
June 2003 1/18

Encryption as an Abstract Datatype:

an extended abstract

Dale Miller

INRIA/Futurs/Saclay and École polytechnique

Outline

1. Security protocols specified using multisets rewriting.

2. Eigenvariables for nonces and session keys.

3. Encrypted data as an abstract datatype.

4. Protocols as linear logic theories.

5. Tests, traces, and interpolants.

June 2003 2/18

A Typical Protocol Specification

The following is a presentation of the Needham-Schroeder Shared Key Protocol.
Alice and Bob make use of a trusted server to help them establish their own
private channel for communications.

Message 1 A −→ S: A,B, nA

Message 2 S −→ A: {nA, B, kAB , {kAB , A}kBS
}kAS

Message 3 A −→ B: {kAB , A}kBS

Message 4 B −→ A: {nB}kAB

Message 5 A −→ B: {nB − 1}kAB

Here, A, B, and S are agents (Alice, Bob, server), and the k’s are encryption
keys, and the n’s are nonces.

One of our goals is to replace this specific syntax with one that is based on a
direct use of logic. We will then investigate if logic’s meta-theory can help in
reasoning about security.

June 2003 3/18

Motivating a more declarative specification

The notation A −→ B: M seems to indicate a “three-way synchronization,” but
communication here is asynchronous: Alice put a message on in a network and
Bob picks it up from the network. An intruder might read/delete/modify the
message.

A better syntax might be:

A −→ A′ | N(M)
B | N(M) −→ B′

...
E | N(M) −→ E′ | N(M)

More generally,

(A Memory) | N(M1) | · · · | N(Mp) −→ (A′ Memory′) | N(P1) | · · · | N(Pq)

where p, q ≥ 0. The agent can be missing from the left (agent creation) or can be
missing from the right (agent deletion).

This is essentially a specification of multiset rewriting of atomics formulas.

June 2003 4/18

Dynamic creation of new symbols

New symbols representing nonces (used to help guarantee “freshness”) and new
keys for encryption and session management are needed also in protocols. We
could introduced syntax such as:

a1 S −→ new k. a2 〈k, S〉 | N({M}k)

This new operator looks a bit like a quantifier: it should support α-conversion
and seems to be a bit like reasoning generically. The scope of new is over the
body of this rule.

June 2003 5/18

Static distribution of keys

Consider a protocol containing the following messages.

...
Message i A −→ S: {M}k

Message j S −→ A: {P}k

...

How can we declare that a key, such as k, is only built into two specific agents.
This static declaration is critical for modularity and for establishing correctness
later. A local declaration can be used (borrowed from λProlog).

...

local k.

{
A −→ A′ | N({M}k)

S | N({P}k) −→ S′

}

...

This declarations also appears to be similar to a quantifier.

June 2003 6/18

Are these specifications logical expressions?

Can we view the symbols we have introduced as logical connectives?

| −→ new local empty

disjunctive (Forum) ...
............
.................................. ◦− ∀ ∃ ⊥

conjunctive (MSR) ⊗ −◦ ∃ ∀ 1

The disjunctive approach allows protocols to be seen as abstract logic
programs: that is, it fits into the “logic programming as goal-directed search”
paradigm.

Note: Logic is not used here to form judgments about protocol. Rather, elements
of logic are elements of the protocol.

For MSR, see Cervesato, Durgin, Lincoln, Mitchell, Scedrov. “A Meta-Notation
for Protocol Analysis,” Proceedings of the 12th IEEE Computer Security
Foundations Workshop IEEE Computer Society Press, 1999.

June 2003 7/18

Encrypted data as an abstract data type

Encryption keys are encoded as symbolic functions on data of type data → data.

Replace {M}k with (k M).

By providing scope to such keys, encrypted data forms an abstract datatype.

To insert an encryption key into data, we will use the postfix coercion
constructor (·)◦ of type (data → data) → data.

The use of higher-order types means that we will also use the equations of
αβη-conversion (a well studied extension to logic programming with robust
implementations).

∃ k.

[
a1 S ◦− ∀n. a2 〈k◦, S〉... N(k n)

a2 〈k◦, S〉... N(k M) ◦− . . .

