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Abstract
When a proof-checking kernel completes the checking of

a formal proof, that kernel asserts that a specific formula

follows from a collection of lemmas within a given logic. We

describe a framework inwhich such an assertion can bemade

globally so that any other proof assistant willing to trust that

kernel can use that assertion without rechecking (or even

understanding) the formal proof associated with that asser-

tion. In this framework, we propose to move beyond autarkic

proof checkers—i.e., self-sufficient provers that trust proofs

only when they are checked by their kernel—to an explic-

itly non-autarkic setting. This framework must, of course,

explicitly track which agents (proof checkers and their op-

erators) are being trusted when a trusting proof checker

makes its assertions. We describe how we have integrated

this framework into a particular theorem prover while mak-

ing minor changes to how the prover inputs and outputs text

files. This framework has been implemented using off-the-

shelf web-based technologies, such as IPFS, IPLD, and public

key cryptography.

1 Introduction
A triumph of the World Wide Web is the ease at which any-

one can access a great deal of diverse information. A glaring

flaw of the web is that it provides few tools to help con-

sumers of information trust the assertions that may be made

in documents retrieved from the web. While techniques such

as digital signatures can be used to determine the author

of signed information and blockchains can be used to cap-

ture the provenance and timing of some sources of informa-

tion, few techniques are available to provide trust in what is

claimed in information sources.

One approach to providing the web with some aspects of

trust was the proposal for the semantic web [BL98, BLHL01].
In that proposal, trust would be achieved at the top of a

stack of various protocols and specification languages (see

Figure 1). While the semantic web addresses a different set

of problems than what we address here, some similarities

are worth pointing out. In both cases, cryptography and low-

level web-based technologies form the foundation on which

most other elements are built. Near the top, a universally

accepted logic and a notion of formal proof support trust.

It is mainly the middle layers where the semantic web and

our framework disagree since the domains of computational

logic and formalized mathematics have replaced concepts

Figure 1. The semantic web stack [Source].

such as taxonomies, ontologies, rules, and queries with other

mathematical notions. At the top of this stack are the appli-

cation programs that can be built on trust: in our case, these

programs are proof checkers and tools associated with them.

There are, of course, significant challenges to establishing

truth and trust in a distributed publishing platform like the

World Wide Web. We now discuss our plans to find a means

to maintain trust in proof checking when we move it into

such a distributed setting.

When speaking of distribution, we mean in space and time.
That is, we might have many active users spread across the

globe, all working on producing and consuming proofs of

theorems. Furthermore, we wish that items produced (and

checked) today can be used as they are in years to come.

2 Two styles of proof checking
2.1 Autarkic proof checking
An autarkic proof checker1 is simply a proof checker that

only trusts its kernel. If proof checker 𝐴 needs help from

a second proof checker 𝐵, there are roughly two ways to

1
In [BB02], this adjective was applied to computational components of a

proof checker but not to a full proof checker.
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proceed in the autarkic setting [AFG
+
11, FMM

+
06]. Checker

𝐵 might output a proof witness that checker 𝐴 can use to

reconstruct a proof for its kernel: in this case, checker 𝐵 is a

certifying proof checker for 𝐴. Alternatively, the correctness

of the checker 𝐵 might be provable in checker 𝐴. Thus, if

checker 𝐵 succeeds in proving a theorem, then checker 𝐴

immediately accepts that theorem. In this case, checker 𝐵 is

a certified proof checker by 𝐴. In either of these cases, the

autarkic proof checker only trusts its own kernel.

The Dedukti proof system [ABC
+
16] has added a new di-

mension to autarkic provers. The logical framework behind

Dedukti is a dependently typed 𝜆-calculus augmented with

rewriting. Since this logical framework is relatively simple,

proof checkers for it can be compact, increasing one’s will-

ingness to trust it. At the same time, Dedukti is expressive

and has been shown to capture proofs in many proof check-

ers. Given that a client proof system of Dedukti can output

its proofs in a format Dedukti can check, that client prover

can feel more confident that some other proof checkers also

certify its proofs. While that is a non-autarkic conclusion,

it seems that Dedukti is taking a central stage in the world

of autarkic proof checkers. In particular, “[s]ome proofs ex-

pressed in some Dedukti theories can be translated to other

proof systems, such as HOL Light, HOL 4, Isabelle/HOL, Coq,

Matita, Lean, PVS, . . .” [Log22]. Thus, if Coq needs a theo-

rem that was proved in, say, Lean, it might be possible for

Lean to output a proof in the Dedukti format and then have

that proof output into a format suitable for Coq to check.

Thus, while Dedukti can be at the hub of exchanges of proofs

between different proof checking systems, Dedukti does not

need to be trusted by these proof systems.

We identify the two problems with this class of provers.

1. Such provers are hard to use in distributed proof devel-

opment. Consider, for example, the HOL Light proof

checker [Har17], where all theorems and their proofs

are rechecked every time the system is initiated. Us-

ing checkpoints to save proof-checking sessions once

a collection of proofs has been checked makes such

systems more manageable for a single user. However,

such techniques do not help in a distributed setting

since remote users cannot share checkpoints and must,

instead, recheck entire theories.

2. There are forces that cause kernels to grow in size and

complexity over time. For example, since libraries of

theorems and proofs tend to grow in size and complex-

ity, kernels need to be optimized to be more efficient in

using time and memory. Of course, such optimization

can complicate the kernel, making it harder to check

it for correctness. In addition, proofs can cover many

different computational paradigms. For example, (func-

tional programming-style) computation is often part

of checking a proof. Proving theorems about reacha-

bility and simulation can require logic programming

and model checking-style search. Requiring a kernel

to be effective in all of these aspects of proof checking

complicates the design of a kernel.

2.2 Non-autarkic proof checking
A typical place to find a non-autarkic proof checker is in

theorem provers that use a range of special purpose provers,

such as static analyzers, model checkers, SAT solvers, and

SMT provers. Such special-purpose systems may not be cer-

tified or certifying, but they may still be important to use in

certain settings. In 2002, Shankar [Sha02] argued that “little

engines of proof” would need to be aggregated to yield the

next generations of proof systems. The “evidential tool bus”

[Rus05, CHOS13] was proposed as a means to integrate such

specialized inference systems into a unified formal method

system.

Besides the fact that it can be useful to employ many

different theorem proving tools, two obvious questions lead

us to consider non-autarkic proof checkers.

1. A proof of a theorem needs to be checked only once

by a trustworthy agent. If we trust that prover, why

recheck it ever again?

2. How can we develop a framework in which we only

need to recheck proofs when we reconsider the agents

we trust?

Of course, we must directly deal with trust to respond to

these questions. In the next section, we present the design

of a framework that does that explicitly.

3 An abstract design
3.1 The key elements of the design
The key components of our approach to understanding dis-

tributing and trusting proof checking involve the following

items, which we list briefly and then expand on below.

