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PREFACE 

The first workshop on the XProlog language was held 31 July - 1 August 1992. Interest 
in XProlog has grown a great deal in the past several years. There is now active work 
in all areas of its theory, application, design, and implementation, including such topics 
as hypothetic reasoning, modular programming, proof theory, program transformation, 
natural language parsing and understanding, theorem proving, rewriting, generalization, 
compilation, and abstract machines. This workshop brought many of the people working 
on various aspects of XProlog together to discuss common problems and perspectives. This 
two day workshop attracted more than 30 attendees. 

Robert Harper (Carnegie Mellon University) and Fernando Pereira (AT&T Bell Labs) 
kindly accepted to give invited talks. Harper spoke on "Modules for Elf" and Pereira spoke 
on "Semantic Interpretation as Higher-Order Deduction." Two computer systems were also 
demonstrated: the Prolog/Mali implement ation of XProlog was demonst rated by Olivier 
Ridoux and the linear refinement of XProlog, Lolli, was demonstrated by Joshua Hodas. 
There were also 16 contributed papers, which are contained in these proceedings. 

There is an electronic mailing list for discussions and announcements pertaining to 
XProlog and related topics. The current list contains more than 250 addresses. To be 
added to this list, send e-mail to lprolog-requestacis .upenn . edu. 

I would like to thank the organizing and program committee - Elsa Gunter (AT&T 
Bell Labs), Gopalan Nadathur (Duke University), and Frank Pfenning (Carnegie Mellon 
University) - for their helped in designing the format of this workshop and for reading 
and reviewing all submitted papers. I would also like to thank Billie Holland for her help 
in local arrangements and with putting together this proceedings. Finally, I would like to 
thanks the Institute for Research in Cognitive Science at the University of Pennsylvania 
for providing the funds and facilities for holding this workshop. 

Dale Miller 
University of Pennsylvania 

Philadelphia, PA, USA 
December 1992 
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1 Abstract 

We introduce model-theoretic selnal~tics [Ij] for Higher-Order Horn logic prograinming language. 
We define general prograins irllere the 1,oclic.s of program clauses may contain negation symbol. 
We also define an interpreter for general progiams. To derive a llegative goal we need a negation 
as failure rule. For this, SLDNF-resolution wit11 eciuality theory is also developed. M'e prove the 
soundness theorein analogous t o  Clark's fuildamental theorem in [lo]. 

2 Introduction 

Ma.ny extended versions of I'rolog are dc\.elopetl \vhich incorpora.te higher-order features in logic 
programmingla.nguages to  ma.ke programs more versa.tile a.nd expressive [2S, S, 11. In this paper, we 
build a model-theoretic semailtics for a. higher-order logic programming language which is suitable 
for describing declarati\7ely opera,tioils of sucli programming language. 

Church [9] introduced a simple theory of t,ypes a.s a. systein of higher-order logic. This system 
incorporated A-notation in its particularly siml)le syl1ta.x wliich actually be viewed as a version of 
simply typed A-calculus. Henkin first ga.ve a. selnantics for C:liurcli's system based on general models. 
Domain members of a, general nlodcl are t,rutll values. i~~tlividuals, and functions. Church's system 
was proved t o  be complete wit11 respect to IIenkin's semantics [IS]. Artdrews studied general models 
further in [3, 4, 51, and built a. non-extensional lnodcl which is suitable under settings of resolution 
theorel11 proving [2]. The proof theory for this syst,enl is sho\vn to ha.ve a close resemblance to  that  
of first-order logic: there is: for esainple. a genera.lization to  Herljrand theorem that  holds for a 
variall t of this systein [22, 231 .  

AProlog [28] was the first, language to sho~v that Iiigher-order logic could be used a.s the basis of 
a practical prograrnrning la,nguage. XProlog is basecl on typetl A-calculi ~vllich have' their ultimate 
origin in Russel's nlethod of stratifying sets to  avoid the set theoretic paradoxes. One advantage 
of logic programs over coventio~lal non-logic prograllls 1la.s been that  they have simple declarative 
model-theoretjc serna,ntics. Tha t  is, in logic programs the least, fixpoint is equal to  least model, 
therefore it is associated t o  logical consequences and has a meailinful declarative interpretation. In 

' ~ d d r e s s  correspondence to the anthor, School of (:olnp~~t.er ant1 I ~ ~ f o r ~ n a t ~ i o l ~  Science, Center for Science and 
Tecl~nology/Fourt.l~ Floor, Syracuse Ulliversit.y, Syracuse, New l'orl; 13241-4100, USA. Telephone number of the 
author. 315-443-2466 
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higher-order logic on which XProlog is based, compared to  first-order case, it is extremely difficult 
to  build an effective model-theoretic semantics. One of these difficulties is that the definition of 
satisfaction of formulas is mutually recursive with the process of evaluation of terms (see [15, 2, 3, 
4, 51). In first-order case, the model-theory is two level [19]. First we define a domain of individuals, 
and then define satisfaction wrt this domain. As a result of this in higher-order logic i t  is difficult to  
define T p  operator for a logic program F: In a definition of Tp operator for a logic program P ,  we 
consider a set of atomic propositions as an interpretation, and need a fixed domain without regard 
t o  interpretations. The second reason is that since higher-order logic programming languages are 
usually formulated in non-extensional form, we need a non-extensional model to  describe properly 
such languages. 

Henkin's general model semantics is estensional: i.e., i f  two objects in a model have the 
same extension, then they must be equal. Extensional models are very difficult to deal with, 
and unsuitable t o  describe a higher-order logic programn~ing language like XProlog which con- 
tain a propositional type in its prinlitive set of types. For example, we can define a program 
PI = { p ( a )  t T ,  q ( a )  c T ,  r ( p ( n ) )  - T) in XProlog. Given program Pl , the goal r ( p ( a ) )  will 
succeed in XProlog, but the goal r ( q ( a ) )  will fail, since the unification of r ( q ( a ) )  and r ( p ( a ) )  will 
simply fail. For any extensional model M for PI, M will assign the value T for p(a) and q(a ) .  
So p(a)  = q(a )  is a logical consequence of PI. JW will also assign the value T to r ( p ( a ) ) ,  so the 
extension of the predicate which M will assign to I.  contains T. Therefore r ( q ( a ) )  is a logical 
consequence of the program PI .  Note that for this program the valuation of terms is mutually 
recursive with the satisfaction of formulas, since a formula can occur as an argument of predicate 
or functional symbols. 

