
PEPS Relations, 15 December 2008 1/27

Relations:

their uses in programming and

computational specifications

Dale Miller
INRIA - Saclay & LIX, Ecole Polytechnique

Outline

1. Logic and computation

2. Comparing programming with functions and relations

3. Examples of logic programs

4. Concluding observations

PEPS Relations, 15 December 2008 2/27

By way of introduction

Currently DR at INRIA-Saclay, team leader of Parsifal.

Former: positions at the University of Pennsylvania, Penn State
University, and Ecole Polytechnique.

Research: symbolic logic and proof theory applied to computational
logic: automated deduction, logic programming, model checking.

Influenced by: Church then Gentzen then Girard.

PEPS Relations, 15 December 2008 3/27

Roles of Logic in the Specification of Computation

Two approaches to using logic to specify computations.

Computation-as-model: Computations are mathematical
structures: nodes, graphs, and state (for example, Turing machines,
etc). Logic is used externally to make statements about those
structures. E.g. Hoare triples, Hennessy-Milner logic.

Computation-as-deduction: Bits of logic are used directly.

Functional programming. Programs are proof; computation is
proof normalization (λ-conversion, cut-elimination).

Logic programming. Programs are theories; computation is
proof search (for cut-free sequent proofs).

PEPS Relations, 15 December 2008 4/27

Computing with functions

The lambda-operator will be written as an infix, backslash: λx.x as
(x\x), λx.(xx) as (x\ x x), λxλyλz.(xz)(yx) as
(x\y\z\ (x z) (y z)), etc.

Using Church numerals: (plus 2 2) β-reduces to 4.

(n\m\f\x\ (n f) ((m f) x)) (f\x\ f (f x)) (h\u\ h (h u))

(m\f\x\ ((f\x\ f (f x)) f) ((m f) x)) (h\u\ h (h u))

(m\f\x\ (x\ f (f x)) ((m f) x)) (h\u\ h (h u))

(f\x\ (x\ f (f x)) (((h\u\ h (h u)) f) x))

(f\x\ (x\ f (f x)) ((u\ f (f u)) x))

(f\x\ (x\ f (f x)) (f (f x)))

(f\x\ f (f (f (f x))))

Emphasis on normal forms, confluence, termination, etc.

Computational dynamics are modelled by changes to the
expression.

PEPS Relations, 15 December 2008 5/27

Computing with relations

Computation with relations is different.

?- append (1 :: 2 :: nil) (3 :: nil) L.

L = 1 :: 2 :: 3 :: nil ? y

no

?- append L K (1 :: 2 :: 3 :: nil).

K = 1 :: 2 :: 3 :: nil

L = nil ? y

K = 2 :: 3 :: nil

L = 1 :: nil ? y

K = 3 :: nil

L = 1 :: 2 :: nil ? y

K = nil

L = 1 :: 2 :: 3 :: nil ? y

no

?-

PEPS Relations, 15 December 2008 6/27

Simple List Operations

kind list type -> type.

type nil list A.

type :: A -> list A -> list A.

type memb A -> list A -> o.

type append list A -> list A -> list A -> o.

memb X (X :: L).

memb X (Y :: L) :- memb X L.

append nil K K.

append (X :: L) K (X :: M) :- append L K M.

PEPS Relations, 15 December 2008 7/27

The gap between FP and LP is robust

We know enough to describe FP and LP succiently via proof theory.

The many recent advances in applying proof theory to
computational logic do not help to bring them closer.

Higher-orders: both paradigms can use these but they yield
different expressiveness.

Linear logic: Both pardigms get more programs: FP gets proof
nets, geometry of interaction; LP gets two implications, two
conjunctions, etc.

Game theory: In FP, games are used to model function-argument
communication. In LP, proofs are winning strategies for winning
arguments (dialog games).

Of course, there are trivial mergings, and as well as
implementations of one in the other.

PEPS Relations, 15 December 2008 8/27

A Series of Logic Programming Languages

Horn clauses (Prolog) Unrestricted use of {&,>} but ∀,⇒ are
restricted to the top-level only. For example, ∀x̄(G ⇒ A).

Hereditary Harrop formulas (λProlog) Unrestricted use of
{∀,⇒,&,>}. For example, ∀x((Bx & ∀y(Cxy ⇒ Dy)) ⇒ Dx).

Lolli (a linear refinement of λProlog) Unrestricted use of
{∀,−◦,⇒,&,>}. For example, ∀x((Bx−◦ ∀y(Cxy ⇒ Dy)) ⇒ Dx).

Linear Objects (LO: Andreoli and Pareschi) Unrestricted use of
{&,>,

...
............
.................................. ,⊥} with only top-level occurrences of ∀,−◦.

∀x̄(G−◦A1
...

............
.................................. · · · ...

............
.................................. An)(n ≥ 1)

Forum Unrestricted use of {∀,−◦,⇒, &,>,
...

............
.................................. ,⊥}. For example,

∀x(Bx−◦ ∀y(Cxy ⇒ Dy) ⇒ Dx
...

