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Gentzen 1935:“Investigations into Logical Deduction”

Gentzen was interested in proving the consistency of arithmetic
and first-order logic in both classical and intuitionistic logics.

His sequent calculi LJ and LK (for intuitionistic and classical
logics, respectively) were central to his success with that project.
He also developed some decision procedures.

Ketonen [1944, 2022] pushed further, particularly with LK (classical
logic) and established some algorithms for normalizing formulas
(CNF), sharpened Hauptsatz, and some independence results.

Early application of the sequent calculus were: consistency results,
independence of results from axioms, proof systems for novel
logics, harmony, etc.
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Recent demands on proof theory

Several demands on proof theory have arisen from computer
science since the 1980s.

I Functional programming and the Curry-Howard
Correspondence, especially for classical logic.

I Type inference for rich �-calculi.

I Logic programming and goal-directed search.

I Automated deduction. Contraction-free sequent calculus,
cycle detection,

I Term representation, substitution, sharing.

5 / 68



Innovations since Gentzen’s 1935 paper

The following advances in proof theory will not be touched in these
lectures.

I semantics (algebraic / model-theoretic)

I new proof structures (hypersequents, deep inference, proof
nets, etc)

I Constructive reasoning, program extraction

I Proof mining, reverse mathematics

I etc
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Innovations since Gentzen’s 1935 paper

The following advances are the topic of these lectures.
I Lessons learned from linear logic [Girard, 1987]

I importance of weakening and contraction

I distinction between additive and multiplicative inference rules
I introduction of the exponentials !, ?
I polarization

I focused proof systems

I Two focused sequent calculus proof systems
I LKF - a focused version of LK
I LJF - a focused version of LJ

I The completeness of LKF and LJF entails various
proof-theoretic results.
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How to read an inference rule

An inference rule can be understood in two senses:

1. It takes complete proofs of its premises and builds a complete
proof of its conclusion.

2. It describes a way to reduce the attempt to prove its
conclusion to attempts to prove its premises.

Both readings of inference rules are, of course, valid. While the
former reading is more historical, I will often use the latter.
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Invertibility of inference rules

A key observation about an inference rule is whether or not it is
invertible: i.e., if the conclusion has a proof then all of its premises
must have a proof.

The notion of invertibility did not occur to Gentzen [von Plato,
2009], but does appear in [Ketonen, 1944], where cut elimination
is used to prove invertibility of some rules.

e.g., if � ` A ^ B ,� has proof ⌅, it has a proof that introduces ^.

⌅
� ` A ^ B ,�

A ` A
init

A ^ B ` A
^L

� ` A,�
cut

⌅
� ` A ^ B ,�

B ` B
init

A ^ B ` B
^L

� ` B ,�
cut

� ` A ^ B ,� ^R
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Polarity

One of the lessons learned from linear logic is that invertible is
more than a proof-search heuristic. In Linear Logic, we have:

the right introduction of a connective is not invertible
if and only if

the right introduction of the dual connective is invertible!

Terminology: Since duality is involved, a positive/negative
distinction seems appropriate.

I positive = not invertible (+)
I negative = invertible (*)

Do not confuse with positive or negative subformula occurrences!
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Gentzen’s inference rules for two-sided sequents

Identity rules

B ` B
init

� ` �,B �0,B ` �0

�, �0 ` �,�0 cut

Introduction rules

�,Bi ` �
�,B1 ^ B2 ` �

� ` �,B � ` �,C
� ` �,B ^ C � ` �, t

�,B ` � �,C ` �
�,B _ C ` � �, f ` �

� ` �,Bi

� ` �,B1 _ B2

� ` �,B �0,C ` �0

�, �0,B � C ` �,�0
�,B ` �,C
� ` �,B � C

�,Bs ` �
�, 8x .Bx ` �

� ` �,By
� ` �, 8x .Bx

�,By ` �
�, 9x .Bx ` �

� ` �,Bs
� ` �, 9x .Bx
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Structural rules, zones, LJ vs LK

Structural rules

�,B ,B ` �
�,B ` � cL

� ` �,B ,B
� ` �,B cR

� ` �
�,B ` � wL

� ` �
� ` �,B wR

In LK: admits cL, wL, cR , wR . That is, the LHS (left-hand side)
and RHS (right-hand side) are treated classically.

In LJ: admits only cL, wL. That is, the LHS is treated classically
and the RHS is treated linearly.

As a result, every sequent in an LJ proof of ` B is a
single-conclusion proof: hence, every sequent has exactly one
formula on the right.
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Observations about these proof rules

I The usual eigenvariable restriction holds for 8R and 9L.
I First-order quantification is over a first-order terms.

I The structural rule of exchange is built into this presentation.
The LHS and RHS are multisets.

