A Proof Theoretic Approach to Operational Semantics

(Focus on binders)

Dale Miller, INRIA-Futurs and LIX, École Polytechnique

Based on technical results in:

- M \& Tiu: "A Proof Theory for Generic Judgments", LICS03
- Tiu \& M: "A Proof Search Specification of the π-Calculus", FGUC04
- Tiu: "Model Checking for π-Calculus Using Proof Search", CONCUR05
- Ziegler, M, Palamidessi: "A congruence format for name-passing calculi", SOS05

Two slogans about bindings

(I) From Alan Perlis's Epigrams on Programming: As Will Rogers would have said, "There is no such thing as a free variable."
(II) The names of binders are the same kind of fiction as white space: they are artifacts of how we write expressions and have zero semantic content.

To specify or implement a logic for dealing with bindings, one must, of course, deal with the complexity of names.

Church provided a specification of such a logic in 1940 with his paper on "A Formulation of the Simple Theory of Types." We shall work in this Paradise of (the) Church.

Example: Binding a variable in a proof

When proving a universal quantifier, one uses a "new" or "fresh" variable.

$$
\frac{B_{1}, \ldots, B_{n} \longrightarrow B v}{B_{1}, \ldots, B_{n} \longrightarrow \forall x_{\tau} . B x} \forall \mathcal{R}
$$

provided that v is a "new" variable (not free in the lower sequent). Such new variables are called eigenvariables.

But this violates the "Perlis principle." Instead, we write

$$
\frac{\Sigma, v: \tau: B_{1}, \ldots, B_{n} \longrightarrow B v}{\Sigma: B_{1}, \ldots, B_{n} \longrightarrow \forall x_{\tau} \cdot B x} \forall \mathcal{R}
$$

Here, we assume that the variables in the new context (signature) are bindings over the sequent.

Eigenvariables are bound variables.

Higher-Order Abstract Syntax

"If your object-level syntax contain binders, then map these binders to binders in the meta-language."

Functional Programming: binders describe function spaces.
Logic Programming (aka proof search; eg, λ Prolog): binder are typed λ-expressions modulo α, β, and η conversions.

These approaches are different. Consider $\forall w_{i} . \lambda x \cdot x \neq \lambda x \cdot w \quad(*)$.
FP: (*) is not a theorem, since the identity and the constant valued function coincide on singleton domains.
$\mathrm{LP}:(*)$ is a theorem since no instance of $\lambda x . w$ can equal $\lambda x . x$.
λ-tree syntax: HOAS in the proof search setting.

Unification with binders

Binding is built into "higher-order unification" and "unification under a mixed prefix."

The following are equivalent and fail to unify.

$$
\exists w_{i} \cdot \lambda x \cdot x=\lambda x \cdot w \quad \exists w_{i} \forall x \cdot x=w
$$

Quantifier scope matters. The unification problem

$$
\forall a_{i} \exists f_{i \rightarrow i} \cdot(f a)=(g a a),
$$

has four unifiers: $f \mapsto \lambda w . g w w, \lambda w . g a w, \lambda w . g w a$, or $\lambda w . g a a$. Switching around the binders yields

$$
\exists f_{i \rightarrow i} \forall a_{i} .(f a)=(g a a)
$$

with a unique unifier: $f \mapsto \lambda w . g w w$.
More generally $\forall x \exists y \forall z \exists u \ldots$

Dynamics of binders during proof search

During computation, binders can be instantiated

$$
\frac{\Sigma: \Delta, \text { typeof } c(\text { int } \rightarrow \text { int }) \longrightarrow C}{\Sigma: \Delta, \forall \alpha(\text { typeof } c(\alpha \rightarrow \alpha)) \longrightarrow C} \forall \mathcal{L}
$$

or they can move.

$$
\frac{\Sigma, x: \Delta, \text { typeof } x \alpha \longrightarrow \text { typeof }\lceil B\rceil \beta}{\frac{\Sigma: \Delta \longrightarrow \forall x(\text { typeof } x \alpha \supset \text { typeof }\lceil B\rceil \beta)}{\Sigma: \Delta \longrightarrow \text { typeof }\lceil\lambda x . B\rceil(\alpha \rightarrow \beta)}} \forall \mathcal{R}
$$

In this case, the binder named x moves from term-level (λx) to formula-level $(\forall x)$ to proof-level (as an eigenvariable in Σ, x).

Example: encoding finite π calculus

Concrete syntax of π-calculus processes:

$$
P:=0|\tau \cdot P| x(y) \cdot P|\bar{x} y \cdot P|(P \mid P)|(P+P)|(x) P \mid[x=y] P
$$

Three syntactic types: n for names, a for actions, and p for processes. The type n may or may not be inhabited.