............
.................................. Bx)

PEPS Relations, 15 December 2008 9/27

Cut-free proofs are computation traces

Cut-free proofs (lemma-free proofs) of mathematically interesting
theorems do not exist in nature.

Cut-free proofs in the study of logic programs are used as a more
declarative and principled version of computation traces, similar to
the way one defines them with Turing machines.

Since computation traces are proofs, one hopes the results in proof
theory can be applied directly to the study of computation.

PEPS Relations, 15 December 2008 10/27

Expressive strength: changes in sequents

Consider a cut-free proof of the sequent Γ −→ A. Let Γ′ −→ A′ be
a sequent somewhere in this proof. (A and A′ are atoms.)

With Horn clauses, we have Γ = Γ′. That is, context is global
and nothing is hidden.

The dynamics of computation is embedded in the changing of
atoms from A and A′; that is, within non-logical contexts. Hence,
computation is hidden away from the most basic logical principles
(modus ponens, cut-elimination, etc).

With hereditary Harrop formulas, context can change: Γ ⊆ Γ′.
Supports modular programming and abstract data-types.

With linear logic, Γ and Γ′ can be related via much richer
fashions (via multiset rewriting).

PEPS Relations, 15 December 2008 11/27

Where is the “relation”?

Given a fixed, Horn clause program P, we attempt to prove

−→ p(t1, . . . , tn)

One can confuse the relationship denoted by p and by the
provability of the sequent (from P).

In richer logic programming settings, the sequent is

Ψ; Γ −→ p(t1, . . . , tn), ∆

and the computed relation is more “situated” with other items.

PEPS Relations, 15 December 2008 12/27

A scheme for reasoning about computation

Let ` be a provability in a sequent system to encode computation
(e.g., intuitionistic or linear logic).

Let `+ be a stronger system with, for example, rules for
induction/coinduction, etc.

Assume that ` ⊆ `+ and that cut-elimination holds for ` and `+.

One scheme for reasoning is the following:
` C A computation is witnessed.

C `+ D An inference about computation.
`+ D By cut.
` D By inspection of a cut-free proof.

Thus the implication C ⊃ D in the stronger system (`+) can be
used to carry computations to computations.

PEPS Relations, 15 December 2008 13/27

Reversing a list in Prolog

Move one item from top of one list to the top of the other list.

(1::2::3::nil) nil.

(2::3::nil) (1::nil).

(3::nil) (2::1::nil).

nil (3::2::1::nil).

This computation can be encoded as the program

rv nil (3::2::1::nil).

rv (X::L) M :- rv L (X::M).

and the query

rv (1::2::3::nil) nil.

Not really a good program since it is written for one list only.

Notice that reverse is symmetric. Proof: Flip both rows and
columns!

PEPS Relations, 15 December 2008 14/27

A better specification

∀L,K [

(∀rv ((∀M, N, X(rv N (X :: M)−◦ rv (X :: N) M))⇒ rv nil K −◦ rv L nil))

−◦ reverse L K]

The base case is assumed linearly! An attempt to prove

reverse (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil)

results in the introduction of a new predicate rv and the attempt
to prove that from the two clauses

rv nil (3 :: 2 :: 1 :: nil)

!∀M,N, X(rv N (X :: M)−◦ rv (X :: N) M)

it follows that
rv (1 :: 2 :: 3 :: nil) nil.

PEPS Relations, 15 December 2008 15/27

Reverse is symmetric

Theorem. Reverse is symmetric; that is, if ` reverse L K then
` reverse K L.

Proof. Assume that ` reverse L K. Thus, the body of reverse’s
clause must be provable.

` ∀rv ((∀M, N, X(rv N (X :: M)−◦ rv (X :: N) M))⇒ rv nil K−◦ rv L nil)

Instantiate this quantifier with the term λxλy.(rv y x)⊥:

` (∀M,N,X((rv (X :: M) N)⊥−◦(rv M (X :: N))⊥)⇒(rv K nil)⊥−◦(rv nil L)⊥

Using the linear logic equivalence of the contrapositive rule:
p⊥ −◦ q⊥ ≡ q −◦ p, we have

` (∀M,N,X(rv M (X :: N)−◦ rv (X :: M) N))⇒ rv nil L−◦ rv K nil

PEPS Relations, 15 December 2008 16/27

By universal generalization over rv, we have

` ∀rv ((∀M, N, X(rv M (X :: N)−◦ rv (X :: M) N))⇒ rv nil L−◦ rv K nil)

This matches the body of the reverse problem if we switch L and
K. Thus, we conclude that ` reverse K L.

PEPS Relations, 15 December 2008 17/27

Higher-order logic and higher-order programming

A relation can take a relation as an argument.

Church’s Simple Theory of Types [1940] provides a solid foundation
for the syntax of higher-order logic using an elegant combination of
λ-calculus and logic.

The early work on λProlog (higher-order Horn clauses and
hereditary Harrop formulas) builds on Church’s framework to
explain higher-order relational programming.

Predicate abstraction in LP corresponds to function abstraction in
FP.