• We choose one logic (say, higher-order logic) and pa-

rameterize it with logical signatures used to type-check

formulas for syntactic correctness.

• We define a justified sequent as a pairing of a justifica-
tion with a sequent that connects a list of hypotheses

to a conclusion.

• We formally introduce agents who can assert the cor-

rectness of a justified sequent.

• We introduce a simple first-order logic, called the says-

logic, which can deduce trusting relations for an agent.

3.2 Declaring parameters and namings
We assume that all provers will use the same logic. While

the exact nature of this logic is not an issue for this paper,

we pick the intuitionistic logic variant of Church’s Simple
Theory of Types [Chu40] (excluding the mathematical axioms

of choice, infinity, and extensionality). This choice of logic

captures propositional logic, multi-sorted first-order logic,
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and higher-order logic. With the addition of suitable axioms,

it also easily accommodates classical logic.

A key feature of such a simply typed logical language is

the notion of logical signature.2 To be concrete, such signa-

tures contain two kinds of declarations. The specification of

parametric symbols are made with kind and type declaration.

Kind declarations introduce primitive types and type

constructors. In particular, we write 𝜏/𝑛 to introduce

a type constructor of arity 𝑛. If 𝑛 is 0, 𝜏 is a primitive

type. Simple types are built using the arrow type con-

structor in addition to these primitive types and type

constructors.

Type declarations, such as 𝑐 : 𝜏 , introduces the con-

stant 𝑐 with simple type 𝜏 .

The second kind of declaration allowed in signatures is

used to name symbols, of which there are two kinds.

Definition naming, written as 𝑛
𝜎
:= 𝑡 , declares that 𝑛

(the definiendum) names the term (or formula) 𝑡 (the

definiens), which needs to have type 𝜎 . The symbol

𝑛 is treated as a symbol of type 𝜎 from the point-of-

view of a parser and type checker. From the point-

of-view of the theorem prover, it should always be

possible to replace the definiendum with its definiens.

We do not accept recursive definitions at the level of

declarations: rather, a definition can name a recursive

definition, one defined by, say, a least or greatest fixed

point expression.

Theorem naming declarations attribute a name to a

formula that is expected to be eventually justified as

a theorem. A formula may have multiple names but

one name can denote at most one formula. The names

for theorems might be used in proof scripts and proof

certificates (collectively called justifications below).

As is usually done with logical signatures, we shall assume

that (1) kinds and types belong to two different namespaces

(e.g., it is possible for the token nat to be a kind of zero arity
and a constant of type nat → 𝑜), and (2) declarations in the

same namespace must be functional (i.e., a name cannot be

given two different kind arities, cannot be given two different

types, and cannot be give two different definitions).

Note that the underlying structure of a logical signature

is as a set of declaration: since we are not working with

dependently typed 𝜆-terms, we do not need these structures

to be lists.

We shall assume that there is one type reserved for desig-

nating formulas. Church used omicron 𝑜 , Coq uses Prop, and
other systems reserve bool. In any case, we shall assume that

the propositional connectives and quantifiers are given suit-

able typings over such types. For example, in [Chu40], we

find typings such as ∧ : 𝑜 → 𝑜 → 𝑜 and ∀𝜎 : (𝜎 → 𝑜) → 𝑜 .

2
Not to be confused with cryptographic signatures, which we encounter

later.

Note that while we are fixing one universal logic, we are not

fixing any particular format for proofs in that logic.

3.3 Justifications and assertions
Let Σ be a given logical signature. A Σ-sequent is a triple

Σ : Γ ⊢ 𝑁,

where Γ is a list of theorem names and 𝑁 is a theorem name:

all these named theorems must be declared in Σ and they

name Σ-formulas. A Σ-justified sequent is a quadruple

𝐽 :: Σ : Γ ⊢ 𝑁,

where Σ : Γ ⊢ 𝑁 is a Σ-sequent and 𝐽 is a justification, which
is meant to indicate some proof object or proof script. The

justification 𝐽 may or may not contain terms and formulas,

but if it does, we also assume that they are Σ-terms and Σ-
formulas, respectively. In general, we do not need to know

about the structure of justifications: instead, we assume that

that structure is known to specific proof checkers. In general,

proof structures play the sole role of convincing a proof

checker that a sequent is a genuine entailment.

We use the schematic variable 𝐾 to range over agents.

For now, we can think of agents as just names, but later we

will allow them to be public keys within a public key infras-

tructure (PKI). Roughly speaking, an agent will be identified

with a user employing a proof checker. We also introduce a

simple multi-sorted first-order logic with just one predicate,

namely, 𝐾 says 𝑆 , where 𝑆 is a Σ-sequent. We shall refer to

this logic (which is not the logic of the formulas for which

we are checking theoremhood) as the says-logic.
Assume that agent 𝐾 uses a proof checker to check the

justified sequent

𝐽 :: Σ : 𝑁1, . . . , 𝑁𝑛 ⊢ 𝑁,

and that she concludes that the formula named by 𝑁 is a

theorem if the formulas named by 𝑁1, . . . , 𝑁𝑛 are theorems.

(Presumably, the justification 𝐽 uses these formulas as lem-

mas.) An assertion of this fact will be written as

𝐾 says (Σ : 𝑁1, . . . , 𝑁𝑛 ⊢ 𝑁0).

Implicitly, this statement also asserts that all the formulas

named by𝑁0, . . . , 𝑁𝑛 are Σ-formulas. In this case, we say that

𝐾 says (𝑁1, . . . , 𝑁𝑛 ⊢ 𝑁0) is a Σ-formula in the says logic (we

often drop explicit reference to Σ when it can be determined

from context).

Eventually, assertions of the form 𝐾 says 𝑆 will be imple-

mented using public-key cryptography. As a result, we shall

also refer to assertions as being signed judgments.

3.4 The logic of agent assertions
Since inferences within the says-logic will only involve Horn

clause assumptions, we can describe its provability logic as

either classical or intuitionistic. We assume the following
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says-logic formula, called Lemma, is our only non-logical

axiom.

𝐾 says (Γ1 ⊢ 𝑁 ) ∧ 𝐾 says (𝑁, Γ2 ⊢ 𝑀) ⊃ 𝐾 says (Γ1, Γ2 ⊢ 𝑀),
(Here,𝑀 , 𝑁 , and the members of Γ1 and Γ2 are all names of

formulas.) A simple consequence of Lemma is that if agent 𝐾

is willing to assert the hypothetical 𝑁 ⊢ 𝑀 , then that agent

must accept the provability of 𝑀 whenever it accepts the

provability of 𝑁 .

Other logics that consider access control or authorization

among agents often include other axioms, such as

∀𝐴∀𝐾. 𝐴 ⊃ 𝐾says ⊢ 𝐴
∀𝐴∀𝐾. 𝐾says ⊢ 𝐴 ⊃ 𝐾says ⊢ (𝐾says ⊢ 𝐴)

Not only do we not want these entailments to hold here, they

are, formally speaking, syntactically ill-formed.