As shown above extensional models are difficult to define and unsuitable for higher-order logic 
programming. In this paper, we develop a. non-extensional model where domain is independent from 
interpretations and build a fixed point semantics, and we prove the completeness of the interpreter 
in [26]. 

3 Higher-Order Horn Logic Programming Language 

In this section we describe a higher-order logic programming language for which we build models 
in the later sections. For the expositioil of our logic programming language C we will follow closely 
those in [28, 271. 

The set 7 of types contains a collection ?;, of primitive types and is closed under the formation 
of functional types: i.e., if cr,P E 7 ,  the11 ( a  - +) E 7 .  The type constructor + associates to the 
right. The type ( a  -- P )  is that of a function from objects of type o to  objects of type P .  

We introduce a very convenient notation from [B]. For each type symbol a,  and each set S 
containing objects or expressions, we write S ,  to denote the set of things in S which are of type a. 
We sometimes write {S,), to denote S. We can also define a type assignment mapping T on the 
set S such that r : S -+ 7 and for all s E S .  ~ ( 5 )  = CI if 5 E S,. 

Let S,T,Tl,T2 be sets. Given a mapping f : .S - T. (1 E S ,  and 6 E T, let f [b /a ]  be that 
mapping f '  : S -+ T such that for f'n = 6 and f'c = f c  for all c # u. Let b  be an element in 
TI x T2, then 6' and b2 are the first and second components of b ,  so b = (b', b2) .  If f is a mapping 
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whose values are in TI x T2, let f1 and f 2  be ina.ppings with the same domain as f defined so that  
for any argument t,  f i t  = (ft)"or i = 1,2. Thus f t  = ( f l t ,  f2t) .  I f f  : S + T is a mapping, then 
we say that  f is type consistent if for all s E S, r ( f ( s ) )  = r (s) .  If f : S + TI x Tz, then we say 
that  f is type consistent if f1 and f 2  are type consistent. For each integer n E w ,  we write [n] for 
the set (1,. , n). 

We assume that  there are denumerably many variables and constants of each type. Let the set 
of variables and constants be A and C, respectively. Simply typed A-terms are built up in the usual 
fashion from these typed constants and variables via abstraction and application. Our well formed 
terms (wfts) are simply typed A-terms. We, as usual, can define the set T(C)  of all wfts by giving 
the definition of the set T ( C ) ,  of wfts of type n by induction. 

It is assumed that  the reader is familiar with most of basic notions and definitions such as 
bound, free variables, closed terms (c-terms), substitution and A-conversion for this language; only 
a few are reviewed here. Letters f,, s,. t,. - ... will be used as syntactical variables of wfts of type a. 
Type subscript symbols may be omitted wlleil contest indicates what they should be or irrelevant 
t o  discussion. By Church-Rosser theorem [TI, a A-normal ivfts of a wft is unique upto a renaming 
of variables. For most part we shall be satisfied \vith any of these normal forms corresponding to  
a wft t, and we shall write Aiaorm(t) to  denote such a form. I11 certain situations we shall need to  
talk about a unique normal form and, in sucll cases. we shall use p(t) to  designate what we shall 
call the principal normal or p-nornznl form of t ;  i.e. p is a mapping from wfts t o  A-normal terms. 
There are several schemes that  may be used to pick a representative of the a-equivalence classes of 
A-normal terms and the one implicitly assumed here is that of [2]. 

So far we have introduced A-term structures and opera,tions on A-terms. We can introduce logic 
into A-term structures by including o, a. type for propositions, amongst the set of primitive types 
'ZO, and requiring that  the collection C of consta.nts contaill the following logical constants: A and 
V of type o +- o --i o; T of type o; a.nd for every type a, 3, of type ( a  + o) + o. The constants 
in C other than A,  V, 3 and T are called as nail-logictrl constants. A type will be called a predicate 
type if i t  is a type of the form a1 - - - -a, - o, or a non-predicate type otherwise. We let II C C 
be the set of predicate constnnts. Expression of tlie form 3(An:G) will be a.bbrevia.ted by 3xG. 

Terms of type o are referred to a.s goal formvla. The A-normal form of a goal formula consists, 
a t  the outermost level, of a sequence of applica.tions. and the leftmost symbol in this sequence is 
called its top level symbol. We shall have use for the structure of A-normal fornlulas that  is described 
below. A goal formula is said t o  be a.n cltom ((itontic) if its leftmost symbol that  is not a bracket 
is either a predicate variable or constant. A A-normal goal formula G, then, has the following 
inductive characterization: ( a )  it is T, ( 1 ) )  it is an a.ton1, ( c )  it is GI  A G2 or G I  V G2 ,  where G1 
and G2 are A-normal goal formulas, or ( d )  it is 3xG, where G is a A-normal goal formula. 

Now we identify the formu1a.s that we call higher-order definite clauses, goal formula, and 
equations. Let be the collection of all A-normal goal formulas. An atom is a n  atomic goal 
formula A. A rigid atom is an atom -4, t11a.t 11a.s a predica.te constant as its head. An atom is thus 
a formula of the form ptl - . . t, where 7 = t u l  , . , a, - o, 1) is a predicate constant, or variable,, 
and, for each i E [n], ti is a A-normal term,,. it is a. rigid a. to~n just in case p is a constant. 
Sometimes we write p( t l ,  . . , t,) or p ( i )  for the a.bove atom. Let G be an arbitrary goal formula 
and A, be any rigid atom. Let a formula C' be of the for111 A, - G. Then C is a (higher-order) 
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definite clause. Let s,,t, E T(C). Then, as usual, an equation e is of the form s, = t,, and an 
extensional equation is of the form s, = t,. Let Def be the set of all definite clauses. Then given 
the collection C of constants, our logic programming language C = L(C) is completely determined 
as the triple (T(C) ,G,  Def). A formula F in a language L is a goal formula, or a definite clause, 
or  an equation. We refer a set P of formulas from Def as a higher-order definite logic program. 
As usual, variables in definite clauses are implicitly universally quantified. Note that  in the above 
definition all wfts in T(C) do not contain such symbols as =, r, +, hence a goal formula G and s, 
and t, in an  equation s, = t, do not contain those symbols. 

