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A b s t r a c t  

Certain aspects of the theorem proving system TPS are described. Type theory with 

X-abstraction has been chosen as the logical language of TPS so that statements from 

many fields of mathematics and other disciplines can be expressed in terms accessible to 

the system. 

Considerable effort has been devoted to making TPS a useful research tool with which 

interaction is efficient and convenient. Numerous special characters are available on the 

terminals and printer used by TPS, and many of the traditional notations of mathematics 

and logic can be used in interactions with the system. When constructing a proof 

interactively, the user needs to specify only essential information, and can often construct 

needed wffs from others already present with the aid of a flexible editor for wffso 

TPS constructs proofs in natural deduction style and as p-acceptable matings. Proofs in 

the latter style can be automatically converted to the former. TPS can be used in a mixture 

of interactive and automatic modes, so that human input need be given only at critical 

points in the proof. 

The implementations of the algorithms which search for matings and perform higher 

order unification are described, along with some associated search heuristics. One 

heuristic used in the search for matings, of special value for dealing with wffs containing 

equality, considers in close sequence vertical paths on which mating processes are likely 

to interact. A very useful heuristic for pruning unification trees involves deleting nodes 

subsumed by other nodes. It is shown how the unification procedure deals with 

unification problems which keep growing as the search for a mating progresses. 

It has been found that although unification of literals is more complicated for higher 

order logic than for first order logic, this is not a major source of difficulty. 

An example i~s given to show how TPS constructs a proof. 

This work is supported by NSF Grants MCS78-01462 and MCS81-02870. 
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w Introduction 

In this paper we shall describe certain features of an automated theorem-proving 

system called TPS which is under development at Carnegie-Mellon University, and which 

implements the ideas in [1] and [2], with which we assume familiarity. 

w L o n g  t e r m  g o a l s  and d e s i g n  p h i l o s o p h y  

There is abundant evidence of the need for new intellectual tools to aid mankind in 

dealing with the complexities of the modern world. Among these tools must surely be 

some designed to facilitate logical reasoning. Since the construction of proofs is one of 

the best understood aspects of logic, work on automated theorem proving provides a 

natural starting point for research on the more general problem of automating logical 

reasoning. 

Naturally, one must expect that the early stages of work on automating reasoning will 

produce systems which can be successful only on fairly simple problems. Nevertheless, in 

designing such a system it is helpful to keep in mind the features and capabilities which 

one would like it to have in the long run, and to provide an adequate framework for the 

long term developments which are anticipated. One of the important decisions which 

must be made at an early stage concerns the language of logic to be used. 

As one envisions the sophisticated question-answering systems of the future, it seems 

clear that scientific knowledge at various levels of abstraction will gradually be 

incorporated into them. Since mathematics is the language of science, artificial 

intelligence systems which use logic in a sophisticated way will surely come to be 

regarded as severely limited if they cannot handle mathematics on a conceptual as well as 

a computational level. Even if mathematics is not used explicitly, the sort of logical 

abilities needed for mathematics are vital for many sophisticated applications of logic. For 

this reason, one of the objectives in the development of TPS is to obtain a system in which 

mathematics can be expressed naturally and in which mathematical reasoning can be 

(partially) automated. 

Of course, mathematics provides an ideal environment for research on logical 

reasoning. Mathematical statements are customarily expressed in ways which make their 

logical structure very clear, and mathematical arguments are customarily carried out with 

an attention to logical detail unparalleled in any other field. The theorems of mathematics 

exhibit an enormous variety of subject matter and complexity. Thus mathematics 

provides a wealth of ready-made examples which can be used in the study of ways to 
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increase the efficiency of a computer's deductive apparatus. 

In order to provide for a wide variety of possible future applications, TPS needs a 

universal language of logic in which virtually any mathematical statement can be 

expressed. For reasons which we shall discuss only briefly here, a formulation of type 

theory with X-notation due to Church [3] has been chosen as the logical language used by 

TPS. Mathematical statements can be translated rather directly into this language, and 

many sets and functions have names in the language, so no axioms concerning set 

existence (except an Axiom of Infinity and the Axiom of Choice, where appropriate) are 

needed. Of course, to use type theory one must assign a type to each mathematical 

entity, but mathematicians naturally do make intuitive distinctions between different types 

of mathematical entities. Indeed, type symbols provide important syntactic clues which 

enable an automated theore.m-prover automatically to eliminate from consideration 

expressions which would be permitted in languages such as axiomatic set theory, but not 

in type theory, and which a working mathematician would reject almost immediately as 

meaningless. This is particularly valuable for the unification algorithm, where many 

inappropriate substitutions are avoided via type considerations. 

