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The view from 30,000 feet1

Gentzen’s Sequent calculi LJ/LK [1935]

• Lots of tiny, micro rules

• Good for proving cut-elimination and consistency for both logics

• Bad for uses in computer science because proof structure is chaotic and slippery
(witness the many rule permutations)

Girard and Andreoli [1987-1992]

• introduced linear logic and polarity

• focused sequent proofs for linear logic

• yields macro rules built from Gentzen-style micro rules

Today’s talk

• Apply polarity and focusing to classical and intuitionistic logic . . .

• . . . in order to systematically build synthetic inference rules

19.144 km
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The axioms-as-rules problem

How to incorporate inference rules encoding axioms into existing proof systems
for classical and intuitionistic logics?

Projective geometry (Negri & von Plato [NvP11]) – Uniqueness :

a ∈ l ∧ a ∈ m ∧ b ∈ l ∧ b ∈ m ⊃ a = b ∨ l = m
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Projective geometry (Negri & von Plato [NvP11]) – Uniqueness :

a ∈ l ∧ a ∈ m ∧ b ∈ l ∧ b ∈ m ⊃ a = b ∨ l = m

Γ ` ∆, a ∈ l Γ ` ∆, a ∈ m Γ ` ∆, b ∈ l Γ ` ∆, b ∈ m

Γ ` ∆, a = b, l = m
Unin
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Γ, a = b ` ∆ Γ, l = m ` ∆

Γ, a ∈ l , a ∈ m, b ∈ l , b ∈ m ` ∆
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Projective geometry (Negri & von Plato [NvP11]) – Uniqueness :

a ∈ l ∧ a ∈ m ∧ b ∈ l ∧ b ∈ m ⊃ a = b ∨ l = m

Sur la formalisation des fondements de la géométrie (Boutry [Bou18]) – Congruence :

- ∀x , y .cong x y y x .

- ∀x , y , z ,w , r , s.cong x y z w ⊃ cong x y r s ⊃ cong z w r s.
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Γ ` ∆
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- ∀x , y .cong x y y x .

- ∀x , y , z ,w , r , s.cong x y z w ⊃ cong x y r s ⊃ cong z w r s.
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2p
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2n
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The axioms-as-rules problem

How to incorporate inference rules encoding axioms into existing proof systems
for classical and intuitionistic logics?

Projective geometry (Negri & von Plato [NvP11]) – Uniqueness :

a ∈ l ∧ a ∈ m ∧ b ∈ l ∧ b ∈ m ⊃ a = b ∨ l = m

A fresh view to an old problem:
The combination of bipolars and focusing provides simple inference rules based only on
atomic formulas.
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Motivation

Object

Reasoning

First order logic

Sequent calculus

Mathematical theory

Inference rules

Which ones and why?

bipolars + focusing
=

synthetic inference rules
(only atoms)

• Systematically compute inference rules from bipolar axioms (λProlog prototype);

• Uniform presentation for classical and intuitionistic first order systems;

• Generalization of the literature (e.g. on geometric theories
[Neg03, NvP11, Neg16, CMS13] and [Vig00]);

• Cut-elimination guaranteed for when such synthetic inferences rules are added.
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Advantages of sequent systems [Gen35] as frameworks

• simple calculi;

• good proof theoretical properties (cut-elimination, consistency);

• can be easily implemented (λProlog, rewriting).

• Systematically compute inference rules from bipolar axioms (λProlog prototype);

• Uniform presentation for classical and intuitionistic first order systems;

• Generalization of the literature (e.g. on geometric theories
[Neg03, NvP11, Neg16, CMS13] and [Vig00]);

• Cut-elimination guaranteed for when such synthetic inferences rules are added.
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Motivation
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First order logic
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Mathematical theory

?

Inference rules

Which ones and why?

bipolars + focusing
=

synthetic inference rules
(only atoms)

Nice idea:

Add mathematical theories to first order logics and reason about them using all the
machinery already built for the sequent framework.

? Sara Negri, Jan von Plato, and Roy Dyckhoff, in first-order logic [NvP98, DN15];

? as well as, Alex Simpson [Sim94], Luca Viganò [Vig00], Agata Ciabattoni [CGT08], in
fragments of first-order logic such as modal and substructural logics;

? and Gilles Dowek [DW05, BDEG+21], in Deduction Modulo Theories/Axioms for Math.

• Systematically compute inference rules from bipolar axioms (λProlog prototype);

• Uniform presentation for classical and intuitionistic first order systems;

• Generalization of the literature (e.g. on geometric theories [Neg03, NvP11, Neg16, CMS13]
and [Vig00]);

• Cut-elimination guaranteed for when such synthetic inferences rules are added.
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The Hauptsatz fails for systems with proper axioms.
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Add mathematical basic sequents [NvP98]: assume P ` Q and ` P. Then

` P P ` Q

` Q
cut

Gentzen: Hauptsatz doesn’t extend to basic sequents as premises. [Gen38]
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Outline

1. Sequent systems

2. Polarities and bipolar formulas

3. Focusing and bipoles

4. Axioms-as-rules revisited

5. Examples
Geometric axioms
Universal axioms
Horn clauses
Implementation
Meta-reasoning

6. Beyond bipoles
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Gentzen: sequent calculus
Some locality: sequents keep track of open assumptions

Gentzen: sequent calculus

Some locality: sequents keep track of open assumptions

What is the structure of proofs?

