Peano Arithmetic and muMALL:
 Work in progress

Matteo Manighetti University of Bologna
Dale Miller Inria Saclay \& LIX, IPP

StrIP Kick-Off Workshop
University of Birmingham 8 June 2022

Technical Report:
http://www.lix.polytechnique.fr/Labo/Dale. Miller/papers/birmingham2022.pdf

Art by Nadia Miller

Different approaches to arithmetic

The traditional approach to Peano and Heyting Arithmetic is

- formalized using (classical or intuitionistic) first-order logic with axioms (for equality) and an axiom scheme (for induction), and
- focuses on cut-elimination, consistency proofs, ordinal measures, and the arithmetic hierarchy.

We are instead interested in a structural proof theory approach to arithmetic. Our focus will be on

- the use of sequent calculus, structural inference rules, rule permutation, polarization, etc, and
- applications to proof search and automated theorem proving.

$\mu \mathrm{MALL}$ and $\mu \mathrm{LK}$

Equality and not-equality ($=$ and \neq) as logical connectives

- First proposed by Schroeder-Heister and Girard in 1992. Extended by McDowell, M, Tiu, Baelde, Nadathur, Gacek.
- Builds unification into a sequent calculus.
- Provides a novel treatment of bindings and enabled the ∇-quantifier.

Least and greatest fixed points (μ and v) as logical connectives

- $\mu \mathrm{MALL}, \mu \mathrm{LJ}, \mu \mathrm{LK}$
- foundation of Bedwyr, a model checker [Heath \& M, 2019]
- foundations of the Abella proof assistant [Baelde et al, 2014]

Unpolarized and polarized formulas

We consider two classes of formulas.

- They both contain $=, \neq, \forall, \exists, \mu$, and γ. These reference the first-order domain.
- Unpolarized formulas contain also $\wedge, t t, \vee, f f$.
- Polarized formulas contain instead $\otimes, 1, \mathcal{P}, \perp, \&, \top, \oplus, 0$.

There are no atomic formulas since there are no predicate (undefined) symbols: $x=y$ is not atomic.

There is no negation. Everything is written in negation normal form (nnf).

If we write \bar{B} and $B \supset C$, we mean the corresponding nnf computed using De Morgan dualities.

Polarized version of formulas

A polarized formula \hat{Q} is a polarized version of the unpolarized formula Q if the following replacement carries \hat{Q} to Q :

$$
\&, \otimes \mapsto \wedge \quad \gamma, \oplus \mapsto \vee \quad 1, \top \mapsto t t \quad 0, \perp \mapsto f f
$$

If Q has n occurrences of propositional connectives, then there are 2^{n} formulas \hat{Q} that are polarized versions of Q.

Proof system for $\mu \mathrm{MALL}$

$$
\begin{array}{cccc}
\frac{\vdash \Gamma, P \vdash \Delta, Q}{\vdash \Gamma, \Delta, P \otimes Q} & \overline{\vdash 1} & \frac{\vdash \Gamma, P, Q}{\vdash \Gamma, P P Q} & \frac{\vdash \Gamma}{\vdash \Gamma, \perp} \\
\frac{\vdash \Gamma, P \vdash \Gamma, Q}{\vdash \Gamma, P \& Q} & \overline{\vdash \Delta, \top} & \frac{\vdash \Gamma, P_{i}}{\vdash \Gamma, P_{0} \oplus P_{1}} & \\
\frac{\left\{\vdash \Gamma \theta: \theta=m g u\left(t, t^{\prime}\right)\right\}}{\vdash \Gamma, t \neq t^{\prime}} & \overline{\vdash t=t} & \frac{\vdash \Gamma, P t}{\vdash \Gamma, \exists x . P x} & \frac{\vdash \Gamma, P y}{\vdash \Gamma, \forall x, P x} \\
\frac{\vdash \Gamma, S \vec{t} \vdash B S \vec{x}, \overline{(S \vec{x})}}{\vdash \Gamma, v B \vec{t}} v & \frac{\vdash \Gamma, B(\mu B) \vec{t}}{\vdash \Gamma, \mu B \vec{t}} \mu & \overline{\vdash \mu B \vec{t}, v \bar{B} \vec{t}} \mu v
\end{array}
$$

Induction and coinduction are given by one rule (v). The higher-order variable S, in that rule, is the invariant.
The $\mu \nu$ rule is a form of the initial rule.
Eigenvariables are introduced by \forall rule and instantiated by \neq rule.

