
Proving the completeness of proof systems using
LKF: some examples

Ivan Gazeau and Dale Miller
INRIA & LIX/Ecole Polytechnique

Palaiseau, France

Draft: May 12, 2009

Abstract

We consider how focusing system LKF for classical logic can be used to prove
the completeness of various proof systems. We consider, in particular, Herbrand
expansions, DPLL, etc.

1 Introduction
Focusing proof systems are sequent style proof systems that allow one to organize
the “micro-rules” of inference, given by the introduction rules, into “macro-rules” of
inference. The LKF proof system [3] is such a proof system for first-order classical
logic. Other such proof systems exist for intuitionistic logic (LJF, also found in [3])
and for linear logic [1].

Recently, Nigam and Miller [4] have used linear logic and its focused proof system
to faithfully encode and to proof the (relative) completeness of a range of proof sys-
tems: in particular, sequent calculus (with and without the cut rule), natural deduction
(normal and non-normal), natural deduction with generalized elimination, free deduc-
tion, and tableaux. Notice that all of these proof systems can be seen as various kinds
of tree structures based on inference rules.

Also recently, Delande and Miller [2] have used the focused proof system for mul-
tiplicative, additive linear logic (MALL) to show how games can be used to provide
for both proofs and refutations.

In this note, we explore how well focusing proof systems can be used to analyze
proof systems that are not structured as trees of inference rules (such as games, them-
selves).

2 LKF
Liang and Miller presented the LKF proof system in [3], given here in Figure 1, as
a focusing proof system for classical logic. Here, P is positive, N is negative, C is

1

` [Θ, C],Γ
` [Θ],Γ, C

[]
7→ [P,Θ], P
` [P,Θ] Focus

` [Θ], N
7→ [Θ], N Release

7→ [¬P,Θ], P
ID+, atom P 7→ [N,Θ],¬N

ID−, atom N

7→ [Θ], T ` [Θ],Γ,¬F
` [Θ],Γ

` [Θ],Γ,¬T
` [Θ],Γ, A ` [Θ],Γ, B

` [Θ],Γ, A ∧− B

` [Θ],Γ, A, B

` [Θ],Γ, A ∨− B

` [Θ],Γ, A

` [Θ],Γ,∀xA

7→ [Θ], A 7→ [Θ], B
7→ [Θ], A ∧+ B

7→ [Θ], Ai

7→ [Θ], A1 ∨+ A2

7→ [Θ], A[t/x]
7→ [Θ],∃xA

Figure 1: The Focused Proof System LKF

a positive formula or a negative literal, Θ consists of positive formulas and negative
literals, and x is not free in Θ, Γ. Focused and unfocused sequents have the form
7→ [Θ], A and ` [Θ],Γ, respectively.

The additive and multiplicative versions of conjunction and disjunction are avail-
able in LKF. In particular, the top-level logical symbol determines this reading: ∧− and
∨+ are additive while ∧+ and ∨− are multiplicative. The difference between the two
conjunctions and two disjunctions lies in the focused proofs that they admit: they are,
however, provability equivalent.

The main result about the LKF proof system is that it is sound and complete for
classical, first order logic. Clearly, if a sequent proof has a focused proof, it has a
LK proof (in the sense of [?]): one simply deletes the additional, focusing-oriented
syntax in the sequents and inference rules. The more surprising thing is the following
completeness proof (proved in [3]).

Theorem 1 (Completeness for LKF). If a sequent is provable in LK (equivalently, if it
is classically valid) and if we polarize the atomic formulas, disjunctions, and conjunc-
tion in that sequent arbitrarily, then the resulting sequent must have an LKF proof.

3 Herbrand’s theorem
To illustrate the utility of the LKF proof system, we shall that Herbrand’s Theorem is
an immediate consequence of the completeness of LKF.