Actually, it has been found that unification algorithms for type theory ( [4], [6]), which 

combine }~-conversion with substitution, are powerful tools which enable one to find 

proofs of certain intricate theorems (such as Cantor's Theorem for Sets) which are hard to 

prove automatically by other means. The availability of these algorithms constitutes a 

strong argument for the use of type theory. 

The basic logical approach to theorem proving underlying the design of TPS is 

discussed in [1] and [2], where the formal discussion is limited to the problem of proving 

theorems of first order logic. While TPS is in principle logically complete in automatic 

mode only for proving theorems of first order logic at present, it has a number of facilities 

for handling wffs of higher order logic, such as the interactive construction of proofs in 

natural deduction style, and unification. While it may seem premature to be concerned 

with automating type theory when there is still so much to be done to develop systems 

which can handle first order logic satisfactorily, the use of type theory has proved to be 

very advantageous even at the current stage of research, since there are numerous 

theorems, such as Cantor's Theore~n, which can be expressed in type theory much more 

naturally than in first order logic even though their proofs involve essentially only the 

techniques of first order logic combined with higher order unification. 

TPS is both a system under development and a research tool. The program is written in 
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LISP and uses about 18,000 lines of code. In order to maximize its usefulness, we have 

tried to make it serve those who. use it, rather than asking them to adapt to its 

requirements. Thus, we have devoted considerable effort to making the computer accept 

input convenient for people to provide, and provide output convenient for people to use. 

Much of the traditional notation of mathematics and Iog!c can be used in communicating 

with TPS. In order to achieve this, TPS had to be given the ability to handle the many 

special symbols which are used in mathematics and logic. This required a sizable amount 

of hardware and software support. 

w Support for special characters 

TPS is written in CMU LISP, a descendant of UCI LISP. The system uses Concept 100 

terminals and a Xerox Dover printer, both of which support multiple character sets. Two 

auxiliary sets of 128 characters were developed by us for the terminals. These sets 

contain Greek, script and boldface letters, plus many mathematical and logical symbols. 

Some characters are available as subscripts and superscripts. The Dover is capable of 

printing all these characters and many more. In order to use these characters, several 

improvements to the standard LISP input and output facilities have been made. For 

example, an input facility called RdC was added to LISP so that special characters could 

be entered and translated to a representation suitable for LISP. 

The Concept terminals can also define windows, read and write the cursor position, 

and insert and delete both characters and lines. These capabilities permitted us to write 

two text editors for use in TPS. The scratch pad editor is a very simple editor relying on 

the terminal's local screen editing. A second, more powerful editor called VIDI is a 

screen-type editor, much like EMACS, which supports special characters, and permits 

such text to be stored and retrieved from disk storage. 

TPS can also produce hard copy images of text containing special characters by 

preparing a manuscript file for the document compiler SCRIBE [7]. This typesetting 

language permits access to numerous character sets and many formating features. The 

result of compiling such files is a second file which can be printed on the Dover. Files can 

be made which permit the user's interaction with TPS to be redisplayed on the terminal 

screen. 
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w T i l e  T P S  i n t e r f a c e  w i t h  t h e  u s e r  

TPS has two representations for wffs. The internal representation is a linked list whose 

structure mirrors the structure of the wffs found in [3]. This representation is very 

convenient for computing, but it does not resemble conventional notation of mathematical 

logic because of its syntax and lack of special characters. The TPS user deals with an 

external representation of wffs which is much more convenient to read and type. 

The external representation uses both brackets and Church's dot convention to specify 

scopes of connectives. Function symbols and predicates can be declared to be infix 

instead of simply prefix, which permits a more natural rendering of such symbols as (E, 

+, and =.  Symbols are handled by first assigning each character a name and then giving 

each symbol a list of character names, called its face. For example, the quantifier ]1 has 

the internal name EXISTS1, and this has the face (EXISTS SUB1), for the two 

characters used to represent this symbol. TPS can both print this symbol with the correct 

characters and find its occurrences within text typed by the user. Text containing special 

characters can be input by both RdC and the VIDI  editor. The internal name of a symbol 

is used if a device is being used on .which special characters are not available. 

The fact that wffs are represented within higher order logic proves quite useful, even 

when we restrict our attention to first order wffs. Abbreviations can be defined very 

conveniently by using ~.-abstraction. For example, SUBSET is defined by the wff [~Poa 

,~Qoa V x .  Px 3 Qx]. Thus, instantiating SUBSET is done simply by substituting this term 

for the occurrences of C_ in the wff, and then doing X-contractions of the expression. 

