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Abstract. Logical equivalence between logic programs that are first-
order logic formulas holds between few logic programs, partly because
first-order logic does not allow auxiliary programs and data structures
to be hidden. As a result of not having such abstractions, logical equiva-
lence will force these auxiliaries to be present in any equivalence program.
Higher-order quantification can be use to hide predicates and function
symbols. If such higher-order quantification is restricted so that oper-
ationally, only hiding is specified, then the cost of such higher-order
quantifiers within proof search can be small: one only needs to deal with
adding new eigenvariables and clauses involving such eigenvariables. On
the other hand, the specification of hiding via quantification can allow
for novel and interesting proofs of logical equivalence between programs.
This paper will present several example of how reasoning directly on a
logic program can benefit significantly if higher-order quantification is
used to provide abstractions.

1 Introduction

One of the many goals of declarative programming, and particularly, logic pro-
gramming, should be that the very artifact that is a program should be a flexible
object about which one can reason richly. Examples of such reasoning might be
partial and total correctness, various kinds of static analysis, and program trans-
formation.

One natural question to ask in the logic programming setting is, given two
logic programs, P; and P, written as logical formulas, is it the case that P,
entails Py and vice versa, the notation for which we will write as P; 4 Ps.
In other words, are these two programs logically equivalent formulas. If this
properties holds of two programs, then it is immediate that they prove the same
goals: for example, if P; - G and Py F Py then P, - G. If provability of a goal
from a program is described via cut-free proofs, as is often the case for logic
programming [MNPS91], then cut-elimination for the underlying logic is needed
to support this most basic of inferences.
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But how useful is the entailment relation P; - Pa? The answer to this de-
pends a great deal on the logic in which these logic programs are situated. If, for
example, P; and Ps are first-order Horn clause programs (that is, conjunctions
of universally quantified clauses), and entailment is taken as that for first-order
classical logic, then this relationship holds for very few pairs of programs P; and
P3. The main reasons that this classical, first-order logic equivalence is nearly
trivial and hence nearly worthless are outlined in the next three subsections.

1.1 Entailment generally needs induction.

Most interesting equivalences of programs will almost certainly require induction.
Logics and type systems that contain induction are vital for reasoning about
programs and such logics have been studied and developed to a great extent.
In this paper, however, we will not be concerned with induction so that we can
focus on two other important limiting aspects of logical entailment.

1.2 Classical logic is poor at encoding dynamics

Classical logic does not directly support computational dynamics, at least, not
directly at the logic level. Truth in classical logic is forever; it is immutable.
Computations are, however, dynamic. To code computation in classical logic,
all the dynamics of a computation must be encoded as terms that are given as
arguments to predicates. That is, the dynamics of computations are buried in
non-logical contexts (i.e., with in atomic formulas). As a result, the dynamic
aspects of computation are out of reach of logical techniques, such as modus
ponens and cut-elimination.

This situation improves a bit if intuitionistic logic is used instead: the no-
tion of truth in Kripke models involving possible worlds allows for some richer
modeling of dynamics, enough, for example, to provide direct for scoping of
modules and abstract datatypes [Mil89b,Mil89a]. If one selects a substructural
logic, such as linear logic, for encoding logic programs, then greater encoding of
computational dynamics is possible. In linear logic, for example, it is possible
to model a switch that is now on but later off and to assign and update imper-
ative programming like variables [HM94] as well as model concurrent processes
that evolve independently or synchronize among themselves [AP91,Mil96]. Here,
counters, imperative variables, and processes are all represented as formulas and
not as terms within the scope of a predicate (non-logical constant). As a result
of capturing more of the computational dynamics happening at the level of loci,
logical equivalence will be richer and less trivial in establishing equivalence. Of
course, for these examples, this equivalence will now be based on linear logic.
All the examples that we shall present in this paper will be based on linear logic
programming.

