
FCS’03 Preliminary Version

Encryption as an abstract data-type:
An extended abstract

Dale Miller

INRIA/Futurs & École polytechnique, France

Abstract

At the Dolev-Yao level of abstraction, security protocols can be specified using mul-
tisets rewriting. Such rewriting can be modeled naturally using proof search in
linear logic. The linear logic setting also provides a simple mechanism for generat-
ing nonces and session and encryption keys via eigenvariables. We illustrate several
additional aspects of this direct encoding of protocols into logic. In particular, en-
crypted data can be seen naturally as an abstract data-type. Entailments between
security protocols as linear logic theories can be surprisingly strong. We also il-
lustrate how the well-known connection in linear logic between bipolar formulas
and general formulas can be used to show that the asynchronous model of com-
munication given by multiset rewriting rules can be understood, more naturally as
asynchronous process calculus (also represented directly as linear logic formulas).
The familiar proof theoretic notion of interpolants can also serve to characterize
communication between a role and its environment.

1 Introduction

When the topic of specifying and reasoning about security protocols attracts
the attention of programming language researchers, it is common to find them
turning to process calculi, such as CSP or the spi-calculus [27,18], automata,
and even typed λ-calculus [29]. Proof search (that is, the foundations of logic
programming), however, has a number of properties that are attractive when
one attempts to specify and analyze security protocols. We list a few of these
advantages here and devote the rest of this paper to develop these benefits
further.

Formal analysis of security protocols is largely based on a set of assump-
tions commonly referred to as the Dolev-Yao model [10], an abstraction that
supports symbolic execution and reasoning. It has been observed in various
places (for example, [9,4]) that this abstract can be realized well using mul-
tiset rewriting. Given that it is well-known that proof search in linear logic
provides a declarative framework for specifying multiset rewriting [12,15,4], a

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Miller

rather transparent start at representing security primitives is available with
proof search in linear logic.

Proof theory comes with a primitive, declarative, and well understood no-
tion of “newness” and “freshness” via the technical devices of eigenvariable
(newness in proofs) [13] and λ-abstraction [7] (newness in terms). It is ap-
pealing to try to use these devices rather than the more ad hoc approach to
freshness, say, in the BAN logic [2]. Proof search has been used successfully
to specify transitions in the π-calculus [26]: ad hoc provisos needed to make
certain that names and scope were maintained correctly can be encoded in a
meta-logic by mapping names to term-level abstractions (λ-abstractions) and
to proof-level abstractions (eigenvariables) [25].

Proof search in linear logic has been studied extensively and proof systems
exist that give strong normal forms to how search can actually proceed [1,23].
As a result, significant information is known about the structure of cut-free
proofs: since these are the “traces” of protocols and attackers, this structural
information is a great aid in reasoning about possible computation paths.
The normal forms also provide blueprints for building high-level interpreters
for linear logic specifications. Furthermore, the foundations of proof search is
a current topic of active research [14] and we can expect that advances there
will find applications to this particular domain of computer science.

The proof search paradigm comes equipped with notions of abstract data-
types [21] and higher-order predicate abstractions [28], all features that we
shall draw upon in this paper. Given that these abstraction mechanism all
result from aspects of logic, there is no problem in understanding the inter-
action between abstractions and other aspects of the logic (for example, with
multiset rewriting). The problems surrounding “feature interaction” are not
present in well designed logics.

Finally, logic comes with a built-in notions of entailment and of equivalence
and it is interesting to see if these notions can be useful in reasoning about
computation. This notion of logical equivalence would, for example, replace
the notion of structural equivalence in process calculus [22]. When one allows
rich forms of higher-order quantification, logical entailment is able to relate
surprising different specifications.

2 Multiset rewriting in proof search

To model multiset rewriting we shall use a subset of linear logic called process
clauses in [22]. The closed formula ∀x̄[G−◦H] is a process clause (clause for
short) if G and H are formulas composed of ⊥, ...

............
.................................. , and ∀, and all free variables

of G are free in H. Here, ...
............
.................................. encodes the multiset constructor and ⊥ encodes

the empty multiset, H is the head of the clause, and G is the body of the clause.
We will follow the common practice from the logic programming literature of
writing the head of a clause first by reversing the sense of the implication: that
is, the clause above is written as ∀x̄[H ◦− G]. Kanovich [16,17] introduced

2

Miller

a similar set of formulas he calls linear Horn clauses: these are essentially
process clauses in contrapositive form (replace ...

............
.................................. , ∀, ⊥, and ◦− with ⊗, ∃, 1,

and −◦, respectively). We avoid using Kanovich’s term here since it is contrary
to the usual use of the term Horn clause in the logic programming literature
where eigenvariables are not part of proof search.

Using simple linear logic equivalences, process clauses can be written in
normal form as

∀x1 . . . ∀xi[a1
...

............
.................................. · · · ...

............
.................................. am ◦− ∀y1 . . . ∀yj[b1

...
............
.................................. · · · ...

............
.................................. bn]]

where i, j, n, m ≥ 0 and a1, . . . , am, b1, · · · , bn are atoms. It is in this form that
we generally present process clauses.

In this abstract, we choose sequents of the form Σ : Ψ −→ Γ where Σ
is the signature (declaration of eigenvariables) and Ψ and Γ are multisets of
formulas (linear/bounded maintenance). To illustrate multiset rewriting using
the right-hand context, consider the rewriting rule

a, b ⇒ c, d, e,

which specifies that a multiset should be rewritten by removing one occurrence
each of a and b and then have one occurrence each of c, d, and e added.

To rewrite the right-hand multiset using the rule above, simply backchain
over the clause c ...