I Gentzen’s ¬B is replaced with B � f , allowing us to change
“at most one formula on the right” to
“exactly one formula on the right.”

I Intuitionistic logic is a hybridization of linear and classical
logics. The two zones (LHS and RHS) are distinct.

I In classical logic, the distinction between these two zones can
be reduced to just one zone (via a one-sided sequent calculus).
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Additive versus multiplicative inference rules

An identity or introduction rule is classified as follows:

additive every side formula in the conclusion appears in
every premise.

multiplicative every side formula in the conclusion appears in
exactly one premise.

It is possible for an inference rule to be neither or both (e.g., if
there is only one premise).

In Gentzen’s LK and LJ the introduction rules for conjunction and
disjunction are additive while cut and initial rules and the left
implication introduction are multiplicative.

The cost of checking an additive vs a multiplicative rule varies
greatly between reading them premise-to-conclusion or vice versa.
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Four shortcomings of the sequent calculus

1. The collision of cut and the structural rules

2. Permutations of inference rules

3. Chose either the additive or multiplicative versions of binary
inference rules, but not both

4. No provision for synthetic inference rules

15 / 68



1: The collision of cut and the structural rules

Consider the following instance of the cut rule.

� ` C �0,C ` B

�, �0 ` B
cut
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1: The collision of cut and the structural rules

Consider the following instance of the cut rule.

� ` C ,C
� ` C

�0,C ,C ` B

�0,C ` B

�, �0 ` B
cut

What if both premises are contractions? Cut can
non-deterministically move to either premises.

In intuitionistic logic, this non-determinism is avoided since
contraction on the right is simply forbidden.
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1: The collision of cut and the structural rules (continued)

Such nondeterminism in cut-elimination is even more pronounced
when we consider the collision of the cut rule with weakening.

⌅1

` B

` C ,B wR

⌅2

` B

C ` B
wL

` B ,B
cut

` B
cR

Cut-elimination can yield either ⌅1 or ⌅2.

This kind of example does not occur in the intuitionistic
(single-sided) version of the sequent calculus.

These are often called Lafont’s examples [Girard et al., 1989].

Polarization will allow us to say something more general.
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2. Permutations of inference rules

The following two deviations di↵er by permuting an inference rule.

�,Bi ,Cj ` �

�,Bi ,C1 ^ C2 ` �
�,B1 ^ B2,C1 ^ C2 ` �

�,Bi ,Cj ` �

�,B1 ^ B2,Cj ` �

�,B1 ^ B2,C1 ^ C2 ` �

These two derivations are di↵erent are often considered equal.

Permutation of inference rules is a huge issue in trying to see
structure in the sequent calculus.

The existence of such permutations is probably the main reason for
the revolt again sequent calculus, giving rise to natural
deduction/typed �-calculi, expansion trees, proof nets, etc.
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3. Choose only one among additive or multiplicative rules

Gentzen used the additive versions of conjunction and disjunction.

People in classical logic theorem proving usually use the invertible
rules for conjunction and disjunction (which is multiplicative).

Things can then be arranged so that the only non-invertible rule in
classical logic is the 9R rule.

Why not allow both the additive and multiplicative versions of
these rules?
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4. No provision for synthetic inference rules
Inference rules in LK are too small. Consider the axiom stating
that the predicate path is transitive.

8x8y8z (path x y � path y z � path x z).

Using this axiom involves at least five LK introduction rules. It is
more natural to view that formula as yielding an inference rule.

� ` �, path x y � ` �, path y z

� ` �, path x z

path x y , path y z , path x z , � ` �
path x y , path y z , � ` �

One of these synthetic rules might be a more appropriate way to
invoke the transitivity axiom.

How can we build such synthetic rules? Can we guarantee
cut-elimination holds when we add them?
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Unpolarized formulas

The logical connectives already seen, namely,

t, ^, f , _, �, 8, , 9

are used to build unpolarized formulas for both classical and
intuitionistic logics.

In two-sided presentations of classical logic and intuitionistic logics,
the negation of B is written as B � f .

In one-sided presentations of classical logic, we restrict negations
to have atomic scope: we write ¬A as a primitive connective
(where A is atomic).
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LKF: polarized formulas

Positive connectives are f +, _+, t+, ^+, and 9.
Negative connectives are t�, �̂, f �, _�, and 8.
Literals are atomic formulas and negated atomic formulas.

An atomic bias assignment is a function �(·) that maps atomic
formulas to the set {+,�}.

Extend �(·) to literals: �(¬A) is the opposite polarity of �(A).

A polarized formula is positive if its top-level connective is positive
or it is a literal L and �(L) = +.

A polarized formula is negative if its top-level connective is
negative or its a literal L and �(L) = �.