1.3 Needed abstractions are not present in first-order logics

First-order logics do not provide means to hide or abstract parts of a specification
of a computation. For example, if one specifies two different specifications for



sorting in first-order Horn clauses, each of with different auxiliary predicates
and data structures, all of these are “visible” in first-order logic, and logical
equivalence of two such programs will insist that all predicates, even auxiliary
ones, must be equivalent. Logic does provide means of abstracting or hiding parts
of specification and even entire data structures. This mechanism is quantification,
and to hide predicates and data structures, higher-order quantification is needed.
This paper will focus on illustrating how such quantification can be used to
specify computation and to help in reasoning about program equivalence.

2 Quantification at function and predicate types

In the first-order logic settings, substitutions for quantifiers can determined
within proof search generally using unification. Depending on what kind of
higher-order quantification is allowed, it may or may not be true that unifi-
cation, even higher-order unification, can determine unification entirely.

A first-order logic allows quantification over only the syntactic category in-
dividuals. Higher-order logics generally allow for quantification, also, of function
symbols (quantification at function type) or predicate symbols (quantification
at predicate type) or both.

For the sake of being concrete, we shall assume that the logics considered
here are based on a simple type discipline, and that the type of logical formulas
is o (following Church’s Simple Theory of Types [Chud0]). Given this typing, if
a quantifier binds a variable of type m — ...7, — 79, where 7y is a primitive
type, then that quantifier binds a variable at predicate type if 79 is 0 and binds
a variable at function type otherwise.

Logic programming languages that allow for quantification over function sym-
bols and enrich the term language with A-terms provide support for the higher-
order abstract syntax approach to representing syntactic expressions involving
binders and scope [PE88]. As is familiar with, say, implementations of AProlog,
Isabelle, and Elf, higher-order unification is adequate for discovering substitu-
tions for quantifiers during proof search in languages containing quantification of
individual and function types. A great deal of energy has gone into the effective
implementation of such systems, including treatments of higher-order unifica-
tion, explicit substitution, and search (see, for example, [NM99]). Higher-order
unification [Hue75] is rather complicated, but much of higher-order abstract
syntax can be maintained using a much weaker notion of unification [Mil91].

Quantification at predicate type is, however, a more complex problem. As is
well known, cut-free proofs involving formulas with predicate quantification do
not necessarily have the sub-formula property: sometimes predicate expressions
(denoting sets and relations) are required that are not simply rearrangements of
subformulas present in the sequent one is attempting to prove. Higher-order unifi-
cation directly applied does not generate enough substitutions to yield complete-
ness. Just to convince ourselves that computing predicate substitutions must be
genuinely hard, imagine stating the partial correctness of a simple imperative
program written using, say, assignment and interaction. Using Hoare logic for



such a programming language, the correctness of a looping program is easily
written by allowing predicate quantification to represent the quantification of an
invariant for the loop. It is, indeed, hard to image an mechanism that would be
complete for computing invariants of looping programs.

There has been some interesting work on attempts to find occasions when
higher-order substitutions can be automated. See, for example, the work on set
variable [Ble79,Fel00,Dow93]. The logic programming language AProlog allows
some uses of higher-order quantification (used for higher-order programming),
but such uses are restricted so that computing necessary predicate substitutions
can be done using (essentially) higher-order (pre) unification [NM90]. This can
only be done, however, for rather serious restrictions on the use of higher-order
predicate substitutions (such restrictions do, however, also have a natural oper-
ational meaning within the logic programming setting).

A — Gly/a] A D[t/a] — G
A —Vz,..G VE ANz, D — G vL
A— Glt/a] A, Dly/x] — G

A -G B AgmD —a ok

Fig. 1. Inference rules for quantifiers. In both the IR and VL rules, ¢ is a term of type
7. In the 9L and VR rules, y is a variable of type 7 that is not free in the lower sequent
of these rules.