Theorem 2 (Herbrand’s Theorem). Let B be a quantifier-free formula all of whose
free variables are in the list of variables x̄ = x1, . . . , xn (n ≥ 0). If ∃x̄.B is valid then
there exists substitutions θ1, . . . , θm on the domain x̄ such that Bθ1 ∧ · · · ∧ Bθm is a
tautology.

2

Ω; ∆, L⊥ ` Φ, L ∧ C Ω; ∆, L ` Φ, L ∧ C

L,Ω; ∆ ` Φ, L ∧ C
Split

Ω; ∆, L⊥ ` Φ
L⊥,Ω; ∆ ` Φ, L

Assert

Ω; ∆, L⊥ ` Φ
Ω; ∆, L⊥ ` Φ, L ∧ C

Subsume

Ω; ∆, L ` Φ, L
Empty

Ω; ∆, L ` Φ, C

Ω; ∆, L ` Φ, L ∧ C
Resolve

Figure 2: The DPLL rules. Ω is just an alias to express literals present in the sequent
but not in ∆.

Proof. Before using any focused proof system, such as LKF, we must polarize the
connectives of B: for this application, we choose the asynchronous propositional con-
nectives ∧− and ∨− (the polarity of literals must also be picked but that choice is not
important in this example). Assume that ∃x̄.B is valid. By the completeness of LKF
(Theorem 1), there is an LKF proof Ξ of ∃x̄.B.

Every occurrence of the Focus rule in Ξ has a conclusion of the form ` [∃x̄.B,L],
for where L is some multiset of literals. The premise of such a rule has one of the
following two forms.

1. The premise is a sequent such as 7→ [∃x̄.B,L]L, where L is a literal whose
complement occurs in L. In that case, this premise is immediately proved using
an ID rule.

2. The premise is of the form 7→ [∃x̄.B,L]∃x̄.B. This sequent is the conclusion of
a synchronous phase that starts with a sequent of the form 7→ [∃x̄.B,L]Bθ. This
later sequent is itself the conclusion of an asynchronous decomposition phase,
all of whose premises are of the form ` [∃x̄.B,L,L′], for some set of literal L′.

Let θ1, . . . , θm be the set of substitutions that are attached to such synchronous phases.
It is now immediate to transform Ξ to a proof Ξ′ of ` Bθ1 ∨+ · · · ∨+ Bθm in such
a way that whenever the formula ∃x̄.B is selected and reduced to Bθi within Ξ, the
corresponding synchronous phase in Ξ′ focuses on Bθ1 ∨+ · · · ∨+ Bθm and similarly
reduces that formula to Bθi (via the introduction rules for ∨+). All other aspects of the
proof Ξ are left unchanged in Ξ′.

4 DPLL and focusing

4.1 The DPLL algorithme
Theorem 3 (soundness). If Ω; ∆ ` Φ then ∆ ⊃ Φ is true in classical logic.

3

4.2 LKF with polarization rules
Soundness

Proposition 4.1 (soundness of LKF p). LKF p is sound.

Proof. The D, R, ∧+ and Init rules are the one of LKF. The cut rule is admissible
since it’s just a restriction of the original cut rule. The pol rule is like a decide rule
so it’s sound. The elim rule is sound, indeed assume we allow focusing (the only rule
appliable elsewhere) on the formula instead of the elim rule .

(loop)
O;N,L ` Γ, L ⇑

O;N,L ` Γ, L ⇓ L
R

. . .

O;P ;N,L ` Γ, L ⇓ L ∧+ C
∧+

O;N,L ` Γ, L, L ∧+ C ⇑ D

We get a loop, so there no way to use the formula : it can be deleted. So this system is
sound.

Completeness

Proposition 4.2. In LKF, all macro rules (decomposition of one formula) commute to
each other: any restriction on the D rule which fix an order is admissible.

Proof. In LK all rules are invertible (init and ∧). So we can enforce any order while
all formula may be focused on it. Focusing just compell to decompose a whole formula
in one phase but let the order between formulas free.