If 𝐾 and 𝐾 ′
are two agents, then we write [𝐾 ↦→ 𝐾 ′] to

denote the formula

∀𝑥∀Γ. 𝐾 says (Γ ⊢ 𝑥) ⊃ 𝐾 ′ says (Γ ⊢ 𝑥).
Note that from the assumptions [𝐾1 ↦→ 𝐾2] and [𝐾2 ↦→ 𝐾3],
the formula [𝐾1 ↦→ 𝐾3] follows.
Let K be a finite list of agent names. We write [K ↦→ 𝐾]

to denote the set of says-formula

{[𝐾 ′ ↦→ 𝐾] | 𝐾 ′ ∈ K}.
If we think ofK as the set of agents that 𝐾 is willing to trust

(i.e., 𝐾 ’s allow-list), then the set [K ↦→ 𝐾] contains all the
formula needed to transfer an assertion from an allow-list

agent to an assertion of agent 𝐾 .

If 𝐽 is the formula 𝐾 says (𝑁1, . . . , 𝑁𝑛 ⊢ 𝑁0), let ⌜𝐽 ⌝ be
𝐾says ⊢ 𝑁1 ⊃ · · · ⊃ 𝐾says ⊢ 𝑁𝑛 ⊃ 𝐾says ⊢ 𝑁0 .

It is easy to see that 𝐽 is stronger than ⌜𝐽 ⌝ in the sense that

from 𝐽 and the axiom Lemma, ⌜𝐽 ⌝ follows while the converse
is not true. To illustrate why the converse entailment does

not hold, let 𝐽 be𝐾1 says (𝑁1 ⊢ 𝑁0). From 𝐽 and the additional

assumptions [𝐾1 ↦→ 𝐾2] and 𝐾2says ⊢ 𝑁1 it follows that

𝐾2says ⊢ 𝑁0. The same conclusion is not possible when 𝐽 in

this syllogism is replaced with ⌜𝐽 ⌝.
For a discussion about similar logics involving the · says ·

predicate, see [Aba08].

4 Comments on this design
4.1 Replacing proofs with assertions
The heart of the design described above is the step where a

justified sequent of the form

𝐽 :: Σ : 𝑁1, . . . , 𝑁𝑛 ⊢ 𝑁0

is replaced with an assertion of the form

𝐾 says (Σ : 𝑁1, . . . , 𝑁𝑛 ⊢ 𝑁0).
The justified sequent is a claim that some proof structure

𝐽 convinces a proof checker used by 𝐾 that the formula

named by 𝑁0 follows from the named formulas 𝑁1, . . . , 𝑁𝑛 .

Using a proof checker can be resource intensive. For exam-

ple, the structure 𝐽 might be a large structure containing

many low-level details. On the other hand, 𝐽 might have

fewer explicit details, which could leave the reconstruction

of missing details (for example, unifiers) to be constructed

by the checker: such reconstruction could involve a lot of

computation time. If one is willing to trust agent 𝐾 , then

one does not need to recheck the entailment encoded by the

sequent 𝑁1, . . . , 𝑁𝑛 ⊢ 𝑁0.

As a result of our prominent use of assertions (in the sense

above), we are not providing formal proofs any role in our

framework beyond convincing a proof-checking kernel to

make an assertion in the first place. Formal proofs themselves

do not need to be communicated, transformed, and checked

by another proof system. Our approach stands in contrast

to projects such as Dedukti [ABC
+
16] and Logipedia [DT19]

in which communicating formal proofs plays a central role.

The framework we are proposing here can be extended with

additional notions of assertions in which formal proofs are a

part: their role can be used to limit the number and kind of

agents that are trusted.

4.2 Users, proof checkers, and agents
We use the term agent to mean the combination of a user and

a proof checker. An agent is the entity that signs a sequent.

In particular, we do not speak of a proof checker making an

assertion because a vector of attack against proof checking

is a malicious user who might compromise the code of a

proof checker. Such attacks are a recognized threat with, for

example, the Coq system where a compiled .vo file can be

maliciously modified by the user of the Coq system [ANS21].

In general, users can be identified with humans, but it

also makes sense to identify them also with some specific

container instance (e.g., Docker) that invokes a proof checker
as part of some continuous integration activity. Furthermore,

a given person might make use of multiple proof checkers:

in that case, we could say that that person has several profiles
and each of these profiles is associated with a different agent

(or public-private key).

4.3 Limited closure properties are assumed for
agents

As we have seen in Section 3.4, an agent that is willing to

make a hypothetical assertion must also satisfy the closure

property expressed by Lemma. We do not assume that agents

have any additional closure properties. For example, it does

not follow that the formula

𝐾 says 𝑁 ∧ 𝐾 says 𝑁𝑀 ⊃ 𝐾 says𝑀

holds, where 𝑁𝑀 names the formula 𝐴 ⊃ 𝐵 (in some exten-

sion to the ambient logical signature) and where𝐴 and 𝐵 are

formulas named by 𝑁 and 𝑀 , respectively. That is, we do

not assume that the formulas asserted by agent 𝐾 are closed

under modus ponens.
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Similarly, we do not assume that what agents assert are

closed by the substitution of parameters. For example, we

might expect that most proof checkers have a justification

for the formula 𝑝 ⊃ 𝑝 where 𝑝 is some parameter declared

of type 𝑜 . That same proof checker might not be able to

prove the result of instantiating 𝑝 in that formula with a

potentially large formula 𝐵: that is, some proof checkers

might not succeed to check 𝐵 ⊃ 𝐵 if 𝐵 is, say, a formula with

a million occurrences of logical connectives.

While a proof checking agent may not be closed under

modus ponens or the instantiation of parameters, it is possi-

ble to employ other agents that can look for opportunities to

apply such inference rules on the results of trusted agents.

Thus, there could easily be an agent 𝐾 ′
for which

𝐾 ′ says 𝑁 ∧ 𝐾 ′ says 𝑁𝑀 ⊃ 𝐾 ′ says𝑀

is, say, the only kind of entailment it is willing to validate.

Hence, if𝐾 is in the allow-list of𝐾 ′
, then𝐾 ′

can help provide

some closure on the assertions made by 𝐾 .

4.4 Reasoning with many agents, lemmas, and
proofs

We have described the result of using a proof checker as

generating assertions involving the names of agents and

theorems. In the end, however, a user of this system will

want to know the answer to a question such as “Is Thm12

proved by an agent I trust?”. Given the signed judgments,

such questions can be answered using deduction based on

building proofs using Horn clauses. Note that in the says-

logic, atomic formulas of the form 𝐾 saysΣ : 𝑁1, . . . , 𝑁𝑛 ⊢ 𝑁0

will be either axioms, if they are correctly signed by the

private key for 𝐾 , or as derived, if they follow from axioms,

the allow list, and Lemma.