Figure 1 presents the sequent calculus rules for the universal and existential
quantifiers. Notice that the substitution term ¢ can be a A-term (of type 7)
and in the case that that quantification is of predicate type, the term ¢ may
contain logical connectives. Hence, as a result, the formulas G[t/z] and D[t/z]
might have many more logical connectives and quantifiers than the formulas
Vz.D and dx.G. Of course, if a sequent calculus proof does not contain the VL
and JR inference rules at predicate type, then the treatment of higher-order
quantifiers are actually quite simple: the only other possible introduction rules
are JL and VR and they are simply instantiated (reading a proof bottom up)
by a new “eigenvariable” y. The Teyjus implementation [NM99] of AProlog, for
example, gives these a direct and effective implementation of such eigenvariable
generation during proof search. It is possible to define rich collections of higher-
order formulas for which one can guarantee that only predicate quantification
only occurs with 3L and VR. Most of the example of logic programs that we
present below have this structure.

Notice that if P is such that all universal quantifiers of predicate type occur
negatively and all existential quantifiers of predicate type occur positively, then
it is easy to show that there are no occurrences of VL or 3R in a cut-free proof
of the sequent P — A where A is, say, an atomic formula. If, however, P,
and Py are two such programs with the above restriction, there can be cut-
free proofs of the sequent P; — P that contain occurrences of VL and JR.



Such sequents will generally require some substitutions that might be difficult
to produce by simple automation. This is consistent with the expectation that
inferences between programs require some genuine insights to establish.

We now proceed to present some example of reasoning with higher-order
quantification. All of our examples involve some use of linear logic as well as
higher-order quantification. We will not attempt to describe the basics of linear
logic, but rather refer the reader to, say, [Gir87,Tro92]. Our first two examples
will make use of linear implication, written as —o (as as the converse o—) and
intuitionistic implication, written as =. The multiplicative conjunction ® ap-
pears as well. Our last example, starting in Section 5 will also make use of the
multiplicative disjunction %.

As in most examples in this proposal, we shall assume the familiar Prolog
convention of writing top-level implications in specification clauses in their re-
verse direction. Also, capital letters used as free variables will be considered
universally quantified at the top level of the clause in which they appear.

3 Reversing a list is symmetric

While much of the motivation for designing logic programming languages based
on linear logic has been to add expressiveness to such languages, linear logic can
also help shed some light on conventional programs. In this section we consider
the linear logic specification for the reverse of lists and formally show, by direct
reasoning on the specification, that it is a symmetric relation [Mil].

Let the constants nil and (-::-) denote the two constructors for lists. To
compute the reverse of two lists, make a place for two piles on a table. Initialize
one pile to the list you wish to reverse and initialize the other pile to be empty.
Next, repeatedly move the top element from the first pile to the top of the second
pile. When the first pile is empty, the second pile is the reverse of the original
list. For example, the following is a trace of such a computation.

(a::b:c:nil) nil
(b::c::nil) (a ::nil)
(¢ ::nil) (b::a::nil)
nil (c::b:ra::nil)

In more general terms: if we wish to reverse the list L to get K, first pick a binary
relation rv to denote the pairing of lists above (this predicate will not denote
the reverse); then start with the atom (rv L nil) and do a series of backchaining
over the clause

rvP (X:Q)—orv(X:=P)Q

to get to the formula (rv nil K). Once this is done, K is the result of reversing
L. That is, if from the two formula

VPYXVYQ(rv P (X Q) —orv (X ::P) Q)
(rv nil K)



one can prove (rv L nil), then the reversing of L is K. This specification is
not finished for several reasons. First, L and K are specific lists and are not
quantified anywhere. Second, the relation reverse L K must be linked to this
sub-computation using the auxiliary predicate rv. Third, we can observe that of
the two clauses for rv above, the first clause (the recursive one) can be used an
arbitrary number of times during a computation while the second clause (the
base case) can be used exactly once. Since we are using elements of higher-
order linear logic here, linking the rv sub-computation to reverse L K can be
done using nested implications, the auxiliary predicate rv can be hidden using
a higher-order quantifier, and the distinction between the use pattern for the
inductive and base case clauses can be specified using different implications.