Three constructors for actions: $\tau: a$ and \downarrow and \uparrow (for input and output actions, resp), both of type $n \rightarrow n \rightarrow a$.

Abstract syntax for processes is the usual. Restriction: $(y) P y$ is coded using a constant $n u:(n \rightarrow p) \rightarrow p$ as $n u(\lambda y . P y)$ or as just $n u P$. Input prefix $x(y) . P y$ is encoded using a constant in $: n \rightarrow(n \rightarrow p) \rightarrow p$ as in $x(\lambda y . P y)$ or just in $x P$. Other constructors are done similarly.

π-calculus: one step transitions

The "free action" arrow $\cdot \longrightarrow \cdot$ relates p and a and p.
The "bound action" arrow $\cdot \longrightarrow \cdot$ relates p and $n \rightarrow a$ and $n \rightarrow p$.
$P \xrightarrow{A} Q \quad$ free actions, $A: a(\tau, \downarrow x y, \uparrow x y)$
$P \xrightarrow{\downarrow x} M \quad$ bound input action, $\downarrow x: n \rightarrow a, M: n \rightarrow p$
$P \xrightarrow{\uparrow x} M \quad$ bound output action, $\uparrow x: n \rightarrow a, M: n \rightarrow p$
Some SOS rules presented as quantified "reverse" implications.
OUTPUT-ACT

$$
\forall x, y, P . \quad \bar{x} y . P \xrightarrow{\uparrow x y} P \quad \subset \quad \top
$$

INPUT-ACT:
MATCH:
RES:

$$
\begin{array}{rrll}
\forall x, M . & x(y) . M y \xrightarrow{\downarrow x} M & \subset & \top \\
\forall x, P, Q . & {[x=x] P \xrightarrow{\alpha} Q} & \subset & P \xrightarrow{\alpha} Q \\
\forall P, Q . & (x) P x \xrightarrow{\alpha}(x) Q x & \subset & \forall x(P x \xrightarrow{\alpha} Q x)
\end{array}
$$

Proving positives but not negatives

The following can be proved.
Adequacy Theorem: The following are provable from the specification of the π-calculus

$$
P \xrightarrow{A} P^{\prime} \quad P \xrightarrow{\dagger X} M \quad P \xrightarrow{\downarrow X} M
$$

if and only if the "corresponding" transition holds in the π-calculus.
But: If you turn the specification into a "bi-conditional" in the usual way, you still cannot prove interesting negations. For example, there is no proof of

$$
\forall x \forall A \forall P . \neg[(y)[x=y] . \bar{x} x .0 \xrightarrow{A} P]
$$

Say good-bye to proving bisimulation.
The fault is in the use of eigenvariables at the meta-level.

Problem: eigenvariables collapse

An attempt to prove $\forall x \forall y . P x y$ first introduces two new and different eigenvariables c and d and then attempts to prove $P c d$.

Eigenvariables have been used to encode names in π-calculus [Miller93], nonces in security protocols [Cervesato, et.al. 99], reference locations in imperative programming [Chirimar95], etc.

Since $\forall x \forall y . P x y \supset \forall z . P z z$ is provable, it follows that the provability of $\forall x \forall y . P x y$ implies the provability of $\forall z \cdot P z z$. That is, there is also a proof where the eigenvariables c and d are identified.

Thus, eigenvariables are unlikely to capture the proper logic behind things like nonces, references, names, etc.

Generic judgments and a new quantifier

Gentzen's introduction rule for \forall on the left is extensional: $\forall x$ mean a (possibly infinite) conjunction indexed by terms.

The quantifier $\nabla x . B x$ provides a more "intensional","internal", or "generic" reading. It uses a new local context in sequents.

$$
\begin{gathered}
\Sigma: B_{1}, \ldots, B_{n} \longrightarrow B_{0} \\
\Downarrow \\
\Sigma: \sigma_{1} \triangleright B_{1}, \ldots, \sigma_{n} \triangleright B_{n} \longrightarrow \sigma_{0} \triangleright B_{0}
\end{gathered}
$$

Σ is a list of distinct eigenvariables, scoped over the sequent and σ_{i} is a list of distinct variables, locally scoped over the formula B_{i}.

The expression $\sigma_{i} \triangleright B_{i}$ is called a generic judgment. Equality between judgments is defined up to renaming of local variables.