5 A concrete design
We now present a more concrete design by describing how

we have applied this abstract design to the Abella theorem

prover [BCG
+
14]. Abella was originally designed to test a

particular approach to meta-theoretic reasoning using some

new, proof-theoretically motivated mechanism for reasoning

directly with bound variables (in particular, the ∇-quantifier
and a treatment of equality based on higher-order unifica-

tion). While the current implementation of Abella has suc-

ceeded with those meta-theoretic tasks [FMP15, Tiu08], the

prover has not grown much beyond that domain. As a result,

Abella has remained a small prover that lacks automation, a

proof library, web interaction, and any sophisticated notion

of persistence (e.g., a file system). As a result, Abella could

stand to benefit greatly from being part of a distributing and

trusting proof checking environment. Furthermore, the area

of meta-level reasoning that Abella treats declaratively is

also an area where many conventional proof assistants do

not deal with well (in part, because of the need to encode and

manipulate bindings [ABF
+
05]). As a result, other provers

Kind nat type.

Type z nat.

Type s nat -> nat.

Define nat : nat -> prop by

nat z;

nat (s N) := nat N.

Define plus : nat -> nat -> nat -> prop by

plus z N N ;

plus (s M) N (s K) := plus M N K.

Theorem plus_zero :

forall N, nat N -> plus N z N.

induction on 1. intros. case H1. search. apply IH

to H2. search.

Figure 2. The Abella theorem file fileA.thm.

Import "fileA".

Theorem plus_succ :

forall M N K, plus M N K -> plus M (s N) (s K).

induction on 1. intros. case H1. search. apply IH

to H2. search.

Theorem plus_comm :

forall M N K, nat K -> plus M N K -> plus N M K.

induction on 2. intros. case H2. apply plus_zero

to H1. search.

case H1. apply IH to H4 H3. apply plus_succ to H5.

search.

Figure 3. The Abella theorem file fileC.thm.

might be willing to delegate such meta-level reasoning to

Abella and simply trust the meta-theorems it is able to prove.

5.1 One agent using a local file system
A theorem file (using filename extension .thm) of Abella
contains the elements needed to build justified sequents, as

defined in Section 3.2. Consider, for example, the theorem file

fileA.thm in Figure 2. This file declares one primitive type

nat, two constructors (for zero and successor), two defined

predicates, and a named theorem. The last three lines of this

file contain a proof script that is used by Abella to prove

the named theorem. This proof script, which is an example

of what we called a justification in Section 3.3, is meant to

be meaningful to Abella but the exact nature of such proof

scripts will not concern us much in this paper. As illustrated

in Figure 3, it is also possible to have a preamble to a theorem

file that uses the Import keyword to explicitly list the names

of other .thm files. Note that proof scripts may or may not

contain the name of other theorems.

The name of a theorem file is translated into a logical

signature by the following steps.

1. By a local file system (LFS) we mean the familiar Unix-

based mechanism for translating a file name to a (pos-

sibly large) string containing the contents of that file.

The current directory is some prefix that the LFS might
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need to locate a given filename: this is usually the di-

rectory of the shell running the Abella proof checker.

2. A file namementioned in an Import statement is looked

up in the LFS at the current directory. If that file is

found, the contents of that file are assumed to have a

preamble (possibly empty) of Imports followed by the

Kind, Type, Define, and Theorem keywords.

3. The imported files are processed in a recursive fashion.

As imported files are parsed, their contents are accumu-

lated into a single logical signature. This accumulation

is simply set union.

For example, the logical signature associated with the file-

name fileC.thm is the signature associated with fileA.thm
plus the two named theorems. Note that the proof scripts in

those files are not part of their associated logical signature.

We also assume that the dependency graph described by the

Import keywords is acyclic: a condition that Abella must

check explicitly.

When given a filename, the proof checker attempts to

check all justifications in that file: the result of that checking

phase is a list of sequents representing what those justifica-

tion have proved. For example, let Σ0 be the logical signature

containing the declarations for z and s and the two dec-

larations for nat. Let Σ1 be Σ0 extended with the naming

declarations for the definition plus and the two theorem

declarations for plus_zero and plus_succ. The result of

checking fileC.thm (Figure 3) are the following sequents.

Σ0 : ⊢ plus_succ
Σ1 : plus_zero, plus_succ ⊢ plus_comm

Note that if the Theorem keyword is not followed by a jus-

tification, then that keyword occurrence does not produce

a corresponding sequent. Also, if the Theorem keyword is

used more that once and each occurrence is followed by

a justifications, then a sequent is produced for each such

occurrence (the collection of lemmas might be different in

these different occurrences).

In the setting of one person using a proof checker on a

local file system, the assertions that such sequents are proved

is only known to this one user. The next steps we take will

make it possible for others to learn and possibly trust those

assertions.

5.2 Distribution via content-addressed storage
In a distributed setting, we should like to share objects with

other people and programs. These objects could represent

structured objects such as formulas, signatures, sequents,

assertions, etc. In our discussion above, we have employed a

logical signature to dereference a name for the object it de-

notes. For example, in the example sequents displayed in the

previous subsection, the signature Σ1 is used to dereference

the symbolic name plus_succ into the formula

forall M N K, plus M N K -> plus M (s N) (s K)

In a distributed setting, we will need a more global method

for dereferencing the name of an object into that object.

A first attempt to dereference names in a global setting

might be to use the web protocol https:. For example, we

might use a url such as

https://proof-checker-server.org/library/plus_succ

and a number of common tools could then be used to deref-

erence the name plus_succ into its associated string. Al-

though such a scheme is frequently used, there are serious

problems with it. For example, there is no guarantee that the

contents of the associated web page have stayed the same

between two downloads. Also, the server cited in the URL

might have disappeared, or it might be malicious and delib-

erately sent the wrong object. (We discuss attacks against

distributing proof checking in Section 7.3.)

Content-addressable storage provides a solution to these

kinds of problems. In such systems, an object is given a

unique name via a hash function. To the extent that it is

extremely difficult to discover collisions (two different files

with the same hash), we can proceed to view such a hash as

the name associated to that content.

In our implementation of distributing proof checking, we

use the IPFS (InterPlanetary File System) systems [Ben14].

For example, by using one of several implementations of IPFS

that are available, we can compute the name for a formula

as follows.

> cat t
forall M N K, plus M N K -> plus M (s N) (s K)
> ipfs add t
added QmdqKdoddW1wkUWB9Qoaem83Sq9gvTejwNxU6VSKMJZdhg t
>

The formula mentioned in the first line is given a unique

(multi)hash name (the token starting with Qm). This name is

global: no logical signature or local declarations are needed

to dereference that name. In fact, anyone who has installed

IPFS on their local machine should be able to access that

formula-as-string. For example, the following command

> ipfs cat QmdqKdoddW1wkUWB9Qoaem83Sq9gvTejwNxU6VSKMJZdhg
forall M N K, plus M N K -> plus M (s N) (s K)
>

should function from the command-line on any internet con-

nected computer with the proper IPFS software installed. By

simply computing the hash on the file that is downloaded

will reveal whether or not that download is really the file

associated to its name. Such checks are automatically done

within the IPFS software. (The filename t is a temporary

file only used to get a string accepted by the ipfs add com-

mand.)