Such definitions can be stored in libraries as polymorphic type expressions. Their actual 

type is determined from the context. Individual users of TPS can have their own libraries. 

A structure editor is available which permits the user to edit the internal representation 

of a wff. In this editor the user can issue commands to move to any subexpression of the 

original wff and change it by placing it into various normal forms, changing bound 

variables, extracting subformulas, instantiating abbreviations, etc. Although the user is 

editing the internal representation, it is the external representation which is printed out to 

the user at each level of the editing. This editor also has a convenient way of using the 

two text editors on subformulas. 

The user can specify a wff in many different ways. The user can refer to other wffs or 

their subformulas, or the result of processing other wffs. For example, all of the following 

ASSERT commands will place into the current proof outline a line numbered 4 containing 

the wffspecif ied by the second argument: 

54 



>assert 4 "FORALL X(OA) . [POWERSET X INTERSECT Y(OA)] SUBSET 
POWERSE[ Y" 

>assert 4 
RdC>VXo. 

>assert 4 

>assert 4 

>assert 4 

>assert 4 

rdc 
[P . X n Yo~] C_. p Y 

pad 

thml. 

(neg (skelem thml)) 

( l o c  2) 

In the first command, the wff is entered as a string without special characters. In the 

second command, the user requests the RdC prompt and then enters the wff. The third 

command places the cursor in the scratch pad editor and the user then either edits a wff 

already present in the pad or types another one. When the contents of the pad is the 

desired wff, pressing the appropriate key on the Concept will send the pad's contents to 

the wff parser. In the fourth and fifth commands a previously defined wff called THt41 is 

used. The last command calls the LOC function, which is much like the structure editor 

but is simply used to locate a subformula of a given wff; in this case, it returns a 

subexpression of the wff in line 2 of the proof. 

TPS can print wffs in several different fashions. For example, they can be pretty-printed 

so that the arguments of infix operators are indented appropriately. Also, TPS can 

produce two-dimensional diagrams of wffs in nnf such as are found in [2]. When these are 

too big to fit on one sheet of paper, they are laid out so that several sheets can be pasted 

together to make one large diagram. 

The user of TPS can make many choices about such matters as the way wffs are 

displayed, the amount of information that is printed out during the search for a proof, the 

search heuristics and parameters that are used, and the degree to which TPS functions in 

automatic or interactive mode. These choices are made by changing the values of certain 

variables called flags. A command called REVIEW provides help for the user who wishes 

to recall what flags are available, what they mean, and what their current values are. 

TPS also has help facilities to remind the user of the correct format for various 

commands, the commands available in the editor, etc. 

The user can cause a status line to be displayed on the terminal screen. This shows 

which lines of the proof are sponsored by each planned line, and is automatically updated 

as the proof is constructed. 

55 



w O r g a n i z a t i o n  o f  t h e  p r o o f  p r o c e s s  

Proofs in TPS can be constructed in natural deduction format or as p-acceptable 

matings (see[2]), and both styles of proof can be constructed automatically or 

interactively. When constructing natural deduction proofs, TPS builds and progressively 

improves proof outlines (see [1]), which are fragments of proofs in which certain lines 

called planned lines are not yet justified. The transformation rules described in [1] are 

implemented in TPS as commands which can be used interactively to fill out the proof. 

Since the context often suggests how these commands should be applied, by setting 

appropriate flags and letting TPS compute default arguments for commands, the user can 

let this process proceed automatically until decisions are required. When input is needed, 

wffs can be specified with minimal effort as described above, and TPS checks for errors 

and allows corrections. 

Instead of proceeding interactively, one can send the wff to be proved in a planned line 

to the mating program. When a p-acceptable mating is found, it is converted into a plan 

and used to construct a natural deduction proof of the planned line as described in [1]. 

This process is illustrated with an example in w Even when a plan is being used, the 

user can intervene to make decisions concerning the order in which rules are to be 

applied and thus control the structure of the proof. 

Thus, the user can construct some parts of the proof interactively or semi-automatically 

and others automatically. Plans as well as proofs can be constructed interactively. 

The mating program can also be run as an independent entity. 

All of the rules of inference of natural deduction mentioned in w of [1] are available a8 

deducing rules (see [1]). In addition, there is an ASSERT command which can be used to 

insert into a proof a theorem which the interactive user obtains from a library of theorems 

or simply asserts. Deducing rules are used to construct proofs down from the top, while 

planning rules essentially provide for working backwards to build a proof up from the 

bottom. By combining these rules TPS or the interactive user can work both forward and 

backward. This facilitates the construction of the proof and the implementation of 

heuristics to control its style and structure. Of course, some of the deducing rules (such 

as Universal Generalization) are used only in interactive mode, since in automatic mode 

TPS inserts the same lines into the proof by the use of appropriate planning rules. 

