Peano Arithmetic and muMALL: Work in progress

Matteo Manighetti University of Bologna

Dale Miller Inria Saclay & LIX, IPP

StrIP Kick-Off Workshop University of Birmingham 8 June 2022

Technical Report: http://www.lix.polytechnique.fr/Labo/Dale. Miller/papers/birmingham2022.pdf

Art by Nadia Miller

Different approaches to arithmetic

The traditional approach to Peano and Heyting Arithmetic is

- formalized using (classical or intuitionistic) first-order logic with axioms (for equality) and an axiom scheme (for induction), and
- focuses on cut-elimination, consistency proofs, ordinal measures, and the arithmetic hierarchy.

We are instead interested in a structural proof theory approach to arithmetic. Our focus will be on

- the use of sequent calculus, structural inference rules, rule permutation, polarization, etc, and
- applications to proof search and automated theorem proving.

μ MALL and μ LK

Equality and not-equality (= and \neq) as logical connectives

- First proposed by Schroeder-Heister and Girard in 1992.
 Extended by McDowell, M, Tiu, Baelde, Nadathur, Gacek.
- Builds unification into a sequent calculus.
- ► Provides a novel treatment of bindings and enabled the ∇-quantifier.

Least and greatest fixed points (μ and ν) as logical connectives

- μMALL, μLJ, μLK
- ▶ foundation of Bedwyr, a model checker [Heath & M, 2019]
- ▶ foundations of the Abella proof assistant [Baelde et al, 2014]

Unpolarized and polarized formulas

We consider two classes of formulas.

- ► They both contain =, \neq , \forall , \exists , μ , and ν . These reference the first-order domain.
- Unpolarized formulas contain also \land , tt, \lor , ff.
- ▶ Polarized formulas contain instead \otimes , 1, \Im , \bot , &, \top , \oplus , 0.

There are no atomic formulas since there are no predicate (undefined) symbols: x = y is not atomic.

There is no negation. Everything is written in negation normal form (nnf).

If we write \overline{B} and $B \supset C$, we mean the corresponding nnf computed using De Morgan dualities.

Polarized version of formulas

A polarized formula \hat{Q} is a polarized version of the unpolarized formula Q if the following replacement carries \hat{Q} to Q:

 $\&, \otimes \hspace{0.1in} \mapsto \wedge \hspace{0.1in} ??, \oplus \hspace{0.1in} \mapsto \vee \hspace{0.1in} 1, \top \hspace{0.1in} \mapsto tt \hspace{0.1in} 0, \bot \hspace{0.1in} \mapsto \textit{ff}.$

If Q has n occurrences of propositional connectives, then there are 2^n formulas \hat{Q} that are polarized versions of Q.

Proof system for μ MALL

$$\begin{array}{ccc} \vdash \Gamma, P & \vdash \Delta, Q \\ \vdash \Gamma, \Delta, P \otimes Q \end{array} & \qquad \hline \vdash 1 & \begin{array}{c} \vdash \Gamma, P, Q \\ \vdash \Gamma, P & \Im & Q \end{array} & \begin{array}{c} \vdash \Gamma \\ \vdash \Gamma, P & \Im & Q \end{array} \\ \end{array} \\ \begin{array}{c} \vdash \Gamma, P & \downarrow & \Gamma, P \\ \vdash \Gamma, P & \& Q \end{array} & \begin{array}{c} \vdash \Gamma, P \\ \vdash \Delta, \top & \begin{array}{c} \vdash \Gamma, P_i \\ \vdash \Gamma, P_0 \oplus P_1 \end{array} \end{array}$$

$$\frac{\{ \vdash \Gamma \theta : \theta = mgu(t, t') \}}{\vdash \Gamma, t \neq t'} \quad \vdash t = t \quad \frac{\vdash \Gamma, Pt}{\vdash \Gamma, \exists x. Px} \quad \frac{\vdash \Gamma, Py}{\vdash \Gamma, \forall x. Px}$$

$$\frac{\vdash \Gamma, S\vec{t} \vdash BS\vec{x}, \overline{(S\vec{x})}}{\vdash \Gamma, \nu B\vec{t}} \nu \qquad \frac{\vdash \Gamma, B(\mu B)\vec{t}}{\vdash \Gamma, \mu B\vec{t}} \mu \qquad \frac{\vdash \mu B\vec{t}, \nu \overline{B}\vec{t}}{\vdash \mu B\vec{t}, \nu \overline{B}\vec{t}} \mu \nu$$

Induction and coinduction are given by one rule (ν). The higher-order variable *S*, in that rule, is the invariant.

