From axioms to synthetic inference rules via focusing

Dale Miller
Inria Saclay \& LIX, Institut Polytechnique de Paris
Joint work with Sonia Marin, Elaine Pimentel, and Marco Volpe
Published in Annals of Pure and Applied Logic 2022

CIRM, Luminy, Marseilles
4 May 2023

References appear at the end. These slides are available on my web page.

The view from 30,000 feet ${ }^{1}$

Gentzen's Sequent calculi LJ/LK [1935]

- Lots of tiny, micro rules
- Good for proving cut-elimination and consistency for both logics
- Bad for uses in computer science because proof structure is chaotic and slippery (witness the many rule permutations)

The view from 30,000 feet ${ }^{1}$

Gentzen's Sequent calculi LJ/LK [1935]

- Lots of tiny, micro rules
- Good for proving cut-elimination and consistency for both logics
- Bad for uses in computer science because proof structure is chaotic and slippery (witness the many rule permutations)

Girard and Andreoli [1987-1992]

- introduced linear logic and polarity
- focused sequent proofs for linear logic
- yields macro rules built from Gentzen-style micro rules

The view from 30,000 feet ${ }^{1}$

Gentzen's Sequent calculi LJ/LK [1935]

- Lots of tiny, micro rules
- Good for proving cut-elimination and consistency for both logics
- Bad for uses in computer science because proof structure is chaotic and slippery (witness the many rule permutations)

Girard and Andreoli [1987-1992]

- introduced linear logic and polarity
- focused sequent proofs for linear logic
- yields macro rules built from Gentzen-style micro rules

Today's talk

- Apply polarity and focusing to classical and intuitionistic logic ...
- ... in order to systematically build synthetic inference rules

[^0]The axioms-as-rules problem

How to incorporate inference rules encoding axioms into existing proof systems for classical and intuitionistic logics?

Projective geometry (Negri \& von Plato [NvP11]) - Uniqueness :

$$
a \in I \quad \wedge \quad a \in m \quad \wedge \quad b \in I \quad \wedge \quad b \in m \quad \supset \quad a=b \quad \vee \quad I=m
$$

The axioms-as-rules problem

How to incorporate inference rules encoding axioms into existing proof systems for classical and intuitionistic logics?

Projective geometry (Negri \& von Plato [NvP11]) - Uniqueness :

$$
\begin{aligned}
& a \in I \wedge a \in m \quad \wedge \quad b \in I \quad \wedge \quad b \in m \quad \supset \quad a=b \quad \vee \quad I=m \\
& \frac{\Gamma \vdash \Delta, a \in I \quad \Gamma \vdash \Delta, a \in m \quad \Gamma \vdash \Delta, b \in I}{} \quad \Gamma \vdash \Delta, b \in m \\
&
\end{aligned}
$$

The axioms-as-rules problem

How to incorporate inference rules encoding axioms into existing proof systems for classical and intuitionistic logics?

Projective geometry (Negri \& von Plato [NvP11]) - Uniqueness :

$$
\begin{gathered}
a \in I \wedge a \in m \wedge b \in I \quad \wedge \quad b \in m \quad a=b \quad \vee \quad I=m \\
\frac{\Gamma, a=b \vdash \Delta \quad \Gamma, I=m \vdash \Delta}{\Gamma, a \in I, a \in m, b \in I, b \in m \vdash \Delta} \text { Uni }_{p}
\end{gathered}
$$

The axioms-as-rules problem

How to incorporate inference rules encoding axioms into existing proof systems for classical and intuitionistic logics?

Projective geometry (Negri \& von Plato [NvP11]) - Uniqueness :

$$
a \in I \quad \wedge \quad a \in m \quad \wedge \quad b \in I \quad \wedge \quad b \in m \quad \supset \quad a=b \quad \vee \quad I=m
$$

Sur la formalisation des fondements de la géométrie (Boutry [Bou18]) - Congruence :

- $\forall x, y$.cong $x y y x$.
- $\forall x, y, z, w, r, s . c o n g x y z w \supset$ cong $x y r s \supset$ cong $z w r s$.

The axioms-as-rules problem

How to incorporate inference rules encoding axioms into existing proof systems for classical and intuitionistic logics?

Projective geometry (Negri \& von Plato [NvP11]) - Uniqueness :

$$
a \in I \quad \wedge \quad a \in m \quad \wedge \quad b \in I \quad \wedge \quad b \in m \quad \supset \quad a=b \quad \vee \quad I=m
$$

Sur la formalisation des fondements de la géométrie (Boutry [Bou18]) - Congruence :

- $\forall x, y$.cong $x y y$.
- $\forall x, y, z, w, r, s . c o n g x y z w \supset$ cong $x y r s \supset$ cong zwrs.

$$
\frac{\Gamma, \operatorname{cong}(x, y, y, x) \vdash \Delta}{\Gamma \vdash \Delta} 1_{p} \quad \frac{}{\Gamma \vdash \operatorname{cong}(x, y, y, x)} 1_{n}
$$

The axioms-as-rules problem

How to incorporate inference rules encoding axioms into existing proof systems for classical and intuitionistic logics?

Projective geometry (Negri \& von Plato [NvP11]) - Uniqueness :

$$
a \in I \quad \wedge \quad a \in m \quad \wedge \quad b \in I \quad \wedge \quad b \in m \quad \supset \quad a=b \quad \vee \quad I=m
$$

Sur la formalisation des fondements de la géométrie (Boutry [Bou18]) - Congruence :

- $\forall x, y$.cong $x y y x$.
- $\forall x, y, z, w, r, s . c o n g x y z w \supset$ cong $x y r s \supset$ cong $z w r s$.

$$
\frac{\Gamma, \operatorname{cong}(z, w, r, s) \vdash \Delta}{\Gamma, \operatorname{cong}(x, y, z, w), \operatorname{cong}(x, y, r, s) \vdash \Delta} 2_{p} \quad \frac{\Gamma, \operatorname{cong}(x, y, z, w) \vdash \operatorname{cong}(x, y, r, s)}{\Gamma \vdash \operatorname{cong}(z, w, r, s)} 2_{n}
$$

The axioms-as-rules problem

How to incorporate inference rules encoding axioms into existing proof systems for classical and intuitionistic logics?

Projective geometry (Negri \& von Plato [NvP11]) - Uniqueness :

$$
a \in I \quad \wedge \quad a \in m \quad \wedge \quad b \in I \quad \wedge \quad b \in m \quad \supset \quad a=b \quad \vee \quad I=m
$$

A fresh view to an old problem:

The combination of bipolars and focusing provides simple inference rules based only on atomic formulas.

Motivation

Object

Reasoning

Marin, Miller, Pimentel, Volpe

Motivation

\square
Object
First order logic

Reasoning

Motivation

Advantages of sequent systems [Gen35] as frameworks

- simple calculi;
- good proof theoretical properties (cut-elimination, consistency);
- can be easily implemented (λ Prolog, rewriting).

Motivation

Nice idea:

Add mathematical theories to first order logics and reason about them using all the machinery already built for the sequent framework.

Motivation

Nice idea:

Add mathematical theories to first order logics and reason about them using all the machinery already built for the sequent framework.

* Sara Negri, Jan von Plato, and Roy Dyckhoff, in first-order logic [NvP98, DN15];
\star as well as, Alex Simpson [Sim94], Luca Viganò [Vig00], Agata Ciabattoni [CGT08], in fragments of first-order logic such as modal and substructural logics;
* and Gilles Dowek [DW05, BDEG ${ }^{+} 21$], in Deduction Modulo Theories/Axioms for Math.

Motivation

Add non-logical axioms [NvP98]: assume $\vdash P \supset Q$ and $\vdash P$. Then

Motivation

Add non-logical axioms [NvP98]: assume $\vdash P \supset Q$ and $\vdash P$. Then

$$
\frac{\overline{\vdash P} \frac{\overline{\vdash P \supset Q} \frac{\overline{P \vdash P}}{} \frac{\overline{Q \vdash Q}}{P, P \supset Q \vdash Q}}{P \vdash Q} \mathrm{cut}}{\vdash \mathrm{~F}} \mathrm{cut}
$$

The Hauptsatz fails for systems with proper axioms.

Motivation

Add mathematical basic sequents [NvP98]: assume $P \vdash Q$ and $\vdash P$. Then

$$
\frac{\overline{\vdash P} \overline{P \vdash Q}}{\vdash Q} \text { cut }
$$

Motivation

Add mathematical basic sequents [NvP98]: assume $P \vdash Q$ and $\vdash P$. Then

$$
\frac{\overline{\vdash P} \overline{P \vdash Q}}{\vdash Q} \text { cut }
$$

Gentzen: Hauptsatz doesn't extend to basic sequents as premises. [Gen38]

Motivation

Add non-logical rules of inference [Sim94, NvP98]:

$$
\frac{\Gamma, Q \vdash C}{\Gamma, P \vdash C} P \supset Q \quad \frac{\Gamma, P \vdash C}{\Gamma \vdash C} P
$$

Motivation

Add non-logical rules of inference [Sim94, NvP98]:

$$
\frac{\Gamma, Q \vdash C}{\Gamma, P \vdash C} P \supset Q \quad \frac{\Gamma, P \vdash C}{\Gamma \vdash C} P
$$

The sequent $\vdash Q$ now has the (cut-free) proof

Motivation

A fresh view to an old problem:

Motivation

Which ones and why?

