
Bertinoro, 5 August 2005 1/22

A Proof Theoretic Approach to Operational
Semantics

(Focus on binders)

Dale Miller, INRIA-Futurs and LIX, École Polytechnique

Based on technical results in:

• M & Tiu: “A Proof Theory for Generic Judgments”, LICS03

• Tiu & M: “A Proof Search Specification of the π-Calculus”,

FGUC04

• Tiu: “Model Checking for π-Calculus Using Proof Search”,

CONCUR05

• Ziegler, M, Palamidessi: “A congruence format for name-passing

calculi”, SOS05

Bertinoro, 5 August 2005 2/22

Two slogans about bindings

(I) From Alan Perlis’s Epigrams on Programming: As Will Rogers

would have said, “There is no such thing as a free variable.”

(II) The names of binders are the same kind of fiction as white

space: they are artifacts of how we write expressions and have zero

semantic content.

To specify or implement a logic for dealing with bindings, one

must, of course, deal with the complexity of names.

Church provided a specification of such a logic in 1940 with his

paper on “A Formulation of the Simple Theory of Types.” We shall

work in this Paradise of (the) Church.

Bertinoro, 5 August 2005 3/22

Example: Binding a variable in a proof

When proving a universal quantifier, one uses a “new” or “fresh”

variable.
B1, . . . , Bn −→ Bv

B1, . . . , Bn −→ ∀xτ .Bx
∀R,

provided that v is a “new” variable (not free in the lower sequent).

Such new variables are called eigenvariables.

But this violates the “Perlis principle.” Instead, we write

Σ, v: τ : B1, . . . , Bn −→ Bv

Σ : B1, . . . , Bn −→ ∀xτ .Bx
∀R,

Here, we assume that the variables in the new context (signature)

are bindings over the sequent.

Eigenvariables are bound variables.

Bertinoro, 5 August 2005 4/22

Higher-Order Abstract Syntax

“If your object-level syntax contain binders, then map these

binders to binders in the meta-language.”

Functional Programming: binders describe function spaces.

Logic Programming (aka proof search; eg, λProlog): binder are

typed λ-expressions modulo α, β, and η conversions.

These approaches are different. Consider ∀wi. λx.x 6= λx.w (∗).

FP: (∗) is not a theorem, since the identity and the constant valued

function coincide on singleton domains.

LP: (∗) is a theorem since no instance of λx.w can equal λx.x.

λ-tree syntax: HOAS in the proof search setting.

Bertinoro, 5 August 2005 5/22

Unification with binders

Binding is built into “higher-order unification” and “unification

under a mixed prefix.”

The following are equivalent and fail to unify.

∃wi. λx.x = λx.w ∃wi∀x. x = w

Quantifier scope matters. The unification problem

∀ai∃fi→i.(fa) = (gaa),

has four unifiers: f 7→ λw.gww, λw.gaw, λw.gwa, or λw.gaa.

Switching around the binders yields

∃fi→i∀ai.(fa) = (gaa)

with a unique unifier: f 7→ λw.gww.

More generally ∀x∃y∀z∃u

Bertinoro, 5 August 2005 6/22

Dynamics of binders during proof search

During computation, binders can be instantiated

Σ : ∆, typeof c (int → int) −→ C

Σ : ∆, ∀α(typeof c (α → α)) −→ C
∀L

or they can move.

Σ, x : ∆, typeof x α −→ typeof dBe β

Σ : ∆ −→ ∀x(typeof x α ⊃ typeof dBe β)
∀R

Σ : ∆ −→ typeof dλx.Be (α → β)

In this case, the binder named x moves from term-level (λx) to

formula-level (∀x) to proof-level (as an eigenvariable in Σ, x).

Bertinoro, 5 August 2005 7/22

Example: encoding finite π calculus

Concrete syntax of π-calculus processes:

P := 0 | τ.P | x(y).P | x̄y.P | (P | P) | (P + P) | (x)P | [x = y]P

Three syntactic types: n for names, a for actions, and p for

processes. The type n may or may not be inhabited.

Three constructors for actions: τ : a and ↓ and ↑ (for input and

output actions, resp), both of type n → n → a.

Abstract syntax for processes is the usual. Restriction: (y)Py is

coded using a constant nu : (n → p) → p as nu(λy.Py) or as just

nu P . Input prefix x(y).Py is encoded using a constant

in : n → (n → p) → p as in x (λy.Py) or just in x P . Other

constructors are done similarly.

Bertinoro, 5 August 2005 8/22

π-calculus: one step transitions

The “free action” arrow ·
·

−−→ · relates p and a and p.

The “bound action” arrow ·
·

−−⇀ · relates p and n → a and n → p.

P
A

−−→ Q free actions, A : a (τ , ↓ xy, ↑ xy)

P
↓x

−−⇀ M bound input action, ↓ x : n → a, M : n → p

P
↑x

−−⇀ M bound output action, ↑ x : n → a, M : n → p

Some SOS rules presented as quantified “reverse” implications.

