Foundational proof certificates in first-order logic

Zakaria Chihani, Dale Miller, and Fabien Renaud

INRIA-Saclay & LIX, Ecole Polytechnique

12 June 2013

Can we standardize, communicate, and trust formal proofs?

The topic of the ProofCert project

How to trust a machine-generated proof

s@#sisy* * Read the output or redo the proof

£oa€épyiioess |
06 ‘Beemt~
~* Trust the prover
e ~ * Formally prove it
o * Build it around a small trusted
kernel
| -+ Have a small dedicated checker
Pge;ga\l;gf Trace or proof Ve”fy the prOOf

How to trust a machine-generated proof

” N
4 s@#%§u* | * Read the output or redo the proof
i
» Trust the prover
o e Formally prove it
o e Build it around a small trusted
s cornel

./ «Have asmall dedicated checker

Pgeﬁga\lyeb;? Trace or proof Vel’ify the prOOf

 How about other provers' proofs?
* Previous steps
 Translate their output into your
formalism and run them on your
prover... 3

How to trust a machine-generated proof

N
4 s@#%!§u* | * Read the output or redo the proof
recses
» Trust the prover
o e Formally prove it
o e Build it around a small trusted
......... kernel

e Have a small dedicated checker

Pgeﬁga\l;g;? Trace or proof Verify the prOOf

Easily trusted code

How to trust a machine-generated proof

&@#%!I§u*
£oa€épyiioess
06 ‘Beemt~
L | ‘Human readable .

~ « Have a small dedicated checker

Pge;ga\lllyeb;.g Trace or proof Verify the prOOf

Easily trusted code

How to trust a machine-generated proof

&@H%!§u*
£a€epyiioess
[0 &zt~

. ~ « Have a small dedieated checker
Brver Trace orproof ~ Verify the proof

Prover 2

Easily trusted code Broad range

How to trust a machine-generated proof

&@H%!§u*
£a€epyiioess
[0 &zt~

N ~ + Have a small broad-range checker

Pgeﬁga\",yeb? Trace or proof verify the proof

Classical prover

Intuitionnistic prover Model checker

Easily trusted code Broad range

How to check a machine-generated proof

- Have a small broad-range checker
~ verify the proof

&@#%!§u* :
£oa€épyiioess . : :
" ecemn - ~Small while « understanding » multiple

S provers?

Potentially big
Prover Trace or proof

Checker Classical prover

E/fJ/Eé

Intuitionnistic prover

/

Model checker

Easily trusted code Broad range

How to check a machine-generated proof

&@H#%!§u*
£a€epyiioess
U6 &aem -

Potentially big
Prover Trace or proof

Intuitionnistic prover Model checker

Easily trusted code

Broad range

The kernel of checker: focused LK

i, a
4y,
Tuy,
LL]

FR !

4,
11y,
JELLTTY 1 11T TSRO,

272

LV

L

L

(Unfocused) sequent calculus

o 1
:l.-lli---ll---ll

- C:fl

RECEPTION

327
1 r- N EEN N N EEN N Eei 11 ..

FR_‘-..---II

i 272

Focused sequent calculus 10

Easily trusted code Broad range

The kernel of checker: focused LK

Focusing « Polarities <« Invertible

~ Conclusion
g
- Premise -

-O0.B;, L O B.B
—o B vE €2 k@ﬁl{xg
s 1 2 « L2] 2

11

Easily trusted code Broad range

The kernel of checker: focused LK

Focusing < Polarities

Simple notations. If you want the connective (or atom) to be subject to
 Invertible rule => give negative polarity
e Non (necessarily) invertible rule => give positive polarity

y N
Chose left!

Yes! \

I'm p05|t|ve!‘/x"
\\%7% —

-6, By, By
-FO&,BV By

12

Easily trusted code Broad range Sound interaction

The kernel of checker: focused LK

Focusing < Polarities

Where there is a choice,
the checker can be

guided. Without
leading it to errors?

