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Can we standardize, communicate, and trust formal proofs?

The topic of the ProofCert project
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How to trust a machine-generated proof
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Easily trusted code
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Easily trusted code

How to trust a machine-generated proof
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Easily trusted code Broad range

How to trust a machine-generated proof
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Easily trusted code Broad range

How to check a machine-generated proof

- Have a small broad-range checker
~ verify the proof
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Easily trusted code Broad range

How to check a machine-generated proof
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Easily trusted code

Broad range

The kernel of checker: focused LK
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Easily trusted code Broad range

The kernel of checker: focused LK

Focusing « Polarities <« Invertible
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Easily trusted code Broad range

The kernel of checker: focused LK

Focusing < Polarities

Simple notations. If you want the connective (or atom) to be subject to
 Invertible rule => give negative polarity
e Non (necessarily) invertible rule  => give positive polarity

y N
Chose left!

Yes! \
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Easily trusted code Broad range Sound interaction

The kernel of checker: focused LK

Focusing < Polarities

Where there is a choice,
the checker can be

guided. Without
leading it to errors?

/// /
y 4
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(2 . =
-©,B, VB, * -O,B; VB,
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Easily trusted code Broad range Sound interaction

The kernel of checker: focused LK

Focusing

Organizing proofs in layers of negative and positive (focused) phases

Negative phase Focused or positive phase
Sequents : Sequents : ‘
~ More
f ~ mnemonics
FenT ey P

Only invertible rules
No loss of information

Only non invertible rules
Selection of information
Same input => same output Output depends on choices
Rules applied in any order to negative Rules applied hereditarily on
formulas subformulas of P
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Easily trusted code Broad range Sound interaction

The kernel of checker: focused LK

From the completeness of LKF:

. A e . TAP
LK

LKF

Where AP is the a polarized version of A (exponentially many such versions)
e.g. IfA=av bAc A" can be either

avbAhN c,aVbhc aVv' b A g elc.
(The atoms are also polarized)

From now on, + is taken to be I—LKF and formulas are considered to be
polarized and in negation normal form.
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Easily trusted code Broad range Sound interaction

The kernel of checker: focused LK

Negative phase
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Easily trusted code Broad range Sound interaction

The kernel of checker: focused LK

Negative phase
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Easily trusted code Broad range Sound interaction

The kernel of checker: focused LK

Negative phase
FeTA I FONB,I" FONT FONMA B, I
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\\ In between
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Easily trusted code Broad range Sound interaction

The kernel of checker: focused LK

Negative phase
Fe, A I' -, B,I' FE, I Fe, A/B, I
Fe, t, I e, AN B, I’ e, f,I e, Av B, I’

FO, [y/xz]B,I" y not freein ©,I', B

Fe, Ye.B, I
| Only contract on positive |
In between
-e,C, T -PO,P &, N -
store decide nit

Fe, N "t Fop e, P

3
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Focused or positive phase
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Easily trusted code Broad range Sound interaction

Back to Checking, LKF® (augmented LKF)

Ais atheorem ! - Polarize
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Easily trusted code Broad range Sound interaction

Back to Checking, LKF® (augmented LKF)

Ais atheorem ! - Polarize

= F.TA

But how to feed information, when needed,
to the kernel?
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Easily trusted code Broad range Sound interaction

Back to Checking, LKF® (augmented LKF)

Ais atheorem ! - Polarize

= F.TA

But how to feed information, when needed,
to the kernel?
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Easily trusted code Broad range Sound interaction

Back to Checking, LKF® (augmented LKF)

\A is a theorem/!f) Polarize

= F.TA

But how to feed information, when needed,
to the kernel?
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Describe
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Easily trusted code Broad range Sound interaction

Back to Checking, LKF® (augmented LKF)

A s a theorem/!) Polarize

= F.TA

But how to feed information, when needed,
to the kernel?

