that the sequent in question
is not provable (in which case we also say that Γ 6` A; [∆] is consistent). Our tableau is constructed from
structures consisting of a tuple of sets of formulas (Γ,∆,Θ), with Θ non-empty. We refer to such a structure
as an antisequent. An antisequent is consistent if Γ 6` A; [∆] for all formulas A ∈ Θ.

A set of formulas Γ is ⊥-consistent if Γ 6` ⊥; [ ]. Our strategy is to construct a maximally ⊥-consistent
set to represent the root of a countermodel.

Given an unprovable formula A0, we fix an enumeration of all subformulas of A0 as B1, B2, . . .. For each Bi
we also consider its classical negation ¬Bi. For this purpose we define the enumeration A1, A2, A3, A4, . . . =
B1,¬B1, B2,¬B2, . . .. We also assume that this enumeration has the property that if Bi is smaller (has
fewer symbols) than Bj , the i > j, i.e, larger subformulas (and their negations) are enumerated first (this
assumption is not strictly required but it simplifies some of the subsequent arguments). We use the following
pseudo-procedure to show the existence of a saturated antisequent.

1. Let Γ0 = ∆0 = {}. Let Θ0 = {A0,⊥}. Let the antisequent S0 = (Γ0,∆0,Θ0). S0 is consistent since
` ⊥; [ ] has no proof and ` A; [ ] is assumed to have no proof.

2. For each i > 0 and formula Ai, if (Ai,Γi−1,∆0,Θ0) is consistent, let Γi = Ai,Γi−1; otherwise, let
Γi = Γi−1. Let Γ∗ =

⋃
Γi.

3. For each i > 0 and subformula Ai, if (Γ∗, Ai,∆i−1,Θ0) is consistent, let ∆i = Ai,∆i−1; otherwise, let
∆i = ∆i−1. Let ∆∗ =

⋃
∆i.

4. For each i > 0 and subformula Ai, if (Γ∗,∆∗, Ai,Θi−1) is consistent, let Θi = Ai,Θi−1; otherwise, let
Θi = Θi−1. Let Θ∗ =

⋃
Θi.

5. Let R = S∗0 = (Γ∗,∆∗,Θ∗)

It can be shown that R satisfies the following properties:

Lemma 5 For S∗0 as defined,

1. S∗0 remains consistent.

2. If A∧B ∈ Θ∗, then either A ∈ Θ or B ∈ Θ∗, since at least one premise of ∧R with A∧B as principal
formula must be consistent.

3. If A ∨B ∈ Θ∗ then both A ∈ Θ∗ and B ∈ Θ∗.

4. If A ∧B ∈ Γ∗ then A ∈ Γ∗ and B ∈ Γ∗.

5. If A ∨B ∈ Γ∗ then either A ∈ Γ∗ or B ∈ Γ∗

6. If A ⊃ B ∈ Γ∗ then either A ∈ Θ∗ or B ∈ Γ∗.

7. A formula F is in at most one of the sets Γ∗ and Θ∗, by virtue of the Id rule.

8. ∆∗ = Θ∗. Since ⊥ ∈ Θ∗ and the antisequent is consistent, the premise of all instances of Esc-rules
must also be consistent (unprovable), thus F ∈ ∆∗ implies F ∈ Θ∗. Conversely, by virtue of the Con
rule, if F ∈ Θ then F ∈ ∆.
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9. Exactly one of Bi and ¬Bi is always in Γ∗, for each subformula Bi of A0.

Both cannot be in Γ∗ because⊥ ∈ Θ0. Since Γ ` Bi∨¬Bi; [∆] is always provable, if Bi∨¬Bi,Γ ` A0; [∆]
is provable, then by cut-elimination Γ ` A0; [∆] is also provable. Thus the consistency of Γ 6` A0; [∆]
implies the consistency of Bi∨¬Bi,Γ 6` A0; [∆], and therefore either Bi,Γ 6` A0; [∆] or ¬Bi,Γ 6` A0; [∆].

The last property is most crucial and is why we first gave a cut-elimination proof. It means that for any
unprovable formula A0, there is a saturation that is maximally ⊥-consistent. In addition, this saturation
have the properties of a Hintikka set, up to A ⊃ B ∈ Θ∗.

Note that the saturation S∗ can be defined for any consistent antisequent S in exactly the same way.
However, above R the content of ∆∗ would be meaningless since Γ∗ would become ⊥-inconsistent. All the
Hintikka-set properties of Lemma 5 are retained except for properties 8 and 9, which only apply to R.

The countermodel forA0 is formed by defining a sequence of saturated , consistent antisequents S∗0 , S
∗
1 , S

∗
2 . . .

as follows:

1. Given S∗i = (Γi,∆i,Θi), enumerate all formulas of the form A ⊃ B ∈ Θi as G1, . . . Gn.

2. For each Gj = A ⊃ B, let Si+j = ({A} ∪ Γi,∆i, {B}) and form the saturation S∗i+j , but ignoring ∆i

(∆i+1 = ∆i). This defines S∗i+1, . . . S
∗
i+n.

3. Now enumerate all formulas of the form A ⊃ B ∈ Θi+1 as G′1, . . . , G
′
k and form S∗i+n+1, . . . , S

∗
i+n+k as

above. Repeat exhaustively.

For propositional logic, by the subformula property the number of possible antisequents consisting of the
subformulas of a designated formula is clearly bounded, therefore giving rise to a finite sequence S∗0 , . . . , S

∗
m.

This sequence forms a saturated tableau.
Above R, this argument is no different from regular intuitionistic logic: the consistency of Γ 6` A ⊃ B; [∆]

requires forming a new possible world above the one represented by Γ. The key difference here is that, since
Γ∗ in S∗0 = (Γ∗,∆∗,Θ∗) is maximally ⊥-consistent, either A,Γ∗ = Γ∗ or A,Γ∗ is ⊥-inconsistent. Furthermore,
if A,Γ∗ = Γ∗, then it must also hold that {B}∗ = Θ∗, since Γ∗ 6` B; [∆∗] is assumed consistent. This means
that, in fact, Sj = S0 if Gj = A ⊃ B and A,Γ∗ = Γ∗. The countermodel is formalized as follows:

Given S∗0 , S
∗
1 , S

∗
2 . . . S

∗
m as defined above for an unprovable formula A0, form the r-model 〈W, r,�, |=〉 by

setting W = S∗0 , . . . , S
∗
m and r = S∗0 ; let S∗i � S∗j if Γi ⊆ Γj and set S∗i |= a if a ∈ Γi for atomic formulas a.

The |= relation is then extended to all formulas as defined.

Lemma 6 The structure 〈W, r,�, |=〉 formed from the saturated tableau S∗0 , . . . , S
∗
m is a r-model, and the

following holds for each S∗i = (Γi,∆i,Θi)

1. if A ∈ Θi then S∗i 6|= A

2. if A ∈ Γi then S∗i |= A

Proof That the structure is indeed a r-model follows easily from the above definitions and arguments. In
particular, because the enumeration of the subformulas of A0 and their negations, A1, A2, . . ., is fixed, when
Γi = Γj it follows that Θi = Θj , and thus � is a partial ordering relation.

The proof of the two listed properties is by a simultaneous induction on the structure of formulas. We
detail the important cases.

For an atomic formula a, if a ∈ Γi then S∗i |= a by definition; if a ∈ Θi then a 6∈ Γi for else the antisequent
would be inconsistent, and thus S∗i 6|= a.

For A ⊃ B ∈ Γi, we also have that A ⊃ B ∈ Γj for all Γj ⊇ Γi. But then (by lemma 5) either A ∈ Θj or
B ∈ Γj so by inductive hypothesis S∗j 6|= A or S∗j |= B, for all S∗j � S∗i . Thus by definition of |=, S∗i |= A ⊃ B.
On the other hand, if A ⊃ B ∈ Θi then there exists a S∗j � S∗i with A ∈ Γj and B ∈ Θj . Thus by inductive
hypothesis S∗j |= A but S∗j 6|= B and thus S∗i 6|= A ⊃ B by definition of |=. The other connectives are similar.

If ⊥ ∈ Γi, it cannot be the case that Γi = Γ0 since ⊥ ∈ Θ0 and S∗0 is consistent. Thus S∗i � S∗0 (properly
above S∗0 ) and by definition of |=, S∗i |= ⊥. If ⊥ ∈ Θi, then it must be the case that Θi = Θ0, since otherwise
Γi is ⊥-inconsistent (because either Bi ∈ Γ0 or ¬Bi ∈ Γ0). But by definition of |= for r, S∗0 6|= ⊥.
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2

Completeness in contrapositive form follows directly from the lemma: given an unprovable formula A0,
in the model 〈W, r,�, |=〉 as defined, r 6|= A0 since r = S∗0 and A0 ∈ Θ0.

Theorem 7 (Completeness) If a formula is valid in all r-models then it is provable.

Because the use of contraction is controlled, we can also derive from completeness and the subformula
property of cut-free LJC proofs that (propositional) ICL remains decidable. Starting from an end-sequent,
one enumerates all possible proof fragments of height one. Each applicable instance of an inference rule will
form a branch in a tree. For each branch we then enumerate all possible proof fragments of height two,
and repeat exhaustively. A branch can be terminated if an initial rule is encountered. Repeat sequents on
a branch are disregarded. Since we use sets, the number of unique sequents formed from subformulas of a
given formula is finite. In particular every branch of the tree is finite and thus by König’s Lemma, the tree
is also finite.