The entire specification of reverse can be written as the following single for-
mula.

VIVK[ Vrv ( (VXVPVQ(rv P (X = Q) —orv (X = P) Q)) =
rv nil K —orv L nil)—o reverse L K |

Notice that the clause used for repeatedly moving the top elements of lists is to
the left of an intuitionistic implication (so it can be used any number of times)
while the formula (rv nil K), the base case of the recursion, is to the left of a
linear implication (must be used once).

Now consider proving that reverse is symmetric: that is, if (reverse L K) is
proved from the above clause, then so is (reverse K L). The informal proof of
this is simple: in the table tracing the computation above, flip the rows and the
columns. What is left is a correct computation of reversing again, but the start
and final lists have exchanged roles. This informal proof is easily made formal
by exploiting the meta-theory of higher-order quantification and of linear logic.
A more formal proof proceeds as follows. Assume that (reverse L K) can be
proved. There is only one way to prove this (backchaining on the above clause
for reverse). Thus the formula

Vrv((VXVPYQ(rv P (X Q) —rv (X 2 P) Q)) = rv nil K —orv L nil)

is provable. Since this universally quantified expression is provable, any instance
of it is also provable. Thus, instantiate it with the A\-expression Az\y(rv y z)*
(the swapping of the arguments is one of the flips of the informal proof and the
negation will perform the other flip). The resulting formula

(VXVPYQ(rv (X ::Q) P)* - (1v Q (X = P)Y)) = (rv K nil)* —o (rv nil L)*

can be simplified by using the contrapositive rule for negation and linear impli-
cation, and hence yields

(VXVPYQ(rv Q (X = P) —orv (X ::Q) P) = rvnil L —orv K nil)

If we now universally generalize on rv we again have proved the body of the
reverse clause, but this time with L and K switched.



This proof exploits the explicit hiding of the auxiliary predicate rv by pro-
viding a site into which a “re-implementation” of the predicate can be placed.
Also notice that this proof does not have an explicit reference to induction. It is
unlikely to suspect that there are many proofs of interesting properties involving
list manipulation predicates that do not require induction. This example simply
illustrates an aspect of higher-order quantification and linear logic in reasoning
direction with specifications.

4 Two implementations of a counter

For another example of how higher-order quantification can be used to form
abstractions and to enhance reasoning about code, consider the two different
specifications E; and Esy of a simple counter object in Figure 2 [Mil96]. Each of
these specifications specify a counter using notions similar to the encapsulation
of state (via linear logic) that responds to two “methods”, namely, get and inc,
for getting and incrementing the encapsulated value. Notice that in both of
these specifications, the state is the linear atomic formula (r n) (n is the integer
denoting the counters value) and the two methods are specified by two clauses
that are marked with a ! (that is, they can be invoked any number of times).
In these both of these specifications, the predicate r is existentially quantified,
thus properly encapsulating the state and methods.

Ei=3r[(r0)®
IWKVV(get V Ko—rVR((rV —oK))®
IVKVV (inc V K o—r V& (r (V +1) — K))]

Ey=3r[(r0)®

IWEKVV (get (V) Ko—r V@V -—oK))®
IVKYV (inc (V) K o—r V& (r (V —1) —o K))]

Fig. 2. Two specifications of a global counter.

Viewed from a proof search point-of-view, these two specifications store the
counter on the left side of the sequent as a linear logic assumption. The counter
is then updated by “destructively” reading and then rewritten the atom used to
store that value. The differences between these two implementations is that in the
second of these implementations the inc method actually decrements the internal
representation of the counter: to compensate for this choice the get method
returns the negative of that internal value. The use of ®, !, and 3 in Figure 2 is for
convenience in displaying these abstract data types. For example, if we write F
as Ir(R1 ®! Re ®! R3), then using simple “curry/uncurry” equivalences in linear
logic we can rewrite E1 —o G to the equivalent formula Vr(R; —o Re = R3 = G).
These specification are encoded using continuation passing style: the variable K
ranges over continuations.