Proposition 4.3. LKF p ensure that there are no rule that cannot be focus on (it fixs
an order without excluding any formula).

Proof. Here the order is fixed by the apparition of polarity on all atoms of the formula.
We can focus on a formula completely polarized with D, on one with just one literal
unassigned (with pol or elim according to the fact that all literal are positive there are
at least on negative). And if any of these cases occur the cut rule increase strictly the
number of polarized atoms such that before failure all formula have been focusable.

4.3 The LKF emulation
Tranlation of process step into sequent We can’t give a one to one coresspondance
between a DPLL step and a sequent of LKF. We say that an sequent correspond to a
DPLL step if the sequent (not in a focused phase) is

O;N ` (
∧

p1, . . . , pk, o1, . . . , oj), . . . , (
∧

p′1, . . . , p
′
k, o′1, . . . , o

′
j), (

∧
p1, . . . , p

′
k, o1, . . . , o

′
j , n1, . . . , ni) ⇑

and the DPLL step is

O;N ` (
+∧

o1, . . . , oj), . . . , (
+∧

o′1, . . . , o
′
j)

4

l, O;N ` Γ, l ⇑ l, O;N ` Γ, l⊥ ⇑
l, O;N ` Γ ⇑ cut

O;N ` Γ ⇓ C

O;N ` Γ, C ⇑ D

O;N, l ` Γ, l ⇑
O;N, l ` Γ ⇓ l

R

O;N ` Γ ⇓ C O;N ` Γ ⇓ C

O;N ` Γ ⇓ C ∧+ C ′ ∧+

O;N, l⊥ ` Γ, l⊥ ⇓ l
Init

O;N, l⊥1 , . . . , l⊥n , l ` Γ ⇓ Cli ∧+ l

O, l;N, l⊥1 , . . . , l⊥n ` Γ, Cli ∧+ l ⇑
pol

O;N, l ` l, Φ
O;N, l ` Φ, l, C ∧+ l

elim

Figure 3: LKF p rules. Cut rule is allowed only if all formulas have at least two
unassigned litterals; D rule only if all literals are positive.

Assert When we apply the assert rule in DPLL, we have the equivalent rules in
LKF:

O;N,C⊥
1 , C⊥

2 , l ` Γ, ci, l ⇑
O;N,C⊥

1 , C⊥
2 , l ` Γ, ci ⇓ l

R
O;N,C⊥

1 , C⊥
2 , l ` Γ, ci ⇓ C2

Init

O;N,C⊥
1 , C⊥

2 , l ` Γ, ci ⇓ C2 ∧+ l
∧+

O;N,C⊥
1 , C⊥

2 , l ` Γ, ci ⇓ C1
Init

O;N,C⊥
1 , C⊥

2 , l ` Γ, ci ⇓ (C2 ∧+ l) ∧+ C1
∧+

O, l;C⊥
1 , C⊥

2 , N ` Γ, ci, (C1 ∧+ l) ∧+ C2 ⇑
pol

Split When we apply the Split rule in DPLL, we have the equivalent rules in LKF:

O;N, l ` Γ, l ⇑
O;N, l ` Γ,⇓ l

R

O, l;N ` Γ, l ⇑ pol

O;N, l⊥ ` Γ, l ⇑
O;N, l⊥ ` Γ ⇓ l

R

O, l⊥;N ` Γ, l⊥ ⇑
pol

O, l;N ` Γ ⇑ cut

Subsume Subsume is emulated by the elim rule.

O;N,L ` Γ, L ⇑
O;N,L ` Γ, L, L ∧+ C ⇑ elim

Empty When we apply the empty rule in DPLL, we have the equivalent rules in
LKF:

5

O;N,C⊥
1 , C⊥

2 ` Γ, ci ⇓ C2
Init

O;N,C⊥
1 , C⊥

2 ` Γ, ci ⇓ C1
Init

O;N,C⊥
1 , C⊥

2 ` Γ, ci ⇓ C2 ∧+ C1
∧+

O;C⊥
1 , C⊥

2 , N ` Γ, ci, C1 ∧+ C2 ⇑
D

Resolve They are no rules for resolve : this rule is captured by setting polarity.