Corollary 8 ICL in its current propositional form is decidable.

6 Natural Deduction and λγ-Calculus

In this section we reformulate the natural deduction system NJC with a proof-term calculus that extends
λ-calculus. The basis of this term system is Parigot’s λµ-calculus [Par92] and its many variants, notably
those found in [dG94], [OS97], and [AH03]. Much of the syntax found here also borrows from λµ calculus.
However, the system is different enough so that we refer to it as λγ-calculus. The main distinction is that
the logical interpretation of terms and reductions are based on ICL and not classical logic. Additionally,
contraction and disjunctions are given more computationally meaningful interpretations.

We define λγ-terms as one of the following forms:

• λ-variables x, y, . . . and γ-variables a, b, . . .

• λ-abstraction λx.t and γ-abstraction γa.s

• injective abstractions ω`a.s and ωra.s

• application (s t)

• pairs (s, t) and projections (s)` and (s)r.

• escapee: [a]t

The annotated version of NJC is found in Figure 3. We have chosen a multiplicative treatment of contexts
in this presentation because it is more reasonable in practice, although contexts are still represented with
sets. Terms are associated with entire subproofs (not with individual formulas). Formulas in the left-context
Γ are indexed by unique λ-variables and formulas in the right-context [∆] are indexed by unique γ-variables.
In an escaped term [a]t, a is a γ-variable that labels the term t. We assume that all bound variables are
renamed whenever necessary. Since formulas are now indexed, contractions inside the left/right contexts are
nolonger obviated if two instances of the same formula have different indices. However, we note that the
following lemma is provable by a simple induction:

Lemma 9 If s : Ax, Ay,Γ ` B; [Cd, Ce,∆] is provable, then s[x/y][d/e] : Ax,Γ ` B; [Cd,∆] is also
provable;
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s : Γ ` A; [∆] t : Γ′ ` B; [∆′]

(s, t) : ΓΓ′ ` A ∧B; [∆∆′]
∧I

s : Γ ` A; [Bd,∆]

ω`d.s : Γ ` A ∨B; [∆]
∨I1

s : Γ ` B; [Ad,∆]

ωrd.s : Γ ` A ∨B; [∆]
∨I2

t : Ax,Γ ` B; [∆]

(λx.t) : Γ ` A ⊃ B; [∆]
⊃I

s : Γ ` A ∧B; [∆]

(s)` : Γ ` A; [∆]
∧E1

s : Γ ` A ∧B; [∆]

(s)r : Γ ` B; [∆]
∧E2

v : Γ1 ` A ∨B; [∆1] s : Ax,Γ2 ` C; [∆2] t : By,Γ3 ` C; [∆3]

(λx.s, λy.t) v : Γ1Γ2Γ3 ` C; [∆1∆2∆3]
∨E

t : Γ ` A ⊃ B; [∆] s : Γ′ ` A; [∆′]

(t s) : ΓΓ′ ` B; [∆∆′]
⊃E

s : Γ ` 0; [∆]

abort s : Γ ` A; [∆]
0E

exit : Γ ` >; [∆]
>I

x : Ax,Γ ` A; [∆]
Id

t : Γ ` A; [∆]

[d]t : Γ ` ⊥; [Ad,∆]
Esc

u : Γ ` A; [Ad,∆]

γd.u : Γ ` A; [∆]
Con

Figure 3: NJC with terms

We use s[t/q] to represent capture-avoiding substitution in the usual sense, for both γ and λ variables q.
A sample λγ proof term is ω`d.λx.[d]x, which proves ¬A ∨A. For a less trivial example, we give a proof

for the non-intuitionistic case of the De Morgan laws: ¬(A ∧B) ⊃ (¬A ∨ ¬B).

x : ¬(A ∧B)x ` ¬(A ∧B); [ ]

y : ¬(A ∧B)x, Ay, Bz ` A; [ ] z : ¬(A ∧B)x, Ay, Bz ` B; [ ]

(y, z) : ¬(A ∧B)x, Ay, Bz ` A ∧B; [ ]
∧I

x (y, z) : ¬(A ∧B)x, Ay, Bz ` ⊥; [ ]
⊃E

λz.x (y, z) : ¬(A ∧B)x, Ay ` ¬B; [ ]
⊃I

[d]λz.x (y, z) : ¬(A ∧B)x, Ay ` ⊥; [¬Bd]
Esc

λy.[d]λz.x (y, z) : ¬(A ∧B)x ` ¬A; [¬Bd]
⊃I

ω`d.λy.[d]λz.x (y, z) : ¬(A ∧B)x ` ¬A ∨ ¬B; [ ]
∨I1

λx.ω`d.λy.[d]λz.x (y, z) : ` ¬(A ∧B) ⊃ (¬A ∨ ¬B); [ ]
⊃I

The interpretation of disjunctions using a form of abstraction is not so unusual when one considers its
similarity to implication: both are “multiplicative disjunctions.” Our ω`/r-binders are similar to the one of
[RPW00], though there are important differences (see Section 8). A ∨-introduction rule discharges a formula
from the right context just as ⊃-introduction discharges a formula from the left context. A vacuous ω`/r

binder degrades to a left/right injection operator. Intuitively, the computational meaning of a (non-vacuous)
ω-abstraction can be thought of as that of coroutines, with terms [d]r representing yield. Alternatively, one
can think of ω`d.s of type A ∨ B as a procedure of type A that can throw an exception of type B (and
similarly for ωrd.s), with [d]r representing a throw operation.

Contractions are represented in terms as γ-abstractions of the form γa.s where a is a γ-variable.

Choices in Term Reduction Strategies

To specify term reduction rules, a choice needs to be made in regard to the cut-elimination procedure when
right-side contractions are involved. Consider again a right-side cut formula that is subject to contraction:

Γ ` A; [A,∆]

Γ ` A; [∆]
Con

A,Γ′ ` B; [∆′]

ΓΓ′ ` B; [∆∆′]
cut

The cut-elimination procedure for LJC defined in Section 4 is consistent with a call-by-value reduction
strategy (the uppermost cuts are reduced first), while normalization in natural deduction does not fix an
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evaluation strategy. Additionally, in NJC it is not always necessary to permute a cut above a contraction
(Con). In sequent calculus, a cut on a compound formula is always decomposed into cuts on subformulas.
However, in natural deduction there are no left-introduction rules and thus no “key cases.” The redex formed
by ⊃E is always permuted up to an initial rule, which implies a wholesale substitution of the left subproof
into the right subproof, with the original contraction intact. As a result, there are two valid ways to reduce
this cut. In the terminology of Parigot, this conflict can be explained in terms of structural reduction versus
logical reduction. The mixture of these strategies must be careful to preserve confluence.

The cut rule is also admissible in NJC and can be annotated with terms, as it is a modus ponens in thin
disguise:

t : Γ ` A; [∆] s : Ax,Γ′ ` B; [∆′]

(λx.s) t : ΓΓ′ ` B; [∆∆′]
cut

It is also possible to define a secondary cut rule:

Γ ` A; [B,∆] B,Γ′ ` C; [∆′]
ΓΓ′ ` A; [C,∆∆′]

cut2

The admissibility of cut2 is by translation to cut. However, this type of cut requires a form of substitution
different from that of β-reduction. Substitution must take place inside the left subproof of cut2, at points
indicated by Esc, which are represented by terms of the form [d]w. That is,

r : Γ1 ` B; [∆1]

[d]r : Γ1 ` ⊥; [Bd,∆1]
Esc

...

t : Γ ` A; [Bd,∆] s : Bx,Γ′ ` C; [∆′]

u : ΓΓ′ ` A; [Cd,∆∆′]
cut2

is equivalent to1

r : Γ1 ` B; [∆1] s : Bx,Γ′ ` C; [∆′]

(λx.s)r : Γ1Γ′ ` C; [∆1∆′]
cut

[d](λx.s)r : Γ1Γ′ ` ⊥; [Cd,∆1∆′]
Esc

...

u = t{[d](λx.s) w/[d]w} : ΓΓ′ ` A; [Cd,∆∆′]

The substitution t{[a]v/[a]w} represents “inductively replacing in t all occurrences of subterms of the form
[a]w with [a]v:” this is the same substitution operation used for structural reduction in λµ-calculus.

