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Palaiseau France

ANU, 8 May 2019



Introduction

Functional programming languages are popular tools to build
systems (parsers, compilers, theorem provers...) that manipulate
the syntax of various programming languages and logics.

Variable binding is a common feature of most syntactic structures.

In the area of theorem provers, the POPLMark Challenge (2005)
singled out the lack of binder support in provers as a serious
impediment to formalizing meta-theory.

Support for binders in functional languages is experimental and
fractured.

I Some libraries exists: AlphaLib, Cαml, etc.

I New languages: FreshML, Delphin, Beluga, etc.

We introduce MLTS (as an extension to the core of OCaml) to
treat binding structures in a primitive fashion.



Introduction

Functional programming languages are popular tools to build
systems (parsers, compilers, theorem provers...) that manipulate
the syntax of various programming languages and logics.

Variable binding is a common feature of most syntactic structures.

In the area of theorem provers, the POPLMark Challenge (2005)
singled out the lack of binder support in provers as a serious
impediment to formalizing meta-theory.

Support for binders in functional languages is experimental and
fractured.

I Some libraries exists: AlphaLib, Cαml, etc.

I New languages: FreshML, Delphin, Beluga, etc.

We introduce MLTS (as an extension to the core of OCaml) to
treat binding structures in a primitive fashion.



Two language paradigms, two approaches to bindings

The term higher-order abstract syntax—the use of
programming-level binding to support syntax-level binding—is
badly ambiguous.

In logic programming, for example, λProlog and Twelf, this
approach leads to an elegant, compact, and declarative treatment
of bindings. The Abella theorem prover formalizes that approach.

In functional programming, it has lead to using function spaces to
encode binding structures. This approach is wildly different and
problematic.



Our approach: λ-tree syntax and binder mobility

With MLTS, we are attempting to move the lessons learned from
the logic programming world into the functional programming
world. We emphasizes two key concepts.

I Functional programs need more binding sites so term-level
bindings can move to programming-level bindings.
Alan Perlis: “There is no such things as a free variables.”

I All operations on syntax must respect α-conversion and (at
least some of) β-conversion.

Together, we have the λ-tree syntax approach to bindings.

MLTS stands for

I mobility and lambda-tree syntax

I . . . or most likely to succeed

I . . . or most long term solution
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The substitution case

Our sample example: substitution

val subst: term -> var -> term -> term

Such that “subst t x u” is t[x\u].



Handmade: The “naive” way...

A simple way to handle bindings in vanilla OCaml is to use strings
to represent variables:

type tm =

| Var of string

| App of term * term

| Abs of string * term

And then proceed recursively:

let rec subst t x u = match t with

| Var y -> if x = y then u else Var y

| App(m, n) -> App(subst m x u,

subst n x u)

| Abs(y, body) -> ?
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Handmade: ...the painful way

| Abs(y, body) ->

if (x = y) then Abs(y, body)

else Abs(y, subst body x u)

But occurrences of y in u can be “captured.”

We need to check for free variables in t and rename them if
necessary...
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Handmade

There are several approaches to handle bindings:

I Var as strings

I Var as fresh names

I De Bruijn’s nameless dummies

But they all need to be carefully implemented.

Can we automate this tedious and pervasive task ?



Cαml [Pottier 2006]

Cαml is a tool that generates an OCaml module to manipulate
datatypes with binders. (example from the Little Calculist blog)

sort var

type tm =

| Var of atom var

| App of tm * tm

| Abs of < lambda >

type lambda binds var = atom var * inner tm

https://calculist.blogspot.fr/2005/08/alphacaml.html


Cαml

let rec subst t x u =

match t with

| Var y -> if Var.Atom.equal x y

then u

else Var y

| App(m, n) -> App (subst m x u, subst n

x u)

| Abs abs ->

let x’, body = open_lambda abs in

Abs (create_lambda (x’, subst body x

u))



But bindings and substitutions are logic

Bindings, substitutions, α-conversion, etc, are all features of well
understood and popular logics.