The $\mu\nu$ rule is a form of the initial rule.

Eigenvariables are introduced by \forall rule and instantiated by \neq rule.

Proof system for μLK

The μLK proof system is $\mu MALL$ plus the two structural rules:

$$\frac{\vdash \Gamma, Q, Q}{\vdash \Gamma, Q} C \qquad \frac{\vdash \Gamma}{\vdash \Gamma, Q} W$$

We also consider the following two rules in the context of both $\mu MALL$ and $\mu LK.$

$$\frac{\vdash \Gamma, B(\nu B)\vec{t}}{\vdash \Gamma, \nu B\vec{t}} \text{ unfold } \frac{\vdash \Gamma, Q \vdash \Delta, \overline{Q}}{\vdash \Gamma, \Delta} \text{ cut}$$

The unfold rule is derivable in both μ MALL and μ LK.

Observations about μ MALL and μ LK

- The unfold and μ rules replace μB with B(μB): thus one copy of B become two copies.
- Baelde [2012] proved that µMALL satisfies cut-elimination and that a natural focused proof system is complete.
- We have neither a cut-elimination theorem nor a completeness-of-focusing theorem for μLK.
- We have proved that μLK (with cut) is consistent and contains Peano arithmetic.
- Girard [1991]: the completeness of a focused form of μLK would allow extracting constructive content from classical Π⁰₂ theorems. The usual ways the completeness of focusing and cut elimination are proved should not yield that result.

Separating μ MALL and μ LK

▶ The formula $\forall x \forall y [x = y \lor x \neq y]$ can be polarized as either

 $\forall x \forall y [x = y \ \Im \ x \neq y] \quad \text{or} \quad \forall x \forall y [x = y \oplus x \neq y].$

 μ MALL proves the first. μ LK proves both.

The totality of Ackermann's function has a simple µLK-proof.

We conjecture that there is no proof in μ MALL.

Arithmetic Hierarchy for polarized formulas

- ▶ Negative: \Re , \bot , &, \top , \forall , \neq , ν (invertible right rules)
- ▶ Positive: \otimes , 1, \oplus , 0, \exists , =, μ
- A formula is positive or negative depending only on its top-level connective.
- A formula is purely positive (resp., purely negative) if every logical connective it contains is positive (resp., negative).
- Σ_1 -formulas are exactly the purely positive formulas
- Π₁-formulas are exactly the purely negative formulas
- for $n \ge 1$,
 - Π_{n+1}-formulas are negative formulas for which every positive subformula occurrence is a Σ_n-formula.
 - Σ_{n+1}-formulas are positive formulas for which every negative subformula occurrence is a Π_n-formula.
- ► A formula in Σ_n or Π_n has at most n-1 polarity alternations.

Examples

- $\forall x \forall y [x = y \Re x \neq y]$ is Π_2
- $\forall x \forall y [x = y \oplus x \neq y]$ is Π_3 .
- Addition and multiplication as least fixed points are in Σ₁.

 $\mu \lambda P \lambda n \lambda m \lambda p((n = z \otimes m = p) \oplus \\ \exists n' \exists p'(n = (s n') \otimes p = (s p') \otimes P n' m p')) \\ \mu \lambda M \lambda n \lambda m \lambda p((n = z \otimes p = z) \oplus \\ \exists n' \exists p'(n = (s n') \otimes plus m p' p \otimes M n' m p'))$

- Horn clause specification naturally yield Σ₁-formulas.
- Simulation and bisimulation can be encoded as Π_2 -formulas.