Now consider the permutation of cut above contraction in light of these annotations:

t : Γ ` A; [Ad,∆]

γd.t : Γ ` A; [∆]
Con

s : Ax,Γ′ ` B; [∆′]

(λy.s) γd.t : ΓΓ′ ` B; [∆∆′]
cut

The above cut reduces to the following, with corresponding effect on the terms:

t : Γ ` A; [Ad,∆] s : Ax,Γ′ ` B; [∆′]

t{[d](λx.s) w/[d]w} : ΓΓ′ ` A; [Bd,∆∆′]
cut2

s : Ax,Γ′ ` B; [∆′]

((λx.s) t{[d](λx.s) w/[d]w}) : ΓΓ′ ` B; [Bd,∆∆′]
cut

γd.((λx.s) t{[d](λx.s) w/[d]w}) : ΓΓ′ ` B; [∆∆′]
Con

This transformation directly suggests a reduction rule of the form

(λx.s) (γa.t) −→ γa.((λx.s) t{[a]((λx.s) w)/[a]w}) (γ-reduction)
1We have annotated the conclusion of cut2 with the same term as the translated form because we do not wish to introduce

another form of redex, which would unnecessarily complicate the term rewriting system.
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1. (λx.s) t −→ s[t/x]. (β-reduction)

2. (γd.s) t −→ γd.(s{[d](w t)/[d]w} t). (µγ-reduction)

3. (u, v) (ω`d.t) −→ γd.(u t{[d](v w)/[d]w});
(u, v) (ωrd.t) −→ γd.(v t{[d](u w)/[d]w}) (ω-reduction)

4. (u, v) γd.t −→ γd.(u, v) t{[d](u, v)w/[d]w} (ωγ-reduction)

5. (u, v)` −→ u; (u, v)r −→ v. (projections)

6. (γd.s)` −→ γd.s`{[d]w`/[d]w}; (γd.s)r −→ γd.sr{[d]wr/[d]w}. (γ-projections)

7. (ωra.s) t −→ ωra.s{[a](r t)/[a]r}; (ω`a.s) t −→ ω`a.s{[a](r t)/[a]r}. (ωµ-reduction)

8. (abort s) t −→ (abort s). (aborted reduction)

9. γa.s −→ s when a does not appear free in s. (vacuous contraction)

10. γa.γb.s −→ γa.s[a/b]. (γ-renaming)

11. [d]γa.s −→ [d]s[d/a]. (µ-renaming)

Figure 4: Term Reduction Rules

However, this rule clashes with β-reduction in the usual sense. Consider the term (λx.s) ((λy.y) γa.u),
which will likely reduce in divergent directions. One way to solve this problem, which has been used by
others in similar contexts (including [OS97]), is to require a call-by-value reduction strategy. This may in
fact be the most reasonable choice, but our goal is to explore, in this presentation, the range of possibilities
that the structure of ICL proofs suggest, without fixing a reduction strategy. We make a choice similar to
that of the original λµ-calculus, which is to defer to β-reduction in this situation. Instead, redexes of the
form (γd.s) t are allowed, leading to what we refer to as “µγ-reduction.”

First, we list the entire set of reductions rules in Figure 4. These rules define cut-elimination for NJC.
Each rule either eliminates a redex/cut by substitution, or reduces the cut to either cuts on smaller formulas
(as in ∨E) or pushes the redex inside a γ (Con). We discuss these rules below.

Disjunctions in ICL can represent at least the same level of computational content found in λµ-calculus
and its variants. When NJC is presented without terms, it may appear that Con can be derived from a
combination of ∨I and ∨E. With terms, however, it becomes evident that a non-additive ∨E embeds a
contraction, which should be considered a primitive operation. A non-intuitionistic proof of A ∨ B may
contain subproofs of A as well as those of B: a contraction will be needed in ∨-elimination to form a proof
of C; [∆] from a proof of C; [C,∆]. The γ binder is needed in addition to ω`/r lest we confuse A with A∨A.

In NJC, a ∨-elimination “redex” is represented by the application of a pair of λ-terms to a ω`/r-
abstraction, with the following reduction rule:

(λx.s, λy.t) (ω`d.u) −→ γd.(λx.s) t{[d](λy.t) w/[d]w} (ω-reduction)

and similarly for ωrd.u. It corresponds to the normalization/cut-elimination case for ∨E:

r : Γ1 ` B; [∆1]

[d]r : Γ1 ` ⊥; [Bd,∆1]
Esc

...

u : Γ ` A; [Bd,∆]

ω`d.u : Γ ` A ∨B; [∆]
∨I1

s : Ax,Γ ` C; [∆] t : By,Γ ` C; [∆]

(λx.s, λy.t) ω`d.u : Γ ` C; [∆]
∨E
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Here, subproofs of the form [d]w can occur multiple times in the proof u. This proof reduces to:

r : Γ1 ` B; [∆1] t : By,Γ ` C; [∆]

(λy.t) r : Γ1Γ ` C; [∆1∆]
cut

[d](λy.t) r : Γ1Γ ` ⊥; [Cd,∆1∆]
Esc

...

u{[d](λy.t)w/[d]w} : Γ ` A; [Cd,∆] s : Ax,Γ ` C; [∆]

(λx.s) u{[d](λy.t)w/[d]w} : Γ ` C; [Cd,∆]
cut

γd.(λx.s) u{[d](λy.t)w/[d]w} : Γ ` C; [∆]
Con

After further cut-reduction, the term reduces to γd.s[u{([d]t[w/y])/[d]w}/x].
The µγ rule applies a γ-abstraction to a term. This rule represents the permutation of cut above Con

when the cut formula is of the form A ⊃ B (i.e., a ⊃E beneath a Con), as well as when it is of the form A∨B
(for ωµ-reduction) and 0 (for aborted reduction). The cases when the redex above Con is a ∨-elimination or
∧-elimination are represented by the ωγ rule and the γ-projection rules respectively. All rules are implied
to have requirements regarding capture-avoiding substitution (e.g. in the µγ rule d is not free in t).

The structural reduction rule in λµ-calculus is

(µa.s) t −→ γa.s{[a](w t)/[a]w}

The difference between this “µ-reduction” and our “µγ-reduction” can be explained by the following types
of inferences (leaving out the contexts Γ,∆ for intuitive clarity):

A ⊃ B; [A ⊃ B] A

B; [B]
µγ A,B ⊃ C B

A,C
µ

We cannot adopt the λµ reduction rule directly because γ-abstractions correspond to contractions. Although
the original reduction rule of λµ-calculus appears to be more flexible, it is something that can be recovered
with another form of ω-reduction.

The ωµ reduction rules are the closest counterpart to structural reduction as defined by Parigot, but has
a different logical interpretation. The rules correspond to inferences of the following forms:

s : Γ ` A; [(B ⊃ C)d,∆]

ω`d.s : Γ ` A ∨ (B ⊃ C); [∆]
∨I1

t : Γ′ ` B; [∆′]

(ω`d.s) t : ΓΓ′ ` A ∨ C; [∆∆′]

s : Γ ` B; [(A ⊃ C)d,∆]

ωrd.s : Γ ` (A ⊃ C) ∨B; [∆]
∨I2

t : Γ′ ` A; [∆′]

(ωrd.s) t : ΓΓ′ ` C ∨B; [∆∆′]

These rules, and the corresponding ωµ reduction rule, are also admissible by cut-elimination. For example,
the rule for ω` corresponds to:

s : Γ ` A; [(B ⊃ C)d; ∆]

x : (B ⊃ C)x,Γ′ ` B ⊃ C; [∆′] t : (B ⊃ C)x,Γ′ ` B; [∆′]

(x t) : (B ⊃ C)x,Γ′ ` C; [∆′]
⊃E

s{[d](λx.x t) w/[d]w} : ΓΓ′ ` A; [Cd,∆∆′]
cut2

ω`d.s{[d](λx.x t) w/[d]w} : ΓΓ′ ` A ∨ C; [∆∆′]
∨I1

Here, x is not free in t and s{[d](λx.x t) w/[d]w} will of course reduce to s{[d]w t/[d]w}. We show later in
this section how these reductions can be regarded as consistent with ∨-elimination.

The µ-renaming rule is equivalent to a rule found in λµ-calculus. In the context of NJC this rule
corresponds to the elimination of a redundant contraction, because the active formula A in an Esc rule can
always persist in the context ∆:

s : Γ ` A; [Ab,∆]

γb.s : Γ ` A; [∆]
Con

[d]γb.s : Γ ` ⊥; [Ad,∆]
Esc

is converted to
s[d/b] : Γ ` A; [Ad,∆]

[d]s[d/b] : Γ ` ⊥; [Ad,∆]
Esc
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Likewise, the γ-renaming rule eliminates consecutive contractions, which are redundant since contractions
inside the [∆] context are always admissible (Lemma 9).

Projections are a special kind of “application”, and require rules similar to γ-reduction, since all terms
may be prefixed by γ.

Finally, the rule for abort is also justified in the proof theory since if 0-elimination proves A ⊃ B
then certainly 0-elimination proves B. abort can be considered to be a constant of type 0 ⊃ A (which
has proof λx.abort x). Note that (γd.abort s) t reduces to γd.(abort s){[d]w t/[d]w} t, which reduces to
γd.abort s{[d]w t/[d]w}. It is subject only to structural reduction: the outer application to t is absorbed.

We define a term t to be of type A if t : `A; [ ] is provable. Clearly only closed terms are typed.
Subject reduction is a consequence of the fact that the reduction rules follow cut-elimination and other

valid proof transformations, as we have already shown:

Proposition 10 (Subject Reduction) If t has type A and t −→ t′, then t′ also has type A.

The Computational Content of Contraction and Disjunction

An important proof term is that of our version of Peirce’s formula, ((P ⊃ ⊥) ⊃ P ) ⊃ P :

x : (¬P ⊃ P )x ` ¬P ⊃ P ; [ ]

y : (¬P ⊃ P )x, P y ` P ; [ ]
Id

[d]y : (¬P ⊃ P )x, P y ` ⊥; [P d]
Esc

λy.[d]y : (¬P ⊃ P )x ` ¬P ; [P d]
⊃I

(x λy.[d]y) : (¬P ⊃ P )x ` P ; [P d]
⊃E

γd.(x λy.[d]y) : (¬P ⊃ P )x ` P ; [ ]
Con

λx.γd.(x λy.[d]y) : ` (¬P ⊃ P ) ⊃ P ; [ ]
⊃I

This term is different from what corresponds to Peirce’s formula in λµ-calculus and its variants in that it
does not require a second [d] to label the entire subterm under γd, for that is obviated by µγ-reduction. Cut-
elimination in the presence of a contraction requires reductions inside the [ ] context as well as outside. This
term can still emulate the call/cc construct of programming languages. Call this term K, then (K M k1 k2)
reduces to a term of the form γd.(M λy.[d](y k1 k2)) k1 k2. For example, given the term context E[z] =
(z k1 k2), E[KM ] reduces to γd.E[M(λy.[d]E[y])], which emulates the behavior of call/cc (see [dG94] for
further analysis of λµ-based systems and control operators).