A1 � � � An
B

� Deriving (vertical): proof-level implication (A → B)
� Branching (horizontal): proof-level conjunction (A1 ∧ · · · ∧ An)
� Modus ponens: mixes formula-implication and proof-conjunction

� Proof composition: implements proof-level modus ponens

A B

C
+
C D

E

⇒
A B

C D

E

;

What is the structure of proofs?

A1 · · · An � B

� Deriving (vertical): proof-level implication

� Branching (horizontal): proof-level conjunction

� Sequents (A1 · · · An � B): another proof-level implication (A → B)
� Contexts (A1 · · · An): another proof-level conjunction (A1 ∧ · · · ∧An)
� Cut-rule: mixes sequent-implication and branching-conjunction

� Implication-left: mixes formula-implication and
branching-conjunction

Γ � A A ∆ � BΓ ∆ � B Γ � A B ∆ � CΓ A → B ∆ � C

where � = A1, . . . , An is the context.

Rules: right = introduction rules; left = re-reading elimination rules.

Derivation: tree with vertices labelled by sequents.

Analyticity = cut-elimination.

Analyticity ; sub-formula property: induces a structure on the proofs
(in terms of the end formula).

Thus, proof structure can be exploited to formalise reasoning,
investigate meta-logical properties of the logic e.g. decidability,
complexity and interpolation, and develop automated deduction
procedures.
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cut
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Outline

1. Sequent systems

2. Polarities and bipolar formulas

3. Focusing and bipoles

4. Axioms-as-rules revisited

5. Examples
Geometric axioms
Universal axioms
Horn clauses
Implementation
Meta-reasoning

6. Beyond bipoles
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Polarization [DJS95]
Let A0, A1, and B be atomic, and let Γ be a multiset of formulas.

Γ ` A1 Γ,A0 ` B

Γ,A1 ⊃ A0 ` B
L⊃

Negative protocol: (aka. T for tête) The right branch is trivial: A0 = B. Continue
with Γ ` A1.

Positive protocol: (aka. Q for queue) The left branch is trivial: Γ = Γ′,A1. Continue
with Γ′,A1,A0 ` B.

Mixed protocol:
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Let A0, A1, and B be atomic, and let Γ be a multiset of formulas.

Γ ` A1 Γ,A0 ` B

Γ,A1 ⊃ A0 ` B
L⊃

Negative protocol: (aka. T for tête) The right branch is trivial: A0 = B. Continue
with Γ ` A1.

Positive protocol: (aka. Q for queue) The left branch is trivial: Γ = Γ′,A1. Continue
with Γ′,A1,A0 ` B.

Mixed protocol:

Γ ` A1

Γ ` A2

Γ ` A3

Γ ` A4

B = A0

Γ,A0 ` B

Γ,A4 ⊃ A0 ` B

Γ,A3 ⊃ A4 ⊃ A0 ` B

Γ,A2 ⊃ A3 ⊃ A4 ⊃ A0 ` B

Γ,A1 ⊃ A2 ⊃ A3 ⊃ A4 ⊃ A0 ` B
L⊃

Back-chaining!
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Example: Fibonacci

Let

∆ = {fib(0, 0), fib(1, 1), ∀n, x , y .[fib(n, x) ∧ fib(n + 1, y) ⊃ fib(n + 2, x + y)]}

fib(n,N) = N is the nth Fibonacci number.
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L⊃
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Unique proof – exponential in size!
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where ∆′ = ∆, fib(2, 1) and ∆′′ = ∆′, fib(3, 2).
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∆ = {fib(0, 0), fib(1, 1), ∀n, x , y .[fib(n, x) ∧ fib(n + 1, y) ⊃ fib(n + 2, x + y)]}

fib(n,N) = N is the nth Fibonacci number.

Positive protocol:

∆ ` fib(0, 0)

∆ ` fib(1, 1)

∆′ ` fib(2, 1)

∆′′ ` fib(3, 2) ∆′′, fib(4, 3) ` fib(4, 3)
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∆, fib(2, 1) ⊃ fib(3, 2) ⊃ fib(4, 3) ` fib(4, 3)

∆, fib(2, 1) ⊃ fib(3, 2) ⊃ fib(4, 3) ` fib(4, 3)

∆, fib(1, 1) ⊃ fib(2, 1) ⊃ fib(3, 2) ⊃ fib(4, 3) ` fib(4, 3)

∆, fib(0, 0) ⊃ fib(1, 1) ⊃ fib(2, 1) ⊃ fib(3, 2) ⊃ fib(4, 3) ` fib(4, 3)
L⊃

where ∆′ = ∆, fib(2, 1) and ∆′′ = ∆′, fib(3, 2).

Many proofs – the smallest is linear in size!
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Polarities of connectives

First-order classical and intuitionistic language:

A ::= P(x) | A ∧ A | t | A ∨ A | f | A ⊃ A | ∃x A | ∀x A

Polarized connectives:
• In classical logic

I positive and negative versions of the logical connectives and constants:

∧−,∧+, t−, t+,∨−,∨+, f −, f +

I first-order quantifiers: ∀ negative and ∃ positive.