Basic result related to polarities:

- If B is Π_1 then $B \equiv ?B$ is provable in μ LL.
- If B is Σ_1 then $B \equiv ! B$ is provable in μ LL.

Connections with Σ_n^0, Π_n^0 for unpolarized formulas

Let Q be an unpolarized formula of Peano arithmetic in Σ_n^0 for $n \ge 1$. Then there is a polarized version \hat{Q} such that \hat{Q} is in Σ_n .

Let Q be an unpolarized formula of Peano arithmetic in Π_n^0 for $n \ge 2$. Then there is a polarized version \hat{Q} such that \hat{Q} is in Π_n .

Conservativity results for linearized arithmetic

Theorem

 μLK is conservative over $\mu MALL$ for Σ_1 -formulas: if B is Σ_1 and has a μLK proof then B is provable in $\mu MALL$.

Definition

A sequent has a $\mu LK(\Sigma_1)$ proof if it has a μLK proof in which all invariants of the proof are purely positive.

This restricted proof system is similar to the $I\Sigma_1$ restriction.

Theorem $\mu LK(\Sigma_1)$ is conservative over $\mu MALL$ for Π_2 -formulas.

These results (and many other) are straightforward if we assume that μLK satisfies cut-elimination and has a complete focused proof system.

Using proof search to compute functions

The binary relation ϕ computes a function if one can prove totality and determinancy, namely $\forall x \exists ! y . \phi(x, y)$:

 $\forall x \big[[\exists y. \phi(x, y)] \land [\forall y_1 \forall y_2. \phi(x, y_1) \supset \phi(x, y_2) \supset y_1 = y_2] \big]. \quad (*)$

In this case, $\lambda y.\phi(x, y)$ denotes a singleton for every x.

How can we use a proof of totality to compute the function?

- Given an intuitionistic proof of (*), we exploit its constructive content.
- If φ is Σ₁, then (*) can be polarized Π₂. If we have a μLK proof of (*), that proof can be an oracle to guide proof search.

Proof search procedure

The search-state S is of the form $\langle \Sigma ; B_1, \ldots, B_m ; nat t \rangle$.

Theorem

Assume that P is Σ_1 and that $\exists !y.Py \land nat y$ has a μLK proof. Then $\langle y ; P y ; nat y \rangle \Rightarrow^* \langle \cdot ; \cdot ; nat t \rangle$ iff (P t) is provable.

Nondeterministic transitions $S \Rightarrow S'$ are defined by

► If B_1 is u = v and u and v are unifiable with mgu θ , then we transition to $\langle \Sigma \theta ; B_2 \theta, \dots, B_m \theta ; nat (t\theta) \rangle$.

• If
$$B_1$$
 is $B \otimes B'$ then we transition to $\langle \Sigma; B, B', B_2, \dots, B_m; nat t \rangle$.

- If B_1 is $B \oplus B'$ then we transition to either $\langle \Sigma; B, B_2, \dots, B_m; nat t \rangle$ or $\langle \Sigma; B', B_2, \dots, B_m; nat t \rangle$.
- If B_1 is $\mu B\vec{t}$ then we transition to $\langle \Sigma; B(\mu B)\vec{t}, B_2, \dots, B_m; nat t \rangle$.
- ▶ If B_1 is $\exists y. B y$ then we transition to $\langle \Sigma, y ; B y, B_2, ..., B_m ; nat t \rangle$ where y is not in Σ.

Conclusion

- We propose to approach the structural proof theory of arithmetic by studying both μMALL and μLK.
- Open: cut-elimination and completeness of focusing for μLK.
- Without the completeness of focusing result, we are incrementally attacking conservative extension results of µLK over µMALL.
- We explicitly connect the arithmetic hierarchy to polarity alternations a la Andreoli and Girard.
- Proof search in µMALL should be more manageable, even when faced with generating invariants.
- Proof search can be used to compute functions from their relational specifications.

Questions?