In contrast to call/cc, the C operator of Felleisen et al. [FFKD87] has a different behavior, and has been
given the classical type ¬¬A⇒ A. The ICL formulas ¬¬A ⊃ A and ∼∼A ⊃ A are unprovable, but we can
consider proofs of ∼¬A ⊃ A and ¬¬A ⊃ (A ∨ ⊥). Each of these formulas presents a solution for emulating
C in NJC. The following term proves ∼¬A ⊃ A:

x :∼¬Ax `∼¬A; [ ]

y :∼¬Ax, Ay ` A; [ ]
Id

[d]y :∼¬Ax, Ay ` ⊥; [Ad]
Esc

λy.[d]y :∼¬Ax ` ¬A; [Ad]
⊃I

x λy.[d]y :∼¬Ax ` 0; [Ad]
⊃E

abort (x λy.[d]y) :∼¬Ax ` A; [Ad]
0E

γd.abort (x λy.[d]y) :∼¬Ax ` A; [ ]
Con

λx.γd.abort (x λy.[d]y) : ` ∼¬A ⊃ A; [ ]
⊃I

If this proof term is labeled C1, then C1M , when applied to a term t, is only subject to structural reduction in-
side the abort subterm, by virtue of the rule (abort s) t −→ (abort s). We note that C1M = K(λk.abort(M k))
and that C1(λz.M) = abort(M) for z not free in M (the γd in this term will be vacuous). Compare C1 to
the version of C in the original λµ-calculus: λx.µα.[ϕ](x λy.µδ.[α]y). Here abort replaces the free variable
ϕ (which, like abort, persists in the term after reduction). If t : `A; [ ] is provable in NJC then t must be
closed, thus all valid formulas of ICL are proved by closed terms.
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The other approach to emulating C is to make direct use of the enriched interpretation of disjunction.
The formula ¬¬A ⊃ (A ∨ ⊥) has the following proof (shortened to avoid repetition):

x : ¬¬Ax ` ¬¬A; [ ] λy.[d]y : ¬¬Ax ` ¬A; [Ad]

(x λy.[d]y) : ¬¬Ax ` ⊥; [Ad]
⊃E

ωrd.(x λy.[d]y) : ¬¬Ax ` A ∨ ⊥; [ ]
∨I2

λx.ωrd.(x λy.[d]y) : ` ¬¬A ⊃ (A ∨ ⊥); [ ]
⊃I

Refer to this term as C2. The ωµ reduction rule gives this term the expected behavior of the control operator.
C2M reduces to ωrd.M(λy.[d]y) and C2Mt reduces to ωra.M(λy.[a]y t).

One might argue that the ωµ reduction rules were added specifically to accommodate the C operator.
However, with the enriched computational interpretation of disjunction some of the benefits of both call/cc
and C can be obtained directly. For example, exception handling can be modeled by an ∨-elimination
(λx.(x s), λy.u) (ω`d.λz.t). Here, x is not free in s (thus reversing the application) and ω`d.λz.t is of type
(A ⊃ C) ∨ B, i.e., a procedure of type A ⊃ C that could throw an exception of type B. The term s (input)
has type A and the exception handler λy.u has type B ⊃ C. The redex thus has the intuitive meaning of

try (λz.t)s catch exception e with λy.u.

The term reduces to γd.t{[d]λ(y.u)e/[d]e}[s/z] and has type C. A vacuous γ would indicate that no exceptions
were thrown, in which case the term reduces to t[s/z]. Surely this is a more intuitive representation of
exception handling compared to using call/cc.

In λµ-calculus and related systems, the C operator is usually typed as ¬¬P ⇒ P , with “⇒” representing a
classical implication. It is here that the approach of ICL distinguishes itself. The formula ¬¬P ⊃ P remains
unprovable in ICL because ⊃ represents intuitionistic implication. ¬¬P ⇒ P is provable, but what of its
computational content? The formula A ⊃ (B ∨⊥) is logically equivalent in ICL to ¬A∨B, and thus can be
considered equivalent to classical implication. But that, of course, would be a very fortuitous interpretation
of classical implication. With the definition of A ⇒ B as ¬A ∨ B, ¬¬P ⇒ P becomes ¬¬¬P ∨ P , and
we get a different, albeit similar proof term: ω`d.λx.x(λy.[d]y). The computational content of this term is
different from that of C. With A ⇒ B defined as ¬(A ∧ ¬B), which is suggested by some double-negation
translations of classical logic, the proof of ¬¬P ⇒ P is a pure λ-term, which does not enable structural
reduction. Moreover, since ¬¬A ≡ (A ∨ ⊥), if we had chosen to define classical implication as A ⊃ ¬¬B,
then the proof of ¬¬P ⇒ P becomes merely λx.x, losing virtually all computational content.

In short, the computational interpretation of classical logic is dependent on how we choose to inter-
pret classical implication, which does not have the naturally computational properties of its intuitionistic
counterpart.

Confluence

To prove confluence, we follow the commonly used Tait-Martin Löf strategy of first defining a parallel,

reflexive reduction relation
‖−→ as follows:

• s ‖−→ s.

The following rules all have the assumption s
‖−→ s′:

• λx.s ‖−→ λx.s′; γd.s
‖−→ γd.s′.

• ω`d.s ‖−→ ω`d.s′; ωrd.s
‖−→ ωrd.s′.

• [d]s
‖−→ [d]s′; γa.s

‖−→ s′, where a is not free in s.

• γaγb.s ‖−→ γa.s′[a/b]; [a]γb.s
‖−→ [a]s′[a/b].

18



• (s, t)`
‖−→ s′; (t, s)r

‖−→ s′; abort s
‖−→ abort s′.

• (γa.s)`
‖−→ γa.s′`{[a]w`/[a]w}; (γa.s)r

‖−→ γa.s′r{[a]wr/[a]w}.

• (γa.(γb.s)`)
‖−→ γa.s′[a/b]`{[a]w`/[a]w}; (γa.(γb.s)r)

‖−→ γa.s′[a/b]r{[a]wr/[a]w}.

The following rules have the assumptions s
‖−→ s′ and t

‖−→ t′:

• (s t)
‖−→ (s′ t′); (s, t)

‖−→ (s′, t′); (abort s) t
‖−→ (abort s′)

• (λx.s) t
‖−→ s′[t′/x]; (γd.s) t

‖−→ γd.(s′{[d]w t′/[d]w} t′)

• γa.((γb.s) t) ‖−→ γa.(s′[a/b]{[a]w t′/[a]w} t′)

• (ω`d.s) t
‖−→ ω`d.s′{[d]w t′/[d]w}; (ωrd.s) t

‖−→ ωrd.s′{[d]w t′/[d]w}.

The following rules have the assumptions s
‖−→ s′, t

‖−→ t′ and u
‖−→ u′:

• (s, t) ω`d.u
‖−→ γd.(s′ u′{[d]t′ w/[d]w}); (s, t) ωrd.u

‖−→ γd.(t′ u′{[d]s′ w/[d]w})

• (s, t) γd.u
‖−→ γd.((s′, t′) u′{[d](s′, t′)w/[d]w})

• γa.((s, t) γb.u)
‖−→ γa.(s′, t′)u′[a/b]{[a](s′, t′)w/[a]w}, where a is not free in (s, t).

The following properties of
‖−→ are provable by induction.

1. If s
‖−→ s′ and x is free in s′ then x is free in s.

2. If s
‖−→ s′ and t

‖−→ t′ then s[t/x]
‖−→ s′[t′/x].

3. If s
‖−→ s′ and t

‖−→ t′ then s{[d]t/[d]w} ‖−→ s′{[d]t′/[d]w}

Proposition 11 If s
‖−→ s1 and s

‖−→ s2, then for some term t, s1
‖−→ t and s2

‖−→ t.

To prove the above “diamond property” for
‖−→, we argue by (simultaneous) induction on the structure

of terms. The base case of variables x, a reduces only to themselves. Most of the cases follow directly from
the inductive hypotheses. Some slightly non-trivial cases arise from “critical pairs,” where more than one
(non-reflexive) rule is applicable to a term. Many of these cases involve the renaming rules and terms of
the form γd.s. These cases follow from the property concerning free variables noted above, and from the
renaming of bound-variables, which is always considered implicit.

A minor difficulty arises in the case of the γ-renaming rule, which eliminates consecutive contractions.
For example, such a case occurs when either the µγ rule or the γ-renaming rule can be applied. That

is, (γaγb.s) t
‖−→ (γa.s′[a/b]) t′ by γ-renaming, and (γaγb.s) t

‖−→ γa.((γb.s′){[a]w t′/[a]w} t′) by µγ-
reduction. But then

(γa.s′[a/b]) t′
‖−→ γa.(s′[a/b]{[a]w t′/[a]w} t′), and

γa.((γb.s′){[a]w t′/[a]w} t′) ‖−→ γaγb.(s′{[a]w t′/[a]w}{[b]r t′/[b]r} t′) ‖−→ γa.(s′[a/b]{[a]w t′/[a]w} t′).

