
Extending
Definite Clause Grammars
with Scoping Constructs
Remo Pareschi
ECRC, Arabellastrasse 17
D-8000 Munich 81, West Germany
remo@ecrc.de

Dale Miller
Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104–6389 USA
dale@cis.upenn.edu

Abstract
Definite Clause Grammars (DCGs) have proved valuable to computational
linguists since they can be used to specify phrase structured grammars. It
is well known how to encode DCGs in Horn clauses. Some linguistic phe-
nomena, such as filler-gap dependencies, are difficult to account for in a
completely satisfactory way using simple phrase structured grammar. In
the literature of logic grammars there have been several attempts to tackle
this problem by making use of special arguments added to the DCG pred-
icates corresponding to the grammatical symbols. In this paper we take
a different line, in that we account for filler-gap dependencies by encoding
DCGs within hereditary Harrop formulas, an extension of Horn clauses (pro-
posed elsewhere as a foundation for logic programming) where implicational
goals and universally quantified goals are permitted. Under this approach,
filler-gap dependencies can be accounted for in terms of the operational se-
mantics underlying hereditary Harrop formulas, in a way reminiscent of the
treatment of such phenomena in Generalized Phrase Structure Grammar
(GPSG). The main features involved in this new formulation of DCGs are
mechanisms for providing scope to constants and program clauses along with
a mild use of λ-terms and λ-conversion.

1 Introduction

Logic programming and natural language processing have in the past been
fruitfully indebted to each other. Indeed, Prolog was born in the early
seventies as a result of Alain Colmerauer’s efforts to create a programming
environment suitable both for natural language processing and deductive
question-answering. In the early eighties Pereira and Warren [26] gave a

1

rigorous definition of the framework of Definite Clause Grammars (DCGs),
which is directly motivated by the possibility of encoding phrase-structure
grammars as Prolog programs. DCGs represent a fundamental contribution
to the formalization of linguistic theories for computational purposes, and
to the idea that grammatical formalisms can be viewed as programming
languages.

In the meanwhile, the development of linguistic theories has been steadily
evolving and new notations have been devised that aim to ease the task of
providing natural representations for complex linguistic phenomena. From
this point of view, there has been a substantial rift between computational
linguists, who have striven to account for complex natural language phenom-
ena via the clever exploitation of the Horn-based formulation of DCGs, and
theoretical linguists, who have endeavored to refine phrase-structure gram-
mar notation to meet more fully the needs of natural language analysis.
Quite revealing of this situation is the case of filler-gap dependencies (char-
acterizing such crucial natural language constructs as questions and relative
clauses): in the tradition of logic grammars, this has led to the use of special
arguments occurring inside DCG predicates [4, 24, 25]; in theoretical linguis-
tics, it has produced, among other developments, the novel notion of slashed
non-terminal in the framework of Generalized Phrase Structure Grammar
(GPSG) [7, 8] — a notion which is hard to directly account for within the
expressive boundaries of Horn-based DCGs.

We aim to show that the treatment of filler-gap dependencies in GPSG
can be reconciled with the tradition of logic grammars if DCGs are based on
a extension of Horn clause logic that contains a mechanism to handle local in-
formation; for such is the kind of information typically involved in the GPSG
notion of slashed non-terminal, where a certain phrasal node is marked (i.e.
slashed) with respect to an internally missing subnode (a gap). We carry out
our intent by recasting DCGs within an extension of Horn clauses, know as
hereditary Harrop formulas, where implicational goals and universally quan-
tified goals are permitted. These formulas have been proposed elsewhere
as a foundation for logic programming [19] and have found applications in
other areas of logic programming where local information is involved, such
as modules and information hiding [15, 16]. Under our approach, filler-gap
dependencies can be directly handled in terms of the operational semantics
underlying hereditary Harrop formulas in a way reminiscent of the GPSG
treatment of such phenomena. The main features involved in this new for-
mulation of DCGs are mechanisms for providing scope to constants and
program clauses along with a mild use of λ-terms and λ-conversion.

This paper is organized as follows. In Section 2, hereditary Harrop for-
mulas are briefly described. Section 3 compares the formalisms of Defi-
nite Clause Grammars (DCG) and Generalized Phrase Structured Gram-
mars (GPSG). Section 4 argues that if the logic programming language is
based on hereditary Harrop formulas then a GPSG-like treatment of filler-
gap dependencies can be naturally implemented. Section 5 hints at how

2

richer linguistic behavior than those of the examples in Section 4 may be
accounted. Finally, Section 6 briefly reviews related work.