OUTPUT–ACT: ∀x, y, P. x̄y.P
↑xy

−−→ P ⊂ >

INPUT–ACT: ∀x, M. x(y).My
↓x

−−⇀ M ⊂ >

MATCH: ∀x, P, Q. [x = x]P
α

−−→ Q ⊂ P
α

−−→ Q

RES: ∀P, Q. (x)Px
α

−−→ (x)Qx ⊂ ∀x(Px
α

−−→ Qx)

Bertinoro, 5 August 2005 9/22

Proving positives but not negatives

The following can be proved.

Adequacy Theorem: The following are provable from the

specification of the π-calculus

P
A

−−→ P ′ P
↑X

−−⇀ M P
↓X

−−⇀ M

if and only if the “corresponding” transition holds in the π-calculus.

But: If you turn the specification into a “bi-conditional” in the

usual way, you still cannot prove interesting negations. For

example, there is no proof of

∀x∀A∀P. ¬[(y)[x = y].x̄x.0
A

−−→ P]

Say good-bye to proving bisimulation.

The fault is in the use of eigenvariables at the meta-level.

Bertinoro, 5 August 2005 10/22

Problem: eigenvariables collapse

An attempt to prove ∀x∀y.P x y first introduces two new and

different eigenvariables c and d and then attempts to prove P c d.

Eigenvariables have been used to encode names in π-calculus

[Miller93], nonces in security protocols [Cervesato, et.al. 99],

reference locations in imperative programming [Chirimar95], etc.

Since ∀x∀y.P x y ⊃ ∀z.P z z is provable, it follows that the

provability of ∀x∀y.P x y implies the provability of ∀z.P z z. That

is, there is also a proof where the eigenvariables c and d are

identified.

Thus, eigenvariables are unlikely to capture the proper logic behind

things like nonces, references, names, etc.

Bertinoro, 5 August 2005 11/22

Generic judgments and a new quantifier

Gentzen’s introduction rule for ∀ on the left is extensional: ∀x

mean a (possibly infinite) conjunction indexed by terms.

The quantifier ∇x.B x provides a more “intensional”, “internal”,

or “generic” reading. It uses a new local context in sequents.

Σ : B1, . . . , Bn −→ B0

⇓

Σ : σ1 . B1, . . . , σn . Bn −→ σ0 . B0

Σ is a list of distinct eigenvariables, scoped over the sequent and σi

is a list of distinct variables, locally scoped over the formula Bi.

The expression σi . Bi is called a generic judgment. Equality

between judgments is defined up to renaming of local variables.

Bertinoro, 5 August 2005 12/22

The ∇-quantifier

The left and right introductions for ∇ (nabla) are the same.

Σ : (σ, x : τ) . B, Γ −→ C

Σ : σ . ∇τx.B, Γ −→ C

Σ : Γ −→ (σ, x : τ) . B

Σ : Γ −→ σ . ∇τx.B

Standard proof theory design: Enrich context and add connectives

dealing with these context.

Quantification Logic: Add the eigenvariable context; add ∀ and ∃.

Linear Logic: Add multiset context; add multiplicative connectives.

Also: hyper-sequents, calculus of structures, etc.

Such a design, augmented with cut-elimination, provides

modularity of the resulting logic.

Bertinoro, 5 August 2005 13/22

Properties of ∇

This quantifier moves through all propositional connectives:

∇x¬Bx ≡ ¬∇xBx ∇x(Bx ⊃ Cx) ≡ ∇xBx ⊃ ∇xCx

∇x.> ≡ > ∇x(Bx ∧ Cx) ≡ ∇xBx ∧∇xCx

∇x.⊥ ≡ ⊥ ∇x(Bx ∨ Cx) ≡ ∇xBx ∨∇xCx

It moves through the quantifiers by raising them.

∇xα∀yβ .Bxy ≡ ∀hα→β∇xα.Bx(hx)

∇xα∃yβ .Bxy ≡ ∃hα→β∇xα.Bx(hx)

Consequence: ∇ can always be given atomic scope within formulas,

at the “cost” of raising quantifiers.

Bertinoro, 5 August 2005 14/22

Non-theorems

∇x∇yBxy ⊃ ∇zBzz ∇xBx ⊃ ∃xBx†

∇zBzz ⊃ ∇x∇yBxy ∀xBx ⊃ ∇xBx†

∀y∇xBxy ⊃ ∇x∀yBxy ∃xBx ⊃ ∇xBx

† These are theorems using the Pitts new quantifier. (More

comparisons later.)

Bertinoro, 5 August 2005 15/22

Meta theorems

Theorem: Cut-elimination. Given a fixed stratified definition, a

sequent has a proof if and only if it has a cut-free proof. (Tiu 2003:

also when induction and co-induction are added.)

Theorem: For a fixed formula B,

` ∇x∇y.B x y ≡ ∇y∇x.B x y.

Theorem: If we restrict to Horn specification (no implication or

negations in the body of the clauses) then

1. ∀ and ∇ are interchangeable in specifications.