Proof system for $\mu \mathrm{LK}$

The $\mu \mathrm{LK}$ proof system is $\mu \mathrm{MALL}$ plus the two structural rules:

$$
\frac{\vdash \Gamma, Q, Q}{\vdash \Gamma, Q} C \quad \frac{\vdash \Gamma}{\vdash \Gamma, Q} W
$$

We also consider the following two rules in the context of both $\mu \mathrm{MALL}$ and $\mu \mathrm{LK}$.

$$
\frac{\vdash \Gamma, B(v B) \vec{t}}{\vdash \Gamma, v B \vec{t}} \text { unfold } \quad \frac{\vdash \Gamma, Q \vdash \Delta, \bar{Q}}{\vdash \Gamma, \Delta} \text { cut }
$$

The unfold rule is derivable in both $\mu \mathrm{MALL}$ and $\mu \mathrm{LK}$.

Observations about μ MALL and $\mu \mathrm{LK}$

- The unfold and μ rules replace μB with $B(\mu B)$: thus one copy of B become two copies.
- Baelde [2012] proved that μ MALL satisfies cut-elimination and that a natural focused proof system is complete.
- We have neither a cut-elimination theorem nor a completeness-of-focusing theorem for $\mu \mathrm{LK}$.
- We have proved that $\mu \mathrm{LK}$ (with cut) is consistent and contains Peano arithmetic.
- Girard [1991]: the completeness of a focused form of $\mu \mathrm{LK}$ would allow extracting constructive content from classical Π_{2}^{0} theorems. The usual ways the completeness of focusing and cut elimination are proved should not yield that result.

Separating $\mu \mathrm{MALL}$ and $\mu \mathrm{LK}$

- The formula $\forall x \forall y[x=y \vee x \neq y]$ can be polarized as either

$$
\forall x \forall y[x=y 8 x \neq y] \quad \text { or } \quad \forall x \forall y[x=y \oplus x \neq y]
$$

$\mu \mathrm{MALL}$ proves the first. $\mu \mathrm{LK}$ proves both.

- The totality of Ackermann's function has a simple $\mu \mathrm{LK}$-proof.

```
Define ack : nat -> nat -> nat -> prop by
    ack zero N (succ N) ;
    ack (succ M) zero R := ack M (succ zero) R ;
    ack (succ M) (succ N) R := exists R', ack (succ M) N R' /\ ack M R' R.
Theorem ack_total : forall M N, nat M >> nat N >> exists R, nat R /\ ack M N R.
induction on 1. induction on 2. intros. case H1 (keep).
    search. case H2. apply IH to H3 _ with N = (succ zero). search.
        apply IH1 to H1 H4. apply IH to H3 H5. search.
```

We conjecture that there is no proof in $\mu \mathrm{MALL}$.

Arithmetic Hierarchy for polarized formulas

- Negative: $\mathcal{P}, \perp, \&, \top, \forall, \neq, v$ (invertible right rules)
- Positive: $\otimes, 1, \oplus, 0, \exists,=, \mu$
- A formula is positive or negative depending only on its top-level connective.
- A formula is purely positive (resp., purely negative) if every logical connective it contains is positive (resp., negative).
- Σ_{1}-formulas are exactly the purely positive formulas
- Π_{1}-formulas are exactly the purely negative formulas
- for $n \geqslant 1$,
- Π_{n+1}-formulas are negative formulas for which every positive subformula occurrence is a Σ_{n}-formula.
- Σ_{n+1}-formulas are positive formulas for which every negative subformula occurrence is a Π_{n}-formula.
- A formula in Σ_{n} or Π_{n} has at most $n-1$ polarity alternations.

Examples

- $\forall x \forall y[x=y$ P8 $x \neq y]$ is Π_{2}
- $\forall x \forall y[x=y \oplus x \neq y]$ is Π_{3}.
- Addition and multiplication as least fixed points are in Σ_{1}.

$$
\begin{aligned}
& \mu \lambda P \lambda n \lambda m \lambda p((n=z \otimes m=p) \oplus \\
& \left.\exists n^{\prime} \exists p^{\prime}\left(n=\left(s n^{\prime}\right) \otimes p=\left(s p^{\prime}\right) \otimes P n^{\prime} m p^{\prime}\right)\right) \\
& \mu \lambda M \lambda n \lambda m p((n=z \otimes p=z) \oplus \\
& \left.\exists n^{\prime} \exists p^{\prime}\left(n=\left(s n^{\prime}\right) \otimes \text { plus } m p^{\prime} p \otimes M n^{\prime} m p^{\prime}\right)\right)
\end{aligned}
$$

- Horn clause specification naturally yield Σ_{1}-formulas.
- Simulation and bisimulation can be encoded as Π_{2}-formulas.

Basic result related to polarities:

- If B is Π_{1} then $B \equiv$? B is provable in $\mu \mathrm{LL}$.
- If B is Σ_{1} then $B \equiv!B$ is provable in $\mu \mathrm{LL}$.