Conclusion Each step of DPLL may be emulated by LKF. We need, now, to be sure
there are no behavior from LKF that doesn’t correspond to DPLL.

4.4 Strict behavior
We need to ensure that there are no consecutive unfocused sequents that does not cor-
respond to LKF. There several big step possible in this system :

The cut rule If we applie the cut rule, we have the assumption that all formulas have
at least two unassigned atoms. So after the cut rule, it’s not possible to use one of
the elim,pol or D rule except on the new atomic formulas. And because of the new
formulas, the cut rule cannot be applied again. The only choice is to apply a pol rule
on each atomic formula. And then realease focus.

The pol rule We have the propertie: if a litteral is negtive, it’s present inside the
context. So once a pol rule is applied, there just the Assert scheme available (just one
branch left open and the other closed).

The D rule If the D allows a successfull focus phase, it means all literals have polar-
ity and positive one have they complement present inside the context (and in our case
it’s always the case). Because we enforce the D rule to be applied only on completely
positive formulas, the proof always finish as in the Empty scheme.

The elim rule Trivial.

Completeness of DPLL LKF p is complete and emulate all rules of DPLL and just
these rules, so DPLL is complete.

5 Rewriting proofs
Functions are relations. Is it possible to use a proof system for relations to actually
achieve familiar rewriting proofs that are based, instead, on function and terms?

If functions are taken as primitive (as in denotational semantics), then relations
/ non-determinism is treated as set-valued functions. If relations are primitive, then
functions are seen as just a kind of relation. The restriction on relations that yields
functions (ie, functionality) also has an immediate, focusing-related counterpart....

6

Translation of rewriting term into logic formula We can define a rewriting rule
with this grammar :

rw := X → Y

X := f(X, . . .)|cst|var

Y := f(X, . . .)|cst|varfromX

So , in certain way, a rewriting rule is a transformation of syntactic tree. We will use
linear logic to translate each node of the tree into a literal. A rewriting rule is translated
this way :

T (X → Y) = ∀rΠ2(F(X, r)) (Π1(F(X, r))−◦ ∃Π2(F(X), r)Π1F(X, r))

F(f(X, . . .), k) = (Π1F(X, k1)⊗ . . .⊗ f(k1, . . . , r); Π2 (F(X, k1)) . . . , k1, . . . , r)

Proposition 5.1. If we have
X →∗ Y

then we have

!(T (rw1), T (rw2), . . .)⊗Π1(X, r) ` ∃Π2(Y, r)Π1(Y, r)

Proposition 5.2. All neutral sequents got in the proof of

!(T (rw1), T (rw2), . . .)⊗Π1(X, r) ` ∃Π2(Y, r)Π1(Y, r)

Have the shape :

!(T (rw1), T (rw2), . . .)⊗Π1(Z, r) ` ∃Π2(Y, r)Π1(Y, r)

Where Z is such that X → Z.

6 More...

References
[1] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J.

of Logic and Computation, 2(3):297–347, 1992.

[2] Olivier Delande and Dale Miller. A neutral approach to proof and refutation in
MALL. In F. Pfenning, editor, 23th Symp. on Logic in Computer Science, pages
498–508. IEEE Computer Society Press, 2008.

[3] Chuck Liang and Dale Miller. Focusing and polarization in intuitionistic logic.
In J. Duparc and T. A. Henzinger, editors, CSL 2007: Computer Science Logic,
volume 4646 of LNCS, pages 451–465. Springer, 2007. Extended version to appear
in TCS.

[4] Vivek Nigam and Dale Miller. Focusing in linear meta-logic. In Proceedings of
IJCAR: International Joint Conference on Automated Reasoning, volume 5195 of
LNAI, pages 507–522. Springer, 2008.

7