This is a reduction of more than one step. To enforce that the diamond property holds for
‖−→, we have

therefore included the rule
γa.((γb.s) t)

‖−→ γa.(s′[a/b]{[a]w t′/[a]w} t′)
Other cases are similar. The confluence of −→ follows from Proposition 11.
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The Permutation of Contractions (Somewhat tentative)

The ωµ reduction rules were specifically used to provide the equivalent of µ-reduction in λµ calculus.
The logical inference, from (A ⊃ B)∨C and A to B ∨C, is clearly sound, and the reduction rule correspond
to the cut-elimination procedure. However, it is also possible to use a ∨E rule for this deduction, which will
lead to a different kind of term rewriting rule. To reconcile ωµ reduction with ω reduction, we need to first
examine the relationship between the Con rule and the ∨-introduction rules.

We have considered Con as a primitive rule, and included it in our cut-elimination procedure, to show
that an alternative interpretation of disjunctions is possible. The injective abstractions ω` and ωr can be
replaced by the usual injection operations, labeled s` and sr, and the ∨I rules will revert to their usual
additive forms:

s : Γ ` A1; [∆]

s` : Γ ` A1 ∨A2; [∆]
∨Ia1

s : Γ ` A2; [∆]

sr : Γ ` A1 ∨A2; [∆]
∨Ia2

The proof term for the excluded middle ¬A ∨A would then be γd.(λx.[d]xr)`.
We prefer the more computationally meaningful interpretation of disjunctions using ω` and ωr. However,

having both an explicit contraction rule and a non-additive ∨ will surely generate alternative proofs. We can
generalize the relationship between Con and the ∨I rules by considering the following equivalence between
proofs:

t : Γ ` B; [Ca, C ∨Bd,∆]

ωra.t : Γ ` C ∨B; [C ∨Bd,∆]
∨I2

γd.ωra.t : Γ ` C ∨B; [∆]
Con

≡
t′ : Γ ` B; [Bd, Ca,∆]

γd.t′ : Γ ` B; [Ca,∆]
Con

ωra.γd.t′ : Γ ` C ∨B; [∆]
∨I2

Now the proof term t could have subproofs of the following forms, all marked by Esc rules:

u : Γ1 ` C; [Ca, C ∨Bd,∆1]

[a]u : Γ1 ` ⊥; [Ca, C ∨Bd,∆1]

v : Γ2 ` C; [Be, Ca,∆2]

ω`e.v : Γ2 ` C ∨B; [Ca,∆2]
∨I1

[d]ω`e.v : Γ2 ` ⊥; [Ca, C ∨Bd,∆2]

w : Γ3 ` B; [Ca,∆3]

ωra.w : Γ3 ` C ∨B; [Ca,∆3]
∨I2

[d]ωra.w : Γ3 ` ⊥; [Ca, C ∨Bd,∆3]

These are replaced in t′, respectively, by the following subproofs:

u′ : Γ1 ` C; [Ca, Bd,∆1]

[a]u′ : Γ1 ` ⊥; [Bd, Ca,∆1]

v[d/e] : Γ2 ` C; [Bd, Ca,∆2]

[a]v[d/e] : Γ2 ` ⊥; [Bd, Ca,∆2]

w : Γ3 ` B; [Ca,∆3]

[d]w : Γ3 ` ⊥; [Bd, Ca,∆3]

where u′ relates to u by applying the transformation recursively. A similar equivalence can be shown if ∨I1
was used instead of ∨I2. The transformed proof using t′ pushes γ inward pass ω-binders.

Note that if in the transformed t′ no subproof of the form [d]w exists, then the swapped γ-binder becomes
vacuous and can be eliminated. In light of this fact, consider the following reduction:

s : Γ ` (A ⊃ B) ∨ C; [∆]

y : (A ⊃ B)y,` A ⊃ B; [ ] t : (A ⊃ B)y,Γ ` A; [∆]

(y t) : (A ⊃ B)y,Γ ` B; [∆]
⊃E

ω`e.(y t) : (A ⊃ B)y,Γ ` B ∨ C; [∆]
∨I1

λx.ωra.x : Cx,Γ ` B ∨ C; [∆]

(λy.ω`e.(y t), λx.ωra.x) s : Γ ` B ∨ C; [∆]
∨E

Assume that s = ωrd.u. By the ω-reduction rule as defined, this proof term reduces to

γd.ωra.u{[d]ω`e.(r t)/[d]r}

Both ω-binders in this term are vacuous. Thus by the transformation of t to t′ described above (specifically
for the subproof [d]ω`e.v), this term can be replaced with:

ωra.γd.u{[a](r t)/[d]r} ≡ ωra.u{[a](r t)/[d]r}

In this sense the ωµ reductions are consistent with ∨E and ω reduction. In particular, in regard to the C
operator, we have the following equivalence:

CMt −→ ωra.M(λy.[a]y t) ≡ γd.ωra.M(λz.[d]ω`e.(z t[z/y])) ≡ (λy.ω`e.(y t), λx.ωra.x) (CM)
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In similar manner, it is also possible to push γ into pairs (A ∧ B), and even into λ-abstractions: that
is, permute a Con rule on A ⊃ B into a Con rule on B. It is not possible to push a contraction into an
application (a b) as that would undo cut-elimination.

The permutation of contractions over other introduction rules is related to the phenomenon of focusing.
In a focused proof system, introduction rules are applied in uninterrupted phases, with structural rules only
applicable in between these phases. In the context of the λγ-term calculus, focusing could provide a valuable
tool for program transformation. However, we shall leave that problem to another occasion.

7 A Topological Semantics

Here we define an alternative, topological space semantics for propositional ICL. This semantics has the
advantage of simplicity. Most of the non-intuitionistic axioms of ICL can be verified in this semantics using
a method close to the construction of truth tables. Only a very minimal background in topology is required
to understand this semantics.

To those familiar with the translation of Kripke models into Heyting algebras by forming a lattice of
upwardly closed subsets of the Kripke frame, it should be clear that for any frame with a root, there is a
unique, second largest element of the lattice. This element is the upwardly closed set of all elements of the
poset except the root. This element denotes ⊥; i.e., it is the set of all possible worlds that force ⊥. However,
since Gödel showed that intuitionistic logic is not finitely truth-valued, no finite Heyting algebra suffices to
interpret all of propositional intuitionistic logic. For this purpose we require the topology of a dense-in-itself
metric space, such as that of the real line R. This form of semantics for non-classical logics is due to Tarski
and McKinsey [Tar38, MT46].

Our topological space is a structure (R,O), where O is a set of open sets, which consists of unions over
countable collections of disjoint, open intervals of R (countable by the density of the rationals in R). O
contains R and 0, which is the empty set, and is closed under arbitrary unions and pairwise intersections.
We define a Heyting algebra HR from the topology as 〈O,v,t,u,→,0〉, where v, t (join) and u (meet)
are the usual set-theoretic relations and the relative pseudo-complement a→ b is the interior of (R− a)∪ b,
written I((R− a) ∪ b). We use a different set of symbols for the set-theoretic operators so as to distinguish
formulas of the algebra from general statements concerning sets. Here, “−” is set subtraction.

In this universal topology for ICL, the denotation of ⊥, written ⊥⊥, is R minus a single number. To be
consistent with the usual habit of associating the number 1 with true, let us choose this number to be 1. The
results here will obviously generalize to any other choice. Then ⊥⊥ is defined as

⊥⊥ = {x ∈ R : x < 1 or x > 1}

This is clearly an open set. Furthermore, the only other open set containing ⊥⊥ is R itself. The pair ⊥⊥ and R
effectively forms an embedded, two-element boolean algebra, which is all that is needed to interpret classical
propositional logic. Since it holds that R → ⊥⊥ = ⊥⊥ and ⊥⊥ → ⊥⊥ = R, the boolean complement operation
in this algebra is defined by x → ⊥⊥. The top element of this algebra coincides with the top element of the
host Heyting algebra (there are two false but only one true).

A valuation (i.e., model) is represented by a mapping h from atomic formulas into HR that is extended
to all formulas as follows:

1. h(>) = R; h(0) = 0; h(⊥) = ⊥⊥

2. h(A ∧B) = h(A) u h(B)

3. h(A ∨B) = h(A) t h(B)

4. h(A ⊃ B) = h(A)→ h(B)

In particular h(¬A) = h(A)→ ⊥⊥ and h(∼A) = h(A)→ 0.
There is, however, a degenerate case, which corresponds to r-models with frames consisting of only one

element: the root r itself. Thus h is given an secondary extension to h′, which is defined as follows:
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1. h′(a) = R if 1 ∈ h(a); h′(a) = ⊥⊥ if 1 6∈ h(a) for atoms a

2. h′(0) = h′(⊥) = ⊥⊥; h′(>) = R

3. h′(A ∨B) = h′(A) t h′(B); h′(A ∧B) = h′(A) u h′(B)

4. h′(A ⊃ B) = h′(A)→ h′(B)

h′ maps all formulas into the two-element boolean algebra {R,⊥⊥}.
A formula A is considered valid if for all h, h(A) = R and h′(A) = R. In particular, A ⊃ B is valid under

h if h(A) ⊆ h(B) and h′(A) ⊆ h′(B).
As an example of the need for h′, it holds that ⊥⊥ → 0 = 0 (because ⊥⊥ is dense), which means that

(⊥ ⊃ 0) ⊃ 0 would be considered valid if only interpreted under h. But h′(⊥ ⊃ 0) = ⊥⊥ → ⊥⊥ = R, so
h′((⊥ ⊃ 0) ⊃ 0) = R→ 0 6= R. h′ represents the special case when ⊥ ≡ 0.