The ∇-quantifier

The left and right introductions for ∇ (nabla) are the same.

$$
\frac{\Sigma:(\sigma, x: \tau) \triangleright B, \Gamma \longrightarrow \mathcal{C}}{\Sigma: \sigma \triangleright \nabla_{\tau} x \cdot B, \Gamma \longrightarrow \mathcal{C}} \quad \frac{\Sigma: \Gamma \longrightarrow(\sigma, x: \tau) \triangleright B}{\Sigma: \Gamma \longrightarrow \sigma \triangleright \nabla_{\tau} x \cdot B}
$$

Standard proof theory design: Enrich context and add connectives dealing with these context.

Quantification Logic: Add the eigenvariable context; add \forall and \exists.
Linear Logic: Add multiset context; add multiplicative connectives.
Also: hyper-sequents, calculus of structures, etc.
Such a design, augmented with cut-elimination, provides modularity of the resulting logic.

Properties of ∇

This quantifier moves through all propositional connectives:

$$
\begin{array}{cll}
\nabla x \neg B x \equiv \neg \nabla x B x & & \nabla x(B x \supset C x) \equiv \nabla x B x \supset \nabla x C x \\
\nabla x . \top \equiv \top & \nabla x(B x \wedge C x) \equiv \nabla x B x \wedge \nabla x C x \\
\nabla x . \perp \equiv \perp & & \nabla x(B x \vee C x) \equiv \nabla x B x \vee \nabla x C x
\end{array}
$$

It moves through the quantifiers by raising them.

$$
\begin{aligned}
\nabla x_{\alpha} \forall y_{\beta} \cdot B x y & \equiv \forall h_{\alpha \rightarrow \beta} \nabla x_{\alpha} \cdot B x(h x) \\
\nabla x_{\alpha} \exists y_{\beta} \cdot B x y & \equiv \exists h_{\alpha \rightarrow \beta} \nabla x_{\alpha} \cdot B x(h x)
\end{aligned}
$$

Consequence: ∇ can always be given atomic scope within formulas, at the "cost" of raising quantifiers.

Non-theorems

$$
\begin{aligned}
\nabla x \nabla y B x y \supset \nabla z B z z & \nabla x B x \supset \exists x B x^{\dagger} \\
\nabla z B z z \supset \nabla x \nabla y B x y & \forall x B x \supset \nabla x B x^{\dagger} \\
\forall y \nabla x B x y \supset \nabla x \forall y B x y & \exists x B x \supset \nabla x B x
\end{aligned}
$$

\dagger These are theorems using the Pitts new quantifier. (More comparisons later.)

Meta theorems

Theorem: Cut-elimination. Given a fixed stratified definition, a sequent has a proof if and only if it has a cut-free proof. (Tiu 2003: also when induction and co-induction are added.)

Theorem: For a fixed formula B,

$$
\vdash \nabla x \nabla y \cdot B x y \equiv \nabla y \nabla x . B x y
$$

Theorem: If we restrict to Horn specification (no implication or negations in the body of the clauses) then

1. \forall and ∇ are interchangeable in specifications.
2. For a fixed $B, \vdash \nabla x . B x \supset \forall x . B x$.

Returning to the π-calculus

We can now prove

$$
\forall w \forall A \forall P . \neg .(x)[w=x] . \bar{w} w .0 \xrightarrow{A} P
$$

This proof requires observing that the equation

$$
\lambda x . w=\lambda x . x .
$$

has no solution for any instance of w (unification failure).

π-calculus: encoding (bi)simulation

$\operatorname{sim} P Q \triangleq \forall A \forall P^{\prime}\left[P \xrightarrow{A} P^{\prime} \supset \exists Q^{\prime} \cdot Q \xrightarrow{A} Q^{\prime} \wedge \operatorname{sim} P^{\prime} Q^{\prime}\right] \wedge$

$$
\begin{aligned}
& \forall X \forall P^{\prime}\left[P \stackrel{\downarrow X}{\stackrel{~}{x}} P^{\prime} \supset \exists Q^{\prime} \cdot Q \xrightarrow{\downarrow x} Q^{\prime} \wedge \forall w \cdot \operatorname{sim}\left(P^{\prime} w\right)\left(Q^{\prime} w\right)\right] \wedge \\
& \forall X \forall P^{\prime}\left[P \xrightarrow{\uparrow X} P^{\prime} \supset \exists Q^{\prime} \cdot Q \xrightarrow{\uparrow X} Q^{\prime} \wedge \nabla w \cdot \operatorname{sim}\left(P^{\prime} w\right)\left(Q^{\prime} w\right)\right]
\end{aligned}
$$

This definition clause is not Horn and helps to illustrate the differences between \forall and ∇.

Bisimulation (bisim) is easy to write: it has 6 cases.
The early version of bisimulation is a change in quantifier scope.