2 Hereditary Harrop Formulas

The class of hereditary Harrop formulas has been proposed as the founda-
tion of a logic programming language that contains positive Horn clauses as
a sublanguage and for which a natural, goal-directed proof procedure exists
[16, 19]. Other very similar proposals to extending Horn clause logic have
also been proposed: in particular, N-Prolog [6] and the intuitionistic clausal
system of [2, 13, 14]. Below we develop the central aspects of our exten-
sion in two steps. First, we add implications and universal quantifiers to
the body of program clauses, and then we add some weak notions of func-
tion variable quantification and λ-terms. The logic programming language
described below is a subset of the λProlog language [21].

2.1 Implications and Universal Quantifiers in the Body of
Clauses

Positive Horn clauses can be described using three syntactic categories: A
for atomic formulas, G for goal formulas, and D for Horn clauses (definite
clauses). The latter two are defined as follows:

G ::= A | G1 ∧G2

D ::= A | G ⊃ A | D1 ∧D2 | ∀x D.

If disjunctions and existential quantifiers are permitted within goal formu-
las, the resulting class of formulas has properties very similar to those of
Horn clauses. It is also possible to restrict D-formulas so that the only con-
junctions in the scope of a universal quantifier are within goal formulas (the
body of clauses). We now extend the definitions for G and D to the point
where they are mutually recursive:

G ::= A | G1 ∧G2 | D ⊃ G | ∀y G

D ::= A | G ⊃ A | D1 ∧D2 | ∀x D.

We have the following symmetry: the negative subformulas of D- (resp. G-)
formulas are G- (D-) formulas, and the positive subformulas of D- (resp.
G-) formulas are D- (G-) formulas. D-formulas are also called hereditary
Harrop formulas (the definition in [19] permits the mild extension of allowing
disjuncts and existentials in goals).

To describe the operational (proof-theoretic) semantics of implications
and universal quantifiers in goals, let Σ be a set of (non-logical) constants
(such sets are called signatures) and let P be a set of closed D-formulas all
of whose non-logical constants are members of Σ (in which case we say that
P is over Σ). The goal D ⊃ G (assumed to be over Σ) follows from the pair

3

Σ and P if the goal G follows from the pair Σ and P ∪ {D}. The goal ∀y G
follows from the pair Σ and P if the goal [y := c]G follows from the pair
Σ∪{c} and P, where c is a “new” constant, that is, one that is not a member
of Σ. An atom A follows from Σ and P if there is some clause in P that has
an instance using terms only over Σ of the form A or of the form G ⊃ A
where G follows from Σ and P. Such an interpretation of implication and
universal quantification is sound and complete with respect to intuitionistic
logic, but not with respect to classical logic.

A universally quantified goal formula is interpreted intensionally: that is,
to prove the goal ∀x G, an attempt to prove the generic instance [x := c]G is
required. Notice that if a universal goal is proved with respect to the signa-
ture Σ in this way, then [x := t]G will be provable for all terms t over Σ: the
intensional interpretation of the universal quantifier implies the extensional
interpretation. The converse is, however, not the case. For example, from
the signature {p, a, b} and program {p(a), p(b)}, the goal ∀x p(x) follows
extensionally but not intensionally. Scoped constants are often called eigen-
variables in the context of natural deduction and sequential proof calculi.

To implement hereditary Harrop formulas using the standard techniques
of free (logic) variables and unification, a few changes to the standard tech-
niques are required. First, free variables may appear within programs, as is
the case if the goal D ⊃ G contains a variable that is free in D. When D
is added to the program, that variable must remain free. Subsequent sub-
stitutions for that variable would need to be applied to both the goal and
the program. Second, the intensional interpretation of unification requires
that unification be modified. Let Σ be a signature and let P(x̄) be a pro-
gram and let ∀y G(y, x̄) be a goal formula both of which are over Σ and
whose free variables are members of the list of variables x̄. Consider trying
to find a substitution for the variables x̄ so that ∀y G(y, x̄) follows from Σ
and P(x̄). Here, the substitution instances of x̄ must be terms over Σ. This
goal is provable if the goal G(c, x̄) (where c is a constant not in Σ) is prov-
able form Σ ∪ {c} and P(x̄). It might be possible for unification to suggest
that a variable in x̄ be instantiated with a term containing c, as in the case
∀y (X = y) (assuming the usual clause for equality). In that case, unifica-
tion should generate a failure. Free variables arising from backchaining over
program clauses that appear later in the construction of a proof of G(c, x̄)
may, however, be instantiated with terms that contain c. Thus, different
free variables can be replaced with terms over different signatures. There
are several ways to modify unification so that these different restrictions on
free variables are obeyed. See [16, 21] for two different approaches.