We say that  a predicate symbol p occurs extensionally in a goal formula G if (a) G is p(q ,  or 
(b) G is G I  A Gz or GI V G p ,  or and p occurs extensionally in G1 or G2, or (c) G is 3xG1, and p 
occurs extensionally in GI .  In following sections, we will define semantics for XProlog. We will take 
advantage of the following situation: Since logic progranis compute extensions of predicates, and 
relations between arguments of predicate symbols ~ons t i tu t~e  extensions of predicates, we don't need 
extensions of terms until we meet esteusional occurrences of predicate symbols in the definition of 
satisfaction of formulas. 

4 General Model Theoretic Semantics 

In this Section we build model-theoretic senlantics for the language L. As introduced in Section 1 
we need a non-extensional model to prove that a resolution system in type theory is complete. The 
model in [2] is in a sense non-extensional. But it doesn't provide an adequate notion of "general" 
non-extensional model for our purpose: Domain is defined by indexing extension of the element in 
it by wfts. The indexed entity like ( t , p )  is called a 1,'-complexe where I/ is a truth value evaluation 
of formulas. So only one kind of domain is used in [2], since the set of all wfts is predetermined 
given a language C. In [2], in order to  define the domain of interpretation we need a semivaluation 
function V ,  as above, which evaluates proposional formulas to T or F. The definition of domain 
or the evaluation of terms is mutually recursive with the definition of evaluation of formulas. 

Now we generalize Andrews model t o  a model where we index the extension by an element from 
a general domain which we call frame.  from this model we build a model where the definition of 
domain is independent from the definition of satisfaction. These two models will be shown to  be 
isomorphic and elementarily equivalent in the sense that the sets of valid sentences in each semantics 
are same. Since our language L is based on X-calculus and application is a basic operation of the 
A-calculus, any model of L should be an applicative structure \vhich is a X-model. 
Definition Let A be a set and . a binary operation over A such that for all a ,  /3 E 7, for all 
a E A,,p, b E A,, a - b is an eleluent in AB. Then A = (.A, .) is said to  be an applicative structure. 
An assignment into a set A is a type consistent mapping p : 4 - A. A X-model is a triple 
(A, -, 11 . 11) such that  (A, 0 )  is an applicative structure and 1 1  . I (  a binary function such that for each 
assignment 9 into A and term t,, J(t,ll, E A,, and for all terms f E T(C),,B and t E T(C),, 
11 ftllrp = 1 1  f l l r p  Iltll,+,, and for all term t and rr E .-I,,. l/Xnc7tllv . (1 = Iltllv[alr,~. We call the function 
11 - 11 a valuation function in A.  

A frume is a nonempty set D of objects each of wl~irlr is assigned a type symbol from the set 7 
in such a way that  every object in D,,J is a functioi~ from D, to Do for all type symbols a and 
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p. A pre-interpretation 3 of the language L is a pair ( D ,  J) where D is a frame, and J is a type 
consistent mapping in C -+ D .  An assignment into a pre-interpretation is an assignment into the 
frame of the pre-interpretation. Note that  D,,p is some collection of functions mapping D, into 
Do, i.e. D,,o D, + Dp. A pre-interpretation 3 = (D,  J) is said t o  be general iff there is a 
binary function v3 = V such that for each assignment y and term t,, V,t, E D,, and the following 
conditions are satisfied for each assignment 9 and all terms: (a)  if x E A, then V,x = 9s. (b) if 
c E C, then V,c = Jc .  (c) V,(ft) = (V, f)V,t ( the value of the function V, f a t  the argument 
V,t ). (d) V,(Az,tp) = Ad E D, - V,[dlzltp i.e. that function from D, into Dp whose value for 
each argument d E D, is V,[dlzltP. 

If a pre-interpretation .F is general, the functioll v3 is uniquely determined. We can prove this 
by induction on the definition of terms. FIie call the unique function v3 the intentional valuation 
function of terms in the pre-interpretation 3. ~ z t  is called the intention of t in 3 wrt y. We 
sometimes write V% as V,, as v3, or as V, wlien pre-interpretation or assignment is clear from 
context, or irrelevant. It is clear that if i is a c-term, then v3t may be considered meaningful 
without regard to  any assignment. I11 this case, v3t is called the intention of t in 3 and written as 
t'. Obviously for a general frame D ,  ( D ,  ., V) where . is interpreted as a functional application is a 
A-model, but in a pre-interpretation logic synlbols such as logical operators and predicate constants 
are not fully interpreted. So we call it a pre-interpretation. 