/// /
y 4
-0,B; e (1.2) - O, By, B,
(2 . =
-©,B, VB, * -O,B; VB,

13

Easily trusted code Broad range Sound interaction

The kernel of checker: focused LK

Focusing

Organizing proofs in layers of negative and positive (focused) phases

Negative phase Focused or positive phase
Sequents : Sequents : ‘
~ More
f ~ mnemonics
FenT ey P

Only invertible rules
No loss of information

Only non invertible rules
Selection of information
Same input => same output Output depends on choices
Rules applied in any order to negative Rules applied hereditarily on
formulas subformulas of P

14

Easily trusted code Broad range Sound interaction

The kernel of checker: focused LK

From the completeness of LKF:

. A e . TAP
LK

LKF

Where AP is the a polarized version of A (exponentially many such versions)
e.g. IfA=av bAc A" can be either

avbAhN c,aVbhc aVv' b A g elc.
(The atoms are also polarized)

From now on, + is taken to be I—LKF and formulas are considered to be
polarized and in negation normal form.

15

Easily trusted code Broad range Sound interaction

The kernel of checker: focused LK

Negative phase
FetA T FONB,I" FONTDT FONMA B, I’
Fett, I FONTAN B, I FeNtf, I FeNMAV B, I’
Feq|y/x|B,I" y not free in ©,1", B
FefvVe.B, I’

Focused or positive phase
FOyIBI FO|B FOUYB; iec{l,2} FO|[t/z|B
Fe |ttt FO| B1 AT By el BV B e 3x.B i

Easily trusted code Broad range Sound interaction

The kernel of checker: focused LK

Negative phase
FeTA I FONB,I" FONT FONMA B, I
Feqft, I’ FONTAN B, I Fef, ' FOTAV B, I

Feq|y/x|B,I" y not free in ©,1", B

FefvVe.B, I’

In between
Fe,C I’ FPO|P _ FOfTN o
—O1C.T store “P.oq- decide “OUN release P, 0P, 1nat

Focused or positive phase
FOyIBI FO|B FOUYB; iec{l,2} FO|[t/z|B
Fe |ttt FO| B1 AT By el BV B e 3x.B -

Easily trusted code Broad range Sound interaction

The kernel of checker: focused LK

Negative phase
FeTA I FONB,I" FONT FONMA B, I
Feqft, I’ FONTAN B, I Fef, ' FOTAV B, I

Feq|y/x|B,I" y not free in ©,1", B

FefvVe.B, I’
| Only contract on positive
\\ In between
FO,Ch I kp,e‘upd y FONN -
—O1C.T store “P.oq- ecide “OUN release P, 0P, 1

Focused or positive phase
FOyIBI FO|B FOUYB; iec{l,2} FO|[t/z|B
Fe |ttt FO| B1 AT By el BV B e 3x.B s

Easily trusted code Broad range Sound interaction

The kernel of checker: focused LK

Negative phase
Fe, A I' -, B,I' FE, I Fe, A/B, I
Fe, t, I e, AN B, I’ e, f,I e, Av B, I’

FO, [y/xz]B,I" y not freein ©,I', B

Fe, Ye.B, I
| Only contract on positive |
In between
-e,C, T -PO,P &, N -
store decide nit

Fe, N "t Fop e, P

3

e, C I FPe., .

Focused or positive phase
F@aBl F@aBg |_@._, Bi 26{1,2} |_91 [t/iE]B
e, tr Fe, B1 AT B I—Q,Bl\ﬁ'Bg -, dx.B 19

Easily trusted code Broad range Sound interaction

Back to Checking, LKF® (augmented LKF)

Ais atheorem ! - Polarize

. T A

&@#%!§u*
£a€epylioessd

(6 8zt~

Describe

20
Trace or proof

Easily trusted code Broad range Sound interaction

Back to Checking, LKF® (augmented LKF)

Ais atheorem ! - Polarize

= F.TA

But how to feed information, when needed,
to the kernel?

&@#%!§u*
£a€epylioessd

(6 8zt~

Describe

21
Trace or proof

Easily trusted code Broad range Sound interaction

Back to Checking, LKF® (augmented LKF)

Ais atheorem ! - Polarize

= F.TA

But how to feed information, when needed,
to the kernel?

&@#%!§u*
£a€epylioessd

(6 8zt~

Describe

e F@UBz iE {112}
EF 6| BV B

22
Trace or proof

Easily trusted code Broad range Sound interaction

Back to Checking, LKF® (augmented LKF)

\A is a theorem/!f) Polarize

= F.TA

But how to feed information, when needed,
to the kernel?