In presenting D-formulas, we shall use the usual Prolog convention of
writing :- to denote the converse of ⊃ and of not writing outermost universal
quantification at all. In presenting G-formulas, we shall use a comma for
conjunction, => for implication, and all x,y,z\ to denote the universal
quantification of the variables x,y,z. Free variables are denoted by tokens
with an initial capital letter.

4

2.2 Discharging a Constant from a Term

Assume that append/3 is axiomatized in the usual way and let Σ be a
signature containing at least the constants append, [_|_], [], a, b. Consider
the problem of finding a substitution term over Σ for the free variable X
so that the goal formula all y\ append([a,b],y,X) is provable. Proving
this goal first reduces to proving append([a,b],k,X) (k not a member of
Σ). This goal is provable if X can be unified with [a,b|k]. This will fail,
however, since X can be instantiated with terms over Σ but not over Σ ∪
{k}. Unification failure here is quite sensible since the value of X should be
independent of the choice of the constant used to instantiate y. It might
be very desirable, however, to have this computation succeed if we could, in
some sense, abstract away this particular choice of constant. This is possible
if we are willing to admit some forms of λ-abstraction into our logic.

Consider, for example, proving the goal all y\ append([a,b],y,H(y))
where H is a functional variable that may be instantiate with a λ-term whose
constants are again from the set Σ. Assume that we instantiate y again
with the constant k. The important unification is now H(k) with [a,b|k].
There are two λ-terms (up to λ-conversion) that when substituted for H into
H(k) and then λ-normalized yield [a,b|k], namely the terms w\[a,b|k]
and w\[a,b|w] (we shall use \ as an infix symbol to denote λ-abstraction).
Since H cannot contain k, only the second of these possible substitutions
will succeed in being a legal solution for this goal. Notice that the choice of
constant to instantiate the universal quantifier in this goal is not reflected
in this answer substitution. In a sense, the λ-term w\[a,b|w] is the result
of discharging the constant k from the term [a,b|k]. Notice, however, that
discharging a first-order constant from a first-order term is now a “second-
order” term: it can be used to instantiate a function variable.

We shall now permit hereditary Harrop formulas to contain universal
quantifiers over functional variables of second-order, that is, variables that
can be applied to first-order terms. We shall also permit explict λ-abstrac-
tions to be parts of terms.

2.3 Is this a Higher-Order Extension?

The term higher-order can be used in many situations. A proof theorist
would consider a logic higher-order only if it contained quantification over
predicate variables. In this sense, the extension motivated above is not
higher-order since it requires the presence of function and not predicate
variables. On the other hand, first-order unification is not enough to imple-
ment the logic we have outlined. The unification of simply typed λ-terms
(sometimes called higher-order unification) will, however, be adequate to im-
plement this logic correctly. In this sense, all the features that are needed
in this paper are available in the logic programming language λProlog [21]
since it contains unification of λ-terms as a computational mechanism.

The unification of simply typed λ-terms in its full generality is a very

5

rich and costly operation. The examples in this paper will, however, make
very little use of the full power of such unification. In fact, in the examples
below, unification will generally yield unique answer substitutions since most
non-first-order unification problems arise when discharging constants from
terms. As the above example shows, the possibility of multiple unifiers,
which exists when unifying λ-terms, can be restricted sufficiently if used in
conjunction with scoped constants so that only single, most general unifiers
exist. For an analysis of a non-first-order subset of λProlog that always has
most general unifiers and contains most of the examples of this paper, see
[17]. Although this logic requires second-order variable quantification and λ-
conversion, it is only a mild extension to first-order unification: much of the
richness and costs of the higher-order logic programming language λProlog
are not present here. We shall not attempt to outline precisely the subset of
λProlog or higher-order hereditary Harrop formulas [19] we shall need in this
paper. The examples here are particularly simple but they lead into richer
examples when additional linguistic phenomena are addressed. See [5] for
applications of roughly this same extension of logic programming to theorem
proving and see [18, 27] for discussions on the role of λ-terms and function
quantification in logic programming implementations of natural language
programs.