We follow the IPFS convention of using the term cid (short
for content identifier) to refer to these hash names.

An important aspect of using cids to name theorems is

that logical signatures will not need to contain the declara-

tions that tie theorem names to the formulas that they name.

6
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As a result of using a global naming mechanism for theo-

rems, we can view signatures, referred to by the schematic

variable Σ as only needing to contain kind, type, and defini-

tion declarations. The use of cids also means that the same

theorem that might have had two different local names will

now get a single name via its global cid.
Another important technology that accompanies IPFS is

IPLD, an extension of IPFS that accommodates various kinds

of linked data. Using IPLD, it is possible to represent struc-

tured objects, such as sequents, as JSON objects, and for

these to be given an identifying name based solely on their

content.

5.3 Explicit signing of a sequent
Given the use of immutable storage and a global addressing

scheme, the assertion that an agent claims that a given Σ-
sequent is a valid entailment can be made globally known

using two steps.

1. We first encode named formulas as IPLD objects. Then

sequents, such as Σ : 𝑁1, . . . , 𝑁𝑛 ⊢ 𝑁0, can be encoded

by replacing the names 𝑁𝑖 (0 ≤ 𝑖 ≤ 𝑛) with their cid
within a JSON object that collects these various cids
into the encoding of that sequent. In this way, such

sequents can be given their own cid.
2. We identify an agent with a public/private key pair

and assume that public keys can be discovered in a dis-

tributed fashion. The assertion 𝐾 says Σ : 𝑁1, . . . , 𝑁𝑛 ⊢
𝑁0 is an IPLD object that contains the signing by 𝐾 ’s

private key of the cid for Σ : 𝑁1, . . . , 𝑁𝑛 ⊢ 𝑁0.

Both of these steps are elaborated in Section 6.1.

Although we will give more details about our use of IPFS,

IPLD, JSON, and public key signing in the following sec-

tion, we note here the following high-level features of this

design. By simply having the cid for the assertion 𝐾 says
Σ : 𝑁1, . . . , 𝑁𝑛 ⊢ 𝑁0, it is possible to access all components

of the underlying objects: in particular, the agent’s public

key 𝐾 as well as all the names 𝑁0, . . . , 𝑁𝑛 and what formulas

they name.

6 The Dispatch tool
Our design consists of three components. The Prover (cur-
rently Abella), the Dispatch tool (new software), and the

Global Storage (implemented using IPFS). From another

perspective, this design consists of three processes or scenar-

ios: Publishing, Getting, and Proof Checking. The main

goal of the Dispatch tool is to mediate between the Prover

and the Global Storage as follows:

1. Dispatch reads specific structures produced by the

Prover, parses them, and constructs specific JSON ob-

jects which will be published through IPFS.

2. Dispatch reads published objects existing in Global
Storage (identified by an IPFS cid), parses them, and

Import "ipfs:bafyreigm32vqfhsqxrpodk6ynuehe3nite

qhp7gu65ie2dlltn6dew7pwu".

Theorem plus_succ :

forall M N K, plus M N K -> plus M (s N) (s K).

induction on 1. intros. case H1.

search.

apply IH to H2. search.

Theorem plus_comm :

forall M N K, nat K -> plus M N K -> plus N M K.

induction on 2. intros. case H2.

apply plus_zero to H1. search.

case H1. apply IH to H4 H3.

apply plus_succ to H5. search.

Figure 4. The Abella theorem file fileB.thm.

constructs specific structures describing the global ob-

jects for the Prover to read and consume.

6.1 From Prover to Dispatch
6.1.1 Scenario: Publishing. After checking the theorems

in a given file, the prover enters publishing mode in which

a collection of sequents (one sequent per occurrence of

the Theorem keyword) are printed. These sequents indicate

which lemmas were used in a theorem’s proof script. This

collection of sequents, the sequence object as we will call it in
the global context, will be the input for the dispatch tool.

6.1.2 Data Input to Dispatch. Consider fileB.thm file

of Figure 4: where the imported cid is the global name for

the sequence object of fileA.thm of Figure 2.

The input that dispatch expects from a prover is a JSON

file with a standard format. To illustrate this format, consider

the JSON file of Figure 5 as the input for dispatch corre-

sponding to fileB.thm. As you can notice, the main entries

correspond to theorems. Each of these entries have three

attributes:

1. "Sigma": Contains the necessary information needed

to make sense of "conclusion"; the logical signature.
In the current implementation, it is a list of strings

corresponding to each Kind, Type, and Define decla-
rations.

2. "conclusion": Contains a string representation of the
conclusion formula itself.

3. "lemmas": Contains a list of lists of lemmas: each corre-

sponding to a theorem’s occurrence in the main .thm
file or a sequent object.

Note that names of lemmas are used by dispatch to in-

dicate what formulas should be linked in the sequent. For

example, "plus_succ" indicates to dispatch to create a link
to the formula object of "plus_succ" as a lemma in this se-
quent object. This lemma in the example is referred to by the

theorem’s name "plus_succ" as this theorem occurs in this

same file. In contrast, the second lemma is referred to by a

cid since that lemma exists in an imported structure and not

7
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{ "plus_succ": {
"Sigma": [

"Kind nat type",
"Type zero nat",
"Type succ nat -> nat",
"Define nat : nat -> prop by nat zero ;

nat (succ N) := nat N" ],
"conclusion": "forall M N K, plus M N K ->

plus M (s N) (s K)",
"lemmas": [ [] ] },

"plus_comm": {
"Sigma": [

"Kind nat type",
"Type zero nat",
"Type succ nat -> nat",
"Define nat : nat -> prop by nat zero ;

nat (succ N) := nat N" ],
"conclusion": "forall M N K, nat K -> plus M

N K -> plus N M K",
"lemmas": [ [ "ipfs:bafyreid6ivhia73..",

"plus_succ" ] ] } }

Figure 5. Standard format input from prover to dispatch

in this same file. In this example, the cid in the "lemmas"
attribute of the theorem entry "plus_comm" refers to the for-
mula object of "plus_zero". Note that it is not the same cid
as the imported one; the imported cid refers to a sequence
object, for example.

These are implementation choices for convenience, but it

was necessary to illustrate the difference, which will become

clearer in later sections.

6.1.3 Dispatch publish command. In the current dispatch
implementation, an agent is expected to call the publish
command to invoke the parsing of the given JSON input file,

creating, and publishing the objects describing it.

Consider the following call of this command:

> dispatch publish fileB Abella -v1 examples/input cloud

The result of this command is a single cid referring to the
final sequence object. This cid is enough to retrieve the fol-

lowing structure.

> Input from Prover Published: The root cid of the published
sequence of assertions by profile: Abella -v1 is
bafyreialidp34p7w4vabe62qybxhexzeq5wjouuxiyhp2bouqot4tj2ruy
DAG successfully published to web3.storage!