The following illuminating properties hold for h and h′:

• 1 ∈ h(A) if and only if h(A)→ ⊥⊥ = ⊥⊥, and likewise for h′

• 1 6∈ h(A) if and only if h(A)→ ⊥⊥ = R, and likewise for h′.

• 1 ∈ h(A) if and only if 1 6∈ h(¬A), and likewise for h′.

The significance of these properties is that, in order to verify an axiom of ICL that involves ⊥, it is often
only necessary to consider the cases 1 ∈ h(A) and 1 6∈ h(A) (and similarly for h′) for each atomic formula A
in the axiom. In other words we can build a kind of truth table. For example, for h(A ∨ ¬A), if 1 ∈ h(A)
then h(¬A) = ⊥⊥, so h(A) ∪ h(¬A) = R. If 1 6∈ A, then h(¬A) = I((R−A) ∪ ⊥⊥) = I(R) = R.

One might suspect that the mapping h′(A) is equivalent to h(¬¬A). It is important that they are not
equivalent. For sake of argument, let us define h2(A) = h(¬¬A) = (h(A) → ⊥⊥) → ⊥⊥. h2 also maps all
formulas to either ⊥⊥ or R. The following properties can be established for h2:

• h2(>) = R; h2(⊥) = h2(0) = ⊥⊥

• h2(A ∧B) = h2(A) u h2(B)

• h2(A ∨B) = h2(A) t h2(B)

However, the homomorphic properties of h2 do not extend to →. A perfect homomorphism would indicate
that intuitionistic implication collapses into a classical one when interpreted under the double-negation ¬¬.
This would compromise our main goal of finding a meaningful combination of intuitionistic and classical
logics in a way that does not destroy either. In contrast, h′ is defined to be a homomorphism on the
two-element boolean algebra. As it corresponds to Kripke models with a single element, it is supposed to
represent those situations where intuitionistic implication does collapse into a classical one.

Compare h2(A ⊃ B) (equivalently (h(A ⊃ B) → ⊥⊥) → ⊥⊥) and h(A ⇒ B) = h(¬A ∨ B) in a situation
where 1 6∈ h(A) and 1 6∈ h(B). Let h(B) be the open interval {x : 2 < x and x < 3}. and h(A) = {x :
0 < x and x < 1}. Then 1 ∈ R − h(A) but 1 6∈ I((R − h(A)) ∪ h(B)) = h(A) → h(B). This scenario is
possible when 1 is a limit point (accumulation point) of h(A) without being inside h(A), and thus may be
excluded by the interior operation I. Under this valuation, h2(A ⊃ B) = ⊥⊥ but h(¬A ∨B) = R. The same
countermodel shows that h2(A ⊃ B) 6= h2(A)→ h2(B).

Correctness of the Topological Semantics

The soundness of the proof systems LJC/NJC with respect to this semantics can be shown by induction
on the structure of proofs, much as in the soundness proof for the Kripke semantics. We concentrate on
completeness, which relies on known results for intuitionistic logic.

Given an unprovable formula A0, by Kripke completeness there is a r-model in which r 6|= A0. Translate
the r-model into a finite Heyting algebra H using the well known method of forming a lattice of upwardly
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closed sets, with the valuation v(A) = {u ∈ W : u |= A}. Then v(⊥) is the second-largest element of
the Heyting lattice. A result of Tarski [Tar38] implies that, given H and a dense-in-itself metric space, in
this case HR, the topology of R, there is a dense, open subspace G of HR and an isomorphism f from H
into a (Heyting) subalgebra HG of G. The top element of HG is G and the mapping s(U) = G ∩ U is a
homomorphism from HR onto G.

Let ⊥f = f(v(⊥)), which is therefore the second-largest element in HG. If ⊥f = 0, then HG is a
two-element (boolean) algebra and the valuation v is then easily shown to be isomorphic to a valuation h′

on HR as defined earlier (which mapped all formulas into the two-element algebra consisting of ⊥⊥ and R).
The main case is when ⊥f 6= 0. Because ⊥f is second-largest in HG, it holds that ⊥f is dense in that

I(G − ⊥f ) = 0 (i.e., ⊥f → 0 = 0 in HG). Since ⊥f is open, it consists of a collection of open intervals
(a, b) (sets {x : a < x < b}). Then G−⊥f , the complement of ⊥f in G, must be closed, which means that
it consists of a collection of closed intervals [c, d] (sets {x : c ≤ x ≤ d}). But if any such closed interval has a
non-empty interior (a 6= b), that would contradict the fact that G−⊥f has an empty interior. Thus G−⊥f
consists of a collection of isolated points2. Let τ ∈ G−⊥f be one of these points (recall that our choice of
τ = 1 was entirely arbitrary; we can map each number x to x − τ + 1, which is clearly an isomorphism).
Then for D = (G − ⊥f ) − {τ}, D is also a collection of isolated points, and thus closed. This means that
G−D = ⊥f ∪ {τ} must be open. Let G′ = ⊥f ∪ {τ}: this is also a subspace of HR and s′(V ) = V ∩G′ is a
homomorphism from HG onto the topology of G′. We define an isomorphism g from HG onto a subalgebra
HG′ of G′: let g(G) = G′ and let g(V ) = V if V 6= G. It is easy to show that g is indeed an isomorphism
given the following observation: since ⊥f is larger than all elements except G in HG and G′ in HG′, it holds
that if A ∪B = G then either A = G or B = G, and likewise in G′.

The rest of the proof proceeds as in the completeness proof for intuitionistic logic, a thorough exposition
of which can be found in Rasiowa and Sikorski [RS63]. We give the main arguments below.

Let g′ = g ◦ f ◦ v. Then g′ is a valuation on HG′ isomorphic to the valuation v on the finite Heyting
algebra H. Define the valuation h on HR by: h(a) = S for some open subset S of R such that S∩G′ = g′(a)
for atomic formulas a. Let h(>) = R, h(0) = 0, and h(⊥) = R − {τ}. Note that h(⊥) ∩ G′ = ⊥f . In fact,
the property h(F )∩G′ = g′(F ) holds for all formulas F because s′(V ) = G′ ∩ V is a homomorphism. Given
an unprovable formula A0, it holds that v(A0) 6= v(>), so g′(A0) 6= G′. Thus h(A0)∩G′ 6= G′, which means
that h(A0) 6= R. Therefore a countermodel as a valuation on the finite Heyting algebra H can be mapped
to a countermodel in the topology of R. 2

The fact that G − ⊥f must consist of a set of isolated points also hints at how this semantics can be
extended to include first-order quantifiers (at least over a domain as large as R). The Kripke-style semantics
will lose its elegance since the domain of possible worlds cannot stay constant for intuitionistic logic, and
hence we can no longer isolate classical reasoning to an single root. In the topological setting, however, we
can take as the denotation of ⊥ the set R − I: the reals minus the integers. That is, ⊥⊥ will consist of an
enumerable set of open intervals (0, 1), (1, 2), etc. The open sets above ⊥⊥ correspond one-to-one with subsets
of I, and hence form an infinite boolean algebra. This boolean algebra is also closed under the same t, u
and → operations as in the host Heyting algebra. The quantifiers ∃ and ∀ can then be defined by infinite
joins and meets respectively. Classical versions of these quantifiers can be defined from formulas such as
∃x.(A ∨ ⊥). Axioms such as A ∨ ¬A will still hold under this version of ⊥⊥: in this case, for every integer
x 6∈ h(A), it holds that x ∈ I((R − h(A)) ∪ ⊥⊥). The proof-theoretic extension to first-order quantifiers is
trivial and does not affect cut-elimination in any significant way. In future work, we will likely bypass the
first-order quantifiers and consider directly a second order propositional ICL.

8 Related Work and Conclusion

λµ-Calculus and Variants

2In the sense that each x ∈ G−⊥f is a boundary point of G−⊥f .
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We believe that ICL offers a better explanation of the extension of lambda calculus to control operators
compared to the collapse of all of intuitionistic logic into classical logic. We have certainly benefited from
the study of several variants of λµ-calculus. However, in addition to preserving intuitionistic implication, we
believe that the proof theory of ICL and the λγ-calculus derived from it offer a clearer formulation of control
operators and other programming language constructs. The correspondance between proofs and types is
more natural and straightforward. In particular, although contraction is present (or admissible) in other
systems, they do not give a direct, computational interpretation of an explicit contraction rule (other than
as the renaming of index variables).

The naming rules of the original λµ-calculus can leave free variables in proofs of axioms, such as for
¬¬A ⇒ A, a fact that has been widely criticized. The version of λµ of Ong and Stewart [OS97] does not
have this problem. In fact, there are clearly similarities between this version and ours, especially in light of
our interpretation of sequents in Section 5. Their “⊥-intro” rule is in fact very close to our Esc rule (but of
course their “⊥” is the regular false of classical logic). However, their rule for “⊥-elim” has no counterpart
in our system:

Γ; ∆, Bβ ` s : ⊥
Γ; ∆ ` µβB .s : B

⊥−elim

It appears that “⊥” is playing two different roles in this system. Because Bβ in the premise of ⊥-elim can
be introduced by weakening, this rule implements ex falso quodlibet (0E in our system). However, it is also
only by using this rule that a µ binder can be introduced into terms. This means that their proof of Peirce’s
formula, for example, must use ⊥-elim, a fact that is not consistent with the subformula property. Their
proof of Peirce’s formula somewhat resembles a NK proof with the “RAA” rule, which is precisely the flaw
of NK. A better explanation for the provability of this formula, one that preserves the subformula property,
is that it requires contraction, not ex falso quodlibet. Yet, the computational content of Peirce’s formula is
not attributed to contraction but to ⊥-elim in this system. With λγ, it is clear that the central reason for
the provability of our version of Peirce’s formula is contraction. The γ binder is introduced precisely by
contraction on the current formula. Our Con rule has a form opposite to that of the passivate rule of λµ
(also called the decide rule by others): in the passivate/decide rule, the contracted formula does not become
the current formula.