3 Generalized Phrase Structure Grammars and
Definite Clause Grammars

Definite Clause Grammars (DCGs) were introduced by Pereira and War-
ren [26], their direct ancestry being traceable to Colmerauer’s more complex
framework of Metamorphosis Grammars [3]. The basic insight behind DCGs
is that grammatical formalisms encoded as rewrite systems can be translated
into sets of definite clauses. Each non-terminal symbol in the original gram-
mar corresponds in the DCG notation to a predicate taking as arguments
a pair of string positions, plus other optional arguments. (In practice, im-
plementations of DCGs adopt a sugared notation, which we shall not follow
here, where the string positions arguments are omitted.) Parsing can then
be viewed as that restricted kind of theorem proving that takes place within
logic programming systems.

3.1 Definite Clause Grammars and Phrase Structure Gram-
mars

An immediate and well-known application of DCGs is in translating phrase
structure grammars into logical notation. This is also an application that is
of particular interest to us here since Generalized Phrase Structure Grammar
(GPSG) is itself a variation of phrase structure grammar, and the purpose
of this paper is in showing how to extend the DCG framework in terms

6

S → NP VP VP → TV NP
VP → STV S BAR S BAR → that S
NP → PN PN → Kay
PN → Fred PN → Paul
TV → loves TV → married
STV → believes

Figure 1: Example of phrase structure grammar

s(P1, P2) :- np(P1, P0), vp(P0, P2).
vp(P1, P2) :- tv(P1, P0), np(P0, P2).
vp(P1, P2) :- stv(P1, P0), sbar(P0, P2).
sbar([that|P1],P2) :- s(P1,P2).
np(P1, P2) :- pn(P1, P2).
pn([kay|L], L).
pn([fred|L], L).
pn([paul|L], L).
tv([loves|L], L).
tv([married|L], L).
stv([believes|L], L).

Figure 2: A DCG encoding the phrase structure grammar in Figure 1

of hereditary Harrop formulas so as to accomodate some of the features of
GPSG.

As an example of translation of a simple phrase structure grammar into a
set of definite clauses, consider the grammar in Figure 1 1. We can translate
this grammar into Horn clauses as in Figure 2 by mapping its non-terminals
into two-place predicates taking as arguments string positions. Strings are
encoded as lists and string positions are represented in terms of the portion
of the list they identify and of the substring which follows it, according to
the familiar “difference-list” notation.

3.2 Syntactic Categories in GPSG

GPSG extends simple phrase-structure grammar by providing a more so-
phisticated notion of syntactic category. For our purposes, we shall make

1Throughout this paper, we shall adopt the following more or less standard conventions
for labels of syntactic categories: S stands for the category of sentences, S BAR for that
of complement clauses, e.g. sentences prefixed by the complementizer that, and REL for
that of relative clauses; NP stands for the category of noun phrases and PN for that of
proper names; VP stands for the category of verb phrases, TV for that of transitive verbs,
and STV for the category of verbs taking as arguments sentence complements.

7

use of the early version of GPSG assumed, for instance in [7], rather than
the more complex, “principle-based” one of [8]. We can summarize the main
aspects of GPSG as follows:

(i) A GPSG category augments the bare non-terminals of simple phrase
structure grammars with morpho-syntactic information, i.e., informa-
tion concerning parts of speech, inflection, case, and agreement. Such
information is encoded in terms of features, i.e. attribute-value pairs
of the form [number sg].

(ii) GPSG categories are allowed in slashed form, that is, in the form X/Y.
Such categories denote a category X with an internal gap (i.e., a missing
constituent) of category Y. In this way GPSG can elegantly account
for filler-gap dependencies2. Examples of filler-gap dependencies are
given by sentences such as

Fred loves the woman whom [Paul married ↑]
Fred loves the woman whom [Kay believes that Paul married ↑]

In these examples, the relative pronoun whom acts as a filler for the
sentence fragments Paul married and Kay believes that Paul married,
characterized by a missing noun-phrase. (We have indicated with an
upward-looking arrow the position where the gap occurs.) A possible
rule to account for the relative clause in the examples above can be
stated as

REL → whom S/NP

That is, one form of a relative clause is the word “whom” followed by
a sentence with an NP gap.

(iii) GPSG states explicitly how to build the logical form for a given string
via rules of semantic interpretation which come in pairs with the syn-
tactic rules. Such semantic rules are inspired by Montague’s principle
of compositionality [20] and view the interpretation of a sentence as
obtained from the combination of the interpretations of its subcon-
stituents, where the method of combination is given by functional ap-
plication and λ-reduction. Thus, the rule in (ii) can be paired with a
rule of semantic interpretation as follows:

REL → whom S/NP S/NP′

(The prime notation “ ′ ” refers here to the semantic counterpart of a
given syntactic category.) This pairing provides the information that
the semantic interpretation of a relative clause is given by the semantic
interpretation of the sentence where the gap occurs.