A fresh view to an old problem:

In this talk

Which ones and why?

$$
\begin{gathered}
\text { bipolars }+ \text { focusing } \\
= \\
\text { synthetic inference rules } \\
\text { (only atoms) }
\end{gathered}
$$

A fresh view to an old problem:

In this talk

Which ones and why?

$$
\begin{gathered}
\text { bipolars }+ \text { focusing } \\
=
\end{gathered}
$$

synthetic inference rules
(only atoms)

A fresh view to an old problem:
Classify axioms into a polarities' hierarchy (inspired by [CGT08]) Move focusing [And92] from linear to intuitionistic and classical logic [LM07, LM09] Identify synthetic inference rules with bipoles for bipolar axioms.

In this talk

A fresh view to an old problem:
Classify axioms into a polarities' hierarchy (inspired by [CGT08]) Move focusing [And92] from linear to intuitionistic and classical logic [LM07, LM09] Identify synthetic inference rules with bipoles for bipolar axioms.

- Systematically compute inference rules from bipolar axioms (λ Prolog prototype);
- Uniform presentation for classical and intuitionistic first order systems;
- Generalization of the literature (e.g. on geometric theories [Neg03, NvP11, Neg16, CMS13] and [Vig00]);
- Cut-elimination guaranteed for when such synthetic inferences rules are added.

Outline

1. Sequent systems
2. Polarities and bipolar formulas
3. Focusing and bipoles
4. Axioms-as-rules revisited
5. Examples

Geometric axioms
Universal axioms
Horn clauses
Implementation
Meta-reasoning
6. Beyond bipoles

Outline

1. Sequent systems

2. Polarities and bipolar formulas
3. Focusing and bipoles
4. Axioms-as-rules revisited
5. Examples

Geometric axioms Universal axioms Horn clauses Implementation Meta-reasoning
6. Beyond bipoles

Gentzen: sequent calculus

Some locality: sequents keep track of open assumptions

where $\Gamma=A_{1}, \ldots, A_{n}$ is the context.

Gentzen: sequent calculus

Some locality: sequents keep track of open assumptions

where $\Gamma=A_{1}, \ldots, A_{n}$ is the context.

- Rules: right $=$ introduction rules; left $=$ re-reading elimination rules.

Gentzen: sequent calculus

Some locality: sequents keep track of open assumptions

where $\Gamma=A_{1}, \ldots, A_{n}$ is the context.

- Rules: right $=$ introduction rules; left $=$ re-reading elimination rules.

$$
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \supset B} \supset R \quad \frac{\Gamma \vdash A \quad \Gamma, B \vdash C}{\Gamma, A \supset B \vdash C} \supset L
$$

Gentzen: sequent calculus

Some locality: sequents keep track of open assumptions

where $\Gamma=A_{1}, \ldots, A_{n}$ is the context.

- Rules: right $=$ introduction rules; left $=$ re-reading elimination rules.
- Derivation: tree with vertices labeled by sequents.

$$
\frac{\overline{A \vdash A}}{\stackrel{\vdash}{\vdash A \supset A}} \supset R
$$

Gentzen: sequent calculus

Some locality: sequents keep track of open assumptions

where $\Gamma=A_{1}, \ldots, A_{n}$ is the context.

- Rules: right $=$ introduction rules; left $=$ re-reading elimination rules.
- Derivation: tree with vertices labeled by sequents.
- Analyticity = cut-elimination.

$$
\frac{\Gamma \vdash A \quad \Delta, A \vdash C}{\Gamma, \Delta \vdash C} \mathrm{cut}
$$

Gentzen: sequent calculus

Some locality: sequents keep track of open assumptions

where $\Gamma=A_{1}, \ldots, A_{n}$ is the context.

- Rules: right $=$ introduction rules; left $=$ re-reading elimination rules.
- Derivation: tree with vertices labeled by sequents.
- Analyticity = cut-elimination.

$$
\frac{\Gamma \vdash A \quad \Delta, A \vdash C}{\Gamma, \Delta \vdash C} \mathrm{cut}
$$

- Analyticity \leadsto sub-formula property: induces a structure on the proofs (in terms of the end formula).

Gentzen: sequent calculus

Some locality: sequents keep track of open assumptions

where $\Gamma=A_{1}, \ldots, A_{n}$ is the context.

- Rules: right $=$ introduction rules; left $=$ re-reading elimination rules.
- Derivation: tree with vertices labeled by sequents.
- Analyticity = cut-elimination.

$$
\frac{\Gamma \vdash A \quad \Delta, A \vdash C}{\Gamma, \Delta \vdash C} \mathrm{cut}
$$

- Analyticity \leadsto sub-formula property: induces a structure on the proofs (in terms of the end formula).
- Thus, proof structure can be exploited to formalize reasoning, investigate meta-logical properties of the logic e.g. consistency, decidability, complexity and interpolation, and develop automated deduction procedures.

Outline

1. Sequent systems
2. Polarities and bipolar formulas
3. Focusing and bipoles
4. Axioms-as-rules revisited
5. Examples

Geometric axioms Universal axioms Horn clauses Implementation Meta-reasoning
6. Beyond bipoles

Polarization [DJS95]

Let A_{0}, A_{1}, and B be atomic, and let Γ be a multiset of formulas.

$$
\frac{\Gamma \vdash A_{1} \quad \Gamma, A_{0} \vdash B}{\Gamma, A_{1} \supset A_{0} \vdash B} L \supset
$$

Polarization [DJS95]

Let A_{0}, A_{1}, and B be atomic, and let Γ be a multiset of formulas.

$$
\frac{\Gamma \vdash A_{1} \overline{\Gamma, A_{0} \vdash B}}{\Gamma, A_{1} \supset A_{0} \vdash B} L \supset
$$

Negative protocol: (aka. T for tête) The right branch is trivial: $A_{0}=B$. Continue with $\Gamma \vdash A_{1}$.

Polarization [DJS95]

Let A_{0}, A_{1}, and B be atomic, and let Γ be a multiset of formulas.

$$
\frac{\Gamma \vdash A_{1} \overline{\Gamma, A_{0} \vdash B}}{\Gamma, A_{1} \supset A_{0} \vdash B} L \supset
$$

Negative protocol: (aka. T for tête) The right branch is trivial: $A_{0}=B$. Continue with $\Gamma \vdash A_{1}$.

$$
\frac{\Gamma \vdash A_{1} \frac{\Gamma \vdash A_{2}}{\Gamma \vdash A_{2} \supset A_{3} \supset A_{4} \supset A_{0} \vdash B}}{\Gamma, A_{1} \supset A_{2} \supset A_{3} \supset A_{4} \supset A_{0} \vdash B} L \supset \frac{B=A_{0}}{\Gamma, A_{4} \supset A_{0} \vdash B}
$$

Back-chaining!

Polarization [DJS95]

Let A_{0}, A_{1}, and B be atomic, and let Γ be a multiset of formulas.

$$
\frac{\overline{\Gamma \vdash A_{1}} \quad \Gamma, A_{0} \vdash B}{\Gamma, A_{1} \supset A_{0} \vdash B} L \supset
$$

Negative protocol: (aka. T for tête) The right branch is trivial: $A_{0}=B$. Continue with $\Gamma \vdash A_{1}$.
Positive protocol: (aka. Q for queue) The left branch is trivial: $\Gamma=\Gamma^{\prime}, A_{1}$. Continue with $\Gamma^{\prime}, A_{1}, A_{0} \vdash B$.

Polarization [DJS95]

Let A_{0}, A_{1}, and B be atomic, and let Γ be a multiset of formulas.

$$
\frac{\overline{\Gamma \vdash A_{1}} \quad \Gamma, A_{0} \vdash B}{\Gamma, A_{1} \supset A_{0} \vdash B} L \supset
$$

Negative protocol: (aka. T for tête) The right branch is trivial: $A_{0}=B$. Continue with $\Gamma \vdash A_{1}$.
Positive protocol: (aka. Q for queue) The left branch is trivial: $\Gamma=\Gamma^{\prime}, A_{1}$. Continue with $\Gamma^{\prime}, A_{1}, A_{0} \vdash B$.

$$
\frac{A_{1} \in \Gamma}{\frac{A_{2} \in \Gamma \vdash A_{1}}{\Gamma \vdash A_{2}} \frac{\frac{A_{3} \in \Gamma}{\Gamma \vdash A_{3}} \frac{\frac{A_{4} \in \Gamma}{\Gamma \vdash A_{4}}}{\Gamma, A_{1} \supset, A_{0} \vdash B}}{\Gamma, A_{3} \supset A_{4} \supset A_{0} \vdash B}}
$$

Forward-chaining!