............
.................................. d ...

............
.................................. e−◦ a ...

............
.................................. b: the full details of such a backchaining looks

like the following:

Σ : Ψ −→ c, d, e, Γ

Σ : Ψ −→ c, d ...
............
.................................. e, Γ

Σ : Ψ −→ c ...
............
.................................. d ...

............
.................................. e, Γ

Σ; · a−→ a Σ; · b−→ b

Σ; · a
...

............
.................................. b−−→ a, b

Σ; Ψ
c
...

............
.................................. d
...

............
.................................. e−◦a...

............
.................................. b−−−−−−→ a, b, Γ

Σ : Ψ, c ...
............
.................................. d ...

............
.................................. e−◦ a ...

............
.................................. b −→ a, b, Γ

Left-introduction rules are applied to the formula on the sequent arrow (in-
stead of general formulas in the left-hand context). The sub-proofs on the
right are responsible for deleting from the right-hand context one occurrence
each of the atoms a and b while the subproof on the left is responsible for
inserting one occurrence each of the atoms c, d, and e and continuing the
computation. Thus, the proof fragment above will be simply written as

Σ : Ψ −→ c, d, e, Γ

Σ : Ψ, c ...
............
.................................. d ...

............
.................................. e−◦ a ...

............
.................................. b −→ a, b, Γ.

We interpret this fragment of a proof as a rewriting of the multiset a, b, Γ to
the multiset c, d, e, Γ.

Backchaining over the clause

∀x1 . . . ∀xi[a1
...

............
.................................. · · · ...

............
.................................. am ◦− ∀y1 . . . ∀yj[b1

...
............
.................................. · · · ...

............
.................................. bn]]

3

Miller

is equivalent to the following simple inference rule

Σ, y1, . . . , yj : Ψ −→ θb1, . . . , θbn, Γ

Σ : Ψ −→ θa1, . . . θam, Γ

Here, θ is a substitution mapping the variables x1, . . . , xn to Σ-terms and the
variables y1, . . . , ym are not declared in Σ (otherwise we can use α-conversion
on the clause before backchaining).

Example 2.1 Consider the problem of Alice wishing to communicate a value
to Bob. The clause

∀x[(a x) ...
............
.................................. b ◦− a′ ...

............
.................................. (b′ x)]

illustrates how one might synchronize Alice’s role (a x) with Bob’s role b. In
one, atomic step, the synchronization occurs and the value x is transfered from
Alice, resulting in her continuation a′, to Bob, resulting in his continuation
(b′ x). If a server is also involved, one can imagine the clause being written as

∀x[(a x) ...
............
.................................. b ...

............
.................................. s ◦− a′ ...

............
.................................. (b′ x) ...

............
.................................. s],

assuming that the server’s state is unchanged through this interaction. As in
most examples in this abstract, we shall assume the familiar Prolog conven-
tion of writing top-level implications in specification clauses in their reverse
direction.

As this example illustrates, synchronization between roles is easy to spec-
ify and can trivialize both the nature of communication and the need for
security protocols entirely. (For example, if such secure communications is
done atomically, there is no need for a server s in the above clause.) While
the clause in this example might specify a desired communication, it cannot
be understood as capturing more low-level and realistic aspects of commu-
nications. In distributed settings, synchronization actually only takes place
between roles and networks. Our main use of multiset rewriting will involve
more restricted clauses with weaker assumptions about communications: these
will involve synchronizations between roles and network messages (a model for
asynchronous communications) and not between roles and other roles (a model
of synchronous communications). Clauses such as those displayed above, how-
ever, can serve as specifications of what a given protocol might be shown to
satisfy.

3 Encoding security protocols

The following encoding of security protocols follows to a large extent that
given in [4,5] for the system MSR.

The type i is used to encode messages. Primitive objects, such as integers,
strings, and nonces, are all constructors of i. The tupling operator 〈·, ·〉, for
pairing data together, has type i → i → i. Expressions such as 〈·, ·, . . . , ·〉

4

Miller

denote pairing associated to the right. One additional constructor for i is
presented in Section 4.

A network message is encoded as an atomic formula of the form N(t), where
N(·) is a predicate of type i → o and t (of type i) is the actual data of the
message. (Following [6], we use o to denote the type of formulas.) As we shall
see, the state of the network will be a multiset of such atomic formulas.

The roles (e.g., Alice and Bob) and the formulas that describe them are
rather complicated in MSR: we provide some definitions inspired by the defi-
nitions given in [4,5]. A role identifier is a symbol, say, ρ. For some number
n ≥ 1 and for i = 1, . . . , n, the pair ρi of an identifier and an index is a role
state predicate. These state predicates are used to encode internal states of
a role as a protocol progresses. A role state atom is an atomic formula of
the form ρi(x1, . . . , xm) where x1, . . . , xm are distinct variables and ρi is a role
state predicate. A role clause is a process clause

∀x1 . . . ∀xi[a1
...

............
.................................. · · · ...

............
.................................. am ◦− ∀y1 . . . ∀yj[b1

...
............
.................................. · · · ...

............
.................................. bn]]

where i, j, n, m ≥ 0. Here, the head of such as clause is the formula a1
...

............
.................................. · · · ... am

and the body is ∀y1 . . . ∀yj[b1
...

............
.................................. · · · ...