Although these two specifications of a global counter are different, they
should be equivalent in some sense. Although there are several ways that the
equivalence of such counters can be proved (for example, trace equivalence), the
specifications of these counters are, in fact, logically equivalent. In particular,
the entailments E; F Fs and E3 F FE; are provable in linear logic. The proof
of each of these entailments proceeds (in a bottom-up fashion) by choosing an
eigen-variable, say s, to instantiate the existential quantifier, on the left-hand
specification and then instantiating the right-hand existential quantifier with
some term involving s. In both cases, it turns out that the proper term with
which to instantiate that right-hand quantifier is Ax.s (—). The proof of these
entailments must also use the equations

{-0=0,—(z+1)=—2—-1,—(z—1)=—z+1}.

Clearly, logical equivalence is a strong equivalence: it immediately implies no
logical context can tell the difference between these two implementations.

5 Multiset rewriting in proof search

To provide some more examples of direct reasoning one logical specification, we
will first describe how certain aspects of security protocols can be specified in
linear logic. To discuss specifications of security protocols, we first introduce
multiset rewriting and how that can be encoded in proof search.

To model multiset rewriting we shall use a subset of linear logic similar to
the process clauses introduced by the author in [Mil93]. Such clauses are simply
described as follows: Let G and H be formulas composed of L, %, and V. (Think
of the % connective as the multiset constructor and L as the empty multiset.)
Process clauses are closed formulas of the form VZ[G — H] where H is not L
and all free variables of G are free in H. These clause have been used in [Mil93]
to encode a calculus similar to the m-calculus. A nearly identical subset of linear
logic has also been proposed by Kanovich [Kan92,Kan94]: if you write process
clauses in their contrapositive form (replacing the connectives %, V, 1, and o—
with ®, 3, 1, and —o, respectively) you have what Kanovich called linear Horn
clauses.

The multiset rewriting rule a,b = ¢, d, e can be implemented as a backchain-
ing step over the clause ¢ Bd Be —o a Ba %b. That is, backchaining using this
linear logic clause can be used to justify the inference rule

U:A—cde I
v, A — a,a,b I’

with the proviso that ¢ Bd ®e —o a b is a member of ¥. We can interpret this
fragment of a proof as a rewriting of the multiset a, b, I" to the multiset ¢, d, e, I’
by backchaining on the clause displayed above. Using the Forum presentation of
linear logic [Mil96], this inference rule can be justified with the following proof



fragment.
U, A —c.de I

a b
U:A—c,dRe, T ¥i-—a ¥ —b

U, A — cBdRe, I W;-ﬂa,b
W,A B0 Be—0a T a,b,F
U, A —a,b I

The sub-proofs on the right are responsible for deleting from the right-hand
context one occurrence each of the atoms a and b while the subproof on the left
is responsible for inserting one occurrence each of the atoms ¢, d, and e. Thus,
we can interpret this proof fragment as a reduction of the multiset a, b, I" to the
multiset ¢, d, e, I" by backchaining on the clause displayed above.

Ezxample 1. Consider the problem of Alice wishing to communicate a value to
Bob. The clause

Vz[(a x) Bbo—a’ BV z)]

illustrates how one might synchronize Alice’s agent a x with Bob’s agent b. In
one, atomic step, the synchronization occurs and the value z is transfer from
Alice, resulting in her continuation a’, to Bob, resulting in his continuation b’ z.
If a server is also involved, one can imagine the clause being written as

Vz[(a x) BbBs o— a' B(V z) Bs],
assuming that the server’s state is unchanged through this interaction.

As this example illustrates, synchronization between agents is easy to specify
and can trivialize both the nature of communication and the need for security
protocols entirely. (For example, if such secure communications is done atomi-
cally, there is no need for a server s in the above clause.) While the clause in this
example might specify a desired communication, it cannot be understood as an
actual implementation in a distributed setting. In distributed settings, synchro-
nization actually only takes place between agents and networks. Our main use of
multiset rewriting will involve more restricted clauses with weaker assumptions
about communications: these will involve synchronizations between agents and
network messages (a model for asynchronous communications) and not between
agents and other agents (a model of synchronous communications).