I Church’s 1940 Simple Theory of Types underlies HOL,
Isabelle, λProlog, etc.

They are not “yet another data structure to get implemented
anyway that works...”.



MLTS version of subst

type tm =

| App of tm * tm

| Abs of tm => tm;; (* Note new arrow *)

Some inhabitants (all of type tm):

λx . x
λx . (x x)
(λx . x) (λx . x)

Abs(X\ X)

Abs(X\ App(X, X))

App(Abs(X\ X), Abs(X\ X))

λ-abstraction is written as infix backslash (following λProlog).

Initial capital letters denote constructors (following OCaml).

Since nominals are essentially scoped constructors, they are
capitalized also.



MLTS version of subst

...

let rec subst t x u =

match (x, t) with



MLTS version of subst
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let rec subst t x u =

match (x, t) with

| nab X in (X, X) -> u

nab X in (X, X) will only match if x = t = X is a nominal.



MLTS version of subst

...

let rec subst t x u =

match (x, t) with

| nab X in (X, X) -> u

| nab X Y in (X, Y) -> Y

nab X Y in (X, Y) will only match for two distinct nominals.



MLTS version of subst

...

let rec subst t x u =
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| nab X in (X, X) -> u

| nab X Y in (X, Y) -> Y

| (x, App(m, n)) ->
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MLTS version of subst

...

let rec subst t x u =

match (x, t) with

| nab X in (X, X) -> u

| nab X Y in (X, Y) -> Y

| (x, App(m, n)) ->

App(subst m x u, subst n x u)

| (x, Abs r) -> Abs(Y\ subst (r @ Y) x u)

In Abs(Y\ subst (r @ Y) x u), the abstraction is opened,
modified and rebuilt without ever freeing any bound variable.



MLTS version of subst

How do we perform the substitution:

(λy . y x)[x\λz . z ]?

Something like

subst (Abs(Y\ App(Y, ?))) ? (Abs(Z\ Z));;

We need a way to introduce a nominal to call subst.

new X in subst (Abs(Y\ (App(Y, X)))) X (Abs(Z\ Z));;

−→ Abs(Y\ App(Y, Abs(Z\ Z)))
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Computing the size of an untyped λ-term

let rec size term =

match term with

| App(n, m) -> 1 + (size n) + (size m)

| Abs(r) -> 1 + (new X in size (r @ X))

| nab X in X -> 1;;

A sample computation:

size (Abs (X\ (Abs (Y\ (App(X,Y))))))

new X in 1 + (size (Abs (Y\ (App(X,Y)))))

new X in 1 + new Y in 1 + (size (App(X,Y)))

new X in 1 + new Y in 1 + 1 + (size X)+(size Y)

new X in 1 + new Y in 1 + 1 + 1 + 1

5



MLTS features: =>, backslash and @

The type constructor => is used to declare bindings in datatypes.

The infix operator \ introduces an abstraction of a nominal over
its scope. Such an expression is applied to its arguments using @,
thus eliminating the abstraction.

Γ,X : A ` t : B

Γ ` X\t : A => B

Γ ` t : A => B (X : A) ∈ Γ

Γ ` t @ X : B

The backslash introduces => and the @ eliminates it.

Example

((X\ body) @ Y) denotes a β-redex: replace the abstracted
nominal X with the nominal Y in body.
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MLTS features: new and nab

The new X in binding operator provides a scope within
expressions in which a new nominal X is available.

Patterns can contain the nab X in binder: in its scope the symbol
X can match the nominals introduced by new and \.