You can try to read the object referred to by this cid through
this link. It should have the following format:

{ "format": "sequence", "name": "fileB",
"sequents": [ { "/": "bafyreiapqrxflyeozgbsxf4aa.." },

{ "/": "bafyreigviuefn34wcwveylog5.." } ] }

The command’s arguments, namely fileB, Abella-v1,
and examples/input, refer to the JSON input file name, the

public/private key profile name (for signing the sequents),

and the directory in which the file exists starting from the

directory of execution respectively. The final argument of

value cloud is an indicator for the tool to publish the final

structure through the web3.storage api which provides

one solution to making published data more quickly dis-

coverable by storing or pinning (using IPFS terminology) it

type cid = string

type ipfsLink = { "/": cid }

type formula = {
"format": "formula",
"formula": string,
"Sigma": [string] }

type namedFormula = {
"format": "named -formula",
"name": string,
"formula": ipfsLink }

type sequent = {
"format": "sequent",
"lemmas": [ipfsLink],
"conclusion": ipfsLink }

type assertion = {
"format": "assertion",
"agent": string,
"sequent": ipfsLink,
"signature": string }

type sequence = {
"format": "sequence",
"name": string,
"sequents": [ipfsLink] }

Figure 6. Type declaration for global objects

on other remote IPFS peers. If the value local is used, the
published data is only pinned initially on the agent’s own

machine until another agent chooses to get and pin it.

6.2 In Global Storage
The TypeScript declaration in Figure 6 defines the five main

types of objects that exist in the global context (i.e., the ob-

jects published and retrieved by dispatch). The formula
type contains the "formula" attribute, which is a string rep-

resentation of a formula, and the "Sigma" attributewhich is a
list of strings denoting a logical signature. The namedFormula
type contains the "name" attribute that provides the for-

mula’s name originally given by the agent, and the "formula"
attribute that links to the actual formula object defined first,

which is convenient to have. (In the rest of the paper, we shall

refer to both of these types simply as formula objects.) In

the sequent type, both the "lemmas" and "conclusion"
attributes employ links (cids) to formula objects. In the

assertion type, the "agent" attribute denotes the finger-

print of the signing agent’s public key, the "sequent" at-

tribute links to the sequent object through its cid, and
"signature" attribute contributes the cryptographic sig-

nature of the linked sequent object’s cid by the private key

associated with "agent". In the sequence type, the "name"
attribute contains the originally given name of the input

JSON file, and the "sequents" attribute contains links to the
included sequent objects.

Note the usage of the type ipfsLink in Figure 6. As the

goal is to publish structured objects that can link to each

other and where each object’s cid is a global name, we take
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advantage of using both IPFS and IPLD through the ipfs
dag api. IPLD (InterPlanetary Linked Data) aims to be the

data layer for content-addressed systems, meaning that its

general goal is to provide a common ground for serializing

structured data. To illustrate the interplay between IPFS cids
and JSON objects (as provided by the IPLD extension to IPFS),

let cidA be the cid for some sequent object. The command

ipfs dag get cidA/conclusion

will return the formula object for the conclusion of this se-

quent. This way, you can explore the DAG associated with a

cid. For example, by using the path

bafyreialidp34p7w4vabe62qybxhe.../sequents/0

you will get the first assertion object (as the current imple-

mentation of the publish command publishes a sequence

of signed sequents). By adding the suffix /sequent you will

get the sequent object, and so on.

6.3 From Dispatch to Prover
Similar to how a standard format input was provided to

dispatch from a Prover, another standard format input is

produced by dispatch for a Prover to consume objects from

the Global Storage. Since dispatch mediates between the

Prover and the Global Storage, the file produced by dispatch
is constructed so that the Prover can consume the objects in

that file without having to deal directly with IPFS.

6.3.1 Dispatch get Command. An agent is expected to

invoke the get command of dispatch to retrieve published

objects starting from a given cid. The result of this command

is a JSON file that the Prover can consume. Consider, for

example, the following command.

> dispatch get bafyreialidp34p7w4vabe62qybxhexz.. examples/output

The result of this command is a single JSON file that results

from flattening (dereferencing all the cids) starting with the

given argument root cid.

Input to Prover Constructed: DAG referred to by this cid
is in the file named bafyreialidp34p7w4vabe62qybx .... json

The first argument following the get command is the cid
of the DAG to be retrieved, and the second is the directory

in which the output JSON file shall be stored (relative to the

directory of execution).

The structure of the output JSON file is presented next.

6.3.2 Data Input to Prover. The input that a Prover should
expect from dispatch is a JSON file. As an example, the

JSON file in Figure 7 was produced by the dispatch get
command when given, as its first argument, the cid of the
sequence object corresponding to fileB.thm (Figure 4).
This JSON format is designed to satisfy two main goals.

1. The JSON file removes all references to IPFS cids. This
way, the Prover does not need to deal directly with

IPFS.

{ "plus_succ": {
"cidFormula": "bafyreidk2fl2j5gpa6sk4t..",
"formula": "forall M N K, plus M N K -> plus M (s

N) (s K)",
"SigmaFormula": [

"Kind nat type",
"Type zero nat",
"Type succ nat -> nat",
"Define nat : nat -> prop by

nat zero ; nat (succ N) := nat N" ],
"sequents": [

{ "lemmas": [],
"signer": "22f363b82059249fdbd1a09.." } ]},

"plus_comm": {
"cidFormula": "bafyreihktm54xqmbquuwk3..",
"formula": "forall M N K, nat K -> plus M N K ->

plus N M K",
"SigmaFormula": [

"Kind nat type",
"Type zero nat",
"Type succ nat -> nat",
"Define nat : nat -> prop by

nat zero ; nat (succ N) := nat N" ],
"sequents": [

{ "lemmas": [
{ "name": "plus_zero", "cidFormula":

"bafyreid6iv..",
"formula": "forall N, nat N -> plus N z

N",
"SigmaFormula": [ "..." ] },

{ "name": "plus_succ", "cidFormula":
"bafyreidk2f..",

"formula": "forall M N K, plus M N K ->
plus M (s N) (s K)",

"SigmaFormula": [ "..." ] } ],
"signer": "22f363b82059249fdbd1a.." } ]} }

Figure 7. Standard format input from dispatch to prover

2. The JSON file should provide a structure that is conve-

nient for the Prover to consume. The Prover will prob-

ably need to make some proper checks, such as not al-

lowing to import two theorems having the same name

(descriptive name), and the JSON structure should aid

in making such checks.

These JSON files consist of an entry per theorem (i.e.,

these are named formulas). Each entry contains the cid of
the formula object, the formula itself, its logical signature,

and a list of sequents having this formula as their conclusion.

An element of this sequent list contains the details specific to

each sequent’s lemmas along with the signer of the sequent.