&@H%!§u*

£o€epylicess -
-6 eaenu - Expert !

Describe

- Z'+O| B; i € {1,2} Ve "(:,:"*z')
= k@UBlv‘fBg

Chose Ieft 23

Trace or proof

Easily trusted code Broad range Sound interaction

Back to Checking, LKF® (augmented LKF)

A s a theorem/!) Polarize

= F.TA

But how to feed information, when needed,
to the kernel?

&@#%!§u" Describe What if the information is not there?
£ g€epyiicess
06" &eem| - Expert i
o ErOyB; ie{l,2} V. "(:q:"qz')

F@UB&\#BQ

" Chose left...or...or right.. Deﬂmtely one of these two...

24
Trace or proof

Easily trusted code Broad range Flexible reconstruction Sound interaction

Back to Checking, LKF® (augmented LKF)

A s a theorem/!) Polarize

= F.TA

But how to feed information, when needed,
to the kernel?

&@#%!§u" Describe What if the information is not there?
£ g€epyiicess
06" &eem| - Expert i
o ErOyB; ie{l,2} V. "(:q:"qz')

F@UB&\#BQ

" Chose left...or...or right.. Deﬂmtely one of these two...

25
Trace or proof

Easily trusted code Broad range Flexible reconstruction Sound interaction

Positive phase

 And we do the same each time we may guide the
proof checking!

te(=) el B Z2 01 B Ne(=, E1, Z2)
EFOytT E+O| B AT By
ErFOUB;, ie{l,2} V.(Z=,Z49) Z'relt/z]B 3.(E=,=1)

EFO |y BV B E+6O|3z.B

26

Easily trusted code Broad range Flexible reconstruction Sound interaction

Positive phase

 And we do the same each time we may guide the
proof checking!

te(2) E1FOUB E2FOUBx A(E, E1,E2)
EFOet EF O | By At By
E'-O4B; i€{l,2} V.(Z,5,1) =+ 6| |t/z)B 3(:,:’,)
E+ OBV B =reld

N

e The witnhess is !
 The witness tis in the set S, but | don't know which...
 The witness is ... wait, what withess?

27

Easily trusted code Broad range @ Flexible reconstruction Sound interaction

Positive phase

 And we do the same each time we may guide the
proof checking!

te(=) =1 Ol B =2 @ B2 Ne(Z, =1, Z92)
Zrel|t EFO| B At By
E'relyB; ie{l,2} Ve(E,Z4) ErOelt/z]B 3.(E,51)
AS OBV B, A A-0y3.B E
Backfrack! Unifidation!

28

Easily trusted code Broad range | v/ | Flexible reconstruction Sound interaction

Positive phase

 And we do the same each time we may guide the
proof checking!

ErOt ZF©e| B, AT B,
E'F 6| B; i€ {1,2} Ve(E, E" 1) E'+6|t/x]B 3.(5,5,1)

EFO6 BV B Er 6y 3

Let's give him the wrong witness!

\
\

29

Easily trusted code

Broad range

v

Flexible reconstruction

Negative phase

Negative phase needs no steering. Simple

bookkeeping :

Ererr f(=,2)

It went left

ErOqQ [, r
ErFONA BT V(2,5

=1 AT

It went right

Sound interaction

E+FOEONTAV B, I’

EFONMAN B I’

_QI—QﬂBF Ne E,El,.—:ﬁ)

E'FON[y/x|B, I’ Y.(=,Z') wynot freem =,0,IB

SOV B, I’

Clerk
2

Easily trusted code Broad range | v/ | Flexible reconstruction Sound interaction

Negative phase

Negative phase needs no steering. Simple
bookkeeping :

Ererr f(=,2)

Part relative to

the left branch

O [, r
ErFONA BT V(2,5

=1 AT

" Part relative to -
. the right branch

l—-ql—- W —

E+FOEONTAV B, I’

ﬁl—@ﬂAﬂ B, I

E'FON[y/x|B, I’ Y.(=,Z') wynot freem =,0,IB
E+ONVe.B,. T

Clerk
1

Easily trusted code Broad range | v/ | Flexible reconstruction

Negative phase

Negative phase needs no steering. Simple
bookkeeping :