............
.................................. bn]. Role clauses also have the following

restrictions: all the atoms a1, . . . , am, b1, . . . , bn are either network messages
or a role state atoms such that (1) there is at most one role state atom in
the head and at most one in the body; (2) if there is a role state atom in the
head, say, ρi(t̄) and a role state atom in the body, say, ρ′j(s̄), then ρ and ρ′

must be the same role identifier and i < j. In other words, a role clause only
involves a single role (and possibly network messages) and when moving from
the head to the body, the index of the role must increase. As a consequence
of the restrictions on role clauses, roles cannot synchronize with other roles
directly and one role cannot evolve into another role. Condition (1) allows for
process creation (no role state atom in the head) and process deletion (no role
state atom in the body). Condition (2) above implies is that all agents have
finite runs [4,5]. A final restriction on role clauses is that all variables free in
the body of the clause must be free in the role state atom in the head of the
clause.

A role theory is a linear logic formula of the form

∃x1 . . . ∃xr [C1 ⊗ · · · ⊗ Cs],

where r, s ≥ 0, C1, . . . , Cs are role clauses, where x1, . . . , xr are variables of
type i or i → i, and whenever Ci and Cj have the same role state predicate in
their head then i = j. This latter condition implies that agents in protocols are
deterministic. This is a condition that can easily be relaxed within linear logic
if non-deterministic agents are of interest. Fortunately, this restriction does
not restrict the class of intruders (testers) that we consider briefly in Section 7
since intruders can be grouped together in multisets and interleaving provides
non-determinism.

5

Miller

Existential quantification like that surrounding role theories are used in
logic programming to provide for abstract data-types and here they will serve
as local constants shared by certain role clauses. In particular, shared keys
between, say Alice and a trusted server, will be existentially quantified in this
way with a variable of type i → i. The use of existential quantifier at type
i → i is explained next.

4 Encryption as an abstract data-type

Encryption keys will be encoded using function symbols of type i → i. Since
such keys will need to be given scope, they will be quantified either exis-
tentially over role theories or universally in role clauses. Using higher-order
quantification over data constructors is the usual way to specify abstract data-
types within logic programming [21]. Since we will be allowing quantification
of higher-order type, proof search will be slightly more complicated than if we
restricted ourselves to only first-order quantification. For example, the (meta-
level) equations for α, β, and η conversions are assumed, although no other
equations on the type i are assumed. (As is customary with typed λ-terms,
η is assumed since there seems to be no good reason to distinguish, say, the
encryption key k form the expression (λw.kw).) As discussed in [24], higher-
order quantification can add greatly to the expressive strength of specification,
but when done carefully, it does not need to add to the complexity of proof
search. The remaining constructor for the type i is ·◦ of type (i → i) → i: this
constructor is used to coerce an encryption key back into a data item, and in
this way, a role can place a key into a network message. (We will not introduce
application app : i → (i → i), the dual operation to ·◦, since the expression
(app k◦ x) will be written simply as (k x).) This approach to “encryption as
an abstract data-type” is a departure from MSR.

Consider the following specification that contains three occurrences of en-
cryption keys.

∃kas∃kbs[a1〈M, S〉 ◦− a2S
...

............
.................................. N(kas M).

b1T
...

............
.................................. N(kbs M) ◦− b2〈M, T 〉.

s1()
...

............
.................................. N(kas P) ◦− N(kbs P).]

(Here as elsewhere, quantification of capital letter variables is universal with
scope limited to the clause in which the variable appears.) In this example,
Alice (a1, a2) communicates with Bob (b1, b2) via a server (s1). To make the
communications secure, Alice uses the key kas while Bob uses the key kbs.
The server is deleted immediately after it translates one message encrypted
for Alice to a message encrypted for Bob. The use of the existential quantifiers
helps establish that the occurrences of keys, say, between Alice and the server
and Bob and the server, are the only occurrences of that key. Even if more

6

Miller

Message 1 A −→ S: A, B, nA

Message 2 S −→ A: {nA, B, kAB, {kAB, A}kBS
}kAS

Message 3 A −→ B: {kAB, A}kBS

Message 4 B −→ A: {nB}kAB

Message 5 A −→ B: {nB, Secret}kAB

Fig. 1. A conventional presentation of the Needham-Schroeder protocol.

∃kas∃kbs{
a1(S) ◦− ∀na. a2(na, S) ...

............
.................................. N(〈alice, bob, na〉).

a2(N,S) ...
............
.................................. N(kas〈N, bob, K◦, En〉) ◦− a3(N, K, S) ...

............
.................................. N(En).

a3(Na, Key, S) ...
............
.................................. N(Key Nb) ◦− a4()

...
............
.................................. N(Key 〈Nb, S〉).

b1()
...

............
.................................. N(kbs 〈Key◦, alice〉) ◦− ∀nb.b2(nb,Key) ...

............
.................................. N(Key nb).

b2(Nb,Key) ...
............
.................................. N(Key〈Nb, S〉) ◦− b3S.

s1
...

............
.................................. N(〈alice, bob, N〉) ◦− ∀k.N(kas〈N, bob, k◦, kbs〈k◦, alice〉〉).

}
Fig. 2. Encoding the Needham-Schroeder protocol.

principals are added to this system, these occurrences are still the only ones for
these keys. Thus, the existential quantifier helps in determining the static or
lexical scope of key distribution. Of course, as protocols are evaluated (that
is, a proof is searched for), keys may extrude their scope and move freely
onto the network. This dynamic notion of scope extrusion is similar to that
found in the π-calculus [26] and is modeled here similar to an encoding of the
π-calculus into linear logic found in [22].

Example 4.1 The Needham-Schroeder Shared Key protocol presented in Fig-
ure 1 [30] and the rough translation of it into linear logic given in Figure 2
provides another example. Notice that two shared keys are used in this exam-
ple and that the server creates a new key that is placed within data and is then
used by Alice and Bob to communicate directly. It is a simple matter to show
that this protocol implements the specification (taken from Example 2.1):

∀x[a1(x) ...
............
.................................. b1()

...
............
.................................. s1() ◦− a4()

...
............
.................................. b3(x)].