Now we will give interpretations to  logical symhols, after discussing a few constructions of 
posets. Any non-empty set A can be considered a poset under the identity relation where x cA y 
iff x = y. We call this type of poset discrete. Let PI and P2 be disjoint posets. PI U P2 is a poset 
P = P l U P 2  such that  for all x, y E P, x C p  y i f x  Cpl y or s Cp2 y. PI x P2 is aposet  P = PI x P2 
where for all x, y E P, x G p  y if x1 Cp, y1 and x2 Cp, y2. Let S be a set, and P a poset. S -+ P 
is a poset F such that  for all f , g  E F, f C F  g if for ail .s; E S ,  f ( s )  c p  g ( s ) .  Let B be the set of 
boolean values T and F where F (Ip T. We shall write V and A for U a  and fla, respectively. Let 
A be a set. We can consider A a discrete poset. A predicate P over A of type cwl, - - . , a ,  + o is a 
mapping in A,, x . x A,, + B,  or equivalently a subset of A,, x - x A,,. And we consider 
truth values T and F as null-ary predicates over of type ( )  + o such that  T ( )  = T and F ( )  - F, 
respectively. More generally, we define predicates ~2~ ,.. ,,, for each list al , .  . . , a, of types where 
n 2 0 as A,, x . . - x A,,. I r e  write @ ( A )  for the sci of 011 predicates over A.  Given two predicates 
P, Q E @(A), i t  is obvious that  P C Q if P and Q are of same type and P is a subset of Q. 
Definition Let D be a frame. A senzivcrl~~c~fzorz of D is a function I/ with domain Do and range the 
set B of truth values such that  the following properties hold: for all c,, d,, f,,, E D,  (a)  V(T ' )  = T. 
(b) V ( ~ ' c ~ d o )  = V(c,)VV(d,). (c)  k'(~'c,d,,) = I'(c,,)Al'(d,). ( d )  V ( 3 ;  f,,,) = T iff there is some 
e E D, such that  V( f,,,e) = T. Given a frame D and a semivaluation V of D ,  we define the set 
2) of V-complexes based on D as follows: For each type 3 we define the set 27, of V-complexes, and 
one-one onto mapping K, : D, - D, as follows by induction on y :  ( a )  Do = {(d, Vd) : d E Do}. For 
d E Do,  nod = (d,Vd).  (b)  When a E '& - {o}. Po = {(d,d)  : d E D,}. For d E D,, r;,d = (d,d). 
(c) V,,p = {( f ,  K,' 0 f 0 6,) : f E Do,,). For f E Dodo, ti,+a f = (f ,  K,' o f o K ~ ) .  We say that  
27 is the set of V-complexes bnsed on D .  \Ye can also introduce one-one onto mapping K : D + 2) 
such that  for a E 7, d E D,, rcd = ti,cl. and function v whose domain is D such that  for d E D,, 
v(d) = ( ~ d ) ~ .  0 
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Now it is easy to  see that (a)  if f E Do+, then v ( f )  : V, + Do, (b) for a E D,, v ( f )a  = 
( fa l ,v(fal)) ,  and ( c )  V = {(d,v(d)) : d E D).  And for any a E V, r;al = a ,  and for any mapping 
x whose values are in V, x1 o K = X .  Let V be a set of V-complexes. Then we define the applicative 
operation * of type ( a  -, P), a -, P: For a E V,,p and b E V,, a * b is defined to  be a2b. The 
operation * is left associative. Let a E V,l,...,,n,p a.nd b; E Vai for i E [n]. Then by definition of 
D it is easy t o  see that a * bl *.  . * b, E Vp. Moreover, (D, *) is an applicative structure and for 
all f E D,,p, d E D,, ( ~ f )  * (4 = ~ ( f d ) .  
Definition Let D be a set of V-compleses. We can define a binary mapping V such that for all 
assignment cp into V, V, : T(C) + V, and for all t E T ( C ) ,   it = V,lt. 

Let q~ be an assignment into D.  Then for all term t ,  K V , ~  = V,,,t. If p is an assignment into 
V, then for a E V,, V,(Xx,t) * a = V,[,/,a~i. If D be a general frame and V a set of V-complexes, 
then there is the unique V satisfying that for all 1 ,  E T ( Y )  and assignment 9 into V, V,t, E V,, 
since the function V is unique. Therefore (V, *. V )  is a A-model. 

Now we want to  define a. notion of extension of a 1,'-complex in the usual mathematical sense: 
e.g., if a E D ,,,...,,,, ,, then we want the exte~lsioli of (1. t,o be a, predicate over D.  
Definition Given a frame D,  we define a priuzitivc ezfensio~zc~i do17zuin E, for a E To: (a)  E, = 8. 
(b) E, = D, for a f lo - (0). C4iven an (I E D ,,,...,,,,,, 3 where n 2 0 and p E lo,  we define a 
mapping a@ in D,, + . . - -, D,,, - Ef3 by induction 011 72: ( a )  When n = 0, a@ = a2. (b j  When 
n > 0, a@ = Adl E D,, . ( a  * rcd l )@.  

We call a1 the intention of a, a.nd a@ the ezte~zsion of a .  
Let a E V ,,,...,,,, p where n > 0 a.nd p E To. Tlieli (a,) for all (1; E D,, , i E [n], aadl . .d, = 

(a*  r;dl * .. - ~ d , ) ~ ,  (b) If p E - {o), tllen a@ = (1'. We can show this by induction on n. 
Definition Let 3 = (D, J) be a general pre-interpretation and V a semivaluation of D. An 
C-structure A is a pair (D, J) such that D is a, set of 11-complexes based on D. We say that A 
is based on 3 or on D. An assignment p 272to A is a.n a.ssignment into V. When F is a formula 
in L, we write AbF[p]  to say that A satisfies F wrt p. ( a )  When s,,t, f T(C), Abs, = t,[p] 
iff V,s, = V,t,, Aks, - t,[y] iff (V,s,)@ = (V,t,)@. ( b j  When G is a goal formula, AkG[p] iff 
v:G = T. (c) When A t G is a definite clause. AbA - G[v]  iff AbA[y] whenever AbG[y]. We 
write A b F  to say that a formula F is valid in A if A b F [ p ]  for all assignments p into A. Given a 
set of definite clause P ,  we say that A is a nxoclel or D- nzodel for P ,  and write A b P ,  if each definite 
clause in P is valid in A. Given a closed goal formula. G'. we say that G is a logical consequence of 
P ,  and write P b G  if G is valid in all illodels of T'. 
Definition Let D be a general fra.me and .S' a, sul~set of Do. Then S is upward saturated if a)  
T' E S, b) c E S implies v'ctl, vldc E 5' for d E Do, c )  c.  (1 E .5' implies ~ ' c d  E S ,  and d) f,,,d, f S 
implies 3: f,,, E S. 