'f\':No work done\:} 'f\':No work donej}

ZEOND fo(5,E) EZ FORAT E OB A

Sound interaction

l—-ql—- W —

Zrenf. T SFONAN B, T

EFONAB,TIT V.(E,Z) = ON[y/z|B,I" Y.(=,Z") ynot free111 =6.,I''B

EFONTAV B, I SO NWe.B, I

Clerk
32

Easily trusted code Broad range | v/ | Flexible reconstruction Sound interaction

Negative phase

Negative phase needs no steering. Simple

bookkeeping :
EFOND f(2,E) EZ FONAT = FONB,I AJ(Z,E,Z)
Erenf,T EFOFAN BT
='FONA B, I V(E,Z) EvrOeqy/x|B, I V.=, 5 ynotffée\inE,@,F,B
EFreONVAvV B, I’ ErFOfVe.B, I

~ Succeed on
- anyinput 5,

Easily trusted code Broad range | v/ | Flexible reconstruction Sound interaction

te(=) =10 B Zo 60| B2 Ne(Z, =1, Z2)
Sreytt ZF OB A" B
E'FOy B ie€{l,2} V(Z,Z49) E'rOLt/]B 3.(E,E 1)
EFO| BV B EF6©|3z.B
=SB = OB cut.(=,0, 51,52, B)
Zroeq- cut
E'FONN release.(=Z,Z") init.(=,0,1) (l,mP,) e ©
ZEFOUN release Zro|r, init
E'FO|P decide.(Z,0,Z"1) (I,P)€ © positive(P)
Zron. decide
Eroenr fJ(=,5) E1FONMTATDT EEFONB, I A=, =1, 52)
ZFONf, I ZEFONMAN B, I’
E'FONA BT VI(EE) EFON[y/z]lB. [V.(E,Z') ynot freein =,0,I, B
ZFONTAV B, I' O Ve.B, I
Z'EO,lCY I store.(=,C,=Z",1)
EINCYYavs ECEYoNG store

Here, P is a positive formula; N a negative formula; P, a positive literal; C' a positive
formula or negative literal. In the cut rule, the expression —B is the negation of B
(defined on connectives as the usual first-order classical negation with polarity flip, on

literals as a single polarity flip).

Easily trusted code Broad range | v/ | Flexible reconstruction ‘7 Sound interaction

O B FO | B2
F@{Lt"_ I—QLLBlf\'i_Bg
Fe | B; ie{1,2} FOl|t/x]B |
FO| BV B Ol 3xz.B
FONB FeA B ot
Feq-
FONN | | P €6
“OUN release ~o P, init
FOLP P € © positive(P)
—o1. decide
FeN T FeN AT FeN B, I’
FeNf I FONTAN B, I’
FONTAB, I FOMN|y/x]B, I y not freein ,0,1, B
FENTAV B, I’ FONVxe.B, I
Fe, C {1
O, T CEYeN) store

Here, P is a positive formula; N a negative formula; P, a positive literal; C' a positive
formula or negative literal. In the cut rule, the expression —B is the negation of B
(defined on connectives as the usual first-order classical negation with polarity flip, on
literals as a single polarity flip).

VEasily trusted code Broad range | v/ | Flexible reconstruction | v | Sound interaction

Coding the kernel

* Every rule is a Horn clause in AProlog, for example, decide
rule:

E'FO| P decide.(Z,0,Z"1) (I,P)€ @ positive(P)
EFO1-

decide

VOVEVE'VPVYI. async(Z,0,[]) : — decide.(Z,0,Z' 1), memb({l, P),0), pos(P), sync(Z',0, P).

36

v/ | Easily trusted code Broad range | v/ | Flexible reconstruction | v | Sound interaction

Coding the kernel

* Every rule is a Horn clause in AProlog, for example, decide
rule:

E'FOl P decide.(Z,0,Z" 1) (I,P)€ O positive(P)
ZFOq-

decide

VOVEVE'VPVYI. async(Z,0,[]) : — decide.(Z,0,Z' 1), memb({l, P),0), pos(P), sync(Z',0, P).

If P is given, it is checked. If it is not given, member will unify
with a positive formula in the context: limited backtrack will get
to the one that works.

