
Towards a broad spectrum proof certificate

Dale Miller

INRIA-Saclay & LIX, École Polytechnique
Palaiseau, France

Journées Nationales du GDR 2012, 26 January 2012

Can we standardize, communicate, and trust formal proofs?

Based on the ERC Advanced Investigator Grant: ProofCert
(five years: 2012 - 2016)



We must first narrow our topic

• Proofs are documents that are used to communicate trust
within a community of agents.

• In general, agents can be machines or humans.

• Our focus: publishing and checking formal proofs by computer
agents

• Not our focus (yet): reading and learning from proofs,
interacting with proofs, computing with proofs.



Provers: computer agents that produce proofs

There is a wide range of provers.
• automated and interactive theorem provers
• model checkers, SAT solvers
• type inference, static analysis
• testers

There is a wide range of “evidence” of proof.
• proof scripts that steer a theorem prover to a proof
• resolution refutations, natural deduction, tableaux, etc
• winning strategies, simulations

It is the exception when one prover’s evidence is shared with
another prover.



A (familiar) revolution is needed in formal methods

Sun Microsystems (1984): The network is the computer

The formal methods community
uses many isolated provers
technologies: proof assistants
(Coq, Isabelle, HOL, PVS, etc),
model checkers, SAT solvers, etc.

Goal: Permit the formal methods community to become a network
of communicating and trusting provers.

We shall use the term “proof certificate” for those documents
denoting proofs that are circulated and checked.



Four desiderata for proof certificates



D1: A simple checker can, in principle, check if a proof
certificate denotes a proof.

The de Bruijn’s principle: provers should output
proofs that can be checked by simple checkers.
Here “simple” might mean that the checker can
be independently validated (eg, by hand).

“Everything should be made as simple as possible,
but not one bit simpler.”

-Albert Einstein

Almost certainly, proof certificates will themselves be programs and
a checker will be an interpreter for such programs.



D2: The proof certificate format supports a broad spectrum of
proof systems.

One should not need to radically transform your system’s proof
evidence in order to output a proof certificate.

Clearly, there is a tension between D1 and D2.

Consider the following consequences of these two desiderata.



Marketplaces for proofs

The ACME company needs a formal proof for its next generation
of controllers for airplanes, electric cars, medical equipment, etc.

ACME submits to the “proof marketplace” a proposed theorem as
a proof certificate with a “hole” for its actual proof.

The contract: You get paid if you can fill the
hole in such a way that ACME can check it.

This marketplace could be wide open: anyone using any
combination of deduction engines would be able to compete.

Providing a partial proof or a counter-example should also have
some economic value. The general setting of “proof certificates”
should allow for these.



Marketplaces for proofs

The ACME company needs a formal proof for its next generation
of controllers for airplanes, electric cars, medical equipment, etc.

ACME submits to the “proof marketplace” a proposed theorem as
a proof certificate with a “hole” for its actual proof.

The contract: You get paid if you can fill the
hole in such a way that ACME can check it.

This marketplace could be wide open: anyone using any
combination of deduction engines would be able to compete.

Providing a partial proof or a counter-example should also have
some economic value. The general setting of “proof certificates”
should allow for these.



Libraries of proofs

Proof certificates can be archived, searched, and retrieved.

One should be able to browse, apply, and transform them.

One might trust the authority behind the library.

Libraries can invest in significant computing power, thus expanding
the proof certificates that they can check.

A library has strong motivations to be careful: accepting a
non-proof puts their entire library and accumulative trust at risk.



D3: A proof certificate is intended to denote a proof in the
sense of structural proof theory.

Structural proof theory is a mature field that deals with deep
aspects of proofs and their properties.

For example: given certificates for ∀x(A(x) ⊃ ∃y B(x , y)) and
A(10), can we extract from them a t such that B(10, t) holds?

Such proofs can also be considered immortal.



D4: A proof certificate can simply leave out details of the
intended proof.

Formal proofs are often huge. All means to reduce their size need
to be available.
• Introductions of abstractions and lemma (cut introductions).
• Separate computation from deduction and leave computation

traces out of the certificate.
• Allow trade-offs between proof size and proof reconstruction:

(bounded) proof search maybe need to fill in holes.

D4 leads to challenging demands on proof certificates.
• What bound on search is sensible?
• How to ensure that such search is sensibly directed?



Which logic?

First-order or higher-order?

Both!

Higher-order (à la Church 1940) seems a good choice since it
includes propositional and first-order.

Classical or intuitionistic logic? Both!