Learning something from our encoding

Theorem: For the finite π-calculus we have:
P is open bisimilar to Q if and only if $\vdash_{I} \forall \bar{x}$.bisim $P Q$.
P is late bisimilar to Q if and only if

$$
\forall w_{n} \forall y_{n}(w=y \vee w \neq y) \vdash_{I} \nabla \bar{x} . \operatorname{bisim} P Q .
$$

Should one assume this instance of excluded middle?
Alwen Tiu has built a prototype prover for this logic, restricted to L_{λ}-unification (higher-order pattern unification). When provided with the above specification of bisim, it provides a symbolic open bisimulation checker.

Format rules

As Axelle Ziegler illustrated on Monday, specifications of bindings in process calculus can be done declaratively enough to allow for generalization of the tyft/tyxt format rule property.

$$
\begin{array}{lcl}
\cdots & \nabla u_{1} \ldots \nabla u_{k}\left[P \xrightarrow{A}\left(Y u_{1} \ldots u_{n}\right)\right] & \ldots \\
& \left(f X_{1} \ldots X_{n}\right) \xrightarrow{A} Q \\
\cdots & \nabla u_{1} \ldots \nabla u_{k}\left[P \xrightarrow{A}\left(Y u_{1} \ldots u_{n}\right)\right] & \ldots \\
X \xrightarrow{A} Q
\end{array}
$$

That result is essentially the same as the first-order result except that bindings are handled directly (λ-tree syntax, ∇, and mixing of quantifier scopes).

Nothing fundamentally "higher-order" is happening here.

Modal logics

Alwen Tiu recently showed how to specify modal logics for the π-calculus (CONCUR05).

$$
\begin{aligned}
& P \models\langle\uparrow X\rangle A \quad \subset \exists P^{\prime}\left(P \xrightarrow{\uparrow x} P^{\prime} \wedge \nabla y \cdot P^{\prime} y \models A y\right) . \\
& P \models[\uparrow X] A \quad \subset \forall P^{\prime}\left(P \xrightarrow{\uparrow X} P^{\prime} \supset \nabla y \cdot P^{\prime} y \models A y\right) \text {. } \\
& P \models\langle\downarrow X\rangle A \quad \subset \exists P^{\prime}\left(P \xrightarrow{\downarrow X} P^{\prime} \wedge \exists y \cdot P^{\prime} y \models A y\right) . \\
& P \models\langle\downarrow X\rangle^{l} A \subset \exists P^{\prime}\left(P \xrightarrow{\downarrow X} P^{\prime} \wedge \forall y \cdot P^{\prime} y \models A y\right) . \\
& P \models\langle\downarrow X\rangle^{e} A \subset \forall y \exists P^{\prime}\left(P \xrightarrow{\downarrow X} P^{\prime} \wedge P^{\prime} y \models A y\right) . \\
& P \models[\downarrow X] A \quad \subset \forall P^{\prime}\left(P \xrightarrow{\downarrow X} P^{\prime} \supset \forall y . P^{\prime} y \models A y\right) . \\
& P \models[\downarrow X]^{l} A \subset \forall P^{\prime}\left(P \xrightarrow{\downarrow X} P^{\prime} \supset \exists y . P^{\prime} y \models A y\right) \text {. } \\
& P \models[\downarrow X]^{e} A \subset \exists y \forall P^{\prime}\left(P \xrightarrow{\downarrow X} P^{\prime} \supset P^{\prime} y \models A y\right) .
\end{aligned}
$$

Comparison with Pitts/Gabbay New Quantifier

Fresh Logic:

- Semantics is primary (FM set theory); classical logic basis
- designed for names: an infinite heap of names assumed
- $N x . B x$ is analyzed by acquiring a "fresh" name n from the heap and considering $B n$.
"Stale" Logic:
- Proof theory is primary (sequent calculus); intuitionistic logic basis (but classical and linear versions are immediate).
- ∇ works for all types; types not assumed to be inhabited
- $\nabla x_{\tau} . B x$ is analyzed by hypothesizing a object c of type τ (as in a stack) and considering $B c$.

Future Work

Clearly, the π-calculus is just one application. Applied π-calculus? spi-calculus?

Is there a "logical framework" for process calculus here? Do proof search implementations provide means to animate such calculi? Does the meta-theory of the meta-logic help in understanding formal aspects of the calculi?

How to implement late bisimulation? How to automate effectively the instances of the excluded middle for equality? Hint: unification failures can tell us which instances we should use.

What is a good model theoretic semantics for ∇ ? In classical and/or intuitionistic logic?