The linear logic proof of this starts with the multiset a1(c), b1(), s1() on the
right of the sequent arrow (for some “secret” eigenvariable c) and then reduces
this back to the multiset a4()

...
............
.................................. b3(c) simply by performing a simple “execution”

of the logic program in Figure 2. Notice that the ∀ used in the bodies of clauses
in this protocol are used both for nonce creation (at type i) and encryption
key creation (at type i → i).

7

Miller

Example 4.2 Consider the following two clauses for Alice.

aK◦ ...
............
.................................. N(K M) ◦− a′M. (3.1)

a ...
............
.................................. N(K M) ◦− a′M. (3.2)

In the first case, she possesses an encryption key and uses it to decrypt a net-
work message. In the second case, it appears that she is decrypting a message
without knowing the key, an inappropriate behavior, of course. Technically,
this clause is not a proper role clause (since there is a variable M that is not
free in the role state predicate in the head a). In any case, it is interest-
ing to consider (3.2) for a moment. Notice that (3.2) is logically equivalent
(and, hence, operationally indistinguishable using proof search) to both of the
formulas

∀M∀X[a ...
............
.................................. N(X) ◦− a′M] and ∀X[a ...

............
.................................. N(X) ◦− ∃M.a′M].

This last clause clearly illustrates that Alice is not actually decoding an ex-
isting message but is simply guessing (using ∃) at some data value M , and
continues with that guess as a′M . If one thinks operationally instead of declar-
atively about proof search involving clause (3.2), we would consider possible
unifiers for matching the pattern (K M) with a network message, say, (k s), for
two constants k and s. Unification yields exactly the following three different
unifiers:

[M 7→ (k s), K 7→ λw.w] [M 7→ s,K 7→ k] [M 7→ M,K 7→ λw.(k s)]

Thus, M can be bound to either (k s) or s or any term: in other words, M
can be bound to any expression of type i.

By using higher-order quantification, logical entailment is strengthened
and can help in reasoning about role clauses and theories.

Example 4.3 Consider the two clauses

a1 ◦− ∀k.N(k m) and a1 ◦− ∀k.N(k m′).

Each of these clauses specify that Alice can take a step that generates a
new encryption key and then outputs a message (either m or m′) using that
encryption key. Since Alice has no continuation, no one, not even Alice will be
able to decode this message. It should be the case that these two clauses are
“operationally” similar since they both generate a “junk message.” In fact, it
is an easy matter to show that these two clauses are logically equivalent. A
proof that the first implies the second contains a subproof of the sequent

∀k.N(k m′) −→ ∀k.N(k m),

and this is proved by introducing an eigenvariable, say c, on the right and the
term λw.(c m) on the left.

8

Miller

5 Abstracting internal states

The following example illustrates that using existential quantification over
predicates (in particular, role state predicates) allows interesting rewriting of
the structure of role theories.

Example 5.1 [Reducing n-way to 2-way synchronization] General n-way syn-
chronization (n ≥ 2) can be rewritten using 2-way synchronization by the
introduction of new, intermediate, and hidden predicates as is allowed in role
theories. For example, the following two formulas are logically equivalent.

∃l1∃l2.
{

a ...
............
.................................. b ◦− l1

l1
...

............
.................................. c ◦− l2

...
............
.................................. e

l2 ◦− d ...
............
.................................. f

}
a` a ...

............
.................................. b ...

............
.................................. c ◦− d ...

............
.................................. e ...

............
.................................. f

The clause on the right specifies a 3-way synchronization and the spawning of
3 new atoms whereas the formula on the left is limited to rewriting at most
two atoms into at most 2 atoms. The proof of the forward entailment in linear
logic is straightforward while the proof of the reverse entailment involves the
two higher-order substitutions of a ...

............
.................................. b for ∃l1 and d ...

............
.................................. f for ∃l2. As long

as we are using logical entailment, these two formulas are indistinguishable
and can be used interchangeably in all contexts. If instead we could observe
possible failures in the search for proofs, then it is possible to distinguish these
formulas: consider the search for a proof of a sequent containing a and b but
not c. Since linear logic does not observe such failures, this kind of observation
cannot be internalized.

Existential quantification over program clauses can also be used to hide
predicates encoding roles. In fact, one might argue that the various restrictions
on sets of process clauses (no synchronization directly with atoms encoding
roles, no role changing into another role, etc) might all be considered a way to
enforce locality of predicates. Existential quantification can, however, achieve
this same notion of locality, but much more declaratively.

Example 5.2 [Hiding role state predicates] The following two formulas are
logically equivalent:

∃ a2, a3.

a1
...

............
.................................. N(m0) ◦− a2

...
............
.................................. N(m1)

a2
...

............
.................................. N(m2) ◦− a3

...
............
.................................. N(m3)

a3
...

............
.................................. N(m4) ◦− a4

...
............
.................................. N(m5)

 a`

a1
...

............
.................................. N(m0) ◦− (N(m1) ◦− (N(m2) ◦− (N(m3) ◦− (N(m4) ◦− (N(m5)

...
............
.................................. a4)))))

The changing of polarity that occurs when moving to the premise of a ◦−
flips expressions from output (e.g., N(m1)) to input (e.g., N(m2)), etc. Thus,
by hiding intermediate roles state predicates, it is possible to rewrite a role
theory into a different style of formula that seems quite natural.