We require that �(·) is stable under substitution: �(✓A) = �(A).
Thus, �(A) is determined by the predicate symbol of A.
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LKF: polarized formulas (continued)

Linear logic has other names for the polarized connectives.

conjunction true disjunction false
multiplicative ^+, ⌦ t+, 1 _�, ` f �, ?

additive �̂, & t�, > _+, � f +, 0

Logical connectives have four attributes:

I arity: 0, 1, 2, . . .

I variety: additive, multiplicative

I polarity: positive, negative

I junctiveness: conjunction, disjunction.

De Morgan duality flips the last 2 and leaves the first 2 unchanged.

Given any two of variety, polarity, junctiveness, the third is
uniquely determined.
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LKF: negation normal form

Polarized formulas are in negation normal form (nnf), meaning
that there are no occurrences of implication �, and that the
negation symbol ¬ has only atomic scope.

The negation symbol ¬ is extended also to non-atomic polarized
formulas.

I ¬¬A = A for atomic formula A

I ¬(A^+
B) = ¬A_� ¬B , ¬(A_�

B) = ¬A^+ ¬B
I ¬(A_+

B) = ¬A �̂ ¬B , ¬(A �̂
B) = ¬A_+ ¬B

I ¬9x .A = 8x .¬A, ¬8x .A = 9x .¬A
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Delays and polarization

For certain technical reasons, it is useful to have delays:
I @+(B) is always positive and equivalent to B .

I B _+ f + or B ^+ t+ or 9x .B where x is bound vacuously, or
I as a 1-ary version of _+ or ^+.

I @�(B) is always negative and equivalent to B .
I B _� f � or B ^� t� or 8x .B where x is bound vacuously, or
I as a 1-ary version of _� or ^�.

Let B be an unpolarized formula and let B̂ be the result of

I annotating occurrences of t, ^, f , _ in B with a + or �, and

I insert any number of delays.

If �(·) is an atomic bias assignment, then the pair
h�(·), B̂i is a polarization of B .

Generally, there is (at least) an exponential number of polarizations
of an unpolarized formula.
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LKF: sequent

LKF uses the following one-sided sequents with two zones:

` � * ⇥ and ` A + ⇥

The zones � and ⇥ are multisets of polarized formulas.
A is a polarized formula.

Introductions take place in the zone between ` and the * or +.

The zone ⇥ is called storage and has classical maintenance, i.e.,
they admit contraction and weakening.

Those structural rules are implicit by adopting the convention:

A classical zone is treated additively in multiplicative rules.

The zone � is called the staging area and has linear maintenance.
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LKF: proof rules (without cut)
Negative introduction rules

` t�, � * ⇥
` A, � * ⇥ ` B , � * ⇥

` A
�̂
B , � * ⇥

` � * ⇥

` f �, � * ⇥
` A,B , � * ⇥

` A_�
B , � * ⇥

` [y/x ]B , � * ⇥

` 8x .B , � * ⇥

Positive introduction rules

` t+ + ⇥
` A + ⇥ ` B + ⇥

` A^+
B + ⇥

` Bi + ⇥
` B1 _+

B2 + ⇥

` [s/x ]B + ⇥

` 9x .B + ⇥

Non-introduction rules

` p + ¬p,⇥ init
` N * ⇥
` N + ⇥ release

` � * Q,⇥
` Q, � * ⇥

store

` P + P ,⇥
` · * P ,⇥ decide

Here: P is positive, N is negative, Q is positive or a literal, and p

is a positive literal.
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Observations about LKF proof rules
The polarized formula B has an LKF proof if the sequent ` B * ·
has an LKF proof

Storage (the ⇥ context) is non-decreasing as we move from
conclusion to premise.

Key observations:

1. Contraction occurs only in the decide rule and only for
positive formulas. A negative formula is never contracted.

2. Weakening occurs only at the leaves (in the init and t+ rules)
and only on positive formulas and negative literals.

Theorem (Completeness of LKF)

Let B be an unpolarized formula that is provable in LK.

If B̂ is any polarization of B then B̂ has an LKF proof.

Liang & M proved this using a translation into linear logic [2009]
and later with a direct proof [2024].

29 / 68



The central dichotomies of focused proof systems

When reading sequent calculus rules from conclusion to premises:

rule application invertible vs non-invertible
oracle no information vs essential information

non-determinism don’t care vs don’t know
phase negative * vs positive +

Andreoli [1992] used the terms asynchronous/synchronous
terminology: these are used less in recent years.

The polarity of linear logic connectives is unambiguous. In classical
and intuitionistic logic, there are some ambiguities.
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The structure of (cut-free) focused proofs

A sequent of the form ` · * ⇥ is called a border sequent.

Such sequents can only be proved by using the decide rule.

A synthetic inference rule is defined as one occurrence each of the
+ and *-phases, with border sequents as the conclusion and the
premises.