]

June 2003 8/18

A Linear Logic Specification of Needham-Schroeder

∃kas∃kbs{
a S ◦− ∀na. a1 〈na, S〉... N(〈a, b, na〉).
a1 〈N,S〉... N(kas〈N, b, K,En〉) ◦− a2 〈N, K, S〉... N(En).

a2 〈Na, Key◦, S〉... N(Key Nb) ◦− a3 〈〉... N(Key 〈Nb, S〉).
b 〈〉... N(kbs 〈Key◦, a〉) ◦− ∀nb. b1 〈nb,Key◦〉... N(Key nb).

b1 〈Nb, Key〉... N(Key〈Nb, S〉) ◦− b2 S.

s 〈〉... N(〈a, b,N〉) ◦− ∀k. s 〈〉... N(kas〈N, b, k◦, kbs〈k◦, a〉〉).
}
Outermost universal quantifiers around individual clauses have not been written
but are assumed for variables (tokens starting with a capital letter).

June 2003 9/18

Relating implementation and specification

A property of NS should be that Alice can communicate to Bob a secret with the
help of a server. That is, the clause

∀x (a 〈x〉... b 〈〉... s 〈〉 ◦− a3 〈〉... b2 〈x〉... s 〈〉)

can be seen as part of the specification of this protocol.

If we call the above clause SPEC and the formula for Needham-Schroeder NS,
then it is a simple calculation to prove that NS ` SPEC in linear logic.

Of course, a kind of converse is more interesting and harder. At least a trivial
thing is proved trivially.

Should not logical entailment be a center piece of logical specifications?

June 2003 10/18

Scheme for reasoning about logic programs

Higher-order quantification in this talk will be featured in two ways.

• During computation (proof search) higher-order quantification will be
“easy”: e.g., generate a new symbol at higher-order type.

• When reasoning about computations, the dual operation of instantiating new
symbols with clever substitutions might be necessary.

One approach to reasoning about logic programs is the following:
P ` G proof search (cut-free, automated)
P ′ ` P reasoning about programs: involves rich substitutions and lemmas

P ′ ` G after cut-elimination (lemma removal), we have a computation again

Notice that P has appeared both positively and negatively in these examples.
What corresponded to “generate a new predicate” dualizes to “find a logical
expression to substitution” when the polarity is shifted.

June 2003 11/18

Can’t we compile away higher-order quantification?

If we simply execute security protocols, then the expressions {M}k and (k M)
can be compiled as first-order expressions such as

(apply k M), or more appropriately, as (encrypt k M).

In order to reason about such a protocol, we need to explain the meaning of this
new non-logical constant. This complicates the reasoning process somewhat.

Lesson: Do not leave the paradise of Church too soon.

June 2003 12/18

A simple logical equivalence

Consider the following two clauses:

a ◦− ∀k.N(k m) and a ◦− ∀k.N(k m′).

These two clauses show that Alice can take a step that generates a new
encryption key and then outputs either the message m or m′ in encrypted form.
These two clauses seem “observationally similar”.

More surprisingly
a ◦− ∀k.N(k m) a` a ◦− ∀k.N(k m′).

That is, they are logically equivalent! In particular, the sequent

∀k.N(k m) −→ ∀k.N(k m′)

is proved by using the eigenvariable c on the right and the term λw.(c m′) on the
left.

June 2003 13/18

More logical equivalences

If we allow local (∃) abstractions of predicates, then other more interesting
logical equivalences are possible.

For example, 3-way synchronization can be implemented using 2-way
synchronization with a hidden intermediary.

∃ x.

{
a

...
............
.................................. b ◦− x

x
...

............
.................................. c ◦− d

...
............
.................................. e

}
a` a

...
............
.................................. b

...
............
.................................. c ◦− d

...
............
.................................. e

Intermediate states of an agent can be taken out entirely.

∃ a2, a3.





a1
...

............
.................................. N(m0) ◦− a2

...
............
.................................. N(m1)

a2
...

............
.................................. N(m2) ◦− a3

...
............
.................................. N(m3)

a3
...

............
.................................. N(m4) ◦− a4

...
............
.................................. N(m5)



 a`

a1
...

............
.................................. N(m0) ◦− (N(m1) ◦− (N(m2) ◦− (N(m3) ◦− (N(m4) ◦− (N(m5)

...
............
.................................. a4)))))

This suggests an alternative syntax for agents.