2Filler-gap dependencies are also known in the GPSG literature as unbounded depen-
dencies because they can involve unbounded portions of a phrase-structure tree.

8

Now, it is well-known that an augmentation of phrase structure grammars
of the kind described in (i) can be implemented in DCGs by adding to pred-
icates extra-arguments corresponding to morpho-syntactic features. For this
reason, we shall not be further concerned with it here. On the other hand,
categories of the kind described in (ii) do not have a natural translation
within Horn clauses. We show here, however, that they can be naturally
translated into hereditary Harrop formulas by viewing a given slashed cat-
egory as an implication, with the category on the left and the one on the
right as, respectively, the consequent and the antecedent in the implica-
tion. Therefore, parsing with this kind of grammar can be implemented
as theorem proving with hereditary Harrop formulas. Moreover, we pro-
vide a natural implementation of (iii) by embedding the rules of semantic
interpretation into their syntactic counterparts by passing logical forms as
extra arguments of non-terminal predicates and exploiting the mechanism
of β-reduction. Under our approach, (ii) and (iii) will subtly interact in the
fact that the semantic representations associated with gaps are going to be
scoped constants.

4 Gap Introduction as Hypothesis Introduction

By using rules such as

REL → whom S/NP S/NP′

GPSG can analyze a sentence like

Fred loves the woman whom [Kay believes that Paul married ↑]

in terms of the phrase-structure tree in Figure 3. (The tree refers to the
part of the string corresponding to the relative clause.) We show here how
one can use hereditary Harrop formulas to define a program to obtain a
corresponding proof. In the first place, we augment the rules of the DCG
in Figure 2 with semantic arguments encoded as λ-terms. We obtain in this
way the set of rules in Figure 4. We then add to these rules a definite clause
version of the GPSG rule above. This is obtained as in the following formula
simply by interpreting the slash as implication. The semantic representation
of the assumed noun phrase will be a scoped constant (introduced, of course,
by a universal quantifier), and the semantic representation of the target
category will be an abstraction that is the result of discharging that scoped
constant.

rel([whom|X], Y, REL) :-
all gap\ (np(Z, Z, gap) => s(X, Y, REL(gap))).

Let us refer to this set of rules as G and let us observe what happens when
parsing the relative clause whom Kay believes that Paul married by calling
the goal

9

REL

whom S/NP

NP VP/NP

PN STV S BAR/NP

Kay believes that S/NP

NP VP/NP

PN TV NP/NP

Paul married ε

Figure 3: GPSG analysis for whom Kay believes that Paul married

s(P1, P2, VP(NP)) :- np(P1, P0, NP), vp(P0, P2, VP).
vp(P1, P2, TV(NP)) :- tv(P1, P0, TV), np(P0, P1, NP).
vp(P1, P2, STV(SBAR)) :- stv(P1, P0, STV), sbar(P0, P2, SBAR).
sbar([that|P1], P2, S) :- s(P1, P2, S).
np(P1, P2, PN) :- pn(P1, P2, PN).
pn([kay|L], L, kay).
pn([fred|L], L, fred).
pn([paul|L], L, paul).
tv([loves|L], L, x\y\love(x, y)).
tv([married|L], L, x\y\married(x, y)).
stv([believes|L], L, s\y\believe(y, s)).

Figure 4: Augmenting definite-clause rules with semantic arguments

10

?- rel([whom, kay, believes, that, paul, married], [], REL).

Backchaining on the rule above yields the goal

?- all gap\(np(Z, Z, gap) =>
s([kay, believes, that, paul, married], [], REL(gap))).

Given the intensional reading of universal quantification, we proceed by se-
lecting a new constant, say c, and restrict REL and Z so that they cannot be
instantiated with a term containing c. We now attempt to prove the goal

?- np(Z, Z, c) =>
s([kay, believes, that, paul, married], [], REL(c)).

This goal succeeds if the goal

?- s([kay, believes, that, paul, married], [], REL(c)).

follows from the augmented program (grammar) G ∪ {np(Z, Z, c)}. It is
easy to see that this indeed follows via backchaining and the solving of con-
junctive goals. In the course of the proof, the logic variable Z corresponding
to the string position of the gap gets instantiated to the empty list [] (sig-
nifying that the gap occurred at the end of the given phrase), while the logic
variable REL corresponding to the semantic representation of the relative
clause gets instantiated to the ground term

x\believe(marry(paul, x), kay)

by solving the unification problem

REL(c) = believe(marry(paul, c), kay).