In general, however, the body of clauses are allowed to have universal quan-
tification: since (Va.Pz) BQ is linear logically equivalent to Va(Px 8Q), we can
assume such bodies are in prenex normal form (provided that x is not free in
@). Backchaining over the clause

Vg .. Vailar B Bag, o— Vyr ... Vy;[by B+ Bby]]

can be interpreted as multiset rewriting but where the variables yi,...,y; are
instantiated with eigenvariables of the proof.



6 Security protocol in proof search

We shall briefly outline how multiset rewriting framework proposed by Cervesato,
et. al. in MSR [CDL*99,CDL*00]. As we have seen, universal quantification is
used can be used to handle schema variables (such as the x variable in Ex-
ample 1) as well as eigenvariables: when the latter are treated properly in a
sequent calculus setting, the proviso on their newness can be used to model the
notions of freshness and newness in security protocols for nonces, session keys,
and encryption keys.

For the sake of concreteness and simplicity, we will model messages on a
network simply as terms of type data. We shall use a tupling operator (-,-)
that has type data — data — data to form composite data objects and the
unit, written as the empty tuple () will have the type data. Expressions such as
(..., will be assumed to be built from pairing, associated to the right.

As suggested in the previous section, not just any clause makes sense in a
security protocol. Various restrictions on the occurrence of predicates within
clauses must be made. For example, we need to avoid that agents synchronize
directly with other agents and we must avoid that one agent becomes another
agent. (In Section 8 we show a different syntax for protocol clauses which will
not need these various restrictions.) In general, the specification of an action
possible by Alice is given by (the universal closure of) a clause of the form

a S RB([M]] B B[[M]] o= Vny ... Vn;[a" " B[[M{]] B--- B[[M]] ],

where p, ¢, and i are non-negative integers. This clause indicates that Alice
with memory S (represented by the atom a S) inputs the p network mes-

sages [[Ma]l,...,[[M,]] then, in a context where nq,...,n; are new symbols,
becomes the continuation a’ with new memory S’ and with ¢ new output mes-
sages [[M]], ..., [[M,]]. Two variants of this clause can also be allow: the first is

where the atom a s is not present in the head of the clause (such clauses encode
agent creation) and the second is where the atom a’ S’ is not present in the body
of the clause (such clauses encode agent deletion).

7 Encryption as an abstract datatype

We now illustrate our first use of higher-order quantification at a non-predicate
type. In particular, we shall model encryption keys as eigenvariables but not of
type data but of type data — data. Clearly, this is a natural choice of type since
it is easy to think of encryption as being being a mapping from data to data: a
particular implementation of this via 64-bit string and some particular encryp-
tion algorithm is, of course, abstracted away at this point. Building data objects
using higher-type eigenvariables is a standard approach in logic programming for
modeling abstract datatypes [Mil89a]. In order to place this higher-type object
within data, we introduce a new constructor -° of type (data — data) — data
that explicitly coerces an encryption function into data.



Explicit quantification of encryption keys can be used to also describe suc-
cinctly the static distribution of keys within agents. Consider, for example, the
following specification.

ks e[ @ (M, S) o— a S B[[kas M]].
b T B[[kys M]] o~ b (M,T).
5 () B([kas P]] o= s () B[[kos P]]-

(Here as elsewhere, quantification of capital letter variables is universal with
scope limited to the clause in which the variable appears.) In this example, Alice
(a) communicates with Bob (b) via a server (s). To make the communications
secure, Alice uses the key k,s while Bob uses the key kys. The server is memory-
less and only takes on the role of translating messages encrypted for Alice to
messages encrypted for Bob. The use of the existential quantifiers helps establish
that the occurrences of keys, say, between Alice and the server and Bob and the
server, are the only occurrences of those keys. Even if more principals are added
to this system, these occurrences are still the only ones for these keys. Of course,
as protocols are evaluated (that is, a proof is searched for), keys may extrude
their scope and move freely around the network and into the memory of possible
intruders. This dynamic notion of scope extrusion is similar to that found in the
m-calculus [MPW92] and is modeled here in linear logic in a way similar to an
encoding given in [Mil93] for an encoding of the m-calculus into linear logic.