At least one transformation rule is available to deal with every possible form of an active 

or planned line which is not a literal. Thus, a number of special forms of Rule P (see [1]) 

are available, and are invoked when appropriate. Examples of these are to infer A and B 
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from [A A B], to infer A from ~- -A,  and to push in negations. At present, deduced lines of 

the form [A ~ B] are replaced by [NA V B], and disjuctions are broken into cases using the 

rule P-Cases of [1], though this sometimes yields inelegant proofs. When all quantifiers 

and definitions have been eliminated from a planned line and the active lines which it 

sponsors, TPS invokes the unrestricted Rule P to infer the planned line, thus providing the 

essential link between the top and bottom parts of the proof of the planned line. It is 

anticipated that more elegant proofs will be constructed in automatic mode as we learn to 

make more sophisticated use of the information in plans, especially the matings. 

w Mating search 
The mating program first processes the wff to be proved by removing all abbreviations, 

negating, miniscoping (when appropriate), skolemizing, and transforming to negation 

normal form. The final wff contains only universal quantifiers, conjunctions, disjunctions, 

and negations with atomic scopes. TPS then attempts to derive a contradiction from this 

wff by searching for a p-acceptable mating for each top-level disjunct in turn. As in [2], 

we call any set of pairs of literals a potential mating. A vertical path is fixed if it contains a 

pair of mated literals. A potential mating is complete if each vertical path is fixed, 

otherwise it is partial. A p-acceptable mating is a complete potential mating for which a 

substitution exists, which makes mated literals complementary. Thus, a contradiction is 

derived, and by Herbrand's theorem the original wff is valid. 

The first step in the mating search is to create a connection graph, which stores 

information useful in constructing the mating. As in a strictly first order connection graph, 

an arc is directed from literal A to literal B whenever ~A and B are unifiable, i.e., whenever 

A and B are c-unifiable. Type theory adds additional complications to the construction of 

the graph: 

�9 It is not a priori obvious which pairs of literals can be c-unified, or which is to 
be the "negative" literal. Because the substitution term may contain ~ ,  it 
may be possible to c-unify A and B when either, neither, or both of the literals 
is a negation, or to c-unify the literals in both orientations. Of course, a path 
can be fixed by mating the literals in either orientation, but different 
orientations produce different substitutions. 

�9 Unification in type theory is in general undecidable, so the algorithm may not 
terminate. We deal with this problem by limiting the depth of unification 
search at the time the grap~ is created. 

�9 Even when a unifier exists, there may be no most general unifier of two wffs in 
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type theory. In this case there will be branching in the unification tree. 
However, during the construction of the connection graph we pursue only 
those parts of the unification problem requiring no branching. 

Each arc in the connection graph.is labeled with a partial c-unifier of its two literals. 

The next part of the process is to choose a vertical path in the wff containing no mated 

pair, choose from the connection graph a pair of literais which fixes that path, add it to the 

mating under construction, partially unify (still allowing no branching in the unification 

tree) the set of disagreement pairs representing the partial mating, and then iterate the 

above process until a complete potential mating is constructed, backtracking as required 

by failures of mating or unification. The same partial mating may arise several times in the 

search process, but TPS considers it only once. When a completed mating is obtained~ 

the full power of unification is allowed, occurring in parallel with the construction of a new 

mating. After all potential matings of a wff have been considered, TPS replicates certain 

quantifiers and their scopes, and seeks a mating for the enlarged wff. Thus it alternates 

between the construction of a single mating, and unification work on that partial mating 

and on any number of previously constructed completed matings, which may be from any 

number of replication levels. The user can control the relative effort devoted to the mating 

and unification procedures. 

The search for a mating may cause certain quantifiers to be duplicated inappropriately, 

so after a p-acceptable mating has been found, TPS simplifies the replication scheme if 

possible, and makes appropriate adjustments of the substitutions and mating. Such 

simplification avoids certain ambiguities which might otherwise arise when Skolem 

functions are eliminated from substitution terms in the process of constructing a plan from 

the mating. It also eliminates redundancies which would otherwise occur in proofs 

constructed from the mating. 

We have tried a number of different heuristics for the choice of an unfixed path and a 

pair to fix it. TPS tries to fix first the paths where the choices are most constrained. The 

default procedure for choosing paths is to focus on those with the smallest number of 

matable pairs with respect to the current partial mating. 