June 2003 14/18

Needham-Schroeder revisited

∃kas∃kbs.[
(Out) ∀na.N(〈alice, bob, na〉)◦−
(In) (∀Kab∀En.N(kas〈na, bob, Kab◦, En〉)◦−
(Out) (N(En)◦−
(In) (∀Nb.N(Kab Nb)◦−
(Out) N(Kab(Nb, secret))))).

(Out) ⊥◦−
(In) (∀Kab.N(kbs(Kab◦, alice))◦−
(Out) (∀nb.N(Kab nb)◦−
(In) (∀S.N(Kab(nb, S))◦−
(Cont) b S))).

(Out) ⊥◦−
(In) (∀N.N(〈alice, bob, N〉)◦−
(Out) (∀key.N(kas〈N, bob, key◦, kbs(key◦, alice)〉))).
]

June 2003 15/18

The general setting for specifying agents

Let A denote atomic formulas. Consider

H = A |⊥| H ...
............
.................................. H | ∀x. H (heads)

K = H | H ◦− K | ∀x. K (agents)

Let A denote a multiset of atoms (ie, network messages). Let Γ and ∆ be a
multiset of “agents” (K-formulas), such that those in Γ are in output mode and
those in ∆ are in output mode.

The sequent ∆ −→ Γ,A captures the relationship between these three elements
(nework messages are degenerated output processes).

The rules for implication introduction provide the basic dynamics:

H −→ A1 ∆ −→ K,A2

∆,H ◦− K −→ A1,A2

∆,K −→ Γ,H,A
∆ −→ H ◦− K, Γ,A

Left-introduction can be limited to sequents with atomic left-hand sides.

If in the definition of K-formulas above we write H ◦− H instead of H ◦− K, we
are restricting our selves to MSR (bipolars) again.

June 2003 16/18

Intruders, Testing, and Interpolants

One approach to characterizer intruders, called tests here, is to say that they are
essentially the same things as principles, except that they can halt a
computation, using with the > logical connective:

W ::= > | H | H ◦− W | ∀x.W.

P and Q are testing equivalent if for every multiset Γ of testers, ` P, Γ iff ` Q, Γ.

Interpolants can be used to monitor communications across a boundary.

Classically, if A ` B then an interpolant is a formula R such that A ` R and
R ` B and all the non-logical constants in R occur in both A and B.

Interpolation Theorem. Let Γ be a set of role formulas (principals) and let ∆
be a set of tests (intruders) such that ` Γ, ∆. There is a formula R (the
interpolant) such that the non-logical constants in R occur in both Γ and in ∆
and is such that ` Γ, R and R ` ∆.

June 2003 17/18

Tracing Communications

The interpolants needed in this theorem have the following structure:

M ::=⊥| A | M ...
............
.................................. M

R+ ::= > | ∀x.R+ | M ◦− R− R− ::= M ◦− R+ | ∀x.R−.

Formulas in the R+ syntactic category are called traces. Clearly, traces are in
fact simple tests.

Two processes are trace equivalent if for every trace R, ` P, R iff ` Q, R.

Theorem. Trace equivalent and testing equivalent coincide.

Proof. If P and Q are testing equivalent, it follows immediate that they are
trace equivalent (every trace is a test).

Conversely, assume that P and Q are trace equivalent and that Γ is a set of
testers such that ` P, Γ. By the Interpolation Theorem, we know that there is a
trace R such that ` P, R and R ` Γ. Since P and Q are trace equivalent, we
know that ` Q,R and by cut-elimination, we know that ` Q, Γ.

June 2003 18/18

Conclusions

1. Linear logic can be used to specify the execution of security protocols.

2. Seeing encryption as an abstract datatype seems a powerful logical device to
help reason about hiding information.

3. Abstraction of “continuation predicates” can transform bipolar (MSR)
expressions into non-bipolar (process calculus expression) expressions.

4. Proof theoretical techniques have a use in reasoning about protocol
correctness.

(a) Cut-elimination is a basic tool.

(b) Higher-type quantification makes protocols more declarative and offer
new avenues for reasoning about protocols.

(c) Interpolants can be used to characterize the interaction between agents
and environments.

5. Related work: Sumii & Pierce, Logical relations for encryption, CSFW 2001.

6. Also: strand spaces seem to be simple graph-like structures definable via
cut-free proofs.