Let S C Do. Then there is a sillallest upward satura.ted set extending S. Let C be the collection 
of upward saturated set estending 5'. C is not empty. since Do E C. So nC exists. It is easy to  
check that it is upward saturated. It  fulfills the other considerations, by definition. T1:e smallest 
upward saturated set extending .S is called the upti~~r(i  s(1turc~tec1 closure of S, and is denoted as 
S" . 

'Note that  in this definition t.he symbol for sat,isfaction i t ,  A is the small k. The normal size + is used for another 
definition of satisfaction which is defined lat,er it1 this paper. 
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If S s Do we can always find by the above method an extension of S which is saturated. The 
above definition is certainly simple, but i t  is unsa.tisfactory on several grounds. For example, i t  does 
not make explicit how the elements of the closure of S are generated from the elements of S. iFrom 
this reason we give a more constructive definition, involving restricted set-theoretic methods. 
Definition Let S Do. An elementary S-derivation is a sequence cl, - . - , em, m 2 1, of elements 
from Do, where for each i E [m], at least one of the following conditions is satisfied: (a)  c' = T'. 
(b) c' E S. (c) There is a j < i such tl1a.t ci is either ~ ' c l d  or ~ ' d c 3  for some d E Do. (d) There 
are j, k < i such that  ci = l\'cjck. (e) There are j < i and f E D,,, such that  c j  = f d  for some 
d E D, and c' = 3Lf. 

Note that  if c l , .  - . , cm and d l ,  . . , dn are two elementary S-derivations, then the concatenation 
e l , - .  . , em, dl ,  . . . , dn is also an elementa.ry S-derimtion. Furthermore, a nonempty initial segment 
of an elementary S-derivation is again an elementa.ry ,S'-derivation. .4n element d E Do is elementary 
S-derivable if there is an elementary S-derivation c'. . - a ,  cn\where cm = d. This is equivalent to  
requiring that  d be an element (not necessarily the 1a.st) in some elementary S-derivation. The set 
of all d E Do that  are elementary S-derivable is denoted by E(S).  We shall show that  E(S) is the 
upward closure of S referred t o  above. 

Theorem 4.1 Let S & Do. Then: (a) S C E(,S'). (b) E(.S') is upward saturated. (c) If S C S' and 
Sf is upward saturated, then E(S) Sf. (d) .SU = E(,S). 
Proof The proofs of (a )  and (b)  are obvious. ( c )  Let S C S' and St be upward saturated. We 
prove by induction on m that  whenever c l , .  .. : cm is a.n elementary S-derivation then ci E St for 
i E [m]. When m = 1. it  is clear. If the property is true for nz, and c' , - . - , ern, cm+l is an elmentary 
S-derivation, then by IH we have t11a.t ci E Sf for i E [nz]. Furthermore cm+' is T', or a c E S Sf, 
or i t  is obtained by one of the defining rules from the elements in St .  In all cases it is easy to see, 
by IH and definition of upward saturatedness, t11a.t cnLS1 E S'. 

Definition Let (D,  J) be a general pre-interpreta.tiol1. Then we write II(D) for the D-base which 
is defined t o  be the set {p(al, . . , a n )  : p E II,, ,...,,,,, , and a; E D,, for all i E [n]). 

A subset E of II(D) induces a unique mapping IK in II -+ @ ( D )  as follows: for all a E D ,  
(2) E Ir(p) iff p(;i) E E. Let L1 & IC2 5 I I (D) ,  then it is easy to  see that  IKl Gn,a(o) Ih2. 
Sometimes given E & II(D),  we write simply K to  meall the mapping IK.  

Given I C II(D), we can introduce set SI such that SI = {p'z : p2  E I ) .  We define a function 
VI : D, -+ B as follows: for each d E D,, Vic l  = T if cl E Si r ,  F otherwise. And VI is obviously a 
semivaluation of D. And for all d E D,, d E .SILT only if there is a.n SI-derivation for d. This follows 
from Theorem 4.1. 

Theorem 4.2 Let I  C II(D). d E SY only if there is n finite I' C I such that d E s;. 
Proof Assume d E SY. Then by the fact t11a.t a deriva.tion sequence is finite, it is clear that  there 
is a finite I' C I such that  there is a. finite elenlentary Sit-derivation sequence. 

Definition Let I II(D). Then I induces t.lie set 27' of I/[-complexes based on D and that one-one 
onto function n1 : D --, 7Jz given by the definition of Iff-complexes, and the following functions 
whose domain is D:  the function v1 such that for each cl E D. vI (d )  = ( ~ l d ) ~ ,  and the function el 
such that  for d E D ,  e r d  = (rcld)@. Let d E D,,,I. The11 for all dl E D,, el(d)dl  = el(ddl). 
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Lemma 4.3 Let Il C I2 II(D). Then (a) VI, C TII,. (b) VI, C vz,. (c) el, & el,. 0 

Definition Let (D, J) be a general pre-interpretation. An interpretation M is a pair (D, I) where 
I is a type consistent mapping in II - @(Dl. We call M a D-interpretation. An assignment 
p into M is a type consistent mapping y : A - D. When F is a formula in L, we write 
M i= F[v] to  say that M satisfies F wrt y. For all goal formulas G, GI, G2, for each rigid 
atom A, (a) When s,,t, E T(C) , ,  M s, = t0[v] iff V,s, = V,t,, M + s, t,[v] iff 
ei(V,s,) = ex(V,t,). (b) M b T[v]. (c) M I=  ti,. - a ,  t , ) [ ~ ]  iff (V,tl, - .  . , Vqtn) E IP if P is a 
constant, or (V,t l , .  . , V,tn) E 9 o ez(y) if p is a variable. (d) M /= GI V G2[v] iff M GI [p] or 
M + G2[v]. (e) M + GI A G2[q] iff M G I [ ~ ]  and M G2[q].  (f)  M + 3xaG iff there is a 
d E D, such that M + G[y[d/xo]]. ( g )  M + A - G[v] iff M A[v] if M + G[v]. 
We write M + F to say that a for~ilula F is valid in .bl if M b F[p] for all assignments y into 
M. Given a definite program P ,  we say that ibl is a   nod el or D-model for P ,  and write M + P ,  
if each definite clause in P is valid in M .  Given a closed goal for~llula G, we say that G is a logical 
consequence of P ,  and write P G if G is valid in all models of P.  
Definition Let 3 = (D, J) be a general pre-interpretation, 1/ a semivaluation of D ,  and 'D be the 
set of V-complexes based on D. Given an C-strucure A = (V, J) based on 3 ,  the D-interpretation 
A@ induced by A is defined to be (D,  I) where I = J o K o (.)@ f II. Conversely, given a D- 
interpretation M = (D, I) based on 3, we can get t l ~ e  set D@ of T~I-complexes based on D. Then 
M e  is an L-structure (D@, J) induced by M. 13 