&@#%!§u" Describe What if the information is not there?
£ g€epyiicess
06" &eem| - Expert i
o ErOyB; ie{l,2} V. "(:q:"qz')
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" Chose left...or...or right.. Deﬂmtely one of these two...
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Easily trusted code Broad range Flexible reconstruction Sound interaction

Back to Checking, LKF® (augmented LKF)

A s a theorem/!) Polarize
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Easily trusted code Broad range Flexible reconstruction Sound interaction

Positive phase

 And we do the same each time we may guide the
proof checking!

te( =) el B Z2 01 B Ne(=, E1, Z2)
EFOytT E+O| B AT By
ErFOUB;,  ie{l,2} V.(Z=,Z49) Z'relt/z]B  3.(E=,=1)

EFO |y BV B E+6O|3z.B
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Easily trusted code Broad range Flexible reconstruction Sound interaction

Positive phase

 And we do the same each time we may guide the
proof checking!

te(2) E1FOUB  E2FOUBx  A(E, E1,E2)
EFOet EF O | By At By
E'-O4B;  i€{l,2} V.(Z,5,1) =+ 6| |t/z)B 3(:,:’,)
E+ OBV B =reld

N

e The witnhess is !
 The witness tis in the set S, but | don't know which...
 The witness is ... wait, what withess?

27




Easily trusted code Broad range @ Flexible reconstruction Sound interaction

Positive phase

 And we do the same each time we may guide the
proof checking!

te( =) =1 Ol B =2 @ B2 Ne(Z, =1, Z92)
Zrel|t EFO| B At By
E'relyB;  ie{l,2}  Ve(E,Z4) ErOelt/z]B  3.(E,51)
AS OBV B, A A-0y3.B E
Backfrack! Unifidation!

28



Easily trusted code Broad range | v/ | Flexible reconstruction Sound interaction

Positive phase

 And we do the same each time we may guide the
proof checking!

ErOt ZF©e| B, AT B,
E'F 6| B; i€ {1,2} Ve(E, E" 1) E'+6|t/x]B 3.(5,5,1)

EFO6 BV B Er 6y 3

Let's give him the wrong witness!

\
\
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Easily trusted code

Broad range

v

Flexible reconstruction

Negative phase

Negative phase needs no steering. Simple

bookkeeping :

Ererr f(=,2)

It went left

ErOqQ [, r
ErFONA BT V(2,5

=1 AT

It went right

Sound interaction

E+FOEONTAV B, I’

EFONMAN B I’

_QI—QﬂBF Ne E,El,.—:ﬁ)

E'FON[y/x|B, I’ Y.(=,Z') wynot freem =,0,IB

SOV B, I’

Clerk
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Easily trusted code Broad range | v/ | Flexible reconstruction Sound interaction

Negative phase

Negative phase needs no steering. Simple
bookkeeping :

Ererr f(=,2)

Part relative to

the left branch

O [, r
ErFONA BT V(2,5

=1 AT

" Part relative to -
. the right branch

l—-ql—- W —

E+FOEONTAV B, I’

ﬁl—@ﬂAﬂ B, I

E'FON[y/x|B, I’ Y.(=,Z') wynot freem =,0,IB
E+ONVe.B,. T

Clerk
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Easily trusted code Broad range | v/ | Flexible reconstruction

Negative phase

Negative phase needs no steering. Simple
bookkeeping :

'f\':No work done\:} 'f\':No work donej}

ZEOND fo(5,E) EZ FORAT E OB A

Sound interaction

l—-ql—- W —

Zrenf. T SFONAN B, T

EFONAB,TIT V.(E,Z) = ON[y/z|B,I" Y.(=,Z") ynot free111 =6.,I''B

EFONTAV B, I SO NWe.B, I

Clerk
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Easily trusted code Broad range | v/ | Flexible reconstruction Sound interaction