Example 2. As an example to illustrate the possible power of logical entailment
using such quantification at higher-order type for encryption keys, consider the
following two clauses:

a o= Vk.[[(k m)]] and ao— Vk.[[(k m")]].

These two clauses specify that Alice can take a step that generates a new encryp-
tion key and then outputs either the message m or m’ encrypted. Since Alice
has no continuation, no one will be able to decode this message. It should be
the case that these two clauses are equivalent, but in what sense? It is an easy
matter to show that these two clauses are actually logically equivalent. A proof
that the first implies the second contains a subproof of the sequent

VE.[[(k m")]] — VE.[[(k m)]],

and this is proved by introducing the eigenvariable, say ¢, on the right and the
term Aw.(c m) on the left.

Public key encryption can be encoded using a “key” of type data — data —
data as the following clause illustrates:

Jk.[a SB[[(k N M)]] o—a’ (S, M).
pubkey alice M o— ¥n.[[(k n M)]].]

We have introduced now an auxiliary predicate for storing public keys: this is
reasonable since they should be something that can be looked up in a registry.



FkasTkps{

aS o Vna.a (na,S) B[[{alice, bob, na)]].
a (N, S) B[[(kas{N, bob, K, En)]] o a (N, K, S) B[[En]].
a (Na,Key®, S) B[[(Key NbJ])  o- a () B[[(Key (Nb, S))]].
b {) B[[(kvs (Key®, alice)]] o— ¥nb. b (nb, Key®) B[[(Key nb)]].
b (Nb, Key) B[[(Key(Nb,S))]] o— bS.
s B[{alice,bob, N)]] o~ Vk. sB[[(kas{N,bob,k°, kps(k°, alice)))]].

Fig. 3. Encoding the Needham-Schroeder protocol.

For example, the following clause describes a method for Bob to send Alice a
message using her public key.

VMVS. b (M,S) o— b S %8 pubkey alice M.

Every instance of the call to pubkey places a new nonce into the encrypted data
and only Alice has the full key that makes it possible for her to ignore this nonce
and only decode the message.

For a more interesting example, we specify the Needham-Schroeder Shared
Key protocol (following [SC01]) in Figure 3. Notice that two shared keys are
used in this example and that the server creates a new key that is placed within
data and is then used for Alice and Bob to communicate directly. Notice also
that it is easy to show that this protocol implements the specification (taken
from Example 1):

Vz[(a ) BbBs o—a’ B(V x) Bs].

That is, the formula displayed in Figure 3 logically entails the above displayed
formula. The linear logic proof of this entailment starts with the multiset (a ¢), b, s
on the right of the sequent arrow (for some “secret” eigenvariable ¢) and then
reduces this back to the multiset a’, (b’ ¢), s simply by “executing” the logic pro-
gram in Figure 3. Notice that the V used in the bodies of clauses in this protocol
are used both for nonce creation (at type data) and encryption key creation (at
type data — data).

8 Abstracting over internal states of agents

Existential quantification over program clauses can also be used to hide predi-
cates encoding agents. In fact, one might argue that the various restrictions on
sets of process clauses (no synchronization directly with atoms encoding agents,
no agent changing into another agent, etc) might all be considered a way to en-
force locality of predicates. Existential quantification can, however, achieve this
same notion of locality, but much more declaratively.