· · ·
· · ·

· · · ` · * ⇥0 · · ·
` N * · · · neg phase

` N + · · · release · · ·
` · · · + · · · pos phase· · ·
` P + ⇥
` · * ⇥

decide P 2 ⇥

The +-phase is multiplicative. The *-phase is additive.
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Application of LKF: Two proof systems
The LKneg proof system is based on invertible inference rules.

` B | ·
` B

start
` � |�, L

` L, � |� store ` · |�, L,¬L init

` � |�
` f , � |�

` B ,C , � |�
` B _ C , � |� ` t, � |�

` B , � |� ` C , � |�
` B ^ C , � |�

Here, L denotes a literal.

The LKpos proof system is based on non-invertible rules.

` B | · | B
` B

start
` B | N ,¬A | B
` ¬A | N | B restart ` A | N ,¬A | B init

` Bi | N | B
` B1 _ B2 | N | B ` t | N | B

` B1 | N | B ` B2 | N | B
` B1 ^ B2 | N | B

Completeness of both systems follow immediately from the
completeness of LKF.
Proof sizes can vary greatly: consider (p _ C ) _ ¬p.
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The cut rule for LKF

The cut rule operates on * sequents.

` B * ⇥ ` ¬B * ⇥0

` · * ⇥,⇥0 cut

During the proof of cut-elimination, the following four variants of
the cut rule need to be considered and eliminated as well.

` A, � * ⇥ ` ¬A, �0 * ⇥0

` �, �0 * ⇥,⇥0 cutu
` A + ⇥ ` ¬A, �0 * ⇥0

` �0 * ⇥,⇥0 cut f

` � * ⇥,P ` ¬P , �0 * ⇥0

` �, �0 * ⇥,⇥0 dcutu
` B + ⇥,P ` ¬P * ⇥0

` B + ⇥,⇥0 dcut f

Here, A and B are arbitrary polarized formulas and P is a positive
polarized formula.
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Outline of completeness proof

1. Prove that all four cuts are admissible.

2. Prove the admissibility of the general init rule.

3. Prove some generalized invertibility lemmas.

4. Embed Gentzen’s LK into LKF by choosing an appropriate
polarization.

5. Prove that all LK rules are admissible in LKF.
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Applications of LKF: Admissibility of cut in LK

Theorem
The cut rule for LK is admissible in the cut-free fragment of LK.

Follows immediately from the meta-theory of LKF.
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Applications of LKF: Lafont’s examples disappear

In all occurrences of the cut rule in LKF,

` B * ⇥ ` ¬B * ⇥0

` · * ⇥,⇥0 cut

exactly one of B and ¬B is negative and one is positive. Hence,
contraction is available only for one of these (the positive one) and
not both.
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Application of LKF: Synthetic inference rules

Let ⇥ contain the negated and polarized transitivity axiom:

9x9y9z .(path x y ^+
path y z ^+ ¬path x z)

⌅1
` path r s + ⇥

⌅2
` path s t + ⇥

⌅3
` ¬path r t + ⇥

` path r s ^+
path s t ^+ ¬path r t + ⇥

^+ ⇥ 2

` 9x9y9z .(path x y ^+
path y z ^+ ¬path x z) + ⇥

9 ⇥ 3

` · * ⇥ decide

The shape of ⌅1, ⌅2, and ⌅3 depends on the polarity of the path

predicate.
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Application of LKF: Synthetic inference rules (continued)

If path-atoms are negative, then ⌅1 and ⌅2 end with the release

and store rules while the proof ⌅3 is trivial. This synthetic rule is

` · * path r s,⇥ ` · * path s t,⇥
` · * path r t,⇥

If path atoms are positive, then ⌅3 end with the release and store

rules while the proof ⌅1 and ⌅2 are trivial. This synthetic rule is

` · * ¬path r s,¬path s t,¬path r t,⇥
` · * ¬path r s,¬path s t,⇥

These synthetic inference rules are the one-sided version of the
back-chaining and forward-chaining rules displayed earlier (see
[Chaudhuri et al., 2008b]).

Cut-elimination holds when synthetic inference rules are added
[Marin et al., 2022].
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Application of LKF: Herbrand’s theorem

The formula 9x̄ .B is provable if and only if there are substitutions

✓1, . . . , ✓m (m � 1) such that B✓1 _ · · · _ B✓m is provable.

Let B̂ be a polarized version of B in which all propositional
connectives in B are polarized negatively. Since 9x̄ .B is provable,
the sequent ` 9x̄ .B̂ * · and ` · * 9x̄ .B̂ must have LKF proofs.

Let C be B̂✓1 _+ . . ._+
B̂✓m where ✓i is the i

th instantiate of
9x̄ .B in that LKF proof. (C may contain _� and _+.)