9

Miller

6 Asynchronous and synchronous connectives

The observation that abstracting over internal states results in an equivalent
syntax with nested ◦− suggests an alternative syntax for roles. Consider the
following syntactic categories of linear logic formulas:

H ::= A |⊥| H ...
............
.................................. H | ∀x.H

KO ::= H | H ◦− KI | ∀x.KO KI ::= H ◦− KO | ∀x.KI

Here, A denotes the class of atomic formulas encoding network messages and
formulas belonging to the class H denote bundles of messages that are used as
either input or output to the network. Formulas belonging to the classes KI

and KO can have deep nesting of implications and that nesting changes phases
from input to output and back to input. The reason to split the class of K
formulas into input formulas (KI) and output formulas (KO) is to parallel the
MSR formalism more closely: in MSR, after a agent does an input, it must do
an output (even if there is not messages to output). That is, in MSR, every
input action has a continuation but not every output action as a continuation.

A formula in the category KI is called a role formula.

The connectives of linear logic can be classified as asynchronous connective
(...

............
.................................. , ∀, &, etc) and synchronous connective (⊗, ∃, ⊕, etc). The dual of a

connective in one class is a connective in the other. The formulas of MSR are
examples of bipolar: these are formulas in which no asynchronous connective
is in the scope of a synchronous connective. For example, Q1

...
............
.................................. · · · ...

............
.................................. Qm ◦−

P1
...

............
.................................. · · · ... Pn is logically equivalent to Q1

...
............
.................................. · · · ... Qm

...
............
.................................. (P⊥

1 ⊗· · ·⊗P⊥
n). Obviously,

role formulas are, in general, not bipolars.

Proposition 6.1 For every role theory in which only the predicate N(·) is
free, there is a collection of role formulas to which it is provably equivalent.

Proof. This proposition is proved by showing how to remove the existentially
quantified role state predicate with maximal index by generating the appro-
priate higher-order substitution (similar to those produced in Example 5.1).
When no more quantified role state predicates remain, the resulting theory is
the desired collection of role formulas. 2

To illustrate an example of this style of syntax, consider first declaring local
all role predicates in the Needham-Schroeder Shared Key protocol in Figure 2.
This then yields the logically equivalent presentation in Figure 3. There, three
formulas are displayed: the first represents the role of Alice, the second Bob,
and the final one the server. (All agents in this Figure are written at the same
polarity, in this case, in output mode: since Bob and the server essentially start
with inputs, these two agents are negated, meaning they first output nothing
and then move to input mode.) Andreoli’s compilation method [1] applied to
the formula in Figure 3 yields the formulas in Figure 2: the new constants
introduced by compilation are the names used to denote role continuation.

10

Miller

(Out) ∀na.N(〈alice, bob, na〉) ◦−
(In) (∀Kab∀En.N(kas〈na, bob, Kab◦, En〉) ◦−
(Out) (N(En) ◦−
(In) (∀NB.N(KabNB) ◦−
(Out) (N(Kab(NB, secret)))))).

(Out) ⊥◦−
(In) (∀Kab.N(kbs(Kab◦, alice)) ◦−
(Out) (∀nb.N(Kab nb) ◦−
(In) (N(Kab(nb, secret)) ◦−
(Cont) b secret))).

(Out) ⊥◦−
(In) (∀N.N(〈alice, bob, N〉) ◦−
(Out) (∀k.N(kas〈N, bob, k◦, kbs(k◦, alice)〉))).

Fig. 3. The roles of Alice, Bob, and a server

The style of specification given in Figure 3 is similar to that of process
calculus: in particular, the implication ◦− is syntactically similar to the dot
prefix in, say, CCS. Universal quantification can appear in two modes: in
output mode it is used to generate new eigenvariables (similar to the π-calculus
restriction operator) and in input mode it is used for variable binding (similar
to value-passing CCS). The formula a ◦− (b ◦− (c ◦− (d ◦− k))) can denote
processes described as

ā || (b. (c̄ || (d. . . .))) or a. (b̄ || (c. (d̄ || . . .)))
depending on which polarity it is being used. This formula and it’s negation
can also be written without linear implications as follows:

a ...
............
.................................. (b⊥ ⊗ (c ...

............
.................................. (d⊥ ⊗ . . .))) resp, a⊥ ⊗ (b ...

............
.................................. (c⊥ ⊗ (d ...

............
.................................. . . .))).

Once a process with a continuation (that is, one that has an implication)
has done an output (input), its continuation is an input (output) process. To
see this mechanism in the proof search setting, consider a sequent ∆ −→ Γ
where ∆ is a multset of KI formulas and Γ are multisets of KO formulas
(here, we elide the signature associated to a sequent). The right-hand side
of sequents involve asynchronous behavior (output) and left-hand side of se-
quents involve synchronous behavior (input). The two rules involving proof
search with implications can be written as follows:

∆, K −→ Γ, H,A
∆ −→ H ◦− K, Γ,A

H −→ A1 ∆ −→ K,A2

∆, H ◦− K −→ A1,A2

11

Miller

Here, A denotes a multiset of atoms (i.e., network messages). Notice that
we can assume that the left-introduction rule for ◦− is only done when the
right-hand side of the concluding sequent contains at most atomic formulas.

If the three formulas in Figure 3 are placed on the right-hand side of a
sequent arrow (with no formulas on the left) then the role formula for Alice
will output a message and move to the left-side of the sequent arrow (reading
inference rules bottom up). Bob and the server output nothing and move to
the left-hand side as well. At that point, the server will need to be chosen for a
−◦L inference rule, which will cause it to input the message that Alice sent and
then move its continuation to the right-hand side. It will then immediately
output another message, and so on.