2. For a fixed B, ` ∇x.B x ⊃ ∀x.B x.

Bertinoro, 5 August 2005 16/22

Returning to the π-calculus

We can now prove

∀w∀A∀P. ¬.(x)[w = x].w̄w.0
A

−−→ P

This proof requires observing that the equation

λx.w = λx.x.

has no solution for any instance of w (unification failure).

Bertinoro, 5 August 2005 17/22

π-calculus: encoding (bi)simulation

sim P Q
4

= ∀A∀P ′ [P
A

−−→ P ′ ⊃ ∃Q′.Q
A

−−→ Q′ ∧ sim P ′ Q′] ∧

∀X∀P ′ [P
↓X

−−⇀ P ′ ⊃ ∃Q′.Q
↓X

−−⇀ Q′ ∧ ∀w.sim(P ′w)(Q′w)] ∧

∀X∀P ′ [P
↑X

−−⇀ P ′ ⊃ ∃Q′.Q
↑X

−−⇀ Q′ ∧∇w.sim(P ′w)(Q′w)]

This definition clause is not Horn and helps to illustrate the

differences between ∀ and ∇.

Bisimulation (bisim) is easy to write: it has 6 cases.

The early version of bisimulation is a change in quantifier scope.

Bertinoro, 5 August 2005 18/22

Learning something from our encoding

Theorem: For the finite π-calculus we have:

P is open bisimilar to Q if and only if `I ∀x̄.bisim P Q.

P is late bisimilar to Q if and only if

∀wn∀yn(w = y ∨ w 6= y) `I ∇x̄.bisim P Q.

Should one assume this instance of excluded middle?

Alwen Tiu has built a prototype prover for this logic, restricted to

Lλ-unification (higher-order pattern unification). When provided

with the above specification of bisim, it provides a symbolic open

bisimulation checker.

Bertinoro, 5 August 2005 19/22

Format rules

As Axelle Ziegler illustrated on Monday, specifications of bindings

in process calculus can be done declaratively enough to allow for

generalization of the tyft/tyxt format rule property.

· · · ∇u1 . . .∇uk[P
A

−→ (Y u1 . . . un)] · · ·

(f X1 . . . Xn)
A

−→ Q

· · · ∇u1 . . .∇uk[P
A

−→ (Y u1 . . . un)] · · ·

X
A

−→ Q

That result is essentially the same as the first-order result except

that bindings are handled directly (λ-tree syntax, ∇, and mixing of

quantifier scopes).

Nothing fundamentally “higher-order” is happening here.

Bertinoro, 5 August 2005 20/22

Modal logics

Alwen Tiu recently showed how to specify modal logics for the

π-calculus (CONCUR05).

P |= 〈↑X〉A ⊂ ∃P ′(P
↑X

−−⇀ P ′ ∧∇y.P ′y |= Ay).

P |= [↑X]A ⊂ ∀P ′(P
↑X

−−⇀ P ′ ⊃ ∇y.P ′y |= Ay).

P |= 〈↓X〉A ⊂ ∃P ′(P
↓X

−−⇀ P ′ ∧ ∃y.P ′y |= Ay).

P |= 〈↓X〉lA ⊂ ∃P ′(P
↓X

−−⇀ P ′ ∧ ∀y.P ′y |= Ay).

P |= 〈↓X〉eA ⊂ ∀y∃P ′(P
↓X

−−⇀ P ′ ∧ P ′y |= Ay).

P |= [↓X]A ⊂ ∀P ′(P
↓X

−−⇀ P ′ ⊃ ∀y.P ′y |= Ay).

P |= [↓X]lA ⊂ ∀P ′(P
↓X

−−⇀ P ′ ⊃ ∃y.P ′y |= Ay).

P |= [↓X]eA ⊂ ∃y∀P ′(P
↓X

−−⇀ P ′ ⊃ P ′y |= Ay).

Bertinoro, 5 August 2005 21/22

Comparison with Pitts/Gabbay New Quantifier

Fresh Logic:

• Semantics is primary (FM set theory); classical logic basis

• designed for names: an infinite heap of names assumed

• Nx.Bx is analyzed by acquiring a “fresh” name n from the heap

and considering Bn.

“Stale” Logic:

• Proof theory is primary (sequent calculus); intuitionistic logic

basis (but classical and linear versions are immediate).

• ∇ works for all types; types not assumed to be inhabited

• ∇xτ .Bx is analyzed by hypothesizing a object c of type τ (as in a

stack) and considering Bc.

Bertinoro, 5 August 2005 22/22

Future Work

Clearly, the π-calculus is just one application. Applied π-calculus?

spi-calculus?

Is there a “logical framework” for process calculus here? Do proof

search implementations provide means to animate such calculi?

Does the meta-theory of the meta-logic help in understanding

formal aspects of the calculi?

How to implement late bisimulation? How to automate effectively

the instances of the excluded middle for equality? Hint: unification

failures can tell us which instances we should use.

What is a good model theoretic semantics for ∇? In classical

and/or intuitionistic logic?