• In intuitionistic logic
I use polarized classical constants, connectives, and quantifiers, except
I drop f −,∨−, and
I add negative implication: ⊃.
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How to polarize a classical formula

• atomic formulas are labeled either positive or negative;

• replace all occurrences of true with either t+ or t−, of false with either f + or f −, of
conjunction with either ∧+ or ∧− or of disjunction with either ∨+ or ∨−. (If there are
n occurrences of truth, false, conjunction and disjunction, there are 2n ways to do
this replacement.)
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How to polarize an intuitionistic formula

• atomic formulas are labeled either positive or negative;

• replace all occurrences of true with either t+ or t− and of conjunction with either
∧+ or ∧−. (If there are n occurrences of truth and conjunction, there are 2n ways to
do this replacement.)

• rename false and disjunction as f + and ∨+.

A formula is positive if it is a positive atom or has a top-level positive connective.
A formula is negative if it is a negative atom or has a top-level negative connective.
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Polarity-based hierarchy

Hierarchy of negative and positive classical formulas: inspired by [CGT08, CST09]

N0 and P0 consist of all atoms and
Nn+1 ::= Pn | Nn+1 ∧− Nn+1 | t− | Nn+1 ∨− Nn+1 | f − | ∀xNn+1 | Pn+1 ⊃ Nn+1

Pn+1 ::= Nn | Pn+1 ∧+ Pn+1 | t+ | Pn+1 ∨+ Pn+1 | f + | ∃xPn+1 |

Q

R

P0

N0 N1 N2 N3

P1 P2 P3

Marin, Miller, Pimentel, Volpe Axioms + Focusing = Rules CIRM, Luminy, Marseilles 4 May 2023 14 / 44



Polarity-based hierarchy

Hierarchy of negative and positive classical formulas: inspired by [CGT08, CST09]

N0 and P0 consist of all atoms and
Nn+1 ::= Pn | Nn+1 ∧− Nn+1 | t− | Nn+1 ∨− Nn+1 | f − | ∀xNn+1 | Pn+1 ⊃ Nn+1

Pn+1 ::= Nn | Pn+1 ∧+ Pn+1 | t+ | Pn+1 ∨+ Pn+1 | f + | ∃xPn+1 |

Q1∧−Q2

P0

N0 N1 N2 N3

P1 P2 P3

Marin, Miller, Pimentel, Volpe Axioms + Focusing = Rules CIRM, Luminy, Marseilles 4 May 2023 14 / 44



Polarity-based hierarchy

Hierarchy of negative and positive classical formulas: inspired by [CGT08, CST09]

N0 and P0 consist of all atoms and
Nn+1 ::= Pn | Nn+1 ∧− Nn+1 | t− | Nn+1 ∨− Nn+1 | f − | ∀xNn+1 | Pn+1 ⊃ Nn+1

Pn+1 ::= Nn | Pn+1 ∧+ Pn+1 | t+ | Pn+1 ∨+ Pn+1 | f + | ∃xPn+1 |

R1∨+R2 P0

N0 N1 N2 N3

P1 P2 P3

Marin, Miller, Pimentel, Volpe Axioms + Focusing = Rules CIRM, Luminy, Marseilles 4 May 2023 14 / 44



Polarity-based hierarchy

Hierarchy of negative and positive classical formulas: inspired by [CGT08, CST09]

N0 and P0 consist of all atoms and
Nn+1 ::= Pn | Nn+1 ∧− Nn+1 | t− | Nn+1 ∨− Nn+1 | f − | ∀xNn+1 | Pn+1 ⊃ Nn+1

Pn+1 ::= Nn | Pn+1 ∧+ Pn+1 | t+ | Pn+1 ∨+ Pn+1 | f + | ∃xPn+1 |

(Q1∧−Q2)⊃(R1∨+R2)

P0

N0 N1 N2 N3

P1 P2 P3

Marin, Miller, Pimentel, Volpe Axioms + Focusing = Rules CIRM, Luminy, Marseilles 4 May 2023 14 / 44



Polarity-based hierarchy

Hierarchy of negative and positive classical formulas: inspired by [CGT08, CST09]

N0 and P0 consist of all atoms and
Nn+1 ::= Pn | Nn+1 ∧− Nn+1 | t− | Nn+1 ∨− Nn+1 | f − | ∀xNn+1 | Pn+1 ⊃ Nn+1

Pn+1 ::= Nn | Pn+1 ∧+ Pn+1 | t+ | Pn+1 ∨+ Pn+1 | f + | ∃xPn+1 |

P0

N0 N1 N2 N3

P1 P2 P3

Marin, Miller, Pimentel, Volpe Axioms + Focusing = Rules CIRM, Luminy, Marseilles 4 May 2023 14 / 44



Polarity-based hierarchy

Hierarchy of negative and positive classical formulas: inspired by [CGT08, CST09]

N0 and P0 consist of all atoms and
Nn+1 ::= Pn | Nn+1 ∧− Nn+1 | t− | Nn+1 ∨− Nn+1 | f − | ∀xNn+1 | Pn+1 ⊃ Nn+1

Pn+1 ::= Nn | Pn+1 ∧+ Pn+1 | t+ | Pn+1 ∨+ Pn+1 | f + | ∃xPn+1 |

P0

N0 N1 N2 N3

P1 P2 P3

(N1∨+∃xA(x))∨+N2

∨+

∨+

N1

∃

A(x)
N2

Marin, Miller, Pimentel, Volpe Axioms + Focusing = Rules CIRM, Luminy, Marseilles 4 May 2023 14 / 44