While the example in Figure 7 represents the result of

using the dispatch get command starting from a sequence

object cid, the same command starting from the cid of a

sequent or an assertion object is similar. In contrast, calling

the dispatch get command on the cid of a formula object

yields no JSON file since we do not import a simple formula

object.

How the Prover consumes such JSON files will be dis-

cussed next.

6.4 In Prover
We mentioned earlier that our described design consists

mainly of three interacting components. The impact of the

9

https://dweb.link/api/v0/dag/get?arg=bafyreialidp34p7w4vabe62qybxhexzeq5wjouuxiyhp2bouqot4tj2ruy/sequents/0
https://dweb.link/api/v0/dag/get?arg=bafyreialidp34p7w4vabe62qybxhexzeq5wjouuxiyhp2bouqot4tj2ruy/sequents/0/sequent
https://dweb.link/api/v0/dag/get?arg=bafyreialidp34p7w4vabe62qybxhexzeq5wjouuxiyhp2bouqot4tj2ruy/sequents/0/sequent/conclusion/formula
https://dweb.link/api/v0/dag/get?arg=bafyreialidp34p7w4vabe62qybxhexzeq5wjouuxiyhp2bouqot4tj2ruy


Farah Al Wardani, Kaustuv Chaudhuri, and Dale Miller

design of our framework on the Prover is discussed in this

section.

6.4.1 Scenario: Proof Checking. Proof checking is the

main functionality of a Prover (a.k.a. a Proof Checker). Our

primary concern has been: What will need to change within

a Prover when global objects with global addresses (cids)
are introduced? We decided earlier that a Prover shall only

consume the specified output standard format JSON file as

produced by dispatch. Thus, controlling what objects are
allowed to be consumed by a prover (and their meaning) is

decided at the get command level by dispatch and not by

the prover. On the other hand, the prover decides how to

consume the provided JSON file. So, the core meaning of

imported structures shall be the same for all provers, and

only minor details might differ between them (for example,

in printing the results of proof-checking a file).

6.4.2 Application to Abella. In Abella, the Import com-

mand is used to import the logical signature of some pre-

viously compiled .thm file into a new file. From our frame-

work’s perspective, this corresponds to generating a list (a

sequence) of signed sequents generated from the imported

file by the executing agent. The signing is done using this

agent’s private/public key (a local-only key not known to

others).

Abella allows the Import command to bring in previously

checked theorems from a local .thm. The first change that
was needed with Abella was extending the Import command

to allow an argument of the form "ipfs:cidA". In this case,

Abella has new code that calls the dispatch get command

to retrieve the corresponding JSON file. In such a JSON file is

contained information about (1) what sequents are imported,

(2) which agents signed each sequent, and (3) all the infor-

mation needed to make proper sense of these sequents and

the formulas they include.

The JSON that results from a dispatch get command

contains, within objects of the assertion type, the finger-
print of an agent’s public key. We do not expect Abella to do

anything directly with this item: instead, we can make some

simple logical inference in the says-logic outside of Abella.

For example, the trust information related to the assertions

of a sequence of sequents can be represented as a list such as

["𝐾1 says (𝐴, 𝐵 ⊢ 𝐶)", "𝐾2 says (⊢ 𝐷)", "𝐷 ⊢ 𝐹"] .
Here 𝐴, 𝐵,𝐶, . . . are names of formulas and 𝐾1, 𝐾2 are names

of agents. The elements having a "says" in them refer to

signed sequents (assertions), and the elements without it

refer to unsigned sequents where they are considered as

assumed "axioms" once imported. Some form of the elements

of this list could be processed further in order to retrieve

additional information. For example, if such a list contains

𝐾1 says𝐴 ⊢ 𝐵 and 𝐾2says ⊢ 𝐴, and agent 𝐾2 is willing to trust

agent 𝐾1 (encoded by the formula [𝐾1 ↦→ 𝐾2]), then a simple

says-logic deduction is 𝐾2says ⊢ 𝐵.

6.4.3 In publishing mode. After the successful proof-

checking of a collection of theorems and their proofs, the

Prover needs to be modified to have a new output mode,

called here the publishing mode. In this mode, the JSON file

needed to call the dispatch publish command must be

composed (Section 6.3.2). The following call to the Abella

prover illustrates this publishing mode.

> abella --ipfs -imports --ipfs -publish cloud fileB.thm
Import "ipfs:bafyreiafar6l6j4orqro5kvfwoaemrpc367hooe ..".
Theorem plus_succ : forall M N K, plus M N K -> .. .
induction on 1. intros. case H1. search. ..
Proof completed
Theorem plus_comm: ... Proof completed
Published as ipfs:bafyreid5jg35p43cnjx3fpe5nmf6mrjejq ..

Given this framework, it is easy to make some simple

extensions. For example, if a local file is imported into a file

being published, the local file can be published but with its

assertions signed by a "local-only" public key that only the

publishing agent knows and trusts. This signing resembles

the normal compilation process of Abella where a compiled

theorem file (extension .thc) file is produced.

7 Comments on this framework
7.1 Users and profiles
As mentioned in Section 4.2, public and private key pairs are

probably best associated not with proof checkers alone but

with a pairing of a user and a profile. For example, a person

using Abella versus the same person using Coq could result

in different trust relations with others. Similarly, using differ-

ent versions of a proof checker can be encoded as different

profiles. It also seems sensible for users to have a profile, say

open, that can be used to sign sequents for which no proof

is known for the signed sequent. Such a profile would allow

a user to publish a collection of conjectured theorems or a

proposed set of axioms. By the use of signing, it would be

possible to track which theorems have been proved assuming

such conjectures or axioms.

7.2 Using simpler and specialized kernels
Modern autarkic provers routinely recheck proofs, often af-

ter every invocation of a new instance of the proof checker

and certainly after every change in the version number of

the prover. As a result of needing to recheck proofs, there is

a tendency for implementers of proof checkers to optimize

such kernels to be more efficient. However, such optimiza-

tions can add greater complexity to a kernel, which, in turn,

makes errors in the kernel more likely to occur. With the

framework described in this paper, once a trusted kernel

checks a proof, it does not need to be rechecked. As a result,

there will be less pressure for kernels to be optimized, and,

as a result, they might be allowed to remain simpler and,

hopefully, less prone to errors.

Abella can benefit from proofs from 𝜆Prolog and the Bed-

wyr model checker, both of which work in subsets of the

logic used by Abella. These systems could do what they are

10



Distributing and trusting proof checking: a preliminary report

specialized to do and then output their theorems without

any proof evidence. We need to sign their output as being

performed by one of these systems and explicitly trust such

signed theorems.

7.3 The nature of attacks against this framework
The immutability of IPLD objects means that nomatter how a

cid is resolved to a file or JSON object—via the IPFS network,

HTTP, or a local cache—no malicious actors can corrupt that

dereferencing process undetected: one needs to compute the

hash of the received object and compare it to the cid used
to fetch it.

Signing is associated to both a user and a proof checker:

signing along by a proof checker might miss the fact that a

malicious users can corrupt the proof checker and its outputs.