37

v/ | Easily trusted code Broad range | v/ | Flexible reconstruction | v | Sound interaction

Coding the kernel

* Every rule is a Horn clause in AProlog, for example, decide
rule:

o .. ='FOYP decide.(=,0,Z"1 [,LPYe @ positive(P
= v (/,: = f)r LP) P (P) decide

VOVEVE'VPVYI. async(Z,0,[]) : — decide.(Z,0,Z' 1), memb({l, P),0), pos(P), sync(Z',0, P).

If P is given, it is checked. If it is not given, member will unify
with a positive formula in the context: limited backtrack will get
to the one that works.

38

v/ | Easily trusted code Broad range | v/ | Flexible reconstruction | v | Sound interaction

Coding the kernel

* Every rule is a Horn clause in AProlog, for example, decide

rule:
 Decideon - P .
\\ . == O P decide.(=,0, =", [,LP)e @ positive(P
erythlng but/ P 14 (=r o f)r P P (P) decide

VOVEVE'VPVYI. async(Z,0,[]) : — decide.(Z,0,Z' 1), memb({l, P),0), pos(P), sync(Z',0, P).

If P is given, it is checked. If it is not given, member will unify
with a positive formula in the context: limited backtrack will get
to the one that works.

39

v/ | Easily trusted code Broad range | v/ | Flexible reconstruction | v | Sound interaction

Coding the kernel

 Every rule is a Horn clause in AProlog, for example, decide

'Ol P decjdeﬁ, =01 (I,P) € © positive(P)
ZFOq-

decide

VOVEVE'VPVYI. async(Z,0,[]) : — decide.(Z,0,Z' 1), memb({l, P),0), pos(P), sync(Z',0, P).

If P is given, it is checked. If it is not given, member will unify
with a positive formula in the context: limited backtrack will get
to the one that works.

40

v/ | Easily trusted code Broad range | v/ | Flexible reconstruction | v | Sound interaction

Coding the kernel

* Every rule is a Horn clause in AProlog, for example, decide
rule: - Read from the pointer -

R

E'+OUP decide.(Z,0,5,1) (I,P)e© positive(P)
[;,;,/E I_ 9 ﬂ :
GEREREE

decide

VOVEVE'VPVYI. async(Z,0,[]) : — decide.(Z,0,Z' 1), memb({l, P),0), pos(P), sync(Z',0, P).

If P is given, it is checked. If it is not given, member will unify
with a positive formula in the context: limited backtrack will get
to the one that works.

41

v/ | Easily trusted code Broad range | v/ | Flexible reconstruction | v | Sound interaction

Coding the kernel

 Everyrule is a Horn clause in)\Prolog for example, decide

rule: Q CaII another program 4

'Ol P decu}ee(_ 49 =1 (I,P) € @ positive(P)
EFO1-

decide

VOVEVE'VPVYI. async(Z,0,[]) : — decide.(Z,0,Z' 1), memb({l, P),0), pos(P), sync(Z',0, P).

If P is given, it is checked. If it is not given, member will unify
with a positive formula in the context: limited backtrack will get
to the one that works.

42

v/ | Easily trusted code Broad range | v/ | Flexible reconstruction | v | Sound interaction

Interaction summary

~Ais a theorem! - Polarize

Positive phase

&@#%!§u*
£a€epylioessd

(6 8zt~

D :
escribe Negative phase

Trace or proof

Easily trusted code

Broad range

v

Flexible reconstruction

v

Sound interaction

Certificate « constellation »

Describe

Expeﬂé

==

Polarize

Clerké

44

Easily trusted code

?

Broad range

v

Flexible reconstruction

The (current) aCtuaI kernel

Sound interaction

 LKU is a framework of which LKF, LJF and
MALLF are subsets.

» Can describe resolution refutation, mating,
dependently typed lambda calculus,
expansion trees, rewriting ...

* Ongoing work for LFSC, LF-modulo, tabled

proofs ...

» Delighted to work with you!

45

Future and related work

 Future work

- Fixpoints, model checkers, improving performance
- Counter-examples and partial proofs
- Better formalization of the LKU framework

 Related work

- Logosphere and OpenTheory
- TPTP
— Dedukti

46

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46