Polarity-based hierarchy

Hierarchy of negative and positive classical formulas: inspired by [CGT08, CST09]

N0 and P0 consist of all atoms and
Nn+1 ::= Pn | Nn+1 ∧− Nn+1 | t− | Nn+1 ∨− Nn+1 | f − | ∀xNn+1 | Pn+1 ⊃ Nn+1

Pn+1 ::= Nn | Pn+1 ∧+ Pn+1 | t+ | Pn+1 ∨+ Pn+1 | f + | ∃xPn+1 |

P0

N0 N1 N2 N3

P1 P2 P3

(N1∨+∃xA(x))∨+N2

∨+

∨+

N1

∃

A(x)
N2

→
pos

N1

A(x)
N2

Marin, Miller, Pimentel, Volpe Axioms + Focusing = Rules CIRM, Luminy, Marseilles 4 May 2023 14 / 44



Polarity-based hierarchy

Hierarchy of negative and positive classical formulas: inspired by [CGT08, CST09]

N0 and P0 consist of all atoms and
Nn+1 ::= Pn | Nn+1 ∧− Nn+1 | t− | Nn+1 ∨− Nn+1 | f − | ∀xNn+1 | Pn+1 ⊃ Nn+1

Pn+1 ::= Nn | Pn+1 ∧+ Pn+1 | t+ | Pn+1 ∨+ Pn+1 | f + | ∃xPn+1 |

P0

N0 N1 N2 N3

P1 P2 P3

(∀xP1 ∧− P2) ∧− (∀yB(y) ∧− P3)

∧−

∧−

∀

P1

P2

∧−

∀

B(y)
P3

Marin, Miller, Pimentel, Volpe Axioms + Focusing = Rules CIRM, Luminy, Marseilles 4 May 2023 14 / 44



Polarity-based hierarchy

Hierarchy of negative and positive classical formulas: inspired by [CGT08, CST09]

N0 and P0 consist of all atoms and
Nn+1 ::= Pn | Nn+1 ∧− Nn+1 | t− | Nn+1 ∨− Nn+1 | f − | ∀xNn+1 | Pn+1 ⊃ Nn+1

Pn+1 ::= Nn | Pn+1 ∧+ Pn+1 | t+ | Pn+1 ∨+ Pn+1 | f + | ∃xPn+1 |

P0

N0 N1 N2 N3

P1 P2 P3

(∀xP1 ∧− P2) ∧− (∀yB(y) ∧− P3)

∧−

∧−

∀

P1

P2

∧−

∀

B(y)
P3

→
neg

P1 P2

B(y)
P3

Marin, Miller, Pimentel, Volpe Axioms + Focusing = Rules CIRM, Luminy, Marseilles 4 May 2023 14 / 44



Bipolar formulas

The hierarchy can be specified for intuitionistic or classical formulas.

Any formula in the class N C
2 / N I

2 is a classical/ intuitionistic bipolar formula.

Aside: How to polarize a formula?

• atomic formulas are labeled either positive or negative
• replace all occurrences of constants and connectives with a polarized variant.

I in intuitionistic logic: always rename false and disjunction as f + and ∨+ !

Example. (P1 ⊃ P2) ∨ (Q1 ⊃ Q2)

• (P1 ⊃ P2) ∨− (Q1 ⊃ Q2) ; classical bipolar.

• No polarization yields an intuitionistic bipolar formula.
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Outline

1. Sequent systems

2. Polarities and bipolar formulas

3. Focusing and bipoles

4. Axioms-as-rules revisited

5. Examples
Geometric axioms
Universal axioms
Horn clauses
Implementation
Meta-reasoning

6. Beyond bipoles
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What is focusing?

Consider again the sequent

Γ,A1 ⊃ A2 ⊃ A3 ⊃ A4 ⊃ A0 ` B

with Ai atomic, B a formula and Γ a multiset of formulas.

How to prove it?

Many ways to proceed!

Focused rule application [And92]:
commit to repeat the L⊃ rule on the right premise until the atomic formula A0 results:

Γ ` A1

Γ ` A2

Γ ` A3

Γ ` A4 Γ,A0 ` B

Γ,A4 ⊃ A0 ` B
L⊃

Γ,A3 ⊃ · · · ⊃ An ⊃ A0 ` B
L⊃

Γ,A2 ⊃ A3 ⊃ A4 ⊃ A0 ` B
L⊃

Γ,A1 ⊃ A2 ⊃ A3 ⊃ A4 ⊃ A0 ` B
L⊃
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An organizational tool

Focusing provides a way to restrict the proof search space while remaining complete.

• Always apply invertible introduction rules;

• Chain together the other rules (non-invertible/consuming external information).

⇒ Maximal chaining of the decomposition.