Agents might be large corporations or large libraries of

checked proofs. Given the global and transparent nature

of this framework, if such a corporation or library signs a

sequent later demonstrated to be false, there is no way to

hide that error and that company’s economic value might

be adversely affected. Thus, for any agent with an economic

interest in proof checking, such transparency should lead

them to be careful in what they sign.

When using this framework, there are several software

packages that need to be trusted. Besides the obvious need

to have some trust in operating systems, network software,

etc, we must trust the off-the-shelf software we used (IPFS,

IPLD, and public-private key signing). We must also trust the

implementation of the dispatch software as well as the new
code for printing and parsing JSON objects within Abella.

Whether or not one wishes to actually trust the Abella kernel

is an option that is explicitly enabled by our framework.

7.4 Two lessons from the World Wide Web
In a couple of decades, the World Wide Web changed every-

thing about how documents were produced and shared and

how correspondence was done. By designing some protocols

and standards (e.g., HTTP and HTML) as well as some tools

(e.g., web browsers), the sharing of documents created a rev-

olution in the way people access information. We point out

two lessons from the World Wide Web that are particularly

relevant to us here.

Standardization versus emergence. One of the strengths
of the early web was that it developed some standards but

did not standardize too much. Instead, many features we now

see as integral to our use of the web—ranging from curated

sites like Wikipedia to programmable web content based on

JavaScript—were left to evolve along their trajectory. Thus a

goal of early standards should allow for a diversity of new

structures to emerge later. In particular, we have left for-

mal proofs out of our current framework. Of course, we

can eventually integrate formal proofs into our framework,

but since they vary a great deal and can be quite large and

resource-intensive objects to manage, we felt it was better

to leave them as an emergent feature of this framework. The

existence of proof objects, especially if multiple provers can

check such objects, could have a big impact on the kind of

agents one might be willing to trust.

Moving from a cooperative to an adversarial environ-
ment. At the beginning of the world wide web, most web

users were academics who mainly used this distributed infor-

mation system in a cooperative fashion. If someone found a

bug in a protocol or implementation, that bug was reported

so it could be fixed; back-doors existed to allow for test-

ing; and information sources such as academic papers, user

manuals, etc., communicated true and fact-based informa-

tion. In the decades since the invention of the World Wide

Web, however, we have seen that the web must now defend

against adversarial behaviors. Today, if a bug in a proto-

col or implementation is found, that bug can be sold on a

market to people interested in exploiting it; back doors are

placed in systems to allow bad actors to infiltrate or remotely

monitor those systems; and information sources can be lies

meant to manipulate voters. Many new techniques - cryp-

tographic in nature - have been invented and deployed to

provide for authentication, privacy, and transparency. Given

that we are seeing formal proofs moving out of the academic

and cooperative setting, we can expect to see adversaries

attempting attacks on provers. For example, attempting to

prove a theorem (like Kepler’s conjecture) might cause many

lemmas to be conjectured, and the provers appropriate for

those lemmas might vary significantly. Money might also

be paid to anyone who can prove some of these lemmas. In

that setting, anyone who can find a bug in a proof-checking

kernel and convert that bug into a proof of false could make

money by proving all the conjectured lemmas. Our use of

cryptographic signatures to track users and the provers they

employ is a low-level device to keep track of which kernels

are being trusted so that when bugs in kernels are found, we

know which previously trusted theorems might be tainted.

7.5 Future development
We briefly describe several additional developments that can

accompany our framework.

Other proof checkers. A clearly desirable next step in

the framework is to use it with other proof systems. For this,

a natural early step would be to support the TPTP format

[Sut09]. A variant of our dispatch tool that parses the TPTP

format could be helpful for publishing the results of the

CADE ATP competition [Sut16] since the competing provers

will be signing—in a transparent and global setting—any

theorems for which they wish to take credit.

Dealingwithmore realistic declarations. Most provers

place more things into their signatures and preambles than
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what we assume here. Examples of such additional dec-

larations are infix declarations, pragmas for the kernel’s

operation, descriptions of how equations might be used

within deductions, etc. Even Abella has additional decla-

rations that are not addressed explicitly here, most notably

the Specification declaration. We need to find ways to

accommodate at least some such declarations.

Libraries. Although our framework does not provide any

a priori notion of hierarchical structure on collections of def-

initions and theorems, it is natural for such organizations to

be built. Such structures can be seen as emergent structures

enabled by this framework. Of course, the same definitions

and theorems could be organized and used in rather different

ways in different curated libraries. It also seems wrong to

insist on imposing the top-down structure found in libraries

as part of our framework, since this framework enables is

a more bottom-up building of collections of definitions and

theorems.

Meta-data. We currently store almost nothing that is usu-

ally considered meta-data in our JSON objects, even though

such information can be extremely important for activities

beyond simply trusting kernels. For example, attributing au-

thors, a date, and some keywords to a theorem and proof

could prove valuable for placing certain objects into curated

libraries.

Web-based proof checking. Given the fact that Abella

is implemented in OCaml and that OCaml can be compiled

into JavaScript, Abella has been deployed via a web browser

(try this link) instead of via more complex installation steps.

A significant problem with such web-based deployment of

proof checkers is that there needs to be some approach to

the persistence of collections of definitions, theorems, and

proofs. Our use of IPFS can provide a natural and robust

solution to that problem.

7.6 Deploying this framework beyond proof
checking

We have not made proof objects a central theme of our frame-

work. One consequence of this choice is that the connection

between justification and trust is open to other interpreta-

tions: it does not need to rely on a proof-checking kernel.

There seems no specific reason why a framework such as the

one that we describe here—that tracks assertions made by

agents who we may or may not trust—could not be applied

in a much wider setting than that involving the checking

of formal proofs. For example, the problem of reproducing

scientific results [FW21] has gained a great deal of interest

in recent years. Some websites, such as the Open Science

Foundation provide a top-down organization for storing,

sharing, and analyzing data collected from scientific experi-

ments. Parts of the framework described here could be used

to support such efforts but in a more bottom-up setting by

tracking the provenance of databases and analysis tools.

Of course, one can also return to the issue of merging the

upper layer and the middle layer of the semantic web (see

the discussion in Section 1).

8 Conclusion
We have described a framework in which assertions that

one proof-checking kernel makes about a theorem can be

made available to any other proof-checking kernel willing

to trust it. We have given a high-level overview of how this

framework was designed, and we discussed our prototype

implementation of it using the off-the-shelf, web-based tech-

nologies JSON, IPFS, IPLD, and public key cryptography.

Finally, we have described how this framework can be used

with the Abella theorem prover: in particular, the only things

that need to be changed in the Abella system is some facili-

ties to input and output certain JSON objects. No changes

to the underlying logic and kernel needed to be considered.

We plan to explore next how other provers can use essen-

tially the same tools and technologies to explicitly allow trust

relations with other provers in a highly distributed setting.
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