There are efforts to put these two logics together in one larger
logic: Gentzen (LK/LJ), Girard (LU) and, recently, Liang & M.

Modal, temporal, spatial?

Leave these out for now: there is likely to always be a frontier that
does not fit. (However, the syntax and semantics of many modal
operators fit well with Church’s logic.)



Which logic?

First-order or higher-order? Both!

Higher-order (à la Church 1940) seems a good choice since it
includes propositional and first-order.

Classical or intuitionistic logic? Both!

There are efforts to put these two logics together in one larger
logic: Gentzen (LK/LJ), Girard (LU) and, recently, Liang & M.

Modal, temporal, spatial?

Leave these out for now: there is likely to always be a frontier that
does not fit. (However, the syntax and semantics of many modal
operators fit well with Church’s logic.)



Which logic?

First-order or higher-order? Both!

Higher-order (à la Church 1940) seems a good choice since it
includes propositional and first-order.

Classical or intuitionistic logic?

Both!

There are efforts to put these two logics together in one larger
logic: Gentzen (LK/LJ), Girard (LU) and, recently, Liang & M.

Modal, temporal, spatial?

Leave these out for now: there is likely to always be a frontier that
does not fit. (However, the syntax and semantics of many modal
operators fit well with Church’s logic.)



Which logic?

First-order or higher-order? Both!

Higher-order (à la Church 1940) seems a good choice since it
includes propositional and first-order.

Classical or intuitionistic logic? Both!

There are efforts to put these two logics together in one larger
logic: Gentzen (LK/LJ), Girard (LU) and, recently, Liang & M.

Modal, temporal, spatial?

Leave these out for now: there is likely to always be a frontier that
does not fit. (However, the syntax and semantics of many modal
operators fit well with Church’s logic.)



Which logic?

First-order or higher-order? Both!

Higher-order (à la Church 1940) seems a good choice since it
includes propositional and first-order.

Classical or intuitionistic logic? Both!

There are efforts to put these two logics together in one larger
logic: Gentzen (LK/LJ), Girard (LU) and, recently, Liang & M.

Modal, temporal, spatial?

Leave these out for now: there is likely to always be a frontier that
does not fit. (However, the syntax and semantics of many modal
operators fit well with Church’s logic.)



Which proof system?

There are numerous, well studied proof systems: natural
deduction, sequent, tableaux, resolution, etc.

Many others are clearly proof-like: tables (in model checking),
winning strategies (in game playing), etc.

Other: certificates for primality, etc.

We wish to capture all of these proof objects.

How can a proof checker for so many formats be “simple?”



Atoms and molecules of inference

About seven years of basic research into proof theory suggests that
all these desiderata can be based on the following principles.

There are atoms of inference.

• Gentzen’s sequent calculus first uncovered these: introduction
and structural rules.

• Girard’s linear logic refined our understanding of these further.

• Fixed points and equality account for first-order structures.

There is a chemistry that provides rules for assembling atoms into
molecules of inference (following focused proof systems).

One can build such molecules of inference to match a great
range of proof structures.



Satisfying the desiderata

D1: Simple checkers.

Only the atoms of inference and the rules of chemistry (both small
and closed sets) need to be implemented in the checker.

D2: Certificates supports a wide range of proof systems.

The molecules of inference can be engineered into a wide range of
existing inference rules. (Computation can be placed inside rules.)

D3: Certificates are based on proof theory.

Immediate by design.

D4: Details can be elided.

Proof search in the space of atoms can match proof search in the
space of molecules. (The checker does not invent new molecules.)



Some technical bits: Focused proof systems



Example: A focused proof systems for classical logic

Two invertible introduction inference rules:

` ∆,B1,B2

` ∆,B1 ∨ B2

` ∆,B[y/x ]

` ∆,∀xB

The inference rules for their de Morgan duals are not invertible:

` ∆,B[t/x ]

` ∆,∃xB

` ∆1,B1 ` ∆2,B2

` ∆1,∆2,B1 ∧ B2

Focused proofs are built in two phases:
• the “up arrow” ⇑ phase where one only has invertible rules
• the “down arrow” ⇓ phase where one has (not-necessarily)

invertible rules

There are two different ways to treat t, ∧, f , ∨. Instead of
choosing between them, we allow both treatments.