Pattern variables can have => type and they can be applied (using
@) to an argument list that consists of distinct variables that are
bound in the scope of pattern variables:

Abs(X\ r @ X)

∃r . Abs(X\ r @ X)

Three new promised binding sites: backslash \, new, and nab.
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An example: beta reduction

let rec beta t =

match t with

| nab X in X -> X

| Abs r -> Abs (Y\ beta (r @ Y))

| App(m, n) ->

let m = beta m in

let n = beta n in

begin match m with

| Abs r ->

new X in beta (subst (r @ X) X n)

| _ -> App(m, n)

end

;;



An example: vacuous more

let rec vacp1 t = match t with

| Abs(X\ X) -> false

| nab Y in Abs(X\ Y) -> true

| Abs(X\ App(m @ X, n @ X)) ->

(vacp1 (Abs m)) && (vacp1 (Abs n))

| Abs(X\(Abs(Y\(r @ X Y)))) ->

new Y in vacp1(Abs(X\ (r @ X Y)))

| _ -> false ;;



An example: vacuous

let vacuous t = match t with

| Abs(X\s) -> true

| _ -> false ;;

match t with Abs(X\s) ≡ ∃s.(λx .s) = t

Variable capture is not allowed in substitutions.

Recursion over term structures is hidden in matching.
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Pattern matching

We perform matching modulo α, β0 and η.

β0: (λx .B)x = B

β0: (λx .B)y = B[y/x ] provided y is not free in λx .B

Patterns are further restricted:

I Pattern variables are applied to a (possibly empty) list of
distinct variables: e.g., (r @ X Y).

I The variables in the list are bound within the scope of the
pattern variables.

Such pattern matching is a subset of higher-order pattern
unification (a.k.a. Lλ-unification).

Such higher-order unification is decidable, unitary, and can be done
without typing.
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Some matching examples

a : i f : i → i g : i → i → i

(1) λxλy(f (H x)) λuλv(f (f u))
(2) λxλy(f (H x)) λuλv(f (f v))
(3) λxλy(g (H y x) (f (L x))) λuλv(g u (f u))
(4) λxλy(g (H x) (L x)) λuλv(g (g a u) (g u u))

(1) H 7→ λw(f w)
(2) match failure
(3) H 7→ λyλx .x L 7→ λx .x
(4) H 7→ λx .(g a x) L 7→ λx .(g x x)
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Translation

Our prototype interpreter translates the OCaml-style concrete
syntax into a λProlog term that is then evaluated by the
interpreter written in λProlog.

let subst t u = new X in

let rec aux t = match t with

| X -> u

| nab Y in Y -> Y

| App(u, v) -> App(aux u, aux v)

| Abs r -> Abs(Y\ aux (r @ Y))

in aux (t @ X);;

(* subst : (tm => tm) -> tm -> tm *)
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Translation

prog "subst" (lam t0 \ lam u \ new X \ let

(fix aux \ lam t1 \

match t1

[(arr (pnom X) u), (nab Y \ arr

(pnom Y) Y),

(all 0 \ all u1 \

arr (pvariant App [(pvar u1),

(pvar 0)])

(variant App [(app aux u1),

(app aux 0)])),

(all r \

arr (pvariant Abs [pvar r])

(variant Abs

[backslash Y \ app aux

(arobase r Y)]))]) aux \

app aux (arobase t0 X)).



Natural semantics for MLTS: evaluation (⇓)

` lam R ⇓ lam R

` ∀i ∈ [1; n], Ti ⇓ Vi

` variant c [T1, . . . ,Tn] ⇓ variant c [V1, . . . ,Vn]

` C ⇓ tt ` L ⇓ V

` cond C L M ⇓ V

` C ⇓ ff ` M ⇓ V

` cond C L M ⇓ V

` M ⇓ lam R ` N ⇓ U ` (R U) ⇓ V

` app M N ⇓ V

` M ⇓ U ` (R U) ⇓ V

` (let M R) ⇓ V

` R (fix R) ⇓ V

` fix R ⇓ V

` ∇x .(E x) ⇓ V

` new(λx .E x) ⇓ V

` M ⇓ backslash R ` (R X ) ⇓ V

` arobase M X ⇓ V

` ∇x .(E x) ⇓ (V x)