Using the above facts and since assignments int,o D and 2) have one-one correspondence between 
them, we can show that the two semantics a.re elemetarily equivalent in the following sense. 

Theorem 4.4 (a) For all formula F in L,  b F ifl b F .  (b) If P be a definite program and G a 
closed goal, then P G iff P b G .  

Theorem 4.5 The extensionality is not valirl. 
Proof Take an extensionality formula p, z g, - 11, = q,. It is obvious that v;y0 = Vzgo does not 
imply that V,p, = V,qo. For the extensionalit?. formula (Vn., . f x  = gz)  + f = g, we take a E '& 
and ,B = o and D-interpretation I such that l f = I!, = T:. Then f = y but not always f = g. 

Let M = (D, I) be an interpretation ba.setl on 3 = (D, J ) ,  we can identify M with the subset I 
of l I (D) .  And every subset I of n ( D )  is a D-interl>reta.t.ion. Obviously the set of all D-interpretation 
is a complete lattice with the usual set inclusion ordering between D-interpretations. 

Theorem 4.6 Let Il C I2 c I I (D) .  If I1 I= G[p], ihciz I2 /= G[y]. 
Proof By induction on G. When C; is T. it is obvious. When G is a rigid atom p(tl, - - - ,  t,), 
since I lp  12p, I2 /= G[y]. When G is p( i l .  - - - .  t , ,) where p is a variable. Since e ~ ,  el,, 
Iz /= p(tl , .  ..,t,)[v]. When G is GI A G 2 .  11 + G'l[p] and I 1  'F Gz[v]. By IH I 2  b Gl[y] and 

I2 G 2 [ ~ ] .  SO I2 + G[y]. When C; is G1 V G'> Assultre. wlog, I* Gl[y]. By IH I 2  Gl[y]. 
When G is 3x,G1. There exists a d E D, such t h a t  Il Gl[p[d/z,]]. By IH I 2  b Gl[y[d/x,]]. 
So I 2  + G[y]. 



Let 3 = ( D ,  J) be a general pre-interpretation. We can define a mapping T g  from the lattice 
of D-interpretations t o  itself. Let 3 be a pre-interpretation ( D ,  J) of a definite program P and I  
a D-interpretation. Then T ~ ( I )  = {p(d l ,  - . - ,  d,) E n ( D )  : there exist an  assignment 9 into D and 
a clause p(t l ,  e m ,  t,) + G E P such that  d; = V,ti for each i E [n]  and I  + G [ y ] )  

Lemma 4.7 T g  is monotonic, i.e. ginen Il C I2 C I I (D) ,  T ~ ( I ~ )  C T : ( I ~ ) .  
Proof Assume p(d1, - .. , d,) E T ; ( I I )  for p(d1,. . , d,,) E I I (D).  Then there are a n  assignment 9 
into Il and a clause p(t l ,  .. ,t,) + G E P such that V,t; = d; for all i E [n]  and Il G [ 9 ] .  By 
Theorem 4.6, I2 )= G [ p ] .  

So T c  is a monotonic transforma.tion on the set of all D-interpretations. 

Lemma 4.8 Let I  C I I (D).  Then 1 + P iSf T ~ ( I )  I .  
Proof e-) Assume p(dl , .  a * ,  cl,) E T F ( I )  for sollle p(dl . .  - -. d,) E II(D). Then there are an  
assignment 9 into D and a clause p(t l ,  ... . I , , )  - C; E P such that V,t, = d, for all i E [n] and 
I  b G [ y ] .  Then since I  P ,  I  /= p( t l , .  . . , t , , ) [ q ] .  Therefore p(d l , .  - - , d,) E I .  
e) Similarly. 

Lemma 4.9 Let Il and I2 be D-nzodels of P .  Then Il n I2 is also D-model of P.  
Proof Since T p ( I l )  C Il and T p ( I z )  C 12, by 11101iotol1icity of TT operator, T p ( I 1  n12) C T P ( I 1 )  & 
Il and T p ( I l  n 12) C T p ( I z )  1 2 .  SO T p ( I l  n I,) Il n 1 2 .  

But the set of all D-models is not closed under join operation, i.e. Il U I2 is not necessarily a D- 
model, whenever Il and Iz  are D-models. Take for esample the definite program P2 = { p  t q ,  r ) .  
Then II(D) = {p,q,  r) .  { q )  and { r )  are D-models for P2,  but {q ,  r )  is not a D-model. 

Lemma 4.10 Let ( In )nEw be w-chalrz of D-intt ~prefntions. Then for each goal G  and assignment 
9 into D ,  UnEwIn /= G [ p ]  only if thcrc i.s a n  11 E .<uclt !hat I,, /= G [ y ] .  
Proof Let I  = UnEwIn. Then I  G [ y ]  only i f  I>(V,G) = T. So there is a finite I' C Isuch that  
VI,(V,G) = T. Therefore there is an 12 E J such that I' E I,,. By rnonotonicity I, + G [ p ] .  