` B̂✓i * 9x̄ .B̂ ,L
` B̂✓i + 9x̄ .B̂ ,L

release

` 9x̄ .B̂ + 9x̄ .B̂ ,L
9 ⇥ n

=)
` B̂✓i * C ,L
` B̂✓i + C ,L

release

` B̂✓1 _+ . . ._+
B̂✓m + C ,L

_+

Except for the details inside the +-phase, these proofs are identical.
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Application of LKF: Hosting other proof systems

The LKQ and LKT proof systems of [Danos et al., 1995] can be
seen as LKF proofs in which the following polarization functions
are used. Here, A ranges over atomic formulas.

LKT LKQ
Atoms are negative Atoms are positive

(A)l = ¬A (A)l = ¬A
(A)r = A (A)r = A

(B � C )l = (B)r ^+ (C )l (B � C )l = (B)r ^+ @�((C )l)
(B � C )r = (B)l _� @+((C )r ) (B � C )r = @+((B)l _� (C )r )

Cut-free proofs in LKT (resp, LKQ) of B correspond to LKF proofs
of (B)r using the LKT (resp, LKQ) definition.

Gentzen’s LK proof system can also be hosted inside LKF by using
lots of delays.
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Variants of focusing in classical logic: multifocusing

Positive introduction rules

` t+ + �
` B1,⇥1 + � ` B2,⇥2 + �

` B1 ^+
B2,⇥1,⇥2 + �

` Bi ,⇥ + �
` B1 _+

B2,⇥ + �
i 2 {1, 2}

` [s/x ]B ,⇥ + �

` 9x .B ,⇥ + �

Release and decide rules

` � * �
` � + � release

† ` � + �, �
` · * �, � decide

‡

Proviso †: � consists of only negative formulas.
Proviso ‡: � is a non-empty multiset of positive formulas.

We have argued that maximal multifocused (MMF) proofs provide
a canonical proof representation.

[Chaudhuri et al., 2008a] proof nets and MMF proofs in MALLF.
[Chaudhuri et al., 2016] expansion trees and MMF proofs in LKF.
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Variants of focusing in classical logic: MALLF

Simple changes to four rules of LKF yields MALLF, a focused
proof system for the MALL fragment of linear logic, first proposed
in [Andreoli, 1992].

Change the storage from classical to linear maintenance.

This change in maintenance forces the following rules to change as
well.

` t+ + ·
` A + ⇥1 ` B + ⇥2

` A^+
B + ⇥1,⇥2

` p + ¬p init
` P + ⇥
` · * P ,⇥ decide
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LJF: two-sided sequents

� *⇥ ` � *�0 � + ⇥ ` � + �0

All four zones �, ⇥, �, and �0 are multisets of polarized formulas.
The multiset union � [�0 is always a singleton.

� and �0 are called the left and right storage zones.
⇥ and � are called the left and right staging zones.

� * · ` · *� are called border sequents: these sequents form the
conclusion and premises of synthetic inference rules.
Notation conventions

I drop · + and · * when they appear on the right,

I drop + · and * · when they appear on the left.

I Thus, � * · ` · * E can be written as � ` E . Border sequents
in LJF resemble sequents in LJ.
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LJF: the logical connectives

Positive connectives: ^+, t+, _+, f +, 9.
Negative connectives: �̂, t�, �, 8.

The only ambiguous logical connectives in intuitionistic logic is
conjunction and its unit: �̂, t�, ^+, t+.

There is only one disjunction and its unit: _+, f +.

Atomic formulas are also ambiguous. We employ atomic bias
assignments, �(·) with LJF as well.

Notation: The RHS can be simplified as follows: write B + · as
simply B + and write B * · as simply B *.
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LJF: the invertible introduction rules

Right introduction rules

� *⇥ ` B1 * � *⇥ ` B2*
� *⇥ ` B1

�̂ B2* � *⇥ ` t�*

� * B1,⇥ ` B2*
� *⇥ ` B1 � B2*

� *⇥ ` [y/x ]B*
� *⇥ ` 8x .B*

Left introduction rules

� * B1,B2,⇥ ` �1 *�2

� * B1
+̂ B2,⇥ ` �1 *�2

� *⇥ ` �1 *�2

� * t+,⇥ ` �1 *�2

� * B1,⇥ ` �1 *�2 � * B2,⇥ ` �1 *�2

� * B1 _+ B2,⇥ ` �1 *�2 � * f +,⇥ ` �1 *�2

� * [y/x ]B ,⇥ ` �1 *�2

� * 9x .B ,⇥ ` �1 *�2

Here, B ranges over arbitrary polarized formulas.
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LJF: the non-invertible introduction rules