This instantiation provides us with the desired semantic representation for
the relative clause. As mentioned in 2.2, the unification problem above
admits a second solution, namely, that of instantiating REL to the vacuous
λ-term

x\believe(marry(paul, c), kay).

However, this possibility is here automatically ruled out by the fact that it
would violate the restriction on scoped constants.

After we have succeeded in parsing the phrase Kay believes that Paul
married, the clause np(Z, Z, c) (which has now been instantiated to np([],
[], c)) is removed from the current program and the constant c is similarly
removed from the current signature. Thus, the rule

rel([whom|X], Y, REL) :-
all gap\ (np(Z, Z, gap) => s(X, Y, REL(gap))).

11

introduces a noun-phrase gap that can only occur within the sentence coming
after the relative pronoun whom; all other possibilities are ruled out by the
fact that after parsing such a phrase the gap is discharged. Moreover, even
within such a phase, the rule above will never be able to locate more than
one gap, since the variable corresponding to the string position where the
gap occurs is a logic variable. The reader may want to contrast this situation
with the one that would be obtained by using the definite clause

rel([whom|X], Y, REL) :-
all gap\ (all z\(np(z, z, gap)) => s(X, Y, REL(gap))).

In this case the string position corresponding to the gap would be a universal
variable having as scope the atomic definite clause encoding the gap. Clearly,
this would imply that more than one gap position could be located by adding
such a definite clause to the program. Thus, the contrast between this “too
liberal” gap-introducing rule and the former one can be captured in terms
of different quantifier scopings.

To summarize the contents of this section, we have provided a very simple
and direct logic programming encoding of GPSG-rules for filler-gap depen-
dencies. Under such an encoding, sentences containing gaps are interpreted
as normal sentences, with the only difference that their semantic interpre-
tation is characterized by the occurrence of a scoped constant in correspon-
dence of the gap. We are from this point of view on the same line of the
GPSG development presented in [7] where sentences containing gaps are
also treated in the same way as other sentences, and gaps within sentences
correspond to occurrences of designated variables in the semantic interpre-
tation. We could in fact say that our use of scoped constants provides a
formal characterization of this notion of “designated variable.” In the later
GPSG development contained in [8] this view of sentences containing gaps
was abandoned in favour of a more complicated approach which imposes
upon them a special grammatical status. One of the reasons for which the
earlier approach was abandoned was indeed a lack of clear understanding of
the formal status of the notion of “designated variable” [12].

5 Unused Hypotheses and Constraints over the
Distributions of Gaps

We briefly discuss here how to enrich the simple encodings of GPSG-style
rules presented in the section above to cope with problems having to do with
the distribution of gaps.

We would like to be able to capture in a natural way the following situ-
ations:

(i) Natural languages are characterized by many constraints on the distri-
bution of gaps. For instance, gaps occurring in the subject position of
embedded sentences are in general forbidden in English; furthermore,

12

a relative pronoun like whom can never act as the filler for a subject
gap. Thus, we would like to have a natural way to account for the
ungrammaticality of relative clauses such as

∗whom [Kay believes that ↑ married Paul]
∗whom [Kay believes ↑ married Paul]

(ii) We would also like to be able to account for the fact that for every filler
there must be a corresponding gap. This is not captured by the gap-
introducing rule of the section above, since the definite clause encoding
the gap may be introduced without ever being used; therefore, we may
accept ungrammatical relative clauses such as

∗whom Paul married Kay

where there is no gap corresponding to the relative pronoun.

An interesting way to deal with point (i) is to introduce at run time (non-
atomic) clauses identifying phrase-structure trees “legally” characterized by
an empty element in the branch corresponding to the gap, rather than by
adding an explicit (atomic) clause encoding the gap itself, as we have done
so far. For instance, suppose that we want the gap introduced by whom to
occur only after transitive verbs; this could be achieved via the following
modified rule for relative clauses:

rel([whom|X], Y, REL) :-
all gap\ ((vp(Z, Z1, TV(gap)) :- tv(Z, Z1, TV)) =>

s(X, Y, REL(gap))).