Heuristics are also available to deal with certain special situations, such as those in 

which equality occurs. Equality is.defined as [~x ~y VQo, . Qx ~ Qy], and a positive 

equality statement occurs as vQ[NQX v QY]. When one mates one of these literals, one 

constrains the possible substitutions for Q and limits the possible mates for the other 

literal. This motivates the following heuristic. 
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Suppose that the wff for which one is seeking a mating contains a subformula [K v L], 

where K and L are conjunctions of literals, that P is a path which passes through K, that A 

and B are !iterals on P,-with A in K but B not in K, and that the mating process has 

tentatively decided to mate A with B. Of course, there is another path P' which is like P 

but which passes through.L instead of K. P' must also be given a pair of mated literals, 

and we might as well assume that at least one of these is to be in L, since otherwise the 

mated pair which fixes P'  also fixes P, and the mating of A with B is unnecessary. If each 

literal in L has a variable in common with A or with B, then the substitution required to 

mate A with B may constrain the possible ways of fixing P ' .  Indeed, if this constraint is so 

strong that there is no way to fix P ' ,  then one should not mate A with B. This leads to the 

following heuristic: having fixed P by mating A with B, consider next all variant paths P'  

which satisfy the given description, and see if they can each be fixed. This may require 

repeated calls on this heuristic. In this way, one may be able to reject bad partial matings 

sooner rather than later, which is the essence of good heuristic search. 

w Unification search 

The unification scheme used by TPS is that described by Gerard Huet in [4], with only 

minor modifications. Each mating is represented by a list of pairs of wffs which require 

unification. We call each such pair a disagreement pair (dpair), and the whole list a 

unification node. Each wff of type theory is of the form [Xw 1 ..... Xw". hE t . . . . .  E= ] ,  where n, m 

>__ O. We call h the head of the wff, E 1 ..... E m its arguments, and {w 1 ..... w n} its binding. We 

cal la wff rigid if its head is either a constant or a member of its binding. Non-rigid wffs are 

said to be f/exib/e. The head of a rigid wff cannot be altered by substitution, so if two rigid 

wffs are to be unified, the heads must be identical (modulo alphabetic changes of bound 

variables). Huet's unification procedure employs two alternating subroutines, S imp 1 and 

Match. Simp] reduces a node by breaking up all compatible rigid-rigid dpairs into the 

subproblems represented by their arguments, or returns failure upon finding non- 

compatible rigid-rigid dpairs. Match suggests a set of substitutions for the flexible head 

of a flexible-rigid dpair. If that set contains more than one substitution, it necessitates 

branching in the unification tree to create one node for each possibility. The non-unit sets 

of substitutions are called branching sets. Since we are only interested in the existence of 

a unifying substitution, a node consisting only of flexible-flexible dpairs is considered to 

be a terminal success node. 

SIMPLIFY is a procedure based on Huet's Simpl with the following additions: 1) we 

59 



include only one dpair from each equivalence class with respect to alphabetic changes of 

bound variables; 2) we recognize the trivial unifiable fixed point problem <x, E> where x 

does not occur free in E, with the substitution of the most general unifier x-*E; 3) we 

recognize some non-unifiable fixed point problems, including those suggested by Huet in 

3.7.3 of [5]. MATCH is precisely Huet's algorithm of the same name, offering a choice of 

either the T/-rule or non-~/-rule substitutions. 

7.1 .  Search heurist ics for full unif icat ion 

Once we have a complete description of the unification problem, Le., the potential 

mating is complete, we search for a unifier with the full force of Huet's algorithm. For 

each variable which is the flexible head of a flexible-rigid dpair, one substitution set is 

computed by applying MATCH to the first flexible-rigid dpair in which that variable occurs 

as a flexible head. Of course, such substitutions can be stored- between iterations of the 

algorithm to avoid recomputing. All substitution sets which reduce to singletons after 

SIMPLIFication are applied immediately. If the search must branch because all 

substitution sets have multiple members, we choose a set causing the least branching. 

Unapplied branching substitution sets are not discarded, but passed on to each 

descendant. Each node also has associated with it a list of compound substitutions for the 

variables in the original mated pairs. 

Surprisingly often, one encounters a unification node M which subsumes another node 

N, Le., M is a subset of N (modulo alphabetic changes of bound and free variables): In 

this case any unifying substitution for N, with the appropriate alphabetic transformation, 

will also unify M; thus, since we are interested only in the existence of a unifier, it is 

sufficient to consider M. We detect this relationship between nodes quite efficiently using 

a hash table on dpairs. When N is a newly-created node there is no question as to the 

right course of action: we simply eliminate N from further consideration. Of course, if N is 

the sole descendant of M this terminates attempts to find a unifier for M. However, when 

N, a proper superset of M, already exists in the unification tree and possesses 

descendants, it may well be that the leaves of the tree under N represent more progress 

toward the ultimate unification than does node M. It is not clear that the best action is to 

delete N and all its descendants (except, possibly, M), though that is our current strategy. 