Connections with $\Sigma_{n}^{0}, \Pi_{n}^{0}$ for unpolarized formulas

Let Q be an unpolarized formula of Peano arithmetic in Σ_{n}^{0} for $n \geqslant 1$. Then there is a polarized version \hat{Q} such that \hat{Q} is in Σ_{n}.

Let Q be an unpolarized formula of Peano arithmetic in Π_{n}^{0} for $n \geqslant 2$. Then there is a polarized version \hat{Q} such that \hat{Q} is in Π_{n}.

Conservativity results for linearized arithmetic

Theorem
$\mu L K$ is conservative over $\mu M A L L$ for Σ_{1}-formulas: if B is Σ_{1} and has a $\mu L K$ proof then B is provable in $\mu M A L L$.

Definition
A sequent has a $\mu \mathrm{LK}\left(\Sigma_{1}\right)$ proof if it has a $\mu \mathrm{LK}$ proof in which all invariants of the proof are purely positive.
This restricted proof system is similar to the $I \Sigma_{1}$ restriction.
Theorem
$\mu L K\left(\Sigma_{1}\right)$ is conservative over $\mu M A L L$ for Π_{2}-formulas.

These results (and many other) are straightforward if we assume that $\mu \mathrm{LK}$ satisfies cut-elimination and has a complete focused proof system.

Using proof search to compute functions

The binary relation ϕ computes a function if one can prove totality and determinancy, namely $\forall x \exists!y \cdot \phi(x, y)$:

$$
\forall x\left[[\exists y \cdot \phi(x, y)] \wedge\left[\forall y_{1} \forall y_{2} \cdot \phi\left(x, y_{1}\right) \supset \phi\left(x, y_{2}\right) \supset y_{1}=y_{2}\right]\right] . \quad(*)
$$

In this case, $\lambda y . \phi(x, y)$ denotes a singleton for every x.

How can we use a proof of totality to compute the function?

- Given an intuitionistic proof of $(*)$, we exploit its constructive content.
- If ϕ is Σ_{1}, then $(*)$ can be polarized Π_{2}. If we have a $\mu \mathrm{LK}$ proof of $(*)$, that proof can be an oracle to guide proof search.

Proof search procedure

The search-state S is of the form $\left\langle\Sigma ; B_{1}, \ldots, B_{m} ;\right.$ nat $\left.t\right\rangle$.
Theorem
Assume that P is Σ_{1} and that \exists ! $y . P y \wedge$ nat y has a $\mu L K$ proof.
Then $\langle y ; P y ;$ nat $y\rangle \Rightarrow^{*}\langle\cdot ; \cdot ;$ nat $t\rangle$ iff $(P t)$ is provable.
Nondeterministic transitions $S \Rightarrow S^{\prime}$ are defined by

- If B_{1} is $u=v$ and u and v are unifiable with mgu θ, then we transition to $\left\langle\Sigma \theta ; B_{2} \theta, \ldots, B_{m} \theta\right.$; nat $\left.(t \theta)\right\rangle$.
- If B_{1} is $B \otimes B^{\prime}$ then we transition to
$\left\langle\Sigma ; B, B^{\prime}, B_{2}, \ldots, B_{m} ;\right.$ nat $\left.t\right\rangle$.
- If B_{1} is $B \oplus B^{\prime}$ then we transition to either
$\left\langle\Sigma ; B, B_{2}, \ldots, B_{m} ;\right.$ nat $\left.t\right\rangle$ or $\left\langle\Sigma ; B^{\prime}, B_{2}, \ldots, B_{m} ;\right.$ nat $\left.t\right\rangle$.
- If B_{1} is $\mu B \vec{t}$ then we transition to
$\left\langle\Sigma ; B(\mu B) \vec{t}, B_{2}, \ldots, B_{m} ;\right.$ nat $\left.t\right\rangle$.
- If B_{1} is $\exists y$. B y then we transition to
$\left\langle\Sigma, y ; B y, B_{2}, \ldots, B_{m} ;\right.$ nat $\left.t\right\rangle$ where y is not in Σ.

Conclusion

- We propose to approach the structural proof theory of arithmetic by studying both $\mu \mathrm{MALL}$ and $\mu \mathrm{LK}$.
- Open: cut-elimination and completeness of focusing for $\mu \mathrm{LK}$.
- Without the completeness of focusing result, we are incrementally attacking conservative extension results of $\mu \mathrm{LK}$ over $\mu \mathrm{MALL}$.
- We explicitly connect the arithmetic hierarchy to polarity alternations a la Andreoli and Girard.
- Proof search in μ MALL should be more manageable, even when faced with generating invariants.
- Proof search can be used to compute functions from their relational specifications.

Questions?