In the course of parsing the sentence containing a noun-phrase gap, this rule
permits parsing a verb-phrase whose only children is a transitive verb; that
is, we create a verb-phrase node that differs from normal verb-phrase nodes
obtained from transitive verbs in the fact that there is no noun-phrase after
the verb. Again, this solution is strictly on the same line of the one adopted
by GPSG to deal with the problem, where special “gap-locating” rules are
used to “terminate” the gap; for instance, the object position after transitive
verbs can be made a legal gap site via a GPSG rule such as

VP → TV NP/NP

where NP/NP defines an empty noun-phrase. We could in fact effectively in-
troduce at run-time both a gap and a gap-locating rule as with the following
clause:

rel([whom|X], Y, REL) :-
all gap\ (np(Z1, Z1, gap) =>

(vp(Z, Z1, TV(gap)) :-
tv(Z, Z1, TV), np(Z1, Z1, gap)) =>

s(X, Y, REL(gap))).

13

This formula logically implies the one above. Of course, in real applications,
we would like to have rules of the form

rel([whom|X], Y, REL) :-
all gap\ (gap_rules[gap] => s(X, Y, REL(gap))).

where gap rules refers to a module of gap-locating rules containing all the
possible legal gap sites for a gap whose filler is the relative pronoun whom,
and gap acts as a local parameter in the module. This nicely connects the use
we have made of hereditary Harrop formulas in this paper to their application
in the field of modular logic programming described in [15, 16].

Point (ii) is related to viewing formulas as “limited” resources during
computation. It arises from the fact that in Section 2 we have provided
the proof-theoretic semantics of hereditary Harrop formulas in terms of the
framework of Intuitionistic Logic, where premises can be used an unbounded
number of times or not used at all. It is however possible to recast hereditary
Harrop formulas in terms of a finer-grained operational semantics, like the
one provided by Linear Logic [9]. Under this approach, one can distinguish
between formulas which, in the course of the proof, can be used from 0
to many times, and formulas which must be used exactly once; of course,
corresponding syntactic facilities are needed to distinguish between the two
cases. Thus, by encoding the premise introduced at run-time to account for
the gap as a “must-be-used” formula, cases of “vacuous extraction” like the
one mentioned in point (ii) are ruled out3. Further developments in Linear
Logic [10] permit also the possibility of distinguishing the intermediate case
of formulas which can be used from 0 to n times, for n fixed; this could
turn out to be quite handy for dealing with parasitic gaps constructions,
characterized by the occurrence of two gaps, one of which is obligatory and
the other optional — that is, the clause corresponding to the optional gap
would be marked as usable from 0 to 1 times.

6 Related Work

The problem of filler-gap dependencies has received much attention in earlier
work in logic grammars, like, for instance, [4, 24]; a good overview of the
techniques developed in this tradition can be found in [25]. These attempts
rely on Horn clause-based adaptations of the DCG formalism obtained by
cleverly exploiting logic programming features; while computationally they
serve well their purposes, they are far from possessing the elegance and
intelligibility of the GPSG approach. Our own effort on the subject aims
at showing that such two requirements — computational implementability

3It is interesting to notice that a similar strategy can be applied to the use of hereditary
Harrop formulas to model object-oriented programming as in [11], where object states can
also be encodable as “restricted-use” formulas; in a rather different operational setting,
Linear Logic is for related reasons explicitly assumed as the theoretical background for the
object-oriented logic programming language Linear Objects [1].

14

within a logic programming environment and formal perspicuity — have
some reasonable chances to lead a harmonious life together.

Additional discussion on the use of hereditary Harrop formulas to extend
DCGs in the direction of theoretical linguistics can be found in [23] (see also
[22]). On the use of λ-terms for natural language processing, see [18, 27].

Acknowledgements

We are grateful to Ewan Klein, Mark Steedman, and Jean-Marc Andreoli
for helpful discussions, and to the ICLP referees for many helpful comments
on the contents of this paper. Most of the research reported here was done
while Pareschi was visiting the University of Pennsylvania for the academic
year 1987-88. During this visit he was supported in part by a Sloan founda-
tion grant to the Cognitive Science Program, Univ. of Pennsylvania, NSF
grants MCS-8219196-CER, IRI-10413 AO2, ARO grants DAA29-84-K-0061,
DAA29-84-9-0027 and DARPA grant N00014-85-K0018 to Computer and
Information Science. Miller is supported in part by grants ONR N00014-88-
K-0633, NSF CCR-87-05596, and DARPA N00014-85-K-0018.

References

[1] Andreoli, J.M., and R. Pareschi. 1990. Linear Objects: logical processes
with built-in inheritance. In Proceedings of the Seventh International
Conference of Logic Programming, Jerusalem, Israel.

[2] Bonner, A. J., L. T. McCarty, and K. Vadaparty. 1989. Expressing
Database Queries with Intuitionistic Logic. Proceedings of the North
American Logic Programming Conference, Cleveland, Ohio. Eds. E.
Lusk and R. Overbeek. pp. 831 – 850.