A,B,¬A A,B,¬B
A,B,¬A ∧ ¬B ∧

A,B ∨ C ,¬A ∧ ¬B ∨

∃x .A,B ∨ C ,¬A ∧ ¬B ∃

∃x .A,∃y .(B ∨ C),¬A ∧ ¬B ∃

∃x .A, ∃y .(B ∨ C),∀z .(¬A ∧ ¬B)
∀

Unfocused

A,∃y .(B ∨ C),¬A
∃x .A, ∃y .(B ∨ C),¬A ∃

∃x .A,B,¬B
∃x .A,B ∨ C ,¬B ∨

∃x .A, ∃y .(B ∨ C),¬B ∃

∃x .A, ∃y .(B ∨ C),¬A ∧ ¬B
∧

∃x .A, ∃y .(B ∨ C),∀z .(¬A ∧ ¬B)
∀

Focused
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LJF and LKF (Liang & M [LM07, LM09])

Two kinds of focused sequents

• ⇓ sequents to decompose the formula under focus

Γ ⇓ B ` ∆ with a left focus on B
Γ ` B ⇓ ∆ with a right focus on B

When the conclusion of an introduction rule, then that rule introduced B.

• ⇑ sequents for invertible introduction rules

Γ1 ⇑ Γ2 ` ∆1 ⇑∆2

Example of rules:

Γ ` B1 ⇓ ∆ Γ ⇓ B2 ` ∆

Γ ⇓ B1 ⊃ B2 ` ∆

Γ1 ⇑ Γ2,B1 ` B2 ⇑∆

Γ1 ⇑ Γ2 ` B1 ⊃ B2 ⇑∆
non-invertible invertible
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LJF and LKF (Liang & M [LM07, LM09])

The dynamic of proof search:
• A formula is put under focus (the only instance of contraction)

Decide: Γ,N ⇓ N ` ∆

Γ,N ⇑ · ` · ⇑∆
Dl

Γ ` P ⇓ ∆

Γ ⇑ · ` · ⇑ P,∆ Dr

• Focus is transferred from conclusion to premises until

I either the focused phase ends

Release: Γ ⇑ P ` · ⇑∆

Γ ⇓ P ` ∆
Rl

Γ ⇑ · ` N ⇑∆

Γ ` N ⇓ ∆
Rr

I or the derivation ends

Initial: N atomic
Γ ⇓ N ` N,∆

Il
P atomic

Γ,P ` P ⇓ ∆
Ir

• Once the focus is released, invertible rules eagerly decompose the formula into
subformulas, which are ultimately stored in the context.

Store: Γ1,P ⇑ Γ2 ` ∆1 ⇑∆2

Γ1 ⇑ Γ2,P ` ∆1 ⇑∆2
Sl

Γ ⇑ · ` ∆1 ⇑ N,∆2

Γ ⇑ · ` N,∆1 ⇑∆2
Sr

⇒ Sequent derivations are organized into ⇑ and ⇓ phases

⇒ Synthetic rules result from looking only at border sequents: Γ ⇑ · ` · ⇑∆
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Bipole

Let B be a polarized negative (classical or intuitionistic) formula.

A bipole for B is a synthetic inference rule corresponding to a derivation (in LKF or LJF)

1 starting with a decide on B;

2 in which no ⇓ rule occurs above an ⇑ rule;

3 and only atomic formulas are stored.

Γ1 ⇑ · ` · ⇑∆1 . . . Γn ⇑ · ` · ⇑∆n

Γ,B ⇓ B ` ∆

Γ,B ⇑ · ` · ⇑∆
Dl

⇓ phase
Focusing persists

⇑ phase
Invertible rules are applied eagerly

Γ ` A ⇓ ∆ Γ ` B ⇓ ∆

Γ ` A ∧+ B ⇓ ∆
∧+r

Γ ⇑ ` A,Ω ⇑∆ Γ ⇑ ` B,Ω ⇑∆

Γ ⇑ ` A ∧− B,Ω ⇑∆
∧−r

Atomic storage
Atoms are stored

C,Γ ⇑Θ ` Ω ⇑∆

Γ ⇑ C,Θ ` Ω ⇑∆
sl

Γ ⇑ · ` Ω ⇑D,∆

Γ ⇑ · ` D,Ω ⇑∆
sr
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Let B be a polarized negative (classical or intuitionistic) formula.

A bipole for B is a synthetic inference rule corresponding to a derivation (in LKF or LJF)

1 starting with a decide on B;

2 in which no ⇓ rule occurs above an ⇑ rule;

3 and only atomic formulas are stored.

Γ1 ⇑ · ` · ⇑∆1 . . . Γn ⇑ · ` · ⇑∆n

Γ,B ⇓ B ` ∆

Γ,B ⇑ · ` · ⇑∆
Dl

Corresponding synthetic rule

(in LK or LJ)

Γ1 ` ∆1 . . . Γn ` ∆n

Γ ` ∆
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1st result: Bipolar ←→ Bipole

Let B be a polarized negative (classical or intuitionistic) formula.

Theorem:

• If B is bipolar, then any synthetic inference rule for B is a bipole.

• If every synthetic inference rule for B is a bipole then B is bipolar.

Prototype implementation:
λProlog [MN12, NM88] executable specification of a predicate that relates a bipolar
formula to its various bipoles.

⇒ compact given the nature of λProlog

⇒ explicit about the scope of bindings for schematic variables and eigenvariables.

⇒ unproblematic treatment of unification and eigenvariables

Marin, Miller, Pimentel, Volpe Axioms + Focusing = Rules CIRM, Luminy, Marseilles 4 May 2023 23 / 44



2nd result: Cut admissibility

Let T be a set of bipolar formulas.