60 



7.2. Search heuristics for unification on partial matings 

We also perform unification on nodes representing partial matings. In order not to have 

multiple nodes to which a dpair representing a newly mated pair must be added, we allow 

no branching during unification until the mating is complete. Since the mating is 

incomplete, So also is the unification problem, so a node containing only flexible-flexible 

dpairs is not a terminal success node. Also, since the partial mating might well be a subset 

of an already completed mating though it in no sense subsumes the complete mating, the 

subsumption procedure described in the previous paragraph is applicable only when the 

subsuming node represents a complete mating. 

In building up a mating, one wants to be sure that the partial unifier for mating a new 

pair of literals is consistent with the substitutions associated with the partial mating to 

which the new pair is to be added, and one certainly wants to make use of the work 

towards unification that one performed in producing the connection graph. When a pair 

of literals is added to the mating, therefore, we want to merge the substitutions labeling 

the arc between them in the connection graph with the substitutions already associated 

with the mating. Fortunately, the substitutions produced by Huet's algorithm are very well 

behaved. Given two substitutions (v---~T 1) and (v--~T z) for the same variable v, the 

substitutions are compatible iff the dpair <T t, TZ> does not fail under SIMPLIFication, 

since T 1 and T z contain only new and distinct variables. 

7.3. Experience with higher-order unification 

Because the higher order unification algorithm constructs a search tree with potentially 

infinite branches, it might be expected to place an unreasonable computational burden on 

a theorem prover. However, our experience suggests that this is not the case when the 

algorithm is implemented as described above. The difficulties we have encountered in 

trying to prove various theorems have generally been attributable more to the complexity 

of the search for a mating than to the complexity of the unification process. 
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w An example 
We shall now demonstrate several features of TPS by having it prove THM87: 

3w V̀1 3q .[`1 E .[P a .h 1̀ ~ u .P w .k 1̀ ] ~ .̀ 1 E .P w q 

Here E is an abbreviation for [}kX }kP . P X ] and U is an abbreviation for [~kP ;kQ }~X 

�9 [P X ] v .Q x ]. This theor(~m is neither interesting nor challenging, but permits us 

to briefly illustrate various features of TPS in the space available. Here h and k are 

function symbols and [h .i ] denotes the value of h on the argument j. For this example, 

we have suppressed the printing of type symbo/s. A dot denotes-a left bracket whose 

mate is as far to the right as is consistent with the pairing of brackets already present. 

Except for the comments in italics, the remaining text of this section is essentially what the 

user sees when TPS processes this theorem. 

The PLAN command inffiates the proof process by creating a proof outline whose only 

line is the theorem to be proved. 
*PLAN THM87 
(100) I-- 3w Vj  3q . [ j  E . [P  a .h j ] u .P w .k j ] 

.̀ 1 E .P w q PLAN1 

At this stage the justification PLAN 1 for line 100 is just an empty label. TPS chooses 100 

to be the number of the last line in the proof. This choice is easily changed, and if a given 

choice does not leave enough room for the complete proof, all the lines can easily be 

renumbered. 

The mating search program now attacks the theorem in line 100. TPS takes the wff in 

line 100, instantiates all definitions, places it in negation normal form, skotemizes it, and 

attaches names to the literals. The result is represented as a vertical path diagram: 

Vw q 

P 
LIT3 LIT4 

a [h . jA w ] [ j A  w/ V P w [k . jA w ] . j A  w 

LIT6 
.P w q . j A w  

Here dis/unctions are displayed horizonally and conjunctions are displayed vertically so 

that this diagram represents the wff: 

VwVq . l i p  a [h .`1A w].`1A w].V .P w [k .`1A w].jA w/ ^ ~ .P w q .̀ 1A w 

TPS now searches for an acceptable mating for this wff. 

Path with no mates: (LIT3 LIT6) 
t r y  th is  arc: (LIT3 LI I6)  

Par t ia l  Mating O: 
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( L I I 3 ) - ( L I T 6 )  

Path w i t h  no mates:  (L IT4 LIT6)  
Path w i t h  no mates:  ( L I t 3  L IT6)  
No p roo f  on t h i s  l e v e l  

TPS has found that there ~ no acceptable mating for this particu~r amplification of the 

theorem. Hence, R must duplicate some quantifiers. It was proved m ~ ]  that duplicating 

outer quant~ers ~ a complete although not sophisticated method to duplicate quantff~rs. 