[3] Colmerauer, Alan 1978. Metamorphosis Grammars. In Leonard Bolc
ed., Natural Language Communication with Computers. Springer-
Verlag, Berlin, Germany. Reidel, Dordrecht/Boston.

[4] Dahl, V. and H. Abramson. 1984. On Gapping Grammars. In Proceed-
ings of the Second International Conference on Logic Programming.

[5] Felty, Amy and Dale Miller 1988. Specifying Theorem Provers in a
Higher-order Logic Programming Language. In Proceedings of the ninth
International Conference on Automated Deduction, Argonne, Illinois

[6] Gabbay, D. M., and U. Reyle. 1984. N-Prolog: An Extension of Prolog
with Hypothetical Implications. I The Journal of Logic Programming. 1.
pp. 319-355.

[7] Gazdar, Gerald. 1981. Unbounded Dependencies and Coordinate Struc-
ture. Linguistic Inquiry. 12. pp. 155-184

15

[8] Gazdar, Gerald, E. Klein, G. Pullum, I. Sag. 1985. Generalized Phrase
Structure Grammar. Blackwell’s, Oxford, and Harvard University Press,
Cambridge, Mass.

[9] Girard, J. Y. 1987. Linear Logic. Theoretical Computer Science. 50:1.
pp1-102.

[10] Girard, J. Y., A. Scedrov and P. J. Scott. 1990. Bounded Linear Logic. In
Proceedings of the Feasible Mathematics Workshop. Cornell University.

[11] Hodas, J., and D. Miller. 1990. Representing Objects in a Logic Program-
ming Language with Scoping Constructs. In Proceedings of the Seventh
International Conference of Logic Programming, Jerusalem, Israel.

[12] Klein, Ewan 1989. Personal Communication.

[13] McCarty, L. T. 1988. Clausal Intuitionistic Logic I. Fixed Point Seman-
tics. The Journal of Logic Programming. 5. pp. 1-31.

[14] McCarty, L. T. 1988. Clausal Intuitionistic Logic II. Tableau Proof Pro-
cedure. The Journal of Logic Programming. 5. pp. 93-132.

[15] Miller, Dale. 1989. A Logical Analysis of Modules in Logic Programming.
The Journal of Logic Programming. 6. pp. 79-108.

[16] Miller, Dale. 1989. Lexical Scoping as Universal Quantification. In Pro-
ceedings of the Sixth International Logic Programming Conference, Lis-
boa, Portugal. Eds. G. Levi and M. Martelli. pp. 268 – 283.

[17] Miller, Dale. 1989. A Logic Programming Language with λ-Abstraction,
Function Variables, and Simple Unification: Extended Abstract. Unpub-
lished, September 1989.

[18] Miller, Dale and Gopalan Nadathur. 1986. Some Uses of Higher-order
Logic in Computational Linguistics. In Proceedings of the 24th Annual
Meeting of the Association for Computational Linguistics, Columbia
University.

[19] Miller, Dale, Gopalan Nadathur, Frank Pfenning and Andre Scedrov.
1989. Uniform Proof Systems as a Foundation for Logic Programming
To appear in the Annals of Pure and Applied Logic.

[20] Montague, Richard. 1974. Formal Philosophy Yale University Press,
New Haven, Connecticut.

[21] Nadathur, Gopalan and Dale Miller. 1988. An Overview of λ-Prolog. In
Proceedings of the Fifth International Logic Programming Conference,
Seattle.

16

[22] Pareschi, Remo. 1988. A Definite Clause Version of Categorial Gram-
mar. In Proceedings of the 26th Annual Meeting of the Association for
Computational Linguistics, University of Buffalo.

[23] Pareschi, Remo. 1989. Type-driven Natural Language Analysis. PhD
Dissertation. University of Edinburgh.

[24] Pereira, Fernando. 1981. Extraposition Grammars. Computational Lin-
guistics. 7.

[25] Pereira, Fernando C. N. and Stuart M. Shieber. 1987. Prolog and Nat-
ural Language Analysis. CSLI Lectures Notes No. 10. CSLI, Stanford
University.

[26] Pereira, Fernando C. N. and David H. D. Warren. 1980. Definite Clauses
for Language Analysis. Artificial Intelligence. 13. pp. 231-278.

[27] Warren, David S. 1983. Using λ-Calculus to Represent Meaning in Logic
Grammars. Proceedings of the 21st Annual Meeting of the Association
for Computational Linguistics, pp. 51 – 56.

17