Various equivalences familiar from the study of asynchronous communi-
cation are found in linear logic. For example, if one skips a phase, the two
phases can be contracted as follows:

p ◦− (⊥◦− (q ◦− k)) ≡ p ...
............
.................................. q ◦− k

p ◦− (⊥◦− ∀x(q x ◦− k x)) ≡ ∀x(p ...
............
.................................. q x ◦− k x)).

While the nested presentation of roles is in some sense, more complicated
syntax than the MSR (bipolar) format, this presentation certainly has its ad-
vantages over MSR. For example, there is only one predicate, namely N(·),
involved in writing out security protocols: role identifiers and role state pred-
icates have disappeared. A role can now be seen as simply a formula and a
role theory as simply an existentially quantified tensor of roles.

The following two examples illustrate a difference between the abstractions
available in logic with those available in the π-calculus and the spi-calculus.

Example 6.2 [Comparison with the π-calculus] The π-calculus expression

(x)(x̄m | x(y).Py)

is (weakly) bisimilar to the expression (Pm). This example is used to show
that communication over a hidden channel provides no possible means for the
environment to interact. A similar expression can be written as the following
expression in linear logic:

∀K[Km ...
............
.................................. (∀x(Px−◦Kx)−◦ ⊥)].

Here, we have abstracted the predicate K: in a sense, we have abstracted the
communication medium itself, and as such, the medium is available only for
the particular purpose of communicating the message m from one process to
another that is willing to do an input. This expression is logically equivalent
to (Pm): the proof that (Pm) implies the displayed formula involves a use of
equality (easy to add to the underlying logic in a number of ways) and the
higher-order substitution λw.(w = m)−◦ ⊥ for K.

12

Miller

Example 6.3 [Comparison with the spi-calculus] In the spi-calculus, a “pub-
lic” channel can be used for communicating. To ensure that messages are only
“understood” by the appropriate parties, messages are encrypted with keys
that are given specific scopes. For example, the expression

(k)(q̄({m}k) | q(y).let {x}k = y in Px)

describes a process that is willing to output an encrypted message {m}k on a
public channel q and to also input such a message and decode it. The key k
is given a scope similar to that given in the π-calculus expression. The linear
logic expression, call it B,

∀k[N(km) ...
............
.................................. (∀x(Px−◦ N(kx)))−◦ ⊥]

is most similar to this spi-calculus expression: here, the network N(·) corre-
sponds to the public channel q. It is not the case, however, that B is logically
equivalent to Pm since linear logic can observe that B can output something
on the public channel, that is, ∀y(>−◦N(y)) ` B whereas it is not necessarily
true that ∀y(>−◦ N(y)) ` Pm is provable.

7 Interpolants and communications

We now illustrate how proof theory techniques can be applied to reasoning
about security protocols.

Notice that role formulas, even collections of them, are not intended to be
proved. In general, they are intended to evolve to other role formulas. To help
analyze such evolution, we introduce tests which are essentially role formulas
with an additional primitive for terminating proof search. In linear logic, the
syntactic class of tests is written as

W ::= > | H | H ◦− W | ∀x.W,

which is similar to the definition of KO except that the additive true > is
allowed as well. Following rather standard methods of using context to char-
acterize a formula’s meaning (as in, say, Kripke models or phase spaces), let
‖P‖ denote the set of all multisets Γ of tests such that ` Γ, P and define
testing equivalence P ' Q to hold when ‖P‖ = ‖Q‖. Since P ` Q implies
‖P‖ ⊆ ‖Q‖, logically equivalent role formulas are testing equivalent. The
converse is not the case.

In order to get a better handle on testing equivalence, it is valuable to find
ways to simplify the structure of tests. As they stand now, we need to con-
sider arbitrary implementations of roles that act as intruders. While intruders
(tests) might do rather complicated internal actions, it is communications be-
tween the principals and the intruder via the network that should characterize
the “external” meaning of a role.

13

Miller

Since data and encryption keys are encoded as constructors and eigen-
variables, it would appear that we can apply the proof theoretic notion of
interpolant [8] to help monitor communications. Classically, if A ` B then an
interpolant is a formula R such that A ` R and R ` B and all the non-logical
symbols occurring in R occur in both A and B. In our linear logic setting, we
can prove the following theorem. (For a related use of interpolants, see [22].)

Proposition 7.1 Let Γ be a multiset of role formulas (principals) and let ∆ be
a multiset of tests (intruders) such that ` Γ, ∆. This proof has an interpolant:
that is, there is a formula R such the non-logical constants occurring in R
occur in both Γ and in ∆, and is such that ` Γ, R and R ` ∆.

Proof Outline. The proof is by induction on the structure of a cut-free proof
of ` Γ, ∆. The base case is the>-R rule. In this case, the tester contains> and
we also set the interpolant for this sequent to be >. The other inference rules
can be classified as either asynchronous or synchronous. The synchronous rules
are ∀L and −◦L and the other rules are asynchronous. All the asynchronous
rules have exactly one premise and the interpolant associated to the premise
is also associated to the conclusion. Now consider the two synchronous cases.

First notice that given the classification of formulas in the endsequent −→
Γ, ∆ as being either principal or test, all formulas in all sequents of the (cut-
free) proof can be similarly labeled as being subformulas of either a principal
or a test.

Assume that the last inference rule of the proof is the following occurrence
of −◦L and assume that R is an interpolant for the right premise.

H −→ A1 ∆, Γ −→ K,A2

∆, Γ, H ◦− K −→ A1,A2

Here, Γ is a multiset of principal formulas and ∆ is a multiset of tests. Let MP

be the ...
............
.................................. of the principal atoms in A1 and let MI be the ...