Lemma 4.11 T; is continuous. 
Proof Let ( I n ) n f w  be a w-chain of D-interpretations. We need to  show: T p ( ~ n E w I n )  = UnEwTp(In) .  
The monotonicity of T p  implies that  UnEwTF( In )  C TP(UnEwIn) .  NOW we need t o  show that  
Tp(UncwIn)  E UnEwTP(In) .  Let (11,. . . , rl,, E D ,  and ~ ( ( 1 ~ ~ .  ( in)  E II(D). Assume p ( d l ,  - . . , d,) E 
TP(UnEwIn), t o  show p(d1, - .  ., d,) E U n E w T p ( I n ) .  There are p(t1,. .. , t,) +- G E P and an assign- 
ment 9 into H such that  pt, = d, for all i E [ I T ]  and UnEwIn /= G [ y ] .  So there is n  E w such that  

In G [ y ] .  Therefore there is 17 E w sucli that p ( d l .  .. , O n )  E T p ( I n ) .  13 

So we can show that  every definite program has the least. D-model as follows: 

Theorem 4.12 ( T g ) W ( 4 )  is tlte least fixpoint of T g  . 

Theorem 4.13 Let M$? = n { I  I I ( D )  : I P ) .  the12 M; is the least D-model of P and 
M g  = T",$). 
Proof By Lemmas 4.8,4.9,4.7 and Theorem -1 . l2.  
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5 Herbrand Models 

In order t o  determine validity or logical consequences, we need to  consider all interpretations of the 
language L. In this section we shall show that  we can restrict our attention to  Herbrand models. 
That is, we show that  if A is true in all Herbrand (that  is symbolic) models i t  follows that  A is 
true in all models and a fortiori in the model intended by the person who wrote the program. 
Definition The  Herbrand frame H is a set such that (a)  N is the set of all p-normal c-terms. (b)  
Let f E Ha+, then for all t E H,, f ( t )  = p( f t ) .  

It is obvious that  the Herbrand frame H is countable. 
Definition The Herbrand pre-interpretation 'HF is a pre-interpretation ( H ,  J )  such that  H is the 
Herbrand frame and J satisfies the following: ( a )  If c, is a constant such that  a is a primitive type, 
then Jc ,  = c,. (b) If d,,p is a constant of type a - 13. then for all t ,  E H,, (Jd, , i ))( t , )  = 
da-pta - 

Lemma 5.1 The Herbrand pre-interljretcriio~z is yc~>er(ll. 

Definition An Herbrand interpretation M is an int,erpreta.tion (H,  I )  ba.sed on the Herbrand pre- 
interpretation. The Herbrand base 'HB is the set I I ( I I ) .  

Let I C H ( H )  be an Herbrand interpretation and p an assignment into I. Then we can consider 
9 as the generalized substitution a such that for each term t E T ( C ) ,  at = ( p  t F V ( t ) ) t .  It is easy 
to  see that  for every term t ,  pt  is a c-term and V,t = pt ,  for each goal formula G,  y G  a closed goal 
formula, and for each definite clause C, 9C a closed definite clause. 

Let I be a D-interpretation based on 3. The Herbrand interpretation I* induced b y  I is an 
Herbrand interpretation such that for every -4 E I I (H) ,  A E I* iff I I= A.  Let 9 and # be 
assignments into H and Dl respectively. Then we say that y' is induced by 9 if 9' = 9 o v3. The 
mapping v3 : H -, D is a honzomorhisna front I* into I. since for p E Il,,,...,,,,,, ht E Ha, ,  i E [n], 
if ( h l , . .  ., h,) E I*p,  then (vFhl , .  . -,VFh,) E I],. Let h E H ,,,...,,,,,. Then for all h, E Ha,,  i E 
[n],  (h l , .  . . , h,) E e r * ( h )  implies (v3hl, - .  . , ~ ~ l z , , )  E e r ( v F h ) .  

Lemma 5.2 Let I ,  I*,  p', y be as oboae. Thetr ((1) If t is a term. then ~ $ ( ~ t )  = ~ $ 1 ,  (4) If A is 
a rigid atom then I* + A[y] i f f  I b A[pt], (c) If G' is (1, goal formula such that I* b G [ y ] ,  then 
I + G[y ' ] ,  (d )  If C is a definite clazrse such that I I= C[p'], then I* C [ 9 ] ,  (e )  Then if I b P ,  
then I* P .  

Let 3 be a general pre-interpretaiion. Then /=F denotes logical implication in the context 
of fixed domains and functional assignment. Specifically kHF denotes logical implication in the 
context of Herbrand frame and functioilal assignment. 

Let G be a goal formula. We writ,e 3 ( G )  to  denote the esistential closure of free variables in G. 

Theorem 5.3 Let P be a definite program crizd G cr. goal formula. Then P 3(G) i#P kBF 3 ( G ) .  
Proof e) Let an Herbrand interpreta.tion induced by the given interpretation I be I*. Assume 
I P .  Then I* + P ,  so I* 3(G). Then there is an  assignment y into I* such that  I* + G[y] .  
Let the assignment 9' into I be induced I,? c;. T1re11 I )= G[p l ]  by Lemnla 5.2 (c). So I b 3(G) .U  
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If y is a substitution, then y-,, is that substitutioil a such that a = y f (A - {x,)). 

Lemma 5.4 Let I & II(H). Then for (111 closed sr~,bstitr~tion a ,  assignment y into H ,  and goul 
formula G,  I t= aG[y] ijjf I yaG. 
Proof We prove by induction on G. When G is T or a rigid atom, it is obvious. When G is 
p( t l , - - . , tn )  where p E A. I aG[y] iff (ya t l ,  . - -  ,vat,) E er (yap)  iff (y 'yatl , . . . ,y 'yatn) E 
er(q'[yap/p]p) for all assignment y' into H iff I + yaG[vr] for all assignment y' into H iff I b yuG. 