Polarization [DJS95]

Let A_{0}, A_{1}, and B be atomic, and let Γ be a multiset of formulas.

$$
\frac{\Gamma \vdash A_{1} \Gamma, A_{0} \vdash B}{\Gamma, A_{1} \supset A_{0} \vdash B} L \supset \quad \frac{\overline{\Gamma \vdash A_{1}} \overline{\Gamma, A_{0} \vdash B}}{\Gamma, A_{1} \supset A_{0} \vdash B} L \supset
$$

Negative protocol: (aka. T for tête) The right branch is trivial: $A_{0}=B$. Continue with $\Gamma \vdash A_{1}$.
Positive protocol: (aka. Q for queue) The left branch is trivial: $\Gamma=\Gamma^{\prime}, A_{1}$. Continue with $\Gamma^{\prime}, A_{1}, A_{0} \vdash B$.
Mixed protocol:

Polarization [DJS95]

Let A_{0}, A_{1}, and B be atomic, and let Γ be a multiset of formulas.

$$
\frac{\Gamma \vdash A_{1} \Gamma, A_{0} \vdash B}{\Gamma, A_{1} \supset A_{0} \vdash B} L \supset \quad \frac{\overline{\Gamma \vdash A_{1}} \overline{\Gamma, A_{0} \vdash B}}{\Gamma, A_{1} \supset A_{0} \vdash B} L \supset
$$

Negative protocol: (aka. T for tête) The right branch is trivial: $A_{0}=B$. Continue with $\Gamma \vdash A_{1}$.
Positive protocol: (aka. Q for queue) The left branch is trivial: $\Gamma=\Gamma^{\prime}, A_{1}$. Continue with $\Gamma^{\prime}, A_{1}, A_{0} \vdash B$.
Mixed protocol:
Mixing them, e.g., A_{i} positive for i odd and A_{i} negative for i even:

$$
\begin{aligned}
& \frac{A_{3} \in \Gamma}{\Gamma \vdash A_{3}} \quad \frac{\Gamma \vdash A_{4} \frac{A_{0}=B}{\Gamma, A_{0} \vdash B}}{\Gamma, A_{4} \supset A_{0} \vdash B} \\
& \frac{A_{1} \in \Gamma}{\Gamma \vdash A_{1}} \\
& \Gamma, A_{1} \supset A_{2} \supset A_{3} \supset A_{4} \supset A_{0} \vdash B \\
& \Gamma, A_{2} \supset A_{3} \supset A_{4} \supset A_{0} \vdash B \\
& \hline, A_{0} \vdash B
\end{aligned}
$$

Example: Fibonacci

Let

$$
\Delta=\{\operatorname{fib}(0,0), \operatorname{fib}(1,1), \forall n, x, y \cdot[\operatorname{fib}(n, x) \wedge \operatorname{fib}(n+1, y) \supset \operatorname{fib}(n+2, x+y)]\}
$$

$\mathrm{fib}(n, N)=N$ is the nth Fibonacci number.

Example: Fibonacci

Let

$$
\Delta=\{\operatorname{fib}(0,0), \operatorname{fib}(1,1), \forall n, x, y \cdot[\operatorname{fib}(n, x) \wedge \operatorname{fib}(n+1, y) \supset \operatorname{fib}(n+2, x+y)]\}
$$

$\operatorname{fib}(n, N)=N$ is the $n t h$ Fibonacci number.

Negative protocol:

Example: Fibonacci

Let

$$
\Delta=\{\operatorname{fib}(0,0), \operatorname{fib}(1,1), \forall n, x, y \cdot[\operatorname{fib}(n, x) \wedge \operatorname{fib}(n+1, y) \supset \operatorname{fib}(n+2, x+y)]\}
$$

$\operatorname{fib}(n, N)=N$ is the nth Fibonacci number.

Negative protocol:

Unique proof - exponential in size!

Example: Fibonacci

Let

$$
\Delta=\{\operatorname{fib}(0,0), \operatorname{fib}(1,1), \forall n, x, y \cdot[\operatorname{fib}(n, x) \wedge \operatorname{fib}(n+1, y) \supset \operatorname{fib}(n+2, x+y)]\}
$$

$\operatorname{fib}(n, N)=N$ is the $n t h$ Fibonacci number.

Positive protocol:

where $\Delta^{\prime}=\Delta, \operatorname{fib}(2,1)$ and $\Delta^{\prime \prime}=\Delta^{\prime}, \operatorname{fib}(3,2)$.

Example: Fibonacci

Let

$$
\Delta=\{\operatorname{fib}(0,0), \operatorname{fib}(1,1), \forall n, x, y \cdot[\operatorname{fib}(n, x) \wedge \operatorname{fib}(n+1, y) \supset \operatorname{fib}(n+2, x+y)]\}
$$

$\operatorname{fib}(n, N)=N$ is the nth Fibonacci number.
Positive protocol:

where $\Delta^{\prime}=\Delta, \operatorname{fib}(2,1)$ and $\Delta^{\prime \prime}=\Delta^{\prime}, \operatorname{fib}(3,2)$.

Many proofs - the smallest is linear in size!

Polarities of connectives

First-order classical and intuitionistic language:

$$
A::=P(x)|A \wedge A| t|A \vee A| f|A \supset A| \exists x A \mid \forall x A
$$

Polarized connectives:

- In classical logic
- positive and negative versions of the logical connectives and constants:

$$
\wedge^{-}, \wedge^{+}, t^{-}, t^{+}, \vee^{-}, \vee^{+}, f^{-}, f^{+}
$$

- first-order quantifiers: \forall negative and \exists positive.
- In intuitionistic logic
- use polarized classical constants, connectives, and quantifiers, except
- $\operatorname{drop} f^{-}, \vee^{-}$, and
- add negative implication: \supset.

How to polarize a classical formula

- atomic formulas are labeled either positive or negative;
- replace all occurrences of true with either t^{+}or t^{-}, of false with either f^{+}or f^{-}, of conjunction with either Λ^{+}or \wedge^{-}or of disjunction with either \vee^{+}or V^{-}. (If there are n occurrences of truth, false, conjunction and disjunction, there are 2^{n} ways to do this replacement.)

How to polarize an intuitionistic formula

- atomic formulas are labeled either positive or negative;
- replace all occurrences of true with either t^{+}or t^{-}and of conjunction with either \wedge^{+}or \wedge^{-}. (If there are n occurrences of truth and conjunction, there are 2^{n} ways to do this replacement.)
- rename false and disjunction as f^{+}and \vee^{+}.

How to polarize an intuitionistic formula

- atomic formulas are labeled either positive or negative;
- replace all occurrences of true with either t^{+}or t^{-}and of conjunction with either \wedge^{+}or \wedge^{-}. (If there are n occurrences of truth and conjunction, there are 2^{n} ways to do this replacement.)
- rename false and disjunction as f^{+}and \vee^{+}.

A formula is positive if it is a positive atom or has a top-level positive connective. A formula is negative if it is a negative atom or has a top-level negative connective.

Polarity-based hierarchy

Hierarchy of negative and positive classical formulas: inspired by [CGT08, CST09]
\mathcal{N}_{0} and \mathcal{P}_{0} consist of all atoms and

$$
\begin{aligned}
& \mathcal{N}_{n+1}::=\mathcal{P}_{n}\left|\mathcal{N}_{n+1} \wedge^{-} \mathcal{N}_{n+1}\right| t^{-}\left|\mathcal{N}_{n+1} \vee^{-} \mathcal{N}_{n+1}\right| f^{-}\left|\forall x \mathcal{N}_{n+1}\right| \mathcal{P}_{n+1} \supset \mathcal{N}_{n+1} \\
& \mathcal{P}_{n+1}::=\mathcal{N}_{n}\left|\mathcal{P}_{n+1} \wedge^{+} \mathcal{P}_{n+1}\right| t^{+}\left|\mathcal{P}_{n+1} \vee^{+} \mathcal{P}_{n+1}\right| f^{+}\left|\exists x \mathcal{P}_{n+1}\right|
\end{aligned}
$$

Q

$$
\mathcal{P}_{0}
$$

Polarity-based hierarchy

Hierarchy of negative and positive classical formulas: inspired by [CGT08, CST09]
\mathcal{N}_{0} and \mathcal{P}_{0} consist of all atoms and

$$
\begin{aligned}
& \mathcal{N}_{n+1}::=\mathcal{P}_{n}\left|\mathcal{N}_{n+1} \wedge^{-} \mathcal{N}_{n+1}\right| t^{-}\left|\mathcal{N}_{n+1} \vee^{-} \mathcal{N}_{n+1}\right| f^{-}\left|\forall x \mathcal{N}_{n+1}\right| \mathcal{P}_{n+1} \supset \mathcal{N}_{n+1} \\
& \mathcal{P}_{n+1}::=\mathcal{N}_{n}\left|\mathcal{P}_{n+1} \wedge^{+} \mathcal{P}_{n+1}\right| t^{+}\left|\mathcal{P}_{n+1} \vee^{+} \mathcal{P}_{n+1}\right| f^{+}\left|\exists x \mathcal{P}_{n+1}\right|
\end{aligned}
$$

$$
\mathcal{P}_{0}
$$

$$
Q_{1} \wedge^{-} Q_{2}
$$

Polarity-based hierarchy

Hierarchy of negative and positive classical formulas: inspired by [CGT08, CST09]
\mathcal{N}_{0} and \mathcal{P}_{0} consist of all atoms and

$$
\begin{aligned}
& \mathcal{N}_{n+1}::=\mathcal{P}_{n}\left|\mathcal{N}_{n+1} \wedge^{-} \mathcal{N}_{n+1}\right| t^{-}\left|\mathcal{N}_{n+1} \vee^{-} \mathcal{N}_{n+1}\right| f^{-}\left|\forall x \mathcal{N}_{n+1}\right| \mathcal{P}_{n+1} \supset \mathcal{N}_{n+1} \\
& \mathcal{P}_{n+1}::=\mathcal{N}_{n}\left|\mathcal{P}_{n+1} \wedge^{+} \mathcal{P}_{n+1}\right| t^{+}\left|\mathcal{P}_{n+1} \vee^{+} \mathcal{P}_{n+1}\right| f^{+}\left|\exists x \mathcal{P}_{n+1}\right|
\end{aligned}
$$