What does function abstraction in LP correspond to in FP?
(another talk)

PEPS Relations, 15 December 2008 18/27

Some Higher-Order Programming Examples

type forevery (A -> o) -> list A -> o.

forevery P nil.

forevery P (X :: L) :- P X, forevery P L.

type forsome (A -> o) -> list A -> o.

forsome P (X :: L) :- P X.

forsome P (X :: L) :- forsome P L.

type mappred (A -> B -> o) -> list A -> list B -> o.

mappred P nil nil.

mappred P (X :: L) (Y :: K) :- P X Y, mappred P L K.

type mapfun (A -> B) -> list A -> list B -> o.

mapfun F nil nil.

mapfun F (X :: L) ((F X) :: K) :- mapfun F L K.

PEPS Relations, 15 December 2008 19/27

The Mappred Program

type mappred (A -> B -> o) -> list A -> list B -> o.

mappred P nil nil.

mappred P (X::L1) (Y::L2) :- P X Y, mappred P L1 L2.

The predicate variable P appears both as an argument and as
taking arguments. Consider the following simple clauses:

type age person -> int -> o.

age bob 23.

age sue 24.

age ned 23.

and now consider the following query:

?- mappred (X\Y\ age X Y) (ned::bob::sue::nil) L.

The answer substitution for L is (23::23::24::nil).

PEPS Relations, 15 December 2008 20/27

The Sublist Program

type sublist (A -> o) -> list A -> list A -> o.

sublist P (X::L) (X::K) :- P X, sublist P L K.

sublist P (X::L) K :- sublist P L K.

sublist P nil nil.

type have_age list person -> list person -> o.

have_age L K :- sublist (Z\ sigma X\ age Z X) L K.

type same_age list person -> list person -> o.

same_age L K :- sublist (Z\ age Z A) L K.

PEPS Relations, 15 December 2008 21/27

Flexible Goals

?- P bob 23.

One answer to this query is the substitution (X\Y\ age X Y) for P.
Many other substitutions are also valid. Let G be any provable
closed query. The substitution X\Y\G for P is a legal answer
substitution.

For example, substituting

X\Y\ memb 4 (3::4::5::nil)

for P is also an answer substitution.

Such queries are ill-posed.

PEPS Relations, 15 December 2008 22/27

Constraining Flexible Goals

type primrel, rel (person -> o) -> o.

type mother, wife person -> o.

primrel mother.

primrel wife.

rel R :- primrel R.

rel (X\Y\ sigma Z\ R X Z, S Z Y) :- primrel R , primrel S.

mother jane mary.

wife john jane.

The query

?- rel R, R john mary,

has the unique answer substitution for R (namely, mother-in-law)

X\Y\ sigma Z\ wife X Z, mother Z Y

PEPS Relations, 15 December 2008 23/27

Operational semantics as inference rules

CCS and π-calculus transition system:

P
a−→ P ′

P + Q
a−→ P ′

P
x̄y−→ P ′

(y)P
x̄(w)−→ P ′{w/y}

y 6= x

w /∈ fn((y)P ′)

Functional programming evaluation:

M ⇓ λx.R N ⇓ U R[N/x] ⇓ V

(M N) ⇓ V

Simple typing of terms: used in functional (SML) and logic
(λProlog) programming.

Γ, x: τ ` t: σ
Γ ` λx.t: τ → σ

x /∈ fn(Γ)

PEPS Relations, 15 December 2008 24/27

Operational semantics of computation systems

Can these be seen as expressions in logic? Does proof theory, an
approach to inference, have a role to play here?

Can
A1 · · · An

A0
be encoded as

∀x̄[(A1 ∧ . . . ∧An) ⊃ A0]
A0:- A1, . . . , An.

Particular problems:

• Ordered premises: particularly in functional programming with
side-effects. But ∧ is commutative.

• The status of bindings substitutions in terms must be
explained.

• Side-conditions: many deal with occurrences of names and
variables.

See my recent article in the Concurrency Column of the Bulletin of
the EATCS.

PEPS Relations, 15 December 2008 25/27

Encoding intensional aspects of computation

A final point: the relational setting seems worth developing also to
handle reasoning about computation.

The traditional steps to build a proof assistant:

First: Implement mathematics. Chose a classical or
intuitionistic foundation: often a typed λ-calculus is picked (Coq,
NuPRL)

Second: Reduce programming correctness problems to
mathematics. Data structures, states, stacks, heaps, invariants,
etc, all are represented as various kinds of mathematical objects.
Use standard mathematical techniques (induction, primitive
recursion, fixed points, well-founded orders, etc). Use denotational
semantic and code everything functionally.

PEPS Relations, 15 December 2008 26/27

Relations allow a more intensional treatment

Many intensional aspects of computing are not served well using
such extensional foundations: in particular, bindings in syntax and
resources (as in linear logic).

A more direct, one-step approach to encoding computation seems
possible using relations for the treatment of bindings and resources.
Developing the foundations of such a proof assistant is active
research.

PEPS Relations, 15 December 2008 27/27

Questions?