LKF : (multi)focused proof systems for classical logic

` Θ ⇑ Γ, t−
` Θ ⇑ Γ,A ` Θ ⇑ Γ,B

` Θ ⇑ Γ,A ∧− B

` Θ ⇑ Γ

` Θ ⇑ Γ, f −
` Θ ⇑ Γ,A,B

` Θ ⇑ Γ,A ∨− B

` Θ ⇓ t+

` Θ ⇓ Γ1,B1 ` Θ ⇓ Γ2,B2

` Θ ⇓ Γ1, Γ2,B1 ∧+ B2

` Θ ⇓ Γ,Bi

` Θ ⇓ Γ,B1 ∨+ B2

Init

` ¬Pa,Θ ⇓ Pa

Store

` Θ,C ⇑ Γ

` Θ ⇑ Γ,C

Release

` Θ ⇑ N
` Θ ⇓ N

Decide

` P,Θ ⇓ P
` P,Θ ⇑ ·

P multiset of positives; N multiset of negatives;
Pa positive literal; C positive formula or negative literal



Results about LKF

Let B be a propositional logic formula and let B̂ result from B by
placing + or − on t, f , ∧, and ∨ (there are exponentially many
such placements).

Theorem. B is a tautology if and only if B̂ has an LKF proof.
[Liang & M, TCS 2009]

Thus the different polarizations do not change provability but can
radically change the proofs.

Notice that:
• Only positive formulas are contracted (in the Decide rule).
• Negative (non-atomic) formulas are treated linearly (never

weakened nor contracted).



An example

Assume that Θ contains the formula a ∧+ b ∧+ ¬c and that we
have a derivation that Decides on this formula.

` Θ ⇓ a
Init ` Θ ⇓ b

Init

` Θ,¬c ⇑ ·
` Θ ⇑ ¬c

Store

` Θ ⇓ ¬c
Release

` Θ ⇓ a ∧+ b ∧+ ¬c
∧+

` Θ ⇑ · Decide

This derivation is possible iff Θ is of the form ¬a,¬b,Θ′. Thus,
the “macro-rule” is

` ¬a,¬b,¬c ,Θ′ ⇑ ·
` ¬a,¬b,Θ′ ⇑ ·



A certificate for propositional logic: compute CNF

Use ∧− and ∨−. Their introduction rules are invertible. The initial
“macro-rule” is huge, having all the clauses in the conjunctive
normal form of B as premises.

. . .

` L1, . . . , Ln ⇓ Li
Init

` L1, . . . , Ln ⇑ · Decide
. . .

...

` · ⇑ B̂

The proof certificate can specify the complementary literals for
each premise or it can ask the checker to search for them.

Proof certificates can be tiny but require exponential time for
checking.



Positive connectives allow for inserting information

Let B have several alternations of conjunction and disjunction.

Using positive polarities with the tautology C = (p ∨+ B+) ∨+ ¬p
allows for a more clever proof then the previous one.

` C ,¬p ⇓ p

` C ,¬p ⇓ C
∗

` C ,¬p ⇑ · Decide

` C ⇑ ¬p

` C ⇓ ¬p

` C ⇓ C
∗

` C ⇑ · Decide

` · ⇑ C

Clever choices ∗ are injected twice. The subformula B is avoided.



Focused proofs system more generally

Focused sequent calculus proof systems are available for:

• Linear Logic: provided by Andreoli 1992 as the first
comprehensive focused proof system
• Intuitionistic Logic: LFJ [Liang & M, TCS 2009] accounts for

all other focused intuitionistic proof system: uniform proofs,
LJT, LJQ, λRCC, etc.

First order quantification, equality, and least and greatest fixed
points have also been accounted for in focused sequent systems.

Fixed points permit
• non-deterministic computations within inference rules, and
• a framework for combining model checking and theorem

proving.



Engineering proof systems

A number of proof systems and certificates have been defined on
top of either LKF or LJF.
• natural deduction and tableaux
• dependently typed λ-terms
• resolution refutation
• winning strategies / bisimulations
• Pratt primality certificates
• expansion trees, etc.

The work on Deduction-modulo [Dowek, Hardin, & Kirchner] and
Dedukti [Boespflug] is related.
• Reduce proofs in the “λ-cube” to λΠ using functional

computations.



Future work

• Finish the work on merging intuitionistic and classical logic into
a single, focused sequent calculus.

• Lay the proof theoretic foundation for partial proofs and
counter-examples.

• Proof reconstruction for logics
• without equality and fixed points is given by well-known logic

programming techniques: unification and back-tracking
search.
• with equality and fixed points is currently not solved.

• Engineering and infra-structure
• Can proof checkers remain simple enough while being

optimized for performance?
• Will the theorem proving community agree that the benefits

of sharing proofs out ways the cost of supplying them.



Thank You