Negative phase

Negative phase needs no steering. Simple

bookkeeping :
EFOND f(2,E) EZ FONAT = FONB,I AJ(Z,E,Z)
Erenf,T EFOFAN BT
='FONA B, I V(E,Z) EvrOeqy/x|B, I V.=, 5 ynotffée\inE,@,F,B
EFreONVAvV B, I’ ErFOfVe.B, I

~ Succeed on
- anyinput 5,



Easily trusted code Broad range | v/ | Flexible reconstruction Sound interaction

te(=) =10 B Zo 60| B2 Ne(Z, =1, Z2)
Sreytt ZF OB A" B
E'FOy B ie€{l,2}  V(Z,Z49) E'rOLt/]B  3.(E,E 1)
EFO| BV B EF6©|3z.B
=SB = OB cut.(=,0, 51,52, B)
Zroeq- cut
E'FONN release.(=Z,Z") init.(=,0,1) (l,mP,) e ©
ZEFOUN release Zro|r, init
E'FO|P decide.(Z,0,Z"1) (I,P)€ © positive(P)
Zron. decide
Eroenr fJ(=,5) E1FONMTATDT EEFONB, I A=, =1, 52)
ZFONf, I ZEFONMAN B, I’
E'FONA BT VI(EE) EFON[y/z]lB. [ V.(E,Z') ynot freein =,0,I, B
ZFONTAV B, I' O Ve.B, I
Z'EO,lCY I store.(=,C,=Z",1)
EINCYYavs ECEYoNG store

Here, P is a positive formula; N a negative formula; P, a positive literal; C' a positive
formula or negative literal. In the cut rule, the expression —B is the negation of B
(defined on connectives as the usual first-order classical negation with polarity flip, on

literals as a single polarity flip).



Easily trusted code Broad range | v/ | Flexible reconstruction ‘7 Sound interaction

O B FO | B2
F@{Lt"_ I—QLLBlf\'i_Bg
Fe | B; ie{1,2} FOl|t/x]B |
FO| BV B Ol 3xz.B
FONB FeA B ot
Feq-
FONN | | P €6
“OUN release ~o P, init
FOLP P € © positive(P)
—o1. decide
FeN T FeN AT FeN B, I’
FeNf I FONTAN B, I’
FONTAB, I FOMN|y/x]B, I y not freein ,0,1, B
FENTAV B, I’ FONVxe.B, I
Fe, C {1
O, T CEYeN) store

Here, P is a positive formula; N a negative formula; P, a positive literal; C' a positive
formula or negative literal. In the cut rule, the expression —B is the negation of B
(defined on connectives as the usual first-order classical negation with polarity flip, on
literals as a single polarity flip).



VEasily trusted code Broad range | v/ | Flexible reconstruction | v | Sound interaction

Coding the kernel

* Every rule is a Horn clause in AProlog, for example, decide
rule:

E'FO| P decide.(Z,0,Z"1) (I,P)€ @ positive(P)
EFO1-

decide

VOVEVE'VPVYI. async(Z,0,[]) : — decide.(Z,0,Z' 1), memb({l, P),0), pos(P), sync(Z',0, P).

36



v/ | Easily trusted code Broad range | v/ | Flexible reconstruction | v | Sound interaction

Coding the kernel

* Every rule is a Horn clause in AProlog, for example, decide
rule:

E'FOl P decide.(Z,0,Z" 1) (I,P)€ O positive(P)
ZFOq-

decide

VOVEVE'VPVYI. async(Z,0,[]) : — decide.(Z,0,Z' 1), memb({l, P),0), pos(P), sync(Z',0, P).

If P is given, it is checked. If it is not given, member will unify
with a positive formula in the context: limited backtrack will get
to the one that works.
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v/ | Easily trusted code Broad range | v/ | Flexible reconstruction | v | Sound interaction

Coding the kernel

* Every rule is a Horn clause in AProlog, for example, decide
rule:

o .. ='FOYP decide.(=,0,Z"1 [,LPYe @ positive(P
= v (/,: = f)r LP) P (P) decide

VOVEVE'VPVYI. async(Z,0,[]) : — decide.(Z,0,Z' 1), memb({l, P),0), pos(P), sync(Z',0, P).