Right introduction rules

� ` B1 + � ` B2 +
� ` B1

+̂ B2 + � ` t+ +

� ` Bi +
� ` B1 _+ B2 +

� ` [t/x ]B +
� ` 9x .B +

Left introduction rules

� + Bi ` D

� + B1
�̂ B2 ` D

� ` B1 + � + B2 ` D

� + B1 � B2 ` D

� + [t/x ]B ` D

� + 8x .B ` D

In the introduction rules for _+
r and ^�

l
, i is either 1 or 2.
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LJF: Release, Store, Decide, and Initial rules

C , � *⇥ ` �1 *�2

� * C ,⇥ ` �1 *�2
storeL

� * · ` · * D

� * · ` D * · storeR

� * P ` · * D

� + P ` D
releaseL

� * · ` N * ·
� ` N + releaseR

�,N + N ` D

�,N * · ` · * D
decideL

� ` P +
� * · ` · * P

decideR

� + Na ` Na

initL
�,Pa ` Pa +

initR

P is positive, Pa is a positive atom.
N is negative, Na is a negative atom.
C is a negative formula or positive atom.
D is a positive formula or negative atom.
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Observations about LJF

We say that the polarized formula B has an LJF proof if the
sequent · * · ` B * · has an LJF proof.

Storage (the � context) is non-decreasing as we move from
conclusion to premise.

Key observations:

1. Contraction occurs only in the decideL rule and only for
negative formulas.

2. Weakening occurs only at the leaves (in the init and t+ rules)
and only on negative formulas and positive literals.

Theorem (Completeness of LJF)

Let B be an unpolarized formula that is provable in LJ.

If B̂ is any polarization of B then B̂ has an LJF proof.

Liang & M [2009] prove this using a translations into linear logic.
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Additional applications of LJF

Some applications to the proof-theory of intuitionistic logic.

I Synthetic connectives

I Forward and backward chaining

I Term representations

I Proof of Harrop’s theorem

I Completeness of G3i and G4ip

Some applications to relating classical and intuitionistic logic.

I Barr’s theorem
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Synthetic inference rules

A left synthetic inference rule for B is an inference rule of the form

�1* ` *A1 . . . �n* ` *An

�* ` *A
B

justified by a derivation (in LJF) of the form

�1 * · ` · * A1 . . . �n * · ` · * An

... *

... +
� + B ` A

� * · ` · * A
decideL, B 2 �

There may be multiple synthetic rule for a given formula B .
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Two definitions

We name two specific atomic bias assignments:

I ��(A) = � for all atomic A.

I �+(A) = + for all atomic A.

The order of a formula is defined as follows:

I ord(B) = 0 if B is atomic or t or f
I ord(B � C ) = max(ord(B) + 1, ord(C ))

I ord(B ^ C ) = ord(B _ C ) = max(ord(B), ord(C ))

I ord(8x .B) = ord(9x .B) = ord(B)

For example, ord(a � (b � c)) = 1 and ord((a � b) � c) = 2.

Horn clauses have order 0 or 1.

The order of polarized formulas is defined analogously.
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Axioms as rules
Let T be a finite set of polarized formulas of order 1 or 2. Let � be
an atomic bias assignment.

LJb�, T c extends LJ with the left synthetic inference rules for T :
if B 2 T then the synthetic rule

B , �1 * · ` · * A1 · · · B , �n * · ` · * An

B , � * · ` · * A
B

justifies the rule
�1 ` A1 · · · �n ` An

� ` A
B

which is added to LJb�, T c.

Theorem
T , � * · ` · * A is provable in LJ if and only if

� ` A is provable in LJb�, T c.

For related work, see Negri and von Plato [1998].
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Cut-elimination for LJb�, T c

The following theorem states that cut is admissible for the
extensions of LJ with polarized theories based on synthetic
inference rules.

Theorem (Cut admissibility for LJb�, T c)
Let T be a finite polarized theory of order 2 or less. Then the cut

rule is admissible for the proof system LJb�, T c.

The proof is given by Marin, M, Pimentel, & Volpe in [2022] for
both LJF and LKF.
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Back-chaining and Forward-chaining

Let T be the collection of formulas

D1 = a0 � a1, D2 = a0 � a1 � a2, · · · , Dn = a0 � · · · � an, · · ·

where ai are atomic.

Back-chaining: The inference rules in LJb��, T c include

� ` a0 · · · � ` an�1

� ` an

Forwardchaining: The inference rules in LJb�+, T c include

�, a0, · · · , an�1, an ` A

�, a0, · · · , an�1 ` A
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Back-chaining and Forward-chaining

What are the proofs of a0 ` an using synthetic rules?

When ai are all given the negative bias, we have:

� ` a0

� ` a1

� ` a0 � ` a1

� ` a2
· · · � ` a0 · · · � ` an�1

� ` an
· · ·

The unique proof of a0 ` an has exponential size.