............
.................................. of the test atoms in

A1: if there are no such atoms of either classification, use ⊥ as the formula.
We now have two cases to consider: either the formula H ◦− K comes from a
principal or it comes from a test. In the first case, the interpolant associated
to the bottom sequent is MI

...
............
.................................. R. In the second case, the interpolant for the

bottom sequent is (MP ◦− R)⊥.

Consider finally the ∀L inference rule and assume that R is an interpolant
for the premise.

Kt, Γ, ∆ −→ AP ,AI

∀γx.Kx, Γ, ∆ −→ AP ,AI

Here, AP is a multiset of principal atoms and AI is a multiset of test atoms.
Assume that the formula R is not an interpolant for the lower sequent since
it contains occurrences of non-logical constants that do not occurr in both a
principal formula and a test formula. In particular, let c : γ be such a non-
logical constant. Clearly, c has an occurrence in t. We must now distinquich
two cases inorder to abstract away the occurrence of c in R as follows.

14

Miller

Case 1: The occurrence of the formula ∀γx.Kx is a principal formula. In that
case, we can conclude that t contains an occurrence of c, that no principal
formula of the lower sequent contains c, and that some test forumula in the
lower sequent also contains an occurrence of c. The new interpolant is then
∀x.R[x/c] for some variable x of type γ. Proving the sequent ∀γx.Kx, Γ −→
AP , ∀x.R[x/c] can be reduced to proving Kt, Γ −→ AP , R by using a ∀-R
(instantiating with c) and ∀-L rule (instantiating with t). Similarly, proving
the sequent ∆,∀x.R[x/c] −→ AI can be reduced to proving ∆, R −→ AI ∀-L
rule (instantiating with c). Both of these two sequents are assumed provable
using the inductive assumption.

Case 2: The occurrence of the formula ∀γx.Kx is a test formula. In that case,
we can conclude that t contains an occurrence of c, that no test formula of the
lower sequent contains c, and that some principal forumula in the lower sequent
also contains an occurrence of c. The new interpolant is then ∃x.R[x/c] for
some variable x of type γ. Proving the sequent ∀γx.Kx, ∆,∃x.R[x/c] −→ AI

can be reduced to proving Kt, ∆, R −→ AI by using a ∃-L (instantiating
with c) and ∀-L rule (instantiating with t). Similarly, proving the sequent
Γ −→ AP ,∃x.R[x/c] can be reduced to proving ∆ −→ AP , R using ∃-L rule
(instantiating with c). Both of these sequents are assumed provable using the
inductive assumption.

Repeat this abstraction for each possible constant c. The resulting ab-
straction is then an interpolant for the concluding sequent. In this way, one
can build an interpolant inductively over the structure of the cut-free proof.

A more careful reading of the structure of interpolants shows that they
have the following structure:

M ::=⊥| A | M ...
............
.................................. M

R+ ::= > | ∀x.R+ | M ◦− R− R− ::= M ◦− R+ | ∀x.R−.

Formulas in the R+ syntactic category are contain the interpolants and are
called traces. Clearly, traces are in fact simple tests (W -formulas).

Let ‖P‖t denote the set of all traces R such that ` P, R and define trace
equivalence, P 't Q, as ‖P‖t = ‖Q‖t. Since traces are tests, P ' Q implies
P 't Q. The interpolation theorem provides a simple proof of the converse.

Proposition 7.2 The relations ' and 't coincide.

Proof. Assume that P 't Q and that Γ is a set of testers such that ` P, Γ.
By Proposition 7.1, we know that there is a trace R such that ` P, R and
R ` Γ. Since P 't Q, we know that ` Q,R and by cut, we know that ` Q, Γ.
Thus P ' Q. 2

Thus, the structure of attacks from intruders (testers) can be character-
ized by using the much simpler notion of (single-threaded) trace. This result
is familiar also from process calculus and when interpreted as a theorem of

15

Miller

concurrency, it is certainly not new. What is new here is showing that it is a
simple consequence of the proof theoretic notion of interpolant.

8 Future Work

This paper shows that the logical foundations of MSR can be enriched and,
at the same time, simplified, at least in the sense that some details that were
addressed with various non-logical constants (continuation predicates, explicit
encryption procedures, etc) can be replaced with logical concepts. As a result,
reasoning about the meaning and correctness of protocols should be enhanced.
Although some minor examples in the paper illustrate this possibility, much
additional work remains to be done to validate this conjecture. I outline here
some key topics to develop further.

The Dolev-Yao intruder. The notion of tester introduce in Section 7 is a
natural way to provide meaning to a formula (in proof theory) or processes
(in concurrency). The exact connection, however, between testing and the
Dolev-Yao notion of intruder must be formally established.

Security properties. Generally, the reason to formalize a security protocol is
as a first step to establish various kinds of security related properties, such as
secrecy and authentication. One starting point for establishing such properties
uses reachability analysis, and techniques in [19,20], which work directly on
logic specifications of the form given here, might be one place to start.

Experimentation. Of course, serious experimentation with protocols and their
formal properties should be explored. Given a modern logic programming lan-
guage such as λProlog that incorporates λ-terms and their unification, eigen-
variables, and proof search, it is an easy matter to implement interpreters that
can execute and explore simple reachability questions. Designing a deductive
system that formally supports reasoning about specifications that contains
such computational elements is significantly more difficult.

New quantification. An extension to proof theory described in [25] proposes
a new quantifier, ∇x.G, which might be more appropriate for capturing the
notion of scoping of new names within a security protocol. It seems likely that
∇ could be used to generate nonces while ∀ would continue to be used for
encryption keys. The distinction between these quantifiers would not appear
in the execution of the operational semantics of protocols but in reasoning
about their equivalence and behavior.