Important similarities are also found between ICL and the Minimal Classical Logic (MC) of Ariola and
Herbelin [AH03]. By removing ex falso quodlibet from full classical logic, they show that Peirce’s formula
can still be proved, and that MC axioms are all proved by closed λµ-terms. There is a property for MC
that parallels our Proposition 1: if ⊥ does not occur in A then A is provable in MC iff A is provable in
classical logic. The same property holds for ICL’s version of ⊥, but with respect to intuitionistic logic. The
proof theory of MC also shares similarities with NJC. Their version of λµ is one of the few that does not
ignore abort. However, there is still only one false in MC, written using the symbol ⊥. MC does not prove
¬¬A ⇒ A. Consequently, they cannot formulate the C operator within MC. Their solution is to adopt a
top-level continuation constant called top, which then recovers full classical logic. By using two forms of
false, we are able to consider the formula ∼¬A ⊃ A, which is valid in ICL. Our solution is therefore rather
straightforward, and without a collapse into classical logic.

Disjunction is ignored by most of the literature on λ-calculus. Unfortunately, it is also often ignored by
those on λµ-calculus despite the fact that a multiplicative disjunction carries a different kind of computational
content compared to an additive one. When disjunctions are delt with, they often only appear in the additive
form, with the following exception:

Proof terms for multiplicative, classical disjunction also appear as abstractions in [RPW00]. They used
ν to represent the abstraction, but without distinguishing between ν` and νr. While their ∨-introduction
rule is similar to ours, their treatment of ∨-elimination is entirely different:

Γ ` t : A,Bβ ,∆

Γ ` νβ.t : A ∨B,∆ ∨I
Γ ` t : A ∨B,∆

Γ ` 〈β〉t : A,Bβ ,∆
∨E

A new kind of named term, 〈β〉t (as opposed to [β]t), marks a ∨-elimination. Evidently, 〈β〉νβ.t should reduce
to t during normalization, and is thus a renaming step. The computational content of their disjunction is
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thus entirely different from ours. It is not clear what kind of programming language constructs can be
represented by their rules for ∨, except in terms of proof search in the logic programming sense.

The proof theory of ICL allows disjunction to be treated either additively or multiplicatively depending
on whether ⊥ is a subformula “in the right place.” The ∨ in Girard’s LC system [Gir91] can also behave
additively or multiplicatively. However, unlike LC, we do not need to examine subformulas recursively in
order to decide which inference rule to use. Our ω` and ωr binders naturally become injection operators
when vacuous, i.e., when the disjunction is in fact intuitionistic. Since our ∨ can be additive and thus
have non-invertible introduction rules, we obviously cannot use the ∨-elimination rule of [RPW00]. Our
∨-elimination rule is the same as in standard natural deduction when the ω`/r binder is vacuous; when it is
not vacuous, both β-reduction and structural reduction must take place, leading to a more computationally
meaningful interpretation of ∨-elimination.

As we have observed in Section 5, the semantic interpretation of a sequent such as ` A; [B] is the formula
¬B ⊃ A, which is similar to a double-negation. One might therefore dismiss our treatment of A ∨ B as
nothing other than ¬B ⊃ A. This is not correct: the equivalence does not hold in general. For example,
¬A ∨ A under this naive translation is ¬A ⊃ ¬A, which is surely provable. But A ∨ ¬A is translated as
¬¬A ⊃ A, which is not provable. We cannot translate a disjunction unless we know if it’s provable, as well
as how it is to be proved.

The Unified Logic LU

In terms of Girard’s LC, ⊥ is “negative.” By associating “polarities” with formulas, one can identify
the portions of a classical proof that are in fact intuitionistic, thus revealing the constructive content of
classical proofs. However, LC does not contain intuitionistic implication (and neither does its generalization
polarized linear logic). In a system called LU, Girard attempted to extend his polarized framework to
include classical, intuitionistic and linear logics. However, this system was only partially successful. In the
denoational semantics of LU (based on the coherent space semantics of linear logic), the distributivity of ∧
over ∨ fails to hold for all possible polarity combinations. This failure is reflected in the proof theory in that
admissible cuts require restrictions: in particular, when intuitionistic implication is agreesively mixed with
formulas of other polarities, cuts cannot always be permuted above contractions.

We know of two approaches to improving LU. The first approach, which formed the basis of most of
our earlier attempts to unify logics, was to add even more polarity information to connectives and formulas,
enough so that cuts can always be permuted above contractions. In an earlier effort, we in fact proposed a
system containing six polarities (compared to three in LU) and eighteen connectives.

The other way of avoiding the problems of LU is to adopt a vastly simpler system. This is the approach
of ICL. The semantic structure of ICL is identical to that of intuitionistic logic: it is a distributive lattice.
Cut-elimination is virtually guaranteed for any sound and complete proof system3.

Linear Logic

In terms of linear logic, while the provability of ICL formulas might be easily captured by a translation,
their proofs could not. Formulas inside the [ ] context are subject to structural rules but not to introduction
rules until the control formula is ⊥. One might experiment with linear forms such as ?!A, but such exper-
iments are not likely to succeed since “?!” cannot be part of a synthetic connective (it destroys focusing).
Linear logic extended with subexponentials, i.e., extra pairs of exponentials that might preserve focusing in
some circumstances, may be able to capture the proof theory of ICL in a fully adequate way.

PIL
3This is not a “deep” observation. A relative pseudo-complement a→ b evaluates to true if a ≤ b in the lattice. For a proof

system with possibly multiple conclusions, the admissibility of cut says that if a ≤ (bt c) and (bu d) ≤ e, then (au d) ≤ (ct e)
(here, a and d represent finite meets while c and e represent finite joins). This follows easily from distributivity and associativity,
which hold in all pseudo-complemented lattices.
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Despite some essential similarities, ICL is not a fragment of our slightly earlier work, PIL [LM11]. The
semantics of the connectives, and of ⊥ are different. In terms of the “Kripke hybrid” models of PIL, the
root world of a r-models is the only classical world, while all worlds above the root are imaginary, in that
they force ⊥. The study of the semantics of PIL lead to the development of ICL as a separate logic.

We have devoted a large part of this paper to a traditional semantic interpretation of ICL. An important
value of semantics is that they give us the ability to reason about a logic in an entirely different way from
the syntactic proof theory (if it parallels the proof theory, then clearly this is less true). For example, we are
able to semantically derive not only formulas that are valid but also observe ones that are not. The value
of the traditional Kripke semantics is clearly demonstrated in that we can easily observe a general property
of admissible rules that is not obvious from the proof theory. The first insights into the possibility of this
logic came from considering where to place Girard’s ⊥ in the metric space of real numbers, which Tarski
showed to be capable of interpreting intuitionistic logic. We do however, intend to explore other forms of
semantics including extensions of Kripke lambda models as well as categorical approaches. Since neither
form of negation in ICL is “involutive,” we have reason to believe that cartesian closed categories should not
degenerate into boolean algebras as they do for classical logic.
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A Strong Normalization for the Implicational Fragment

In this temporary appendix, we prove strong normalization for the fragment of λγ-calculus with only ⊃ as
connective. The other connectives can be addressed at a later point. The reduced set of rewrite rules are:

1. (λx.s) t −→ s[t/x]. (β-reduction)

2. (γd.s) t −→ γd.(s{[d](w t)/[d]w} t). (µγ-reduction)

3. abortA⊃B(s) t −→ abortB(s). (aborted reduction)

4. γa.s −→ s when a does not appear free in s. (vacuous contraction)

5. γa.γb.s −→ γa.s[a/b]. (γ-renaming)

6. [d]γa.s −→ [d]s[d/a]. (µ-renaming)

This subset is still capable of representing the control operators K and C, as we have shown. We have
annotated the abort operator with a type to avoid confusion, although this modification is not critical.

The strong normalization proof follows the reducibility method of Tait, and specifically the proof in
[GTL89] for the simply typed case, because we found it to be readily adaptable. The reducibility approach
will also allow us to consider a second-order propositional ICL in the future. Much of the proof in [GTL89]
carries over virtually without modification.

For additional clarity in the arguments, we formally define the structural substitution operation as follows:

1. x{[d](w t)/[d]w} = x for λ-variable x.

2. ([e]s){[d](w t)/[d]w} = [e]s{[d](w t)/[d]w} for e 6= d.

3. ([d]s){[d](w t)/[d]w} = [d](s{[d](w t)/[d]w} t)

4. (s t){[d](w t)/[d]w} = (s{[d](w t)/[d]w} t{[d](w t)/[d]w})

5. (λx.s){[d](w t)/[d]w} = λx.s{[d](w t)/[d]w} for x not free in t

6. (γa.s){[d](w t)/[d]w} = γa.s{[d](w t)/[d]w} for a 6= d and a not free in t

7. abortA(s){[d](w t)/[d]w} = abortA(s{[d](w t)/[d]w})

Reducibility Sets

In this section we generalize the notion of the “type” of a proof term to include terms with free variables.
A term t such that t : Γ ` A; [∆] is provable is considered to have type A relative to Γ,∆, although we will
often drop the “relative” clause for convenience. In the following we use the syntax t : A to mean “a term t
typable by A.” We also note that the Subject Reduction result in fact holds for this more general notion of
typability. Structural substitution involving well-typed terms also preserves types, which easily follows from
the fact that all terms [d]w are of type ⊥.