First notice that such quantification can be used to encode 3-way synchro-
nization using 2-way synchronization via a hidden intermediary. For example,



the following entailment is easy to prove in linear logic.

a®bo—=x
HI'{xi’S’co—di’S’e} G+ aBbBco-dRe

In a similar fashion, intermediate states of an agent can be taken out entirely.
For example,

a1 B[[mo]] o— az B[[m]]
3 ag,as. § az B[[ms]] o— a3 B[[ms]] -
az B[[m4]] o= aq B[[ms]]

ar B[mo]] o= ([[ma]] o= ([[ma]] o= ([[ma]] o= ([[mal] o= ([[ms]] Ba4)))))

This suggests an alternative syntax for agents.
So far, we have only considered formulas in their “bipolar form”. That is,
clauses of the form

Py % BP, Q1% --8Q,, orequivalently (Pl ®---@P1)BQ1B - BQ,.

Such a formula is a nesting of synchronous connectives within asynchronous
connectives, but no synchronous connective is in the scope of an asynchronous
connective. Andreoli [And92] showed that if we allow the addition of additional
constants, arbitrary formulas of linear logic can be “compiled” to a collection
of bipolar forms: basically, when the nesting alternates once, simply introduce
new constants and have these be defined to handle the meaning of the next
alternation, and so on.

We can now see that the specifications that we have been using so far are
actually the result of compiling more general clauses into bipolars. To that end,
consider the following syntactic categories of linear logic formulas:

H:=A|L H®H |V H

D:=H|D-oH|Vz.D

Notice that 1 belongs to D since it is equivalent to 1 —o L. Also, if one skips a
phase, the two phases can be contracted (if no intervening quantifiers) as follows:

po—(lo—(qo—k))=pBqo—k

Notice that Yz (pz®qz) is not equivalent to Va(pz) Bvx(qx) (the forward direction
does not hold). An encoding of the Needham-Schroeder Shared Key protocol in
this style syntax is given in Figure 4.

Formulas such as these can be seen as logically equivalent to clauses in process
theories: the gap between them is only predicate quantification. This new set of
formulas might also be argued to be superior to the form using bipolars for a
number of reasons. First, the restrictions that we need to make on occurrences
on predicates in various clauses of a protocol specification can be removed en-
tirely. In fact, only one predicate symbol, the one denoting network messages,



(Out) Vna.[[{alice, bob, na)]] o—

(In) (VKabVEn.[[kas{na, bob, Kab®, En)]] o—
(Out) ([[En]] o=

(In) (VNB.[[(KabNB)]] o—

(Out) ([(Kab(N B, secret))]]))))-

(Out) Lo—

(In) (VKab.[[(kbs(Kab®, alice))]] o—

(Out) (Vnb.[[(Kabnb)]] o—

(In) ([[((Kab(nb, secret))]] o—

(Cont) b secret))).

(Out) 1<

(In) (VN.[[{alice, bob, N)]] o—

(Out) (Vkey.[[kas(N, bob, key®, kbs(key®, alice))]])).

Fig. 4. Encodings of Alice, Bob, and the server (respectively)

is needed. Second, there is a strong parallel between this second style specifi-
cation and process calculus representation of communicating agents, at least in
the sense that formulas will appear to be built from input and output prefixes.
Third, agents that are prepared to output and those prepared to do inputs will
be duals of one another and, as such, will organize themselves within sequents
nicely: formulas denoting agents willing to output will appear on the right and
formulas denoting agents willing to input will appear on the left of the sequent
arrow. (Remember the proof theoretic distinction in which asynchronous behav-
ior occurs on the right and synchronous behavior occurs on the left.) Finally, we
do not need to keep track of memory explicitly: memory is modeled by values
and variables that occur in the “continuation” to a process formula.

9 Conclusion

We have shown than abstractions in the specification of logic programs via quan-
tification at higher-order types can improve the chances that one can perform in-
teresting inferences directly on the logic specification. Induction and co-induction
will certainly be important, if not central, to establishing a most logical entail-
ments involving logic specifications. Abstractions of the form we have discussed
here, however, will most like play an important role in any comprehensive ap-
proach to reasoning about logic programming specifications.
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