If P is given, it is checked. If it is not given, member will unify
with a positive formula in the context: limited backtrack will get
to the one that works.
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v/ | Easily trusted code Broad range | v/ | Flexible reconstruction | v | Sound interaction

Coding the kernel

* Every rule is a Horn clause in AProlog, for example, decide

rule:
 Decideon - P .
\\ . == O P decide.(=,0, =", [,LP)e @ positive(P
erythlng but/ P 14 ( =r o f)r P P (P) decide

VOVEVE'VPVYI. async(Z,0,[]) : — decide.(Z,0,Z' 1), memb({l, P),0), pos(P), sync(Z',0, P).

If P is given, it is checked. If it is not given, member will unify
with a positive formula in the context: limited backtrack will get
to the one that works.
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Coding the kernel

 Every rule is a Horn clause in AProlog, for example, decide

'Ol P decjdeﬁ, =01 (I,P) € © positive(P)
ZFOq-

decide

VOVEVE'VPVYI. async(Z,0,[]) : — decide.(Z,0,Z' 1), memb({l, P),0), pos(P), sync(Z',0, P).

If P is given, it is checked. If it is not given, member will unify
with a positive formula in the context: limited backtrack will get
to the one that works.
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v/ | Easily trusted code Broad range | v/ | Flexible reconstruction | v | Sound interaction

Coding the kernel

* Every rule is a Horn clause in AProlog, for example, decide
rule: - Read from the pointer -

R

E'+OUP decide.(Z,0,5,1) (I,P)e© positive(P)
[ ;,;,/E I_ 9 ﬂ :
GEREREE

decide

VOVEVE'VPVYI. async(Z,0,[]) : — decide.(Z,0,Z' 1), memb({l, P),0), pos(P), sync(Z',0, P).

If P is given, it is checked. If it is not given, member will unify
with a positive formula in the context: limited backtrack will get
to the one that works.
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v/ | Easily trusted code Broad range | v/ | Flexible reconstruction | v | Sound interaction

Coding the kernel

 Everyrule is a Horn clause in )\Prolog for example, decide

rule: Q CaII another program 4

'Ol P decu}ee(_ 49 =1 (I,P) € @ positive(P)
EFO1-

decide

VOVEVE'VPVYI. async(Z,0,[]) : — decide.(Z,0,Z' 1), memb({l, P),0), pos(P), sync(Z',0, P).

If P is given, it is checked. If it is not given, member will unify
with a positive formula in the context: limited backtrack will get
to the one that works.
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v/ | Easily trusted code Broad range | v/ | Flexible reconstruction | v | Sound interaction

Interaction summary

~Ais a theorem! - Polarize

Positive phase

&@#%!§u*
£a€epylioessd

(6 8zt~

D :
escribe Negative phase

Trace or proof



Easily trusted code

Broad range

v

Flexible reconstruction

v

Sound interaction

Certificate « constellation »

Describe

Expeﬂé

==

Polarize

Clerké
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Easily trusted code

?

Broad range

v

Flexible reconstruction

The (current) aCtuaI kernel

Sound interaction

 LKU is a framework of which LKF, LJF and
MALLF are subsets.

» Can describe resolution refutation, mating,
dependently typed lambda calculus,
expansion trees, rewriting ...

* Ongoing work for LFSC, LF-modulo, tabled

proofs ...

» Delighted to work with you!
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Future and related work

 Future work

- Fixpoints, model checkers, improving performance
- Counter-examples and partial proofs
- Better formalization of the LKU framework

 Related work

- Logosphere and OpenTheory
- TPTP
— Dedukti

46
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