To each formula (type) F , define a set of “reducible” terms REDF by induction on type F :

• For atomic F , as well as for the cases of ⊥, 0 and >, s : F ∈ REDF iff s is strongly normalizing (SN).

• for A ⊃ B, s : A ⊃ B ∈ REDA⊃B iff for all t ∈ REDA, (s t) ∈ REDB.

Often, if t : A ∈ REDA without ambiguity we just say that “t is reducible.” This definition of reducibility
is identical to the case of pure lambda terms.
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Properties of Reducibility

A term is referred to as neutral if it is not of the form λx.s, abortA⊃B(s), or γd.s of some ⊃ type. We
do not consider abortA(s) to be an application term and have used the special notation to distinguish it. All
application terms (s t) are neutral. We use the notation A −→1 B to mean that B is obtained from A by
exactly one reduction step.

The three reducibility properties are likewise identical to the intuitionistic/lambda calculus case:

CR 1 : if s ∈ REDA then s is strongly normalizing

CR 2 : if s ∈ REDA and s −→ t, then t ∈ REDA

CR 3 : if s is neutral and if s −→1 t implies t ∈ REDA, then s ∈ REDA.

A vacuous case of CR 3 implies that if a neutral term is normal then it is reducible.

Lemma 12 Every set REDA satisfies the conditions CR 1, CR 2 and CR 3.

The proof of this lemma is in fact still identical to the intuitionistic case. It proceeds by induction on the
type A. This may be surprising, so for example, for CR 3 in the atomic case, if s −→1 t and t is reducible,
then by subject reduction t is also a term of atomic type, which by definition means that t is SN. But if s
always reduces to an SN term, then s is also SN. This argument makes no reference to the form of the term:
it includes, for example, the case when s of the form [d]s′ of type ⊥. As another sample case, for CR 2 in
the A = B ⊃ C case, if s ∈ REDB⊃C and s −→ t, then for arbitrary u ∈ REDB , (s u) −→ (t u). But
(s u) is reducible because s is reducible, so by inductive hypothesis, (t u) is also reducible and therefore t is
reducible. The additional cases required by the new terms only appear in the subject reduction proof.

All Well-Typed Terms are Reducible

The following series of lemmas are used to show that all terms are reducible, from which the main result
follows.

Given a strongly normalizing (SN) term s, let m(s) be the sum of the lengths of all terminating reduction
paths of s. By König’s Lemma, m(s) is finite.

Lemma 13 If for all t ∈ REDA, s[t/x] ∈ REDB, then λx.s ∈ REDA⊃B.

The proof of this lemma is likewise still identical to intuitionistic/lambda calculus case. Since all reducible
terms satisfy CR 1, the proof simply uses an induction on m(s).

Now we finally come to results that are required because of the extra terms.

Lemma 14 If s is reducible then [d]s is reducible.

Proof The term [d]s can only be of type ⊥. Since s is reducible, by CR 1, s is SN. [d]s reduces to [d]s′

if s reduces to s′. The only other possible reduction is when s = γa.t and [d]γa.t reduces to [d]t[d/a] by
renaming. In both cases, since s is SN, [d]s must also be SN, and is therefore reducible by definition of
RED⊥. 2

A similar property can be proved for the abort operator.

Lemma 15 If s is reducible then abortF (s) is reducible.

Proof This lemma is proved first by induction on the type F , then by a secondary induction on the lengths
of reductions. If F is atomic or constant, then by inductive hypothesis s is SN. Thus abortF (s) is SN and
therefore reducible by definition.

If the term is abortA⊃B(s), we need to show that abortA⊃B(s) t is reducible for any t ∈ REDA. By
inductive hypothesis on s and by assumption on t, s and t are both SN. abortA⊃B(s) t reduces in one
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step to either abortB(s), abortA⊃B(s′) t, or abortA⊃B(s) t′ where s −→1 s′ or t −→1 t′. In the first
case the result follows from inductive hypothesis on type B. In the other cases, we argue by induction on
the measure m(s) + m(t), which bounds the sum of the lengths of reductions of s and t. We either have
that (abortA⊃B(s) t) −→1 (abortA⊃B(s′) t) with s −→1 s

′, or (abortA⊃B(s) t) −→1 (abortA⊃B(s) t′) with
t −→1 t

′. The inductive hypothesis on the smaller measure implies that these terms are reducible. Since
(abortA⊃B(s) t) is neutral, by CR 3 it is therefore reducible and thus abortA⊃B(s) is reducible. 2

The corresponding property for γ-abstractions requires a more general form. We use the notation t̄ to
represent a vector t1 . . . tm of zero or more reducible terms.

Lemma 16 If (s{[d](w t̄)/[d]w})t̄ is reducible, assuming it is typable, for any free γ-variables d in s and for
any t̄ with no free occurrences of d, then γd.(s{[d](w t̄)/[d]w} t̄) is reducible if it is typable.

Proof For convenience, let θ represent the structural substitution {[d](w t̄)/[d]w}. This proof is by
induction on the type of γd.(sθ t̄).

In the case of atomic or constant type, since (sθ t̄) is assumed reducible, by CR 1 it is SN. As a neutral
term, γd.(sθ t̄) reduces in one step to either γd.s′ (this case includes γ-renaming), or to (sθ t̄) if γd is vacuous.
In either case, γd.(sθ t̄) is SN because (sθ t̄) is SN. Thus by CR 3 it is reducible.

In the case of type A ⊃ B, we need to show that (γd.sθ t̄)u is reducible for any reducible term u ∈ REDA.
This term reduces in one step to the following forms:

• (γd.sθ t̄) u −→1 γd.((sθ t̄){[d](w u)/[d]w} u) = γd.(sθ{[d](w u)/[d]w} t̄u)

The equality holds because d is not free in t̄. But (sθ{[d](w u)/[d]w} t̄u) is (s{[d](w t̄u)/[d]w} t̄u). The
statement of the lemma assumes that this term is also reducible. This term can only be of type B, so
by inductive hypothesis, γd.(s{[d](w t̄u)/[d]w} t̄u) is reducible.

• (γd.sθ t̄) u −→1 (γd.s′) u or (γd.sθ t̄) u −→1 (γd.sθ t̄) u′ where s −→1 s
′ or u −→1 u

′. In these cases,
we show that the result of −→1 is reducible by another induction on m(sθ t̄) +m(u). Both (sθ t̄) and
u are assumed reducible, so by CR 1 are both SN. The base case follows from the vacuous form of
CR 3. The inductive cases are trivial.

• (γd.sθ t̄) could be subject to a renaming rule. This case is likewise handled by induction on the lengths
of the assumed finite reductions of (sθ t̄) and u.

In all cases, the neutral term (γd.sθ t̄)u reduces in one step to reducible terms, and by CR 3 is thus reducible.
Therefore, γd.(sθ t̄) is reducible. 2

The above lemmas culminates in an relatively easy proof of the main theorem:

Theorem 17 Let r be any term with free λ-variables included in x1, . . . xk and free γ-variables included in
a1, . . . an. Let q1, . . . , qk be any reducible terms and let t̄i be any zero or more reducible terms t1i . . . t

m
i for

each 1 ≤ i ≤ n. If r[q1/x1, . . . , qk/xk]{[a1](w t̄1)/[a1]w} . . . {[an](w t̄n)/[an]w} is typable then it is reducible.

Proof The proof is by induction on r. For convenience, let σ represent the substitution [q1/x1, . . . , qk/xk]
and let θ̄ represent the (composed) structural substitutions {[a1](w t̄1)/[a1]w} . . . {[an](w t̄n)/[an]w}.

The substitution σ is for the case of r = λy.s, which again proceeds exactly as in the proof of [GTL89]
(using Lemma 13), as is the case for application terms. In the other cases the substitution σ plays no role.

The cases of [d]s and abortF (s) follow from lemmas 14 and 15 respectively.
In the case of r = γd.s, we need to show that γd.sσθ̄ is reducible. This means showing that (γd.sθ̄)u

is reducible for any reducible u. We can assume that d is not free in u by the usual variable convention.
This neutral term reduces in one step to several possible forms, one of which is γd.(sσθ̄{[d](w u)/[d]w} u).
By inductive hypothesis, the term sσθ̄{[d](w u)/[d]w} is reducible. Therefore (sσθ̄{[d](w u)/[d]w} u) is
reducible. The inductive hypothesis in fact says that for any vector ū, sσθ̄{[d](w ū)/[d]w} is reducible and
thus (sσθ̄{[d](w ū)/[d]w} ū) is reducible (if it is typable). Thus by Lemma 16 on the term sσθ̄ (which
replaces s in the statement of the lemma), γd.(sσθ̄{[d](w u)/[d]w} u) is reducible.
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In case the neutral term (γd.sσ{[d](w t̄)/[d]w})u reduces in one step to other forms, we argue by induction
on the reduction lengths of the assumed SN terms u and sσ{[d](w t̄)/[d]w} as we had in the proof of Lemma
16. 2

The above theorem proves that all well-typed terms are reducible by setting qi to xi and each t̄i to be of
zero length. Thus by CR 1, all well-typed terms are strongly normalizing. 2
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