When ai are all given the positive bias, we have:

�, a0, a1 ` A

�, a0 ` A

�, a0, a1, a2 ` A

�, a0, a1 ` A
· · · �, a0, . . . , an�1, an ` A

�, a0, . . . , an�1 ` A
· · ·

There are an infinite number of proofs.
The smallest proof of a0 ` an has linear size.
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Term representation: Annotating rules and proofs

Now we annotate the inference rules in the previous example.

� ` a0

� ` a1

� ` a0 � ` a1

� ` a2 · · ·
� ` a0 . . . � ` an�1

� ` an
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Term representation: Annotating rules and proofs

Now we annotate the inference rules in the previous example.

� ` t0 : a0
� ` E1t0 : a1

� ` t0 : a0 � ` t1 : a1
� ` E2t0t1 : a2 · · ·

� ` t0 : a0 . . . � ` tn�1 : an�1

� ` Ent0 · · · tn�1 : an
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Term representation: Annotating rules and proofs

Now we annotate the inference rules in the previous example.

� ` t0 : a0
� ` E1t0 : a1

� ` t0 : a0 � ` t1 : a1
� ` E2t0t1 : a2 · · ·

� ` t0 : a0 . . . � ` tn�1 : an�1

� ` Ent0 · · · tn�1 : an

Consider the proofs of d : a0 ` t : a4. The term t is

(E4 (E3 (E2 (E1 d) (E1 d))
(E2 (E1 d) (E1 d)))

(E3 (E2 (E1 d) (E1 d))
(E2 (E1 d) (E1 d))))

Sharing of subterms is not supported.
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Term representation: Annotating rules and proofs

Now we annotate the inference rules in the previous example.

�, a0, a1 ` A

�, a0 ` A

�, a0, a1, a2 ` A

�, a0, a1 ` A . . .

�, a0, · · · , an�1, an ` A

�, a0, · · · , an�1 ` A

Consider the proofs of a0 ` a4.
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Term representation: Annotating rules and proofs

Now we annotate the inference rules in the previous example.

�, x0 : a0, x1 : a1 ` t : A

�, x0 : a0 ` F1x0(�x1.t) : A

�, x0 : a0, x1 : a1, x2 : a2 ` t : A

�, x0 : a0, x1 : a1 ` F2x0x1(�x2.t) : A . . .

�, x0 : a0, · · · , xn�1 : an�1, xn : an ` t : A

�, x0 : a0, · · · , xn�1 : an�1 ` Fnx0 · · · xn�1(�xn.t) : A

Consider the proofs of d : a0 ` t : a4.
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�, x0 : a0, x1 : a1 ` F2x0x1(�x2.t) : A . . .

�, x0 : a0, · · · , xn�1 : an�1, xn : an ` t : A

�, x0 : a0, · · · , xn�1 : an�1 ` Fnx0 · · · xn�1(�xn.t) : A

Consider the proofs of d : a0 ` t : a4.

The term t annotating the shortest proof is

(F1 d (�x1.
(F2 d x1 (�x2.
(F3 d x1 x2 (�x3.
(F4 d x1 x2 x3 (�x4. x4))))))))
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Term representation: Annotating rules and proofs

Now we annotate the inference rules in the previous example.

�, x0 : a0, x1 : a1 ` t : A

�, x0 : a0 ` F1x0(�x1.t) : A

�, x0 : a0, x1 : a1, x2 : a2 ` t : A

�, x0 : a0, x1 : a1 ` F2x0x1(�x2.t) : A . . .

�, x0 : a0, · · · , xn�1 : an�1, xn : an ` t : A

�, x0 : a0, · · · , xn�1 : an�1 ` Fnx0 · · · xn�1(�xn.t) : A

Consider the proofs of d : a0 ` t : a4.

A better syntax might be

name x1 = (F1 d) in

name x2 = (F2 d x1) in

name x3 = (F3 d x1 x2) in

name x4 = (F4 d x1 x2 x3) in x4

Sharing of subterms is explicitly supported. See M & Wu [2023].
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An example

appy

appz

root

x

appy’

appz’

root

a

name y = app x x in

name z = app y y in

z

name y’ = app a a in

name z’ = app y’ y’ in

z’

name y’ = app a a in

name z’ = app y’ y’ in

name y = app z’ z’ in

name z = app y y in z
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Equality on terms

We have two di↵erent formats for untyped �-terms.

When should two such expressions be considered the same?

“White box” approach: Look at the actual syntax of proofs.

• Transform proofs between systems: see Pimentel, Nigam, &
Neto, Multi-focused proofs with di↵erent polarity
assignments, LSFA 2015.

• Expensive since sharing is usually unwound.

“Black box” approach: Use concurrency theory notions of traces
and bisimulation.
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Harrop’s theorem

Harrop formulas are defined as: (A is atomic, B is arbitrary).