When G is 3xaG1. I b aG[y] iff I 3x,a-,,G1[y] iff there is an h E H, such that I b 
0-,,Gl[y[h/x,]] iff there is an h E H, such that I y[h/x,]a-,,GI by I H  iff for all assignment y' 
into H, I + y'y[h/x,]a-,, G I ,  since y[h/x,]a-,,GI is a closed goal. iff I + (ql[h/x,])q-,,a-,, G1 
iff I + y~ , ,a~ , ,Gl[~ ' [h /x , ] ]  iff I b 3x, 9-,,a_,, Gl [p'] iff I I= yaG. 

Corollary 5.5 For all assignn2ent 9 into H. gor1.1 fornavln G', I b G[v]  iff I b yG. 

Theorem 5.6 For all closed substitution a a i d  gotll fornznla G such that a3x,G is closed, I 
a3x,G ifl there is an h E H, such that I + a[h/x,]G. 
Proof Let y be an assignment into H. I I= a3x,G'[p] iff I I= 3x,o-,,G[y] iff there is an h E Ha 
such that I a-,,G[y[h/x,]] iff there is an h E H, such that I I= y[h/x,]a-,,G by Corollary 5.5 
iff I o[h/z,]G[y] by Corollary 5.5. since p [ h / x , ] ~ - ~ ~  = pa[h/x,]. 

Corollary 5.7 Let M g  = n { I  I I ( H )  : I b P). TItert MF P .  
Proof Follows from Theorem 4.13. 

Theorem 5.8 ( ~ $ ) ~ ( 4 )  is the least fixed point of T$ ancl M; = (~ ; )~ (4 ) .  
Proof Follows from Lemma. 4.11. 

Theorem 5.9 Let A E II(H).  Then P A i f l ~ g  1 A. 
Proof P 1 A iff P b.uF A iff for all H-iilterpretation I such that I I= P ,  A E I iff A E M:. 

For the definite program PI introduced in section 1, it is easy to see that 

So r(p(a))  is a logical consequence of PI, while r(q(c1)) is not. 
The program PI is non-extensional in the sense that extensional identity of arguments of the 

predicate r does not imply extensional identity of proposition T ( . ) .  In [30] Wadge defined a fragment 
of higher-order logic programming language ( i n  fact it's a pure subset of HiLog [ 8 ] )  where every 
program behaves extensionally. 
Example We can define the following higher-order logic program P3 in the language of [30]: Let 
MAP be predicate constailt of type (int - o),lisl - o and . be an infix functional constant of 
type int,list + list and p and q predicate coilstailts of type inl - o and P3 include the following 
definite clauses. 
MAP(z,  x - 1 )  + zx A AfAP(2. I ) .  
MAP(z ,  nil) + T .  
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Assume that the above clauses are the only clauses that defines the predicate MAP. Let I be 
a fixpoint of Tp,. We shall show t11a.t 11 = q -+ MAPp 5 A4APq is valid under I. Let p = q valid 
under I. Then for all a E Hint, pa E I iff qa E I. Moreover the set Hrist has the following inductive 
characteriztion. (a) nil E Hrist. (b) For a E Hint, n.1 E Hlist if 1 E HliSt. To prove MAPp = MAPq 
is valid in I, it's enough to show that for all 1 E Hlist, MAP(p, 1) E I iff MAP(q, 1) E I. We prove 
this by induction on 1. Obviously hlAP(y,nil) ,MAP(q, nil) E I .  Let a 1 E Hlist. Assume 
MAP(p, a I) E I to show MAP(q, a .1) E I. Then pa, AdAP(p, 1 )  E I. So by IH, MAP(q, I) E I. 
Therefore MA P(q, a - I) E I. 

6 Completeness 

In this section we prove completeness of interpreter in [Xi]. Our actual interpreter is that of [26] 
plus backchaining when atomic goa.ls need to be solved. The definition of this non-deterministic 
interpreter can be given by describing hotv a theorem prover for programs and goals should function. 
This interpreter, given the pair ( P , G )  in its initia.1 state, should either succeed or fail. We shall use 
the notation P I- G to indicate the meta proposition t1ia.t the interpreter succeeds if started in the 
state ('P, G). The search related semantics which we want to attribute to the logical constants can 
be specified as follows: (a) P I- T. ( b )  P t GI V G2 only if P I- G1 or P i- G2. (c) P I- G1 /\G2 only 
if 'P k GI and 'P I- G2. (d)  P I- 3x,G1 only if there is some term t E T(C) ,  such that 'P I- [t/x,]G1. 
( e )  P I- A only if there are a definite cla.use A l  - G1 E P and a substitution a such that A = aA1 
and PI- aG1. 

Let F be a formula of C. Then IF1 denotes the set {pF : g is an assignment into H ) .  It is easy 
to see that if F is a goal formula, IF1 is a. set of closed goal formulas, and if F is a definite clause, 
then IF1 is a set of closed definite cla.uses. This not,ation can be extended to set r of formulas of 
c: Irl= U { I F I  : F E r}. 
Definition Let I? be a set of for111ula.s that axe eit,ller closed atoms or definite clauses, and let G 
be a closed goal formula. Then a r-derie?cltiorz seqlrcnce for G is a finite sequence G1, G2,.  , a ,  Gn of 
closed goal formulas such that Gn is G, and for each i E [n,], (a )  if Gi is a closed atom, then i)  G' is 
T, or ii) G; E r, or iii) there is a definite cla.use G" G j  E II'l such that j < i, (b) if Gi is GI VG2, 
then for some j < i, Gj is either GI or G2, ( c )  if Gi is GI A G2, then for some j ,  k < i ,  Gj = G1 
and G~ = G2, (d) if Gi is 3z,G1, then there is a t E A, and j < i such that [t/x,]G1 = Gj. O 

Theorem 6.1 Let I C I I ( H ) .  Tile12 for (111 closet1 goo1 forntula G,  I + G iflthere is an I-derivation 
sequence for G. 
Proof  e) Let G1,. .. , Gn be an I-derivation sequence. We prove by induction on i: for all i E [n], 
I + G ~ .  When i = 1, then it is obvious. ?