In the diagram below, variables and fiterals are given a suffix to show which copy of the 

orginal variable or fiteral they represent. 
Duplicate outer quan t i f i e rs .  

Vwt l  q~l 
LIT3*I L IT4t l  

P a [h . jA w*1 ] [ jA  w i l l  V P w*1 [k .jA w*1 ] . j A  w*1 

LIT6r 
.P wt l  q t l  . jA w*1 

Vwt2 qt2 
LIT3t2 LIT4t2 

P a [h . jA wr ] [ jA  wt2] V P wt2 [k .jA wt2 ] . j A  w*2 

LIT6*2 
.P wt2 qr . jA wr 

In this expanded wff, TPS quickly finds an acceptable mating. 

Path with no mates: (L IT3t l  L IT6t l  LIT3t2 LIT6r 
t ry  th is  arc: (LIT3t2 L IT6t l )  

Par t ia l  Mating 0: 
( L I T 3 t 2 ) - ( L I I 6 t  I) 

Path with no mates: (LIT3r .LIT6tl LIT4t2 LIT6f2) 
t ry  th is  arc: (LIT4r LIT6t2) 

Par t ia l  Mating 0: 
( L I T 3 t 2 ) - ( L I I 6 t l ) ,  (L I I4 r  

qZ ~k . jA a ql ~h .jA a w z ~a w I ~a 

At this point, an acceptable mating and its associated substitution have been found. 

l-he r e p l i c a t i o n  has been s i m p l i f i e d .  
Old:  ( w 2 ) New: ( q 2 ) 
The s u b s t i t u t i o n  has a l so  been changed. 
Old: qZ ~k . jA a ql ~h .jA a w z ~a w I ~a 

New: .w ~a ql ~h .jA a qZ ~k . jA a 
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TPS now displays the new replicated wff and the result of instantiating its quantifiers 

using the new substitution. 

Vw 
Vqr 

LIT7t l  LIT8r 
P a [h .jA w ] [ jA  w] V P w [k . jA w ] . jA  w 

L I T g t l  
.P w q t l  . j A w  

Vqt2 
L IT7 t2  L IT8 t2  

P a [h . j a w  ] [ j A  w] V P w [k  . j A w  ] . j A w  

LIT9t2 
.P w qt2 . j A w  

LIT7t l  L IT8 t l  
P a [h .jA a ] [ jA  a] V P a [k .jA a ] . jA  a 

LIT9t l  
.P a [h . jA a ] . j A  a 

LIT7t2 LIT8t2 
P a [h .jA a ] [ jA  a] V P a [k .jA a ] . jA  a 

LITgt2 
.P a [k .jA a ] . j A  a 

An acceptable mating is:  
(LIT8 z LIT9 z) (LIT91 LIT72) (LIT81 LIT92) (LII71 LIT9 I) 

Now PLAN1 must be constructed by removing skolem functions from the substitution 

terms and computing ancestory information for variables and atoms as mentioned in [1]. 

PLANt is: 
3w Vj [3q I . [ [ P  a ~h j ] j ] v .P w [k  j ] j ] ~ .P w ql j ] 

ATM3 ~ ATM41 ATM61 
v .3q 2 . l I P  a ~h j ] j ] v .P w [ k  j ] j ] ~ .P w qZ j 

ATM3 ~ ATM4 2 ATM6 z 

The subst i tu t ion is: w ~ a 

The mating is:  
(ATM62 ArM42) (ATM32 ATM6 I) 

The rep l ica t ion scheme is: ( q 

ql ~ [h j ]  

(ATM6 z ATM4 I) 

2 )  

TPS now proceedsto bui ldtheproofout l inefromthisplan. 
>P-EXISTS a 100 
(99) 

q2 ~ [k j ]  

(ATM61 ATM3 I) 

I-- Vj 3q . [ j  E .[P a .h j ] U .P a .k j ] ~ . j  E .P a q 
PLAN2 
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(t0o) I-- 3w Vj 3q . [ j  E .[P a .h j ] u .P w .k j ] 
.J E ,P w q 

3G: a 99 

The Plan for l ine 99, PLAN2, is: 
Vj [3q I . [ [P a [h j ] j ] v .P a [k j ] j ] ~ ,P a qt j ] 

.ATM31 AIM7 ATM8 
V .3q 2 . [ [ P  a ~h j ] j ] v .P a [k j ] j ] ] .P a q2 j 

AIM3 ~ ATM9 ATMI0 

The subst i tu t ion  is :  qt ~ [h j ]  qZ ~ [k j ]  

The mating is :  
(ATMI0 ATMg) (ATM3 z ATM8) (ATMI0  A I M 7 )  (ATM8 AIM3 I) 