Related formalisms. There are obviously many other paradigms to which this
work can be related. Given that there is a well known connection between
π-calculus style encodings and eigenvariables [22], it would seem quite natural
to explore more fully possible connections with the spi-calculus [27]. Also,
the connection between strand spaces [3,5,11] and cut-free proofs using role

16

Miller

formulas seems likely be strong: one of the relations involved in defining a
strand space should be that of subformula within a common role and the
other relation should relate two atoms (messages) appearing together in the
same initial sequent.

Acknowledgments. I wish to thank Iliano Cervesato, Alwen Tiu, and the
anonymous reviewers of previous versions of this paper for their suggestions.

References

[1] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic.
Journal of Logic and Computation, 2(3):297–347, 1992.

[2] Michael Burrows, Mart́ın Abadi, and Roger Needham. A logic of
authentication. Operating Systems Review, 23(5):1–13, December 1989.

[3] I. Cervesato, N. Durgin, M. Kanovich, and A. Scedrov. Interpreting strands in
linear logic. In H. Veith, N. Heintze, and E. Clark, editors, 2000 Workshop on
Formal Methods and Computer Security - FMCS’00, July 2000.

[4] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. A meta-
notation for protocol analysis. In R. Gorrieri, editor, 12th IEEE Computer
Security Foundations Workshop, pages 55–69, Mordano, Italy, 28–30 June 1999.
IEEE Computer Society Press.

[5] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Relating
strands and multiset rewriting for security protocol analysis. In P. Syverson,
editor, 13th IEEE Computer Security Foundations Workshop, pages 35–51,
Cambridge, UK, 3–5 July 2000. IEEE Computer Society Press.

[6] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

[7] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University
Press, 1941.

[8] William Craig. Three uses of the Herbrand-Gentzen theorem in relating model
theory and proof theory. Journal of Symbolic Logic, 22(3):269– 285, 1957.

[9] G. Denker, J. Meseguer, and C. Talcott. Protocol specification and analysis
in Maude. In N. Heintze and J. Wing, editors, Proc. of Workshop on Formal
Methods and Security Protocols, Indianapolis, Indiana, June 1998.

[10] D. Dolev and A. Yao. On the security of public-key protocols. IEEE
Transactions on Information Theory, 2(29), 1983.

[11] F. J. T. Fabrega, C. Herzog, and J. D. Guttman. Strand spaces: Proving security
protocols correct. J. of Computer Security, 7(2,3):191–230, 1999.

[12] V. Gehlot and C. Gunter. Normal process representatives. Fifth IEEE Sym.
on Logic in Computer Science, pages 200–207, Philadelphia, June 1990.

17

Miller

[13] Gerhard Gentzen. Investigations into logical deductions. In M. E. Szabo,
editor, The Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland
Publishing Co., Amsterdam, 1969.

[14] Jean-Yves Girard. Locus solum. Mathematical Structures in Computer Science,
11(3), June 2000.

[15] Joshua Hodas and Dale Miller. Logic programming in a fragment of
intuitionistic linear logic. Information and Computation, 110(2):327–365, 1994.

[16] Max Kanovich. Horn programming in linear logic is NP-complete. In
Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer
Science, pages 200–210. IEEE Computer Society Press, June 1992.

[17] Max Kanovich. The complexity of Horn fragments of linear logic. Annals of
Pure and Applied Logic, 69:195–241, 1994.

[18] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In T. Margaria and B. Steffen, eds, Tools and Algorithms for Construction
and Analysis of Systems (TACAS), LNCS 1005, pp. 147–166. 1996.

[19] R. McDowell and D. Miller. Reasoning with higher-order abstract syntax in
a logical framework. ACM Transactions on Computational Logic, 3(1):80–136,
January 2002.

[20] R. McDowell, D. Miller, and C. Palamidessi. Encoding transition systems in
sequent calculus. TCS, 294(3):411–437, 2003.

[21] D. Miller. Lexical scoping as universal quantification. In Sixth International
Logic Programming Conference, pages 268–283, Lisbon, June 1989. MIT Press.

[22] D. Miller. The π-calculus as a theory in linear logic: Preliminary results.
In E. Lamma and P. Mello, editors, 1992 Workshop on Extensions to Logic
Programming, LNCS 660, pages 242–265. Springer-Verlag.

[23] D. Miller. Forum: A multiple-conclusion specification language. TCS,
165(1):201–232, September 1996.

[24] D. Miller. Higher-order quantification and proof search. In H. Kirchner and C.
Ringeissen, editors, Proc. of AMAST 2002, LNCS 2422, pages 60–74, 2002.

[25] D. Miller and A. Tiu. A proof theory for generic judgments: An extended
abstract. To appear in the Proceedings of LICS03. July 2003.

[26] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, Part I. Information and Computation, pages 1–40, September 1992.

[27] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols:
The spi calculus. Information and Computation, 148(1):1–70, 99.

[28] Gopalan Nadathur and D. Miller. Higher-order Horn clauses. Journal of the
ACM, 37(4):777–814, October 1990.

18

Miller

[29] Eijiro Sumii and Benjamin C. Pierce. Logical relations for encryption. In 14th
IEEE Computer Security Foundations Workshop, June 2001.

[30] P. Syverson and I. Cervesato. The logic of authentication protocols. In
R. Focardi and R. Gorrieri, editors, Foundations of Security Analysis and
Design, LNCS 2171. Springer-Verlag, 2001.

19