` backslash (λx .E x) ⇓ backslash (λx .V x)



Natural semantics for MLTS: match and clause

` clause T Rule U ` U ⇓ V

` (match T (Rule :: Rules)) ⇓ V

` ¬(∃u, clause T Rule u) ` (match T Rules) ⇓ V

` (match T (Rule :: Rules)) ⇓ V

` ∃x .clause T (P x) U

` clause T (all (λx .P x)) U

` matches T P ` (λz1 . . . λzm.(p =⇒ u)) D (P =⇒ U)

` clause T (nab z1 . . . nab zm.(p =⇒ u)) U

` ∀i ∈ [1; n], matches ti pi

` matches (variant c [t1, . . . , tn]) (pvariant c [p1, . . . , pn])

nominal(c)

` matches c (pnom c) ` matches x (pvar x)



Nominal abstraction: D

Definition
Let s and t be terms of types τ1 → · · · → τn → τ and τ for n ≥ 0.
The expression s D t, a nominal abstraction of degree n, holds just
in the case that s λ-converts to λc1 . . . cn.t for some nominal
constants c1, . . . , cn.

Equality if nominal abstraction of degree 0 .



Examples

The term on the left of the D operator serves as a pattern for
isolating occurrences of nominal constants.

For example, if p is a binary constructor and c1 and c2 are nominal
constants:

λx .x D c1 λx .p x c2 D p c1 c2 λx .λy .p x y D p c1 c2

λx .x 6D p c1 c2 λx .p x c2 6D p c2 c1 λx .λy .p x y 6D p c1 c1
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Illustrating the match/pattern rule

` λX .(X =⇒ s) D (Y =⇒ U)

` pattern Y (nab X in (X =⇒ s)) U ` U ⇓ V

` match Y with (nab X in (X =⇒ s)) ⇓ V



Nominals do not escape their scopes

The logic behind the natural semantics ensures that nominals do
not escape their scope.

` ∇x .(E x) ⇓ V

` new E ⇓ V

The universal quantifier ∀V is outside the scope of ∇x .

λProlog ensures that no binding escapes its scope since such
checks are built into unification.

` ∇x .(E x) ⇓ (U x) U = λx .V

` new E ⇓ V

Static checks will need to be developed in order to ensure that
such checks are not always needed.
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Current implementation

Type inference was easy to implement in λProlog.

The natural semantics are usually easy to implement in λProlog:
however, the ∇ and D are not part of λProlog so they needed to
be implemented.

The parser and transpiler from the concrete syntax to the λProlog
code is written in OCaml.

Since the Elpi implementation of λProlog (by Enrico Tassi) is
written in OCaml and since js of ocaml compiles OCaml bytecode
to javascript, we could provide a website for experimenting with
MLTS.

https://trymlts.github.io/

https://trymlts.github.io/
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Future work

I More complex examples

I More formal proofs: small step semantics, subject reduction,
progress, etc.

I Statics checks such as pattern matching exhaustivity, etc.

I Make definitive choices about remaining aspects of this
prototype (should we restrict @ to β0 reductions? Should
constructors introduced by \ always be of primitive type?)

I Design a real implementation and an abstract machine.

I A compiler? An extension to OCaml?
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Another implementation of vacuous checking

let vacp t =

match t with

| Abs(r) -> new X in

let rec aux term =

match term with

| X -> false

| nab Y in Y -> true

| App(m, n) -> (aux m) && (aux n)

| Abs(r) -> new Y in aux (r @ X)

in aux (r @ X)

| _ -> false

;;

back



λ-tree syntax

I The syntax is encoded as simply typed λ-terms. Syntactic
categories are mapped to simple types.

I Equality of syntax is equated to α, β0, η. conversion. Often
restrictions are in place so that β0 is complete for β.

I Bound variables never become free, instead, their binding
scope can move.
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