The rep l ica t ion scheme is: ( q 2 ) 

>P-ALL 99 
(98) 

(99)  

F- 3q . [ j  E ,[P a .h .j ] u .P a .k j ] D . j  E .P a q 

PLAN3 
F-  Vj 3q . [ j  E .[P a .h j ] u .P a .k j ] D . j  E .P a q 

VG: 98 

PLAN3 has been omitted since it differs only slightly from PLAN2. The reader may wish 

to construct it. TPS now recognizes that the present plan is existentially complex (see 

[1]), so the proof must now proceed in an indirect fashion. The symbol I is used to 

denote falsehood. 
>P-INDIRECT 98 
( I )  t I-- ~ .3q . [ j  E . [P a .h j ] u .P a .k j ] D . j  E .P a q 

Hyp 
(97)  1 I-- .L PLAN4 

(98) 3q . [ j  E .[P a .h j ] u .P a .k j ] D . j  E .P a q 

Indirect: 97 

The Plan for  l ine 97, PLAN4, is:  
[ ~ .  [3q I . [ [P  a ~h j ] j ] v .P a [k j ] j ] ~ .P a qt j ] 

ATM3 ~ ATM7 ATM8 
v .3q 2 . [ [P a ~h j ] j  ] v .P a [k j ] j ] D .P a qZ j ] 

ATM3 ~ AIM0 ATMI0 
~ J .  

The subst i tu t ion  is :  ql ~ [h j ]  qZ ~ [k j ]  

The mating is :  
(ATMI0 ATM9) (ATM3 z AIM8) (ATMI0 ATM7) (ATM8 ATM3 t) 

The r e p l i c a t i o n  scheme i s :  ( q 2 ) 

>B-NEG 1 
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(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(97) 

(98) 

(99) 

(lOO) 

[ j  E .[P a .h j ] u .P a .k j ] A .~ . j  E .P a .k j 

I-- [ [P a .h j ] u [P a .k j ] ]  j 

I-- [P a [h j ] j ] v .P a [k j ] j 

1 l-- j E .[P a .h j ] U .P a .k j 

-- . j  E .P a .k j 

~ . P a [ k j ] j  

[ [P a .h j ] u [P a .k j ] ]  j 

[P a [h j ] j ] v .P a [k j ] j 

• 

1 b- 

1 b- 

1 b- 

1 b- 

1 b-- 

Vl:2 
Def: 4 

Def: 8 

Conj:  7 

Conj:  7 

Def: 11 

D e f :  10 

D e f :  13 

R u l e P :  14 9 6 12 

I-- 3q . [ j  E .[P a .h j ] u .P a .k j ] ~ . j  E .P a q 

Indirect: 97 
I-- Vj 3q . [ j  E .[P a .h j ] u .P a .k j ] D . j  E .P a q 

VG: 98 
I-- 3w Vj 3q . [ j  E .[P a .h j ] u .P w .k j ] 

. j  E .P w q 3G: a 99 

w Sample theorems 
We here present some examples of theorems which have been proved automatically by 

TPS. Other examples were presented in Appendix B of [2]. First we give several 

definitions which are used in the theorems below. 

r# F=#] Do# is the image of the set Do# under the function F#. # is defined as: 

~F#  ADo# ~Ya 3X# .[O X ] A .Y : .F X 

C1_ (set inclusion) is defined as: 

~Po= XOoa VX= .[P X ] D .Q X 

= is defined as: 

2~X XY VQoa [Q x ] D ; Q Y 
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Theorems 

THM30A 

[go# C Vo# ] ~ . [#  F# U ] C .# .F V 

THM47A 

VX, VY .[X = Y ] ~ .VRo,, .[VZ, .R Z Z ] D .R X Y 

THM62 

[[VU, "Po,, A U ] v .VV .P V B ] ] .3X .P X X 

THM76 
[VPo, . [P Y ] D .P X, ] .VRo, .[R X ] D .R Y 

THM82 

[ [ V x  3y, .Fo, ' x y ] 

A [3x Ve 3n Vw .[So, ̀ n w ] :) .Do,,, w x e ] 
A . r e  38 V x l  Vx2, [D x l  x2 8 ] 

D .Vy l  Vy2 . [ [F x l  yl ]A .F x2 y2] 

D .D y l  y2 e ] 

D .3y Ve 3m Vw .[S m w ] D .Vz .[F w z ] D .D z y e 

THM83 

[VX 3Y "[Po, X ] D .VZ, .ERo, ' x Y ] A .P Z ] 

.3U, VV, .[P V ] ~ .R W U 
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