$R_{1} \vee^{+} R_{2}$

Polarity-based hierarchy

Hierarchy of negative and positive classical formulas: inspired by [CGT08, CST09]
\mathcal{N}_{0} and \mathcal{P}_{0} consist of all atoms and
$\mathcal{N}_{n+1}::=\mathcal{P}_{n}\left|\mathcal{N}_{n+1} \wedge^{-} \mathcal{N}_{n+1}\right| t^{-}\left|\mathcal{N}_{n+1} \vee^{-} \mathcal{N}_{n+1}\right| f^{-}\left|\forall x \mathcal{N}_{n+1}\right| \mathcal{P}_{n+1} \supset \mathcal{N}_{n+1}$
$\mathcal{P}_{n+1}::=\mathcal{N}_{n}\left|\mathcal{P}_{n+1} \wedge^{+} \mathcal{P}_{n+1}\right| t^{+}\left|\mathcal{P}_{n+1} \vee^{+} \mathcal{P}_{n+1}\right| f^{+}\left|\exists x \mathcal{P}_{n+1}\right|$

$$
\left(Q_{1} \wedge^{-} Q_{2}\right) \supset\left(R_{1} \vee^{+} R_{2}\right)
$$

Polarity-based hierarchy

Hierarchy of negative and positive classical formulas: inspired by [CGT08, CST09]
\mathcal{N}_{0} and \mathcal{P}_{0} consist of all atoms and
$\mathcal{N}_{n+1}::=\mathcal{P}_{n}\left|\mathcal{N}_{n+1} \wedge^{-} \mathcal{N}_{n+1}\right| t^{-}\left|\mathcal{N}_{n+1} \vee^{-} \mathcal{N}_{n+1}\right| f^{-}\left|\forall x \mathcal{N}_{n+1}\right| \mathcal{P}_{n+1} \supset \mathcal{N}_{n+1}$
$\mathcal{P}_{n+1}::=\mathcal{N}_{n}\left|\mathcal{P}_{n+1} \wedge^{+} \mathcal{P}_{n+1}\right| t^{+}\left|\mathcal{P}_{n+1} \vee^{+} \mathcal{P}_{n+1}\right| f^{+}\left|\exists x \mathcal{P}_{n+1}\right|$

Polarity-based hierarchy

Hierarchy of negative and positive classical formulas: inspired by [CGT08, CST09]
\mathcal{N}_{0} and \mathcal{P}_{0} consist of all atoms and
$\mathcal{N}_{n+1}::=\mathcal{P}_{n}\left|\mathcal{N}_{n+1} \wedge^{-} \mathcal{N}_{n+1}\right| t^{-}\left|\mathcal{N}_{n+1} \vee^{-} \mathcal{N}_{n+1}\right| f^{-}\left|\forall x \mathcal{N}_{n+1}\right| \mathcal{P}_{n+1} \supset \mathcal{N}_{n+1}$
$\mathcal{P}_{n+1}::=\mathcal{N}_{n}\left|\mathcal{P}_{n+1} \wedge^{+} \mathcal{P}_{n+1}\right| t^{+}\left|\mathcal{P}_{n+1} \vee^{+} \mathcal{P}_{n+1}\right| f^{+}\left|\exists x \mathcal{P}_{n+1}\right|$

$\left(N_{1} \vee^{+} \exists x A(x)\right) \vee^{+} N_{2}$

Polarity-based hierarchy

Hierarchy of negative and positive classical formulas: inspired by [CGT08, CST09]
\mathcal{N}_{0} and \mathcal{P}_{0} consist of all atoms and
$\mathcal{N}_{n+1}::=\mathcal{P}_{n}\left|\mathcal{N}_{n+1} \wedge^{-} \mathcal{N}_{n+1}\right| t^{-}\left|\mathcal{N}_{n+1} \vee^{-} \mathcal{N}_{n+1}\right| f^{-}\left|\forall x \mathcal{N}_{n+1}\right| \mathcal{P}_{n+1} \supset \mathcal{N}_{n+1}$
$\mathcal{P}_{n+1}::=\mathcal{N}_{n}\left|\mathcal{P}_{n+1} \wedge^{+} \mathcal{P}_{n+1}\right| t^{+}\left|\mathcal{P}_{n+1} \vee^{+} \mathcal{P}_{n+1}\right| f^{+}\left|\exists x \mathcal{P}_{n+1}\right|$

$\left(N_{1} \vee^{+} \exists x A(x)\right) \vee^{+} N_{2}$

Polarity-based hierarchy

Hierarchy of negative and positive classical formulas: inspired by [CGT08, CST09]
\mathcal{N}_{0} and \mathcal{P}_{0} consist of all atoms and
$\mathcal{N}_{n+1}::=\mathcal{P}_{n}\left|\mathcal{N}_{n+1} \wedge^{-} \mathcal{N}_{n+1}\right| t^{-}\left|\mathcal{N}_{n+1} \vee^{-} \mathcal{N}_{n+1}\right| f^{-}\left|\forall x \mathcal{N}_{n+1}\right| \mathcal{P}_{n+1} \supset \mathcal{N}_{n+1}$
$\mathcal{P}_{n+1}::=\mathcal{N}_{n}\left|\mathcal{P}_{n+1} \wedge^{+} \mathcal{P}_{n+1}\right| t^{+}\left|\mathcal{P}_{n+1} \vee^{+} \mathcal{P}_{n+1}\right| f^{+}\left|\exists x \mathcal{P}_{n+1}\right|$

$\left(\forall x P_{1} \wedge^{-} P_{2}\right) \wedge^{-}\left(\forall y B(y) \wedge^{-} P_{3}\right)$

Polarity-based hierarchy

Hierarchy of negative and positive classical formulas: inspired by [CGT08, CST09]
\mathcal{N}_{0} and \mathcal{P}_{0} consist of all atoms and
$\mathcal{N}_{n+1}::=\mathcal{P}_{n}\left|\mathcal{N}_{n+1} \wedge^{-} \mathcal{N}_{n+1}\right| t^{-}\left|\mathcal{N}_{n+1} \vee^{-} \mathcal{N}_{n+1}\right| f^{-}\left|\forall x \mathcal{N}_{n+1}\right| \mathcal{P}_{n+1} \supset \mathcal{N}_{n+1}$
$\mathcal{P}_{n+1}::=\mathcal{N}_{n}\left|\mathcal{P}_{n+1} \wedge^{+} \mathcal{P}_{n+1}\right| t^{+}\left|\mathcal{P}_{n+1} \vee^{+} \mathcal{P}_{n+1}\right| f^{+}\left|\exists x \mathcal{P}_{n+1}\right|$

$\left(\forall x P_{1} \wedge^{-} P_{2}\right) \wedge^{-}\left(\forall y B(y) \wedge^{-} P_{3}\right)$

Bipolar formulas

The hierarchy can be specified for intuitionistic or classical formulas.
Any formula in the class $\mathcal{N}_{2}^{C} / \mathcal{N}_{2}^{1}$ is a classical/ intuitionistic bipolar formula.

Bipolar formulas

The hierarchy can be specified for intuitionistic or classical formulas.
Any formula in the class $\mathcal{N}_{2}^{C} / \mathcal{N}_{2}^{1}$ is a classical/ intuitionistic bipolar formula.

Aside: How to polarize a formula?

- atomic formulas are labeled either positive or negative
- replace all occurrences of constants and connectives with a polarized variant.
- in intuitionistic logic: always rename false and disjunction as f^{+}and V^{+}!

Bipolar formulas

The hierarchy can be specified for intuitionistic or classical formulas.
Any formula in the class $\mathcal{N}_{2}^{C} / \mathcal{N}_{2}^{1}$ is a classical/ intuitionistic bipolar formula.

Aside: How to polarize a formula?

- atomic formulas are labeled either positive or negative
- replace all occurrences of constants and connectives with a polarized variant.
- in intuitionistic logic: always rename false and disjunction as f^{+}and V^{+}!

Example. $\left(P_{1} \supset P_{2}\right) \vee\left(Q_{1} \supset Q_{2}\right)$

- $\left(P_{1} \supset P_{2}\right) \vee\left(Q_{1} \supset Q_{2}\right) \sim$ classical bipolar.
- No polarization yields an intuitionistic bipolar formula.

Outline

1. Sequent systems
2. Polarities and bipolar formulas
3. Focusing and bipoles
4. Axioms-as-rules revisited
5. Examples

Geometric axioms Universal axioms Horn clauses Implementation Meta-reasoning
6. Beyond bipoles

What is focusing?

Consider again the sequent

$$
\left\ulcorner, A_{1} \supset A_{2} \supset A_{3} \supset A_{4} \supset A_{0} \vdash B\right.
$$

with A_{i} atomic, B a formula and Γ a multiset of formulas.
How to prove it?
Many ways to proceed!

What is focusing?

Consider again the sequent

$$
\Gamma, A_{1} \supset A_{2} \supset A_{3} \supset A_{4} \supset A_{0} \vdash B
$$

with A_{i} atomic, B a formula and Γ a multiset of formulas.
How to prove it?
Many ways to proceed!

Focused rule application [And92]:

commit to repeat the $L \supset$ rule on the right premise until the atomic formula A_{0} results:

$$
\frac{\Gamma \vdash A_{1} \frac{\Gamma \vdash A_{2} \frac{\Gamma \vdash A_{4} \Gamma, A_{0} \vdash B}{\Gamma, A_{3} \supset \cdots \supset A_{n} \supset A_{0} \vdash B}}{\Gamma, A_{1} \supset A_{2} \supset A_{3} \supset A_{4} \supset A_{0} \vdash B} L \supset}{\Gamma \supset A_{3} \supset A_{4} \supset A_{0}+B} L \supset
$$

An organizational tool

Focusing provides a way to restrict the proof search space while remaining complete.

- Always apply invertible introduction rules;
- Chain together the other rules (non-invertible/consuming external information).
\Rightarrow Maximal chaining of the decomposition.

An organizational tool

Focusing provides a way to restrict the proof search space while remaining complete.