H := A | B � H | 8x H | H1 ^ H2.

Polarize atoms and ^ negatively.

A simple induction proves that if C is a polarized positive formula,
then the sequent � + Ĥ ` C is not provable. Let P be a set of
H-formulas.

Theorem
P ` B1 _ B2 has LJ proof ) P ` Bi has LJ proof for i = 1, 2.
P ` 9x .B has LJ proof ) P ` B[t/x ] has LJ proof for some t.

Proof: By completeness, there is an LJF proof of
P * · ` · * B1 _ B2. Since the last inference rule of that proof
cannot be decideL, it must be decideR . Similarly for 9. QED.
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G3i proof system of Troelstra and Schwichtenberg [2000]

P , � ` P
P atomic f , � ` A

A,B , � ` C

A ^ B , � ` C

� ` A � ` B

� ` A ^ B

A, � ` C B , � ` C

A _ B , � ` C

� ` Ai

� ` A0 _ A1
(i = 0, 1)

A � B , � ` A B , � ` C

A � B , � ` C

A, � ` B

� ` A � B

8x .A,A[x/t], � ` C

8x .A, � ` C

� ` A[x/y ]

� ` 8x .A
A[x/y ], � ` B

9x .A, � ` B

� ` A[x/t]

� ` 9x .A

Contraction is built into 8L and into the left premise of � L.
If we polarize ^+ and atoms positively, then this is almost LJF.
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Completeness of G3i

The binary relation B � C is defined on formulas via:

C � C

C � C2

C � C1 � C2

Intuitively, B � C means that B is the better choice to use with
decideL since a focus on C leads to a focus on B but with other
subgoals required.
The admissibility and invertibility in LJF of the following
strengthening rule is easy to prove.

�,B * · ` · * D

�,B ,C * · ` · * D
B � C

An LJF proof with this strengthening rule applied to the right
premise of every � L rule yields a G3i proof.
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Completeness of G4ip
Replace � L in G3i with four rules to get G4ip.

B ,P , � ` E

P � B ,P , � ` E
L0 �

C � (D � B), � ` E

(C ^ D) � B , � ` E
L^ �

C � B ,D � B , � ` E

(C _ D) � B , � ` E
L_ �

D � B ,C , � ` D B , � ` E

(C � D) � B , � ` E
L ��

Completeness of G4ip: Polarize atoms positive and use ^+.

1. First rule follows since atomic formulas are positive polarity.

2. Focusing on (C ^+
D) � B or C � (D � B) are

indistinguishable. Same for third rule.

3. When the left context contains C then decideL on
(C � D) � B is the same as on D � B .
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Relating classical and intuitionistic logics
Propositional geometric formulas C have the form

(p1 ^ · · · ^ pn) � (q1 _ · · · _ qm),

where n,m � 0 and p1, . . . , pn, q1, . . . , qm are atomic.

Theorem
The sequent C1, . . . ,Cr ` C0 is provable in classical logic if and

only if it is provable in intuitionistic logic.

Assume that C1, . . . ,Cr ` C0 is provable in LK.
Polarization using ^+, _+, and atomic formulas positive.
By completeness, Ĉ1, . . . , Ĉr ` Ĉ0 is provable in LKF.
The border sequents in such a proof have the form

C1, . . . ,Cr , p1, . . . , pn * · ` · * q1 _+ · · ·_+
qm

These are proved using decideR on q1 _+ · · ·_+
qm or decideL on

Ci . Thus, we have just two kinds of synthetic rules in this proof.
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Apply decideL on (p1 ^ · · · ^ pn) � (q1 _ · · · _ qm) yields the
synthetic rule

p1, . . . , pn, �, q1 * · ` · *� · · · p1, . . . , pn, �, qm * · ` · *�
p1, . . . , pn, � * · ` · *�

Apply decideR on q1 _ · · · _ qm yields the synthetic rule

qi , � * · ` · *�

A simple induction proves that if we start with one formula on the
right (i.e., C0) then all border sequents have exactly one formula
on the right. This proof is, thus, an LJF-proof.

The same argument works when clauses are generalized to

8x̄ .[(p1 ^ · · · ^ pn) � 9ȳ .(q1 _ · · · _ qm)]
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Classical polarizations yield double-negation translations
Chihani, Ilic, M, 2016.  Cut-free proofs only. 



Conclusion

I Many lessons from linear logic can be applied to classical and
intuitionistic logic.

I We have factored some of these lessons into the design of
focused proof systems for LJ and LK.
I flexible polarizations
I control on contraction and weakening
I large scale inference rules

I The completeness of LJF and LKF can yield various well
known proof-theoretic results.

66 / 68



References

Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic and Computation, 2(3):
297–347, 1992. doi: 10.1093/logcom/2.3.297.

Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs via multi-focusing. In G. Ausiello,
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