LK〈T 〉/LJ〈T 〉 denotes the extension of LK/LJ with the synthetic inference rules
corresponding to a bipole for each B ∈ T .

Theorem: The cut rule is admissible for the proof systems LK〈T 〉/LJ〈T 〉.

Note: the proof is simple!

It is a direct consequence of (polarized) cut admissibility in LKF/LJF.

Γ ⇑ · ` B ⇑∆ Γ ⇑ B ` · ⇑∆

Γ ⇑ · ` · ⇑∆
Cut
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Rules from axioms

Unpolarized
Axiom

Polarized
Axiom

Polarized
Axiom

Polarizing

Is it bipolar?

X

×

Bipole
in LKF

Inference
rule for LK

Synthesizing
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Rules from axioms

Unpolarized
Axiom

∀x(((P1(x) ⊃ P2(x)) ∧ Q(x)) ⊃ ∃yR(x , y))

Polarized
Axiom

Polarized
Axiom

Polarizing

Is it bipolar?

X

×

Bipole
in LKF

Inference
rule for LK

Synthesizing
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Rules from axioms

Unpolarized
Axiom

Polarized
Axiom

Polarized
Axiom

Polarizing

Is it bipolar?

X

×

Bipole
in LKF

Γ,P1(t) ⇑ · ` · ⇑ P2(t),∆

Γ,P1(t) ⇑ · ` P2(t) ⇑∆
sr

Γ ⇑ P1(t) ` P2(t) ⇑∆
sl

Γ ⇑ · ` P1(t) ⊃ P2(t) ⇑∆
⊃r

Γ ` P1(t) ⊃ P2(t) ⇓ ∆
Rr

Γ ` Q(t) ⇓ ∆
Ir

Γ ` (P1(t) ⊃ P2(t)) ∧+ Q(t) ⇓ ∆
∧+

r

Γ,R(t, z) ⇑ · ` · ⇑∆

Γ ⇑ R(t, z) ` · ⇑∆
sl

Γ ⇑ ∃yR(t, y) ` · ⇑∆
∃l

Γ ⇓ ∃yR(t, y) ` ∆
Rl

Γ ⇓ ((P1(t) ⊃ P2(t)) ∧+ Q(t)) ⊃ ∃yR(t, y) ` ∆
⊃l

Γ ⇓ ∀x(((P1(x)⊃P2(x))∧+Q(x))⊃∃yR(x , y)) ` ∆
∀l

Inference
rule for LK

Synthesizing
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Γ = Γ′,Q(t) ` ∆
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Geometric axioms as bipoles

Geometric implication:

∀z(P1 ∧ . . . ∧ Pm ⊃ ∃x1M1 ∨ . . . ∨ ∃xnMn)

• Pi atomic;

• Mj = Qj1 ∧ . . . ∧ Qjkj
, Qjk atomic;

• none of the variables in the vectors x j are free in Pi .
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Geometric axioms as bipoles

Polarized geometric implication:

∀z(P±1 ∧
± . . . ∧± P±m ⊃∃x1M̂1 ∨± . . . ∨± ∃xnM̂n)

• P+
i ,P

−
i atomic;

• M̂j = Q±j1 ∧
+ . . .∧+Q±jkj

, Q±jk atomic;

• none of the variables in the vectors x j are free in Pi .

Marin, Miller, Pimentel, Volpe Axioms + Focusing = Rules CIRM, Luminy, Marseilles 4 May 2023 27 / 44



Geometric axioms as bipoles

Polarized geometric implication:

∀z(P+
1 ∧+ . . .∧+P+

m ⊃∃x1M̂1 ∨± . . . ∨± ∃xnM̂n) ,

Corresponding bipole:

Q1[y 1/x1], Γ ⇑ ` ⇑∆ . . . Qn[yn/xn], Γ ⇑ ` ⇑∆

P, Γ′ ⇑ ` ⇑∆

with P = {P+
i },Qj = {Q±jk }.

Corresponding LK rule:

Q1[y 1/x1], Γ ` ∆ . . . Qn[yn/xn], Γ ` ∆

P, Γ′ ` ∆
GRS
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Geometric axioms as bipoles

Polarized geometric implication:

∀z(P−1 ∧
± . . . ∧± P−m ⊃∃x1M̂1 ∨± . . . ∨± ∃xnM̂n) ,

Corresponding bipole:

Q j [y j/x j ], Γ ⇑ ` ⇑∆ . . . Γ ⇑ ` ⇑ Pi ,∆

Γ ⇑ ` ⇑∆
m + n premises

with Qj = {Qjk }.

Corresponding LK rule:

Q j [y j/x j ], Γ ` ∆ . . . Γ ` Pi ,∆

Γ ` ∆
m + n premises
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Co-geometric axioms as bipoles

Polarized co-geometric implication:

∀z(∀x1M̂1 ∧± . . . ∧± ∀xnM̂n⊃P−1 ∨
− . . .∨−P−m ) ,

with M̂j = Q±j1 ∨
− . . .∨−Q±jkj .