- Always apply invertible introduction rules;
- Chain together the other rules (non-invertible/consuming external information).
\Rightarrow Maximal chaining of the decomposition.

$$
\begin{gathered}
\frac{\overline{A, B, \neg A} \quad \overline{A, B, \neg B}}{} \begin{array}{l}
\frac{A, B, \neg A \wedge \neg B}{A, B \vee C, \neg A \wedge \neg B} \vee \\
\\
\frac{\exists x \cdot A, B \vee C, \neg A \wedge \neg B}{\exists x \cdot A, \exists y \cdot(B \vee C), \neg A \wedge \neg B} \exists \\
\exists x \cdot A, \exists y \cdot(B \vee C), \forall z \cdot(\neg A \wedge \neg B)
\end{array}
\end{gathered}
$$

Unfocused

An organizational tool

Focusing provides a way to restrict the proof search space while remaining complete.

- Always apply invertible introduction rules;
- Chain together the other rules (non-invertible/consuming external information).
\Rightarrow Maximal chaining of the decomposition.

$$
\begin{gathered}
\frac{\overline{A, B, \neg A} \quad \overline{A, B, \neg B}}{A, B, \neg A \wedge \neg B} \wedge \\
\frac{A, B \vee C, \neg A \wedge \neg B}{\exists x \cdot A, B \vee C, \neg A \wedge \neg B} \exists \\
\frac{\exists x \cdot A, \exists y \cdot(B \vee C), \neg A \wedge \neg B}{\exists x \cdot A, \exists y \cdot(B \vee C), \forall z \cdot(\neg A \wedge \neg B)} \forall
\end{gathered}
$$

$$
\frac{\frac{\overline{A, \exists y \cdot(B \vee C), \neg A}}{\exists x \cdot A, \exists y \cdot(B \vee C), \neg A} \exists \frac{\frac{\exists x \cdot A, B, \neg B}{\exists x \cdot A, B \vee C, \neg B} \vee}{\exists x \cdot A, \exists y \cdot(B \vee C), \neg B}}{\exists x \cdot A, \exists y \cdot(B \vee C), \neg A \wedge \neg B} \nexists x \cdot \exists y \cdot(B \vee C), \forall z \cdot(\neg A \wedge \neg B) \operatorname{\exists x\cdot A,\exists } \forall
$$

Unfocused \qquad Focused

LJF and LKF (Liang \& M [LM07, LM09])

Two kinds of focused sequents

- \Downarrow sequents to decompose the formula under focus
$\Gamma \Downarrow B \vdash \Delta$ with a left focus on B
$\Gamma \vdash B \Downarrow \Delta$ with a right focus on B
When the conclusion of an introduction rule, then that rule introduced B.
- \Uparrow sequents for invertible introduction rules

$$
\Gamma_{1} \Uparrow \Gamma_{2} \vdash \Delta_{1} \Uparrow \Delta_{2}
$$

LJF and LKF (Liang \& M [LM07, LM09])

Two kinds of focused sequents

- \Downarrow sequents to decompose the formula under focus

$$
\Gamma \Downarrow B \vdash \Delta \text { with a left focus on } B
$$

$\Gamma \vdash B \Downarrow \Delta$ with a right focus on B
When the conclusion of an introduction rule, then that rule introduced B.

- \Uparrow sequents for invertible introduction rules

$$
\Gamma_{1} \Uparrow \Gamma_{2} \vdash \Delta_{1} \Uparrow \Delta_{2}
$$

Example of rules:

$$
\frac{\Gamma \vdash B_{1} \Downarrow \Delta \quad \Gamma \Downarrow B_{2} \vdash \Delta}{\Gamma \Downarrow B_{1} \supset B_{2} \vdash \Delta}
$$

$$
\frac{\Gamma_{1} \Uparrow \Gamma_{2}, B_{1} \vdash B_{2} \Uparrow \Delta}{\Gamma_{1} \Uparrow \Gamma_{2} \vdash B_{1} \supset B_{2} \Uparrow \Delta}
$$

invertible

LJF and LKF (Liang \& M [LM07, LM09])

The dynamic of proof search:

- A formula is put under focus (the only instance of contraction)

Decide: $\quad \frac{\Gamma, N \Downarrow N \vdash \Delta}{\Gamma, N \Uparrow \cdot \vdash \cdot \Uparrow \Delta} D_{l} \quad \frac{\Gamma \vdash P \Downarrow \Delta}{\Gamma \Uparrow \cdot \vdash \cdot \Uparrow P, \Delta} D_{r}$

LJF and LKF (Liang \& M [LM07, LM09])

The dynamic of proof search:

- A formula is put under focus (the only instance of contraction)

Decide: $\quad \frac{\Gamma, N \Downarrow N \vdash \Delta}{\Gamma, N \Uparrow \cdot \vdash \cdot \Uparrow \Delta} D_{l} \quad \frac{\Gamma \vdash P \Downarrow \Delta}{\Gamma \Uparrow \cdot \vdash \cdot \Uparrow P, \Delta} D_{r}$

- Focus is transferred from conclusion to premises until

LJF and LKF (Liang \& M [LM07, LM09])

The dynamic of proof search:

- A formula is put under focus (the only instance of contraction)

Decide: $\quad \frac{\Gamma, N \Downarrow N \vdash \Delta}{\Gamma, N \Uparrow \cdot \vdash \cdot \Uparrow \Delta} D_{l} \quad \frac{\Gamma \vdash P \Downarrow \Delta}{\Gamma \Uparrow \cdot \vdash \cdot \Uparrow P, \Delta} D_{r}$

- Focus is transferred from conclusion to premises until
- either the focused phase ends

Release: $\quad \frac{\Gamma \Uparrow P \vdash \cdot \Uparrow \Delta}{\Gamma \Downarrow P \vdash \Delta} R_{/} \quad \frac{\Gamma \Uparrow \cdot \vdash N \Uparrow \Delta}{\Gamma \vdash N \Downarrow \Delta} R_{r}$

LJF and LKF (Liang \& M [LM07, LM09])

The dynamic of proof search:

- A formula is put under focus (the only instance of contraction)

Decide: $\quad \frac{\Gamma, N \Downarrow N \vdash \Delta}{\Gamma, N \Uparrow \cdot \vdash \cdot \Uparrow \Delta} D_{l} \quad \frac{\Gamma \vdash P \Downarrow \Delta}{\Gamma \Uparrow \cdot \vdash \cdot \Uparrow P, \Delta} D_{r}$

- Focus is transferred from conclusion to premises until
- either the focused phase ends

Release: $\quad \frac{\Gamma \Uparrow P \vdash \cdot \Uparrow \Delta}{\Gamma \Downarrow P \vdash \Delta} R_{/} \quad \frac{\Gamma \Uparrow \cdot \vdash N \Uparrow \Delta}{\Gamma \vdash N \Downarrow \Delta} R_{r}$

- or the derivation ends

Initial: $\frac{N \text { atomic }}{\Gamma \Downarrow N \vdash N, \Delta} I_{l} \frac{P \text { atomic }}{\Gamma, P \vdash P \Downarrow \Delta} I_{r}$

LJF and LKF (Liang \& M [LM07, LM09])

The dynamic of proof search:

- A formula is put under focus (the only instance of contraction)

Decide: $\quad \frac{\Gamma, N \Downarrow N \vdash \Delta}{\Gamma, N \Uparrow \cdot \vdash \cdot \Uparrow \Delta} D_{l} \quad \frac{\Gamma \vdash P \Downarrow \Delta}{\Gamma \Uparrow \cdot \vdash \cdot \Uparrow P, \Delta} D_{r}$

- Focus is transferred from conclusion to premises until
- either the focused phase ends

Release: $\quad \frac{\Gamma \Uparrow P \vdash \cdot \Uparrow \Delta}{\Gamma \Downarrow P \vdash \Delta} R_{/} \quad \frac{\Gamma \Uparrow \cdot \vdash N \Uparrow \Delta}{\Gamma \vdash N \Downarrow \Delta} R_{r}$

- or the derivation ends

Initial: $\frac{N \text { atomic }}{\Gamma \Downarrow N \vdash N, \Delta} I_{l} \frac{P \text { atomic }}{\Gamma, P \vdash P \Downarrow \Delta} I_{r}$

- Once the focus is released, invertible rules eagerly decompose the formula into subformulas, which are ultimately stored in the context.

Store: $\quad \frac{\Gamma_{1}, P \Uparrow \Gamma_{2} \vdash \Delta_{1} \Uparrow \Delta_{2}}{\Gamma_{1} \Uparrow \Gamma_{2}, P \vdash \Delta_{1} \Uparrow \Delta_{2}} S_{l} \quad \frac{\Gamma \Uparrow \cdot \vdash \Delta_{1} \Uparrow N, \Delta_{2}}{\Gamma \Uparrow \cdot \vdash N, \Delta_{1} \Uparrow \Delta_{2}} S_{r}$

LJF and LKF (Liang \& M [LM07, LM09])

The dynamic of proof search:

- A formula is put under focus (the only instance of contraction)

$$
\text { Decide: } \quad \frac{\Gamma, N \Downarrow N \vdash \Delta}{\Gamma, N \Uparrow \cdot \vdash \cdot \Uparrow \Delta} D_{l} \quad \frac{\Gamma \vdash P \Downarrow \Delta}{\Gamma \Uparrow \cdot \vdash \cdot \Uparrow P, \Delta} D_{r}
$$

- Focus is transferred from conclusion to premises until
- either the focused phase ends

Release: $\quad \frac{\Gamma \Uparrow P \vdash \cdot \Uparrow \Delta}{\Gamma \Downarrow P \vdash \Delta} R_{/} \quad \frac{\Gamma \Uparrow \cdot \vdash N \Uparrow \Delta}{\Gamma \vdash N \Downarrow \Delta} R_{r}$

- or the derivation ends

Initial: $\frac{N \text { atomic }}{\Gamma \Downarrow N \vdash N, \Delta} I_{l} \frac{P \text { atomic }}{\Gamma, P \vdash P \Downarrow \Delta} I_{r}$

- Once the focus is released, invertible rules eagerly decompose the formula into subformulas, which are ultimately stored in the context.

Store: $\quad \frac{\Gamma_{1}, P \Uparrow \Gamma_{2} \vdash \Delta_{1} \Uparrow \Delta_{2}}{\Gamma_{1} \Uparrow \Gamma_{2}, P \vdash \Delta_{1} \Uparrow \Delta_{2}} S_{l} \quad \frac{\Gamma \Uparrow \cdot \vdash \Delta_{1} \Uparrow N, \Delta_{2}}{\Gamma \Uparrow \cdot \vdash N, \Delta_{1} \Uparrow \Delta_{2}} S_{r}$
\Rightarrow Sequent derivations are organized into \Uparrow and \Downarrow phases
\Rightarrow Synthetic rules result from looking only at border sequents: $\Gamma \Uparrow \cdot \vdash \cdot \Uparrow \Delta$

Bipole

Let B be a polarized negative (classical or intuitionistic) formula.
A bipole for B is a synthetic inference rule corresponding to a derivation (in LKF or LJF)
(1) starting with a decide on B;
(2) in which no \Downarrow rule occurs above an \Uparrow rule;
(3) and only atomic formulas are stored.

Bipole

Let B be a polarized negative (classical or intuitionistic) formula.
A bipole for B is a synthetic inference rule corresponding to a derivation (in LKF or LJF)
(1) starting with a decide on B;
(2) in which no \Downarrow rule occurs above an \Uparrow rule;
(3) and only atomic formulas are stored.

$$
\Gamma_{1} \Uparrow \cdot \vdash \cdot \Uparrow \Delta_{1} \quad \ldots \quad \Gamma_{n} \Uparrow \cdot \vdash \cdot \Uparrow \Delta_{n}
$$

Corresponding synthetic rule

 (in LK or LJ)$$
\frac{\Gamma_{1} \vdash \Delta_{1} \quad \ldots \quad \Gamma_{n} \vdash \Delta_{n}}{\Gamma \vdash \Delta}
$$

$$
\frac{\Gamma, B \Downarrow B \vdash \Delta}{\Gamma, B \Uparrow \cdot \vdash \cdot \Uparrow \Delta} D_{l}
$$

Outline

1. Sequent systems
2. Polarities and bipolar formulas
3. Focusing and bipoles
4. Axioms-as-rules revisited
5. Examples

Geometric axioms
Universal axioms
Horn clauses
Implementation
Meta-reasoning
6. Beyond bipoles

1st result: Bipolar \longleftrightarrow Bipole

Let B be a polarized negative (classical or intuitionistic) formula.

Theorem:

- If B is bipolar, then any synthetic inference rule for B is a bipole.
- If every synthetic inference rule for B is a bipole then B is bipolar.

Prototype implementation:

λ Prolog [MN12, NM88] executable specification of a predicate that relates a bipolar formula to its various bipoles.
\Rightarrow compact given the nature of λ Prolog
\Rightarrow explicit about the scope of bindings for schematic variables and eigenvariables.
\Rightarrow unproblematic treatment of unification and eigenvariables

2nd result: Cut admissibility

Let \mathcal{T} be a set of bipolar formulas.
$\mathrm{LK}\langle\mathcal{T}\rangle / \mathrm{LJ}\langle\mathcal{T}\rangle$ denotes the extension of LK/LJ with the synthetic inference rules corresponding to a bipole for each $B \in \mathcal{T}$.

Theorem: The cut rule is admissible for the proof systems $\operatorname{LK}\langle\mathcal{T}\rangle / \mathrm{LJ}\langle\mathcal{T}\rangle$.
Note: the proof is simple!
It is a direct consequence of (polarized) cut admissibility in LKF/LJF.

$$
\frac{\Gamma \Uparrow \cdot \vdash B \Uparrow \Delta \quad \Gamma \Uparrow B \vdash \cdot \Uparrow \Delta}{\Gamma \Uparrow \cdot \vdash \cdot \Uparrow \Delta} C u t
$$

Rules from axioms

Rules from axioms

[^1]
Rules from axioms

Outline

1. Sequent systems
2. Polarities and bipolar formulas
3. Focusing and bipoles
4. Axioms-as-rules revisited
5. Examples

Geometric axioms
Universal axioms
Horn clauses
Implementation
Meta-reasoning
6. Beyond bipoles

Geometric axioms as bipoles

Geometric implication:

$$
\forall \bar{z}\left(P_{1} \wedge \ldots \wedge P_{m} \supset \exists \bar{x}_{1} M_{1} \vee \ldots \vee \exists \bar{x}_{n} M_{n}\right)
$$

- P_{i} atomic;
- $M_{j}=Q_{j_{1}} \wedge \ldots \wedge Q_{j_{k_{j}}}, Q_{j_{k}}$ atomic;
- none of the variables in the vectors \bar{x}_{j} are free in P_{i}.

Geometric axioms as bipoles

Polarized geometric implication:

$$
\forall \bar{z}\left(P_{1}^{ \pm} \wedge^{ \pm} \ldots \wedge^{ \pm} P_{m}^{ \pm} \supset \exists \bar{x}_{1} \hat{M}_{1} \vee^{ \pm} \ldots \vee^{ \pm} \exists \bar{x}_{n} \hat{M}_{n}\right)
$$

- P_{i}^{+}, P_{i}^{-}atomic;
- $\hat{M}_{j}=Q_{j_{1}}^{ \pm} \wedge^{+} \ldots \wedge^{+} Q_{j_{k_{j}}}^{ \pm}, Q_{j_{k}}^{ \pm}$atomic;
- none of the variables in the vectors \bar{x}_{j} are free in P_{i}.

Geometric axioms as bipoles

Polarized geometric implication:

$$
\forall \bar{z}\left(P_{1}^{+} \wedge^{+} \ldots \wedge^{+} P_{m}^{+} \supset \exists \bar{x}_{1} \hat{M}_{1} \vee^{ \pm} \ldots \vee^{ \pm} \exists \bar{x}_{n} \hat{M}_{n}\right),
$$

Corresponding bipole:

$$
\frac{\bar{Q}_{1}\left[\bar{y}_{1} / \bar{x}_{1}\right], \Gamma \Uparrow \vdash \Uparrow \Delta \ldots \bar{Q}_{n}\left[\bar{y}_{n} / \bar{x}_{n}\right], \Gamma \Uparrow \vdash \Uparrow \Delta}{\bar{P}, \Gamma^{\prime} \Uparrow \vdash \Uparrow \Delta}
$$

with $\bar{P}=\left\{P_{i}^{+}\right\}, \overline{Q_{j}}=\left\{Q_{j_{k}}^{ \pm}\right\}$.
Corresponding LK rule:

$$
\frac{\bar{Q}_{1}\left[\bar{y}_{1} / \bar{x}_{1}\right], \Gamma \vdash \Delta \quad \ldots \quad \bar{Q}_{n}\left[\bar{y}_{n} / \bar{x}_{n}\right], \Gamma \vdash \Delta}{\bar{P}, \Gamma^{\prime} \vdash \Delta} G R S
$$

Geometric axioms as bipoles

Polarized geometric implication:

$$
\forall \bar{z}\left(P_{1}^{-} \wedge^{ \pm} \ldots \wedge^{ \pm} P_{m}^{-} \supset \exists \bar{x}_{1} \hat{M}_{1} \vee^{ \pm} \ldots \vee^{ \pm} \exists \bar{x}_{n} \hat{M}_{n}\right),
$$

Corresponding bipole:

$$
\frac{\bar{Q}_{j}\left[\bar{y}_{j} / \bar{x}_{j}\right], \Gamma \Uparrow \vdash \Uparrow \Delta \ldots \Gamma \Uparrow \vdash \Uparrow P_{i}, \Delta}{\Gamma \Uparrow \vdash \Uparrow \Delta} m+n \text { premises }
$$

with $\overline{Q_{j}}=\left\{Q_{j k}\right\}$.
Corresponding LK rule:

$$
\frac{\bar{Q}_{j}\left[\bar{y}_{j} / \bar{x}_{j}\right], \Gamma \vdash \Delta \quad \ldots \quad \Gamma \vdash P_{i}, \Delta}{\Gamma \vdash \Delta} m+n \text { premises }
$$

Co-geometric axioms as bipoles

Polarized co-geometric implication:

$$
\forall \bar{z}\left(\forall \bar{x}_{1} \hat{M}_{1} \wedge^{ \pm} \ldots \wedge^{ \pm} \forall \bar{x}_{n} \hat{M}_{n} \supset P_{1}^{-} \vee^{-} \ldots \vee^{-} P_{m}^{-}\right)
$$

with $\hat{M}_{j}=Q_{j_{1}}^{ \pm} \vee \ldots \vee Q_{j_{k_{j}}}^{ \pm}$.

Corresponding bipole:

$$
\frac{\Gamma \Uparrow \vdash \Uparrow \bar{Q}_{1}\left[\bar{y}_{1} / \bar{x}_{1}\right], \Delta \quad \ldots \quad \Gamma \Uparrow \vdash \Uparrow \bar{Q}_{n}\left[\bar{y}_{n} / \bar{x}_{n}\right], \Delta}{\Gamma \Uparrow \vdash \Uparrow \bar{P}, \Delta^{\prime}}
$$

Corresponding LK rule:

$$
\frac{\Gamma \vdash \bar{Q}_{1}\left[\bar{y}_{1} / \bar{x}_{1}\right], \Delta \ldots \quad \ldots \vdash \bar{Q}_{n}\left[\bar{y}_{n} / \bar{x}_{n}\right], \Delta}{\Gamma \vdash \bar{P}, \Delta^{\prime}} c o-G R S_{c}
$$

Co-geometric axioms as bipoles

Polarized co-geometric implication:

$$
\forall \bar{z}\left(\forall \bar{x}_{1} \hat{M}_{1} \wedge^{ \pm} \ldots \wedge^{ \pm} \forall \bar{x}_{n} \hat{M}_{n} \supset P_{1}^{+} \vee^{ \pm} \ldots \vee^{ \pm} P_{m}^{+}\right)
$$

with $\hat{M}_{j}=Q_{j_{1}}^{ \pm} \vee \ldots \vee Q_{j_{k_{j}}}^{ \pm}$.

Corresponding bipole:

$$
\frac{\Gamma \Uparrow \vdash \Uparrow \bar{Q}_{j}\left[\bar{y}_{j} / \bar{x}_{j}\right], \Delta \quad \ldots \quad \Gamma, P_{i} \Uparrow \vdash \Uparrow \Delta}{\Gamma \Uparrow \vdash \Uparrow \Delta} m+n \text { premises }
$$

Corresponding LK rule:

$$
\frac{\Gamma \vdash \bar{Q}_{j}\left[\bar{y}_{j} / \bar{x}_{j}\right], \Delta \quad \ldots \quad \Gamma, P_{i} \vdash \Delta}{\Gamma \vdash \Delta} m+n \text { premises }
$$

Universal axioms as bipoles

$$
\forall \bar{z}\left(P_{1} \wedge \ldots \wedge P_{m} \supset Q_{1} \vee \ldots \vee Q_{n}\right)
$$

Universal axioms as bipoles

$$
\forall \bar{z}\left(P_{1}^{ \pm} \wedge^{ \pm} \ldots \wedge^{ \pm} P_{m}^{ \pm} \supset Q_{1}^{ \pm} \vee^{ \pm} \ldots \vee^{ \pm} Q_{n}^{ \pm}\right)
$$

More choices in the selection of polarities while still remaining bipolar formulas.

Universal axioms as bipoles

$$
\forall \bar{z}\left(P_{1}^{+} \wedge^{+} \ldots \wedge^{+} P_{m}^{+} \supset Q_{1}^{ \pm} \vee^{+} \ldots \nu^{+} Q_{n}^{ \pm}\right)
$$

More choices in the selection of polarities while still remaining bipolar formulas.

$$
\frac{Q_{1}, \Gamma \Uparrow \vdash \Uparrow \Delta \ldots Q_{n}, \Gamma \Uparrow \vdash \Uparrow \Delta}{\bar{P}, \Gamma^{\prime} \Uparrow \vdash \Uparrow \Delta} F R L_{c}
$$

Universal axioms as bipoles

$$
\forall \bar{z}\left(P_{1}^{+} \wedge^{+} \ldots \wedge^{+} P_{m}^{+} \supset Q_{1}^{ \pm} \vee^{+} \ldots \nu^{+} Q_{n}^{ \pm}\right)
$$

More choices in the selection of polarities while still remaining bipolar formulas.

$$
\begin{gathered}
\frac{Q_{1}, \Gamma \Uparrow \vdash \Uparrow \Delta \ldots Q_{n}, \Gamma \Uparrow \vdash \Uparrow \Delta}{\bar{P}, \Gamma^{\prime} \Uparrow \vdash \Uparrow \Delta} F R L_{c} \\
a \in I \wedge^{+} a \in m \wedge^{+} b \in I \wedge^{+} b \in m \supset a=b \vee^{+} I=m \\
\frac{\Gamma, a=b \vdash \Delta \quad \Gamma, I=m \vdash \Delta}{\Gamma, a \in I, a \in m, b \in I, b \in m \vdash \Delta} U n i_{p}
\end{gathered}
$$

Universal axioms as bipoles

$$
\forall \bar{z}\left(P_{1}^{ \pm} \wedge^{-} \ldots \wedge^{-} P_{m}^{ \pm} \supset Q_{1}^{-} \vee^{-} \ldots \vee^{-} Q_{n}^{-}\right)
$$

More choices in the selection of polarities while still remaining bipolar formulas.

$$
\frac{\Gamma \Uparrow \vdash \Uparrow P_{1}, \Delta \quad \ldots \Gamma \Uparrow \vdash \Uparrow P_{m}, \Delta}{\Gamma \Uparrow \vdash \Uparrow \bar{Q}, \Delta} F R R_{c}
$$

Universal axioms as bipoles

$$
\forall \bar{z}\left(P_{1}^{ \pm} \wedge^{-} \ldots \wedge^{-} P_{m}^{ \pm} \supset Q_{1}^{-} \vee^{-} \ldots \vee^{-} Q_{n}^{-}\right)
$$

More choices in the selection of polarities while still remaining bipolar formulas.

$$
\begin{gathered}
\frac{\Gamma \Uparrow \vdash \Uparrow P_{1}, \Delta \ldots \Gamma \Uparrow \vdash \Uparrow P_{m}, \Delta}{\Gamma \Uparrow \vdash \Uparrow \bar{Q}, \Delta} F R R_{c} \\
a \in I \wedge^{-} a \in m \wedge^{-} b \in I \wedge^{-} b \in m \supset a=b \vee^{-} I=m \\
\frac{\Gamma \vdash \Delta, a \in I \quad \Gamma \vdash \Delta, a \in m \quad \Gamma \vdash \Delta, b \in I \quad \Gamma \vdash \Delta, b \in m}{\Gamma \vdash \Delta, a=b, I=m} U n i_{n}
\end{gathered}
$$

Horn clauses as bipoles

$$
\forall \bar{z}\left(P_{1} \wedge \ldots \wedge P_{m} \supset Q\right)
$$

Horn clauses as bipoles

$$
\forall \bar{z}\left(P_{1}^{ \pm} \wedge^{ \pm} \ldots \wedge^{ \pm} P_{m}^{ \pm} \supset Q^{ \pm}\right)
$$

Even more choices in the selection of polarities while still remaining bipolar formulas!

Horn clauses as bipoles

$$
\forall \bar{z}\left(P_{1}^{+} \wedge^{+} \ldots \wedge^{+} P_{m}^{+} \supset Q^{+}\right)
$$

Even more choices in the selection of polarities while still remaining bipolar formulas!

$$
\frac{Q, \Gamma \vdash \Delta}{\bar{P}, \Gamma^{\prime} \vdash \Delta} F C
$$

Forward-chaining
[Sim94, NvP98, CMS13]

Horn clauses as bipoles

$$
\forall \bar{z}\left(P_{1}^{-} \wedge^{-} \ldots \wedge^{-} P_{m}^{-} \supset Q^{-}\right)
$$

Even more choices in the selection of polarities while still remaining bipolar formulas!

$$
\frac{\Gamma \vdash P_{1}, \Delta \quad \ldots \quad \Gamma \vdash P_{m}, \Delta}{\Gamma \vdash Q, \Delta^{\prime}} B C
$$

Implementation - Part I [MMPV22]

Formula

$\forall u \forall v \forall w(\operatorname{adj} u \vee \supset($ path $v w \supset$ path $u w))$
Positive atoms.

λ Prolog encoding

```
(all u\ all v\ all w\ imp (atm (adj u v))
    (imp (atm (path v w)) (atm (path u w)))),
```


Goal

reduce (syncL Gamma F (atm B)) Premises.

Inference rule

$$
\frac{\operatorname{adj} X Z \text {, path } Z Y \text {, path } X Y, L \vdash B}{\operatorname{adj} X Z \text {, path } Z Y, L \vdash B}
$$

Implementation - Part I [MMPV22]

Formula

$\forall u \forall v \forall w(\operatorname{adj} u v \supset($ path $v w \supset$ path $u w))$
Negative atoms.

λ Prolog encoding

```
(all u\ all v\ all w\ imp (atm (adj u v))
    (imp (atm (path v w)) (atm (path u w)))),
```


Goal

reduce (syncL Gamma F (atm B)) Premises.

Inference rule

$$
\frac{\Gamma \vdash \operatorname{adj} X Y \quad \Gamma \vdash \text { path } Y Z}{\Gamma \vdash \text { path } X Z}
$$

Implementation - Part II [MMPV22]

Formula

$\forall u \forall v(\forall w($ in $w u \supset$ in $w v) \supset$ subset $u v)$

λ Prolog encoding

```
(all u\ all v\ imp (all w\ imp (atm (in w u)) (atm (in w v)))
(atm (subset u v))).
```


Goal

reduce (syncL Gamma F (atm B)) Premises.

Inference rule

$$
\frac{\text { in } w X, \Gamma \vdash \text { in } w Y \text { subset } X Y, \Gamma \vdash B}{\Gamma \vdash B}
$$

Implementation - Part II [MMPV22]

Formula

$\forall u \forall v(\forall w($ in $w u \supset$ in $w v) \supset$ subset $u v)$

λ Prolog encoding

```
(all u\ all v\ imp (all w\ imp (atm (in w u)) (atm (in w v)))
(atm (subset u v))).
```


Goal

reduce (syncL Gamma F (atm B)) Premises.

Inference rule

$$
\frac{\Gamma, \text { in } w X \vdash \text { in } w Y}{\Gamma \vdash \text { subset } X Y}
$$

Affine geometry

- Parallel lines.
- Affine geometry $=$ (Euclidean geometry - congruence) \vee (projective geometry + parallels).
- I\|m, par(I, a).
- General:

$$
I\|I \quad I\| m \supset m\|I \quad I\| m \wedge m\|n \supset I\| n
$$

- Incidency:

$$
a \in \operatorname{par}(I, a) \quad \operatorname{par}(I, a) \| I
$$

- Uniqueness

$$
a \in I \wedge a \in m \wedge I \| m \supset I=m
$$

- Substitution

$$
l\|m \wedge m=n \supset l\| n
$$

System GA

I. General

$$
\frac{\Gamma \vdash \Delta, l \| l}{\Gamma \vdash} \operatorname{Ref} \frac{\Gamma \vdash \Delta, l \| m}{\Gamma \vdash \Delta, m \| l} \operatorname{Sym} \frac{\Gamma \vdash \Delta, l\|m \quad \Gamma \vdash \Delta, m\| n}{\Gamma \vdash \Delta, l \| n} \operatorname{Tr}
$$

II. Incidency

$$
\overline{\Gamma \vdash \Delta, a \in \operatorname{par}(I, a)} I A \overline{\Gamma \vdash \Delta, \operatorname{par}(I, a) \| I} \operatorname{Par}
$$

III. Uniqueness

$$
\frac{\Gamma \vdash \Delta, a \in I \quad \Gamma \vdash \Delta, a \in m \quad \Gamma \vdash \Delta, I \| m}{\Gamma \vdash \Delta, I=m} \text { Unipar }
$$

IV. Substitution

$$
\frac{\Gamma \vdash \Delta, l \| m \quad \Gamma \vdash \Delta, m=n}{\Gamma \vdash \Delta, l \| n} S A
$$

Outline

1. Sequent systems
2. Polarities and bipolar formulas
3. Focusing and bipoles
4. Axioms-as-rules revisited
5. Examples

Geometric axioms Universal axioms Horn clauses Implementation Meta-reasoning
6. Beyond bipoles

Connection with hypersequents?

Gödel-Dummett logic: LJ plus the axiom $(P \supset Q) \vee(Q \supset P)$.
Polarize this and make it negative (to store on the left of a sequent):

$$
\left[(P \supset Q) \vee^{+}(Q \supset P)\right]
$$

This is not a bipole.

$$
\frac{\frac{\Gamma, P \supset Q \Uparrow \cdot \vdash \cdot \Uparrow C}{\Gamma \Uparrow P \supset Q \vdash \cdot \Uparrow C} \frac{\Gamma, Q \supset P \Uparrow \cdot \vdash \cdot \Uparrow C}{\Gamma \Uparrow Q \supset P \vdash \cdot \Uparrow C}}{\frac{\Gamma \Uparrow(P \supset Q) \vee^{+}(Q \supset P) \vdash \cdot \Uparrow C}{\Gamma \Downarrow(P \supset Q) \vee^{+}(Q \supset P) \vdash C}}
$$

Connection with hypersequents?

Gödel-Dummett logic: LJ plus the axiom $(P \supset Q) \vee(Q \supset P)$.
Polarize this and make it negative (to store on the left of a sequent):

$$
\left[(P \supset Q) \vee^{+}(Q \supset P)\right] \wedge^{-} \top^{-}
$$

This is not a bipole.

$$
\begin{array}{cc}
" P \supset Q^{\prime \prime} & " Q \supset P^{\prime \prime} \\
\vdots & \vdots \\
\frac{\Gamma \vdash C}{\Gamma \vdash C}
\end{array}
$$

Connection with hypersequents?

Gödel-Dummett logic: LJ plus the axiom $(P \supset Q) \vee(Q \supset P)$.
Polarize this and make it negative (to store on the left of a sequent):

$$
\left[(P \supset Q) \vee^{+}(Q \supset P)\right]
$$

This is not a bipole.

$$
\begin{array}{cc}
" P \supset Q^{\prime \prime} & " Q \supset P^{\prime \prime} \\
\vdots & \vdots \\
\frac{\Gamma \vdash C}{\Gamma \vdash C}
\end{array}
$$

This rule resembles the communication rule in hypersequents:

$$
\frac{G\left|\Gamma_{1} \vdash P\right| H \quad G\left|\Gamma_{2} \vdash Q\right| H}{G\left|\Gamma_{1} \vdash Q\right| \Gamma_{2} \vdash P \mid H}
$$

To conclude

* Synthetic inference rules generated using polarization and focusing provide inference rules that capture certain classes of axioms.
* In particular: bipolar formulas correspond to inference rules for atoms.
* As geometric formulas are examples of bipolar formulas, polarized versions of such formulas yield well known inference systems derived from geometric formulas.
* Polarization of subsets of geometric formulas explain the forward-chaining and backward-chaining variants of their synthetic inference rules.
\star Direct proof of cut-elimination for the proof systems that arise from incorporating synthetic inference rules based on polarized formulas.
* Additionally, all of these results work equally well in both classical and intuitionistic logics using the corresponding LKF and LJF focused proof systems.

Thank you!

Questions?

References I

Jean-Marc Andreoli.
Logic programming with focusing proofs in linear logic.
J. Log. Comput., 2(3):297-347, 1992.

目
Frédéric Blanqui, Gilles Dowek, Émilie Grienenberger, Gabriel Hondet, and François Thiré.
Some axioms for mathematics.
In FSCD, pages 20:1-20:19, 2021.
Per Pierre Boutry.
Axiomes Fondements de la géométrie Formalisation Géométrie.
PhD thesis, Strasbourg, 2018.
固
Agata Ciabattoni, Nikolaos Galatos, and Kazushige Terui. From axioms to analytic rules in nonclassical logics.
In Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 229-240, 2008.

References II

R- Agata Ciabattoni, Paolo Maffezioli, and Lara Spendier.
Hypersequent and labelled calculi for intermediate logics.
In Didier Galmiche and Dominique Larchey-Wendling, editors, Automated Reasoning with Analytic Tableaux and Related Methods - 22th International Conference, TABLEAUX 2013, Nancy, France, September 16-19, 2013. Proceedings, volume 8123 of Lecture Notes in Computer Science, pages 81-96. Springer, 2013.

Agata Ciabattoni, Lutz Straßburger, and Kazushige Terui.
Expanding the realm of systematic proof theory.
In Erich Grädel and Reinhard Kahle, editors, Computer Science Logic, 23rd international Workshop, CSL 2009, 18th Annual Conference of the EACSL, Coimbra, Portugal, September 7-11, 2009. Proceedings, volume 5771 of Lecture Notes in Computer Science, pages 163-178. Springer, 2009.
V. Danos, J.-B. Joinet, and H. Schellinx.

LKT and LKQ: sequent calculi for second order logic based upon dual linear decompositions of classical implication.
In J.-Y. Girard, Y. Lafont, and L. Regnier, editors, Advances in Linear Logic, number 222 in London Mathematical Society Lecture Note Series, pages 211-224.
Cambridge University Press, 1995.

References III

亶
Roy Dyckhoff and Sara Negri.
Geometrisation of first-order logic.
The Bulletin of Symbolic Logic, 21(2):123-163, 2015.
易
Gilles Dowek and Benjamin Werner.
Arithmetic as a theory modulo.
In Jürgen Giesl, editor, Term Rewriting and Applications, 16th International
Conference, RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings, volume 3467
of Lecture Notes in Computer Science, pages 423-437. Springer, 2005.
Gerhard Gentzen.
Investigations into logical deduction.
In M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen, pages 68-131. North-Holland, Amsterdam, 1935.

Gerard Gentzen.
Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie. Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, 4:19-44, 1938.

References IV

Chuck Liang and Dale Miller.
Focusing and polarization in intuitionistic logic.
In J. Duparc and T. A. Henzinger, editors, CSL 2007: Computer Science Logic, volume 4646 of LNCS, pages 451-465. Springer, 2007.

Chuck Liang and Dale Miller.
Focusing and polarization in linear, intuitionistic, and classical logics.
Theor. Comput. Sci., 410(46):4747-4768, 2009.
Sonia Marin, Dale Miller, Elaine Pimentel, and Marco Volpe.
From axioms to synthetic inference rules via focusing.
Annals of Pure and Applied Logic, 173(5):1-32, 2022.
國 Dale Miller and Gopalan Nadathur.
Programming with Higher-Order Logic.
Cambridge University Press, June 2012.
Sara Negri.
Contraction-free sequent calculi for geometric theories with an application to Barr's theorem.
Arch. Math. Log., 42(4):389-401, 2003.

References V

Sara Negri.
Proof analysis beyond geometric theories: from rule systems to systems of rules.
J. Log. Comput., 26(2):513-537, 2016.

Fopalan Nadathur and Dale Miller.
An Overview of λ Prolog.
In Fifth International Logic Programming Conference, pages 810-827, Seattle,
August 1988. MIT Press.
國 Sara Negri and Jan von Plato.
Cut elimination in the presence of axioms.
Bulletin of Symbolic Logic, 4(4):418-435, 1998.
Sara Negri and Jan von Plato.
Proof Analysis - a contribution to Hilbert's last problem.
Cambridge University Press, 2011.
E Alex K. Simpson.
The Proof Theory and Semantics of Intuitionistic Modal Logic.
PhD thesis, College of Science and Engineering, School of Informatics, University of Edinburgh, 1994.

References VI

國 Luca Viganò.
Labelled Non-Classical Logics.
Kluwer Academic Publishers, 2000.

[^0]: ${ }^{1} 9.144 \mathrm{~km}$

[^1]: Unpolarized
 Axiom

 $$
 \forall x\left(\left(\left(P_{1}(x) \supset P_{2}(x)\right) \wedge Q(x)\right) \supset \exists y R(x, y)\right)
 $$