Corresponding bipole:

Γ ⇑ ` ⇑ Q1[y 1/x1],∆ . . . Γ ⇑ ` ⇑ Qn[yn/xn],∆

Γ ⇑ ` ⇑ P,∆′

Corresponding LK rule:

Γ ` Q1[y 1/x1],∆ . . . Γ ` Qn[yn/xn],∆

Γ ` P,∆′
co − GRSc

Marin, Miller, Pimentel, Volpe Axioms + Focusing = Rules CIRM, Luminy, Marseilles 4 May 2023 28 / 44



Co-geometric axioms as bipoles

Polarized co-geometric implication:

∀z(∀x1M̂1 ∧± . . . ∧± ∀xnM̂n⊃P+
1 ∨± . . . ∨± P+

m ) ,

with M̂j = Q±j1 ∨
− . . .∨−Q±jkj .

Corresponding bipole:

Γ ⇑ ` ⇑ Q j [y j/x j ],∆ . . . Γ,Pi ⇑ ` ⇑∆

Γ ⇑ ` ⇑∆
m + n premises

Corresponding LK rule:

Γ ` Q j [y j/x j ],∆ . . . Γ,Pi ` ∆

Γ ` ∆
m + n premises
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Universal axioms as bipoles

∀z(P1 ∧ . . . ∧ Pm ⊃ Q1 ∨ . . . ∨ Qn)

More choices in the selection of polarities while still remaining bipolar formulas.
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Universal axioms as bipoles

∀z(P+
1 ∧+ . . .∧+P+

m ⊃Q±1 ∨
+ . . .∨+Q±n )

More choices in the selection of polarities while still remaining bipolar formulas.

Q1, Γ ⇑ ` ⇑∆ . . . Qn, Γ ⇑ ` ⇑∆

P, Γ′ ⇑ ` ⇑∆
FRLc
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Universal axioms as bipoles

∀z(P+
1 ∧+ . . .∧+P+

m ⊃Q±1 ∨
+ . . .∨+Q±n )

More choices in the selection of polarities while still remaining bipolar formulas.

Q1, Γ ⇑ ` ⇑∆ . . . Qn, Γ ⇑ ` ⇑∆

P, Γ′ ⇑ ` ⇑∆
FRLc

a ∈ l ∧+ a ∈ m ∧+ b ∈ l ∧+ b ∈ m ⊃ a = b∨+l = m

Γ, a = b ` ∆ Γ, l = m ` ∆

Γ, a ∈ l , a ∈ m, b ∈ l , b ∈ m ` ∆
Unip
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Universal axioms as bipoles

∀z(P±1 ∧
− . . .∧−P±m ⊃Q−1 ∨

− . . .∨−Q−n )

More choices in the selection of polarities while still remaining bipolar formulas.

Γ ⇑ ` ⇑ P1,∆ . . . Γ ⇑ ` ⇑ Pm,∆

Γ ⇑ ` ⇑ Q,∆
FRRc
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Universal axioms as bipoles

∀z(P±1 ∧
− . . .∧−P±m ⊃Q−1 ∨

− . . .∨−Q−n )

More choices in the selection of polarities while still remaining bipolar formulas.

Γ ⇑ ` ⇑ P1,∆ . . . Γ ⇑ ` ⇑ Pm,∆

Γ ⇑ ` ⇑ Q,∆
FRRc

a ∈ l ∧− a ∈ m ∧− b ∈ l ∧− b ∈ m ⊃ a = b ∨− l = m

Γ ` ∆, a ∈ l Γ ` ∆, a ∈ m Γ ` ∆, b ∈ l Γ ` ∆, b ∈ m

Γ ` ∆, a = b, l = m
Unin
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Horn clauses as bipoles

∀z(P1 ∧ . . . ∧ Pm ⊃ Q)

Even more choices in the selection of polarities while still remaining bipolar formulas!
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Horn clauses as bipoles

∀z(P±1 ∧
± . . . ∧± P±m ⊃Q±)

Even more choices in the selection of polarities while still remaining bipolar formulas!
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Horn clauses as bipoles

∀z(P+
1 ∧+ . . .∧+P+

m ⊃Q+)

Even more choices in the selection of polarities while still remaining bipolar formulas!

Q, Γ ` ∆

P, Γ′ ` ∆
FC

Forward-chaining
[Sim94, NvP98, CMS13]
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Horn clauses as bipoles

∀z(P−1 ∧
− . . .∧−P−m ⊃Q−)

Even more choices in the selection of polarities while still remaining bipolar formulas!

Γ ` P1,∆ . . . Γ ` Pm,∆

Γ ` Q,∆′
BC

Back-chaining
[Vig00]
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Implementation – Part I [MMPV22]

Formula

∀u∀v∀w(adj u v ⊃ (path v w ⊃ path u w)) Positive atoms.

λProlog encoding

(all u\ all v\ all w\ imp (atm (adj u v))
(imp (atm (path v w)) (atm (path u w)))),

Goal

reduce (syncL Gamma F (atm B)) Premises.

Inference rule

adj X Z , path Z Y , path X Y , L ` B

adj X Z , path Z Y , L ` B
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Implementation – Part I [MMPV22]

Formula

∀u∀v∀w(adj u v ⊃ (path v w ⊃ path u w)) Negative atoms.

λProlog encoding

(all u\ all v\ all w\ imp (atm (adj u v))
(imp (atm (path v w)) (atm (path u w)))),

Goal

reduce (syncL Gamma F (atm B)) Premises.

Inference rule

Γ ` adj X Y Γ ` path Y Z

Γ ` path X Z

Marin, Miller, Pimentel, Volpe Axioms + Focusing = Rules CIRM, Luminy, Marseilles 4 May 2023 31 / 44



Implementation – Part II [MMPV22]

Formula

∀u∀v(∀w(in w u ⊃ in w v) ⊃ subset u v) Positive atoms.

λProlog encoding

(all u\ all v\ imp (all w\ imp (atm (in w u)) (atm (in w v)))
(atm (subset u v))).

Goal

reduce (syncL Gamma F (atm B)) Premises.

Inference rule

in w X , Γ ` in w Y subset X Y , Γ ` B

Γ ` B
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Implementation – Part II [MMPV22]

Formula

∀u∀v(∀w(in w u ⊃ in w v) ⊃ subset u v) Negative atoms.

λProlog encoding

(all u\ all v\ imp (all w\ imp (atm (in w u)) (atm (in w v)))
(atm (subset u v))).

Goal

reduce (syncL Gamma F (atm B)) Premises.

Inference rule

Γ, in w X ` in w Y

Γ ` subset X Y
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Affine geometry

• Parallel lines.

• Affine geometry = (Euclidean geometry - congruence) ∨ (projective geometry +
parallels).

• l ‖ m, par(l , a).

• General:
l ‖ l l ‖ m ⊃ m ‖ l l ‖ m ∧m ‖ n ⊃ l ‖ n

• Incidency:
a ∈ par(l , a) par(l , a) ‖ l .

• Uniqueness
a ∈ l ∧ a ∈ m ∧ l ‖ m ⊃ l = m.

• Substitution
l ‖ m ∧m = n ⊃ l ‖ n.
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System GA

I. General

Γ ` ∆, l ‖ l Ref
Γ ` ∆, l ‖ m
Γ ` ∆,m ‖ l

Sym
Γ ` ∆, l ‖ m Γ ` ∆,m ‖ n

Γ ` ∆, l ‖ n Tr

II. Incidency

Γ ` ∆, a ∈ par(l , a)
IA

Γ ` ∆, par(l , a) ‖ l Par

III. Uniqueness

Γ ` ∆, a ∈ l Γ ` ∆, a ∈ m Γ ` ∆, l ‖ m
Γ ` ∆, l = m

Unipar

IV. Substitution
Γ ` ∆, l ‖ m Γ ` ∆,m = n

Γ ` ∆, l ‖ n SA
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Connection with hypersequents?

Gödel-Dummett logic: LJ plus the axiom (P ⊃ Q) ∨ (Q ⊃ P).

Polarize this and make it negative (to store on the left of a sequent):

[(P ⊃ Q) ∨+ (Q ⊃ P)] ∧−>−

This is not a bipole.

Γ,P ⊃ Q ⇑ · ` · ⇑ C

Γ ⇑ P ⊃ Q ` · ⇑ C

Γ,Q ⊃ P ⇑ · ` · ⇑ C

Γ ⇑ Q ⊃ P ` · ⇑ C

Γ ⇑ (P ⊃ Q) ∨+ (Q ⊃ P) ` · ⇑ C

Γ ⇓ (P ⊃ Q) ∨+ (Q ⊃ P) ` C

Γ ⇓ [(P ⊃ Q) ∨+ (Q ⊃ P)] ∧−>− ` C

Marin, Miller, Pimentel, Volpe Axioms + Focusing = Rules CIRM, Luminy, Marseilles 4 May 2023 36 / 44



Connection with hypersequents?

Gödel-Dummett logic: LJ plus the axiom (P ⊃ Q) ∨ (Q ⊃ P).

Polarize this and make it negative (to store on the left of a sequent):

[(P ⊃ Q) ∨+ (Q ⊃ P)] ∧−>−

This is not a bipole.

“P ⊃ Q ′′

...
Γ ` C

“Q ⊃ P ′′

...
Γ ` C

Γ ` C
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Connection with hypersequents?

Gödel-Dummett logic: LJ plus the axiom (P ⊃ Q) ∨ (Q ⊃ P).

Polarize this and make it negative (to store on the left of a sequent):

[(P ⊃ Q) ∨+ (Q ⊃ P)] ∧−>−

This is not a bipole.

“P ⊃ Q ′′

...
Γ ` C

“Q ⊃ P ′′

...
Γ ` C

Γ ` C

This rule resembles the communication rule in hypersequents:

G | Γ1 ` P | H G | Γ2 ` Q | H
G | Γ1 ` Q | Γ2 ` P | H
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To conclude

? Synthetic inference rules generated using polarization and focusing provide inference
rules that capture certain classes of axioms.

? In particular: bipolar formulas correspond to inference rules for atoms.

? As geometric formulas are examples of bipolar formulas, polarized versions of such
formulas yield well known inference systems derived from geometric formulas.

? Polarization of subsets of geometric formulas explain the forward-chaining and
backward-chaining variants of their synthetic inference rules.

? Direct proof of cut-elimination for the proof systems that arise from incorporating
synthetic inference rules based on polarized formulas.

? Additionally, all of these results work equally well in both classical and intuitionistic
logics using the corresponding LKF and LJF focused proof systems.
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Thank you!

Questions?

Art by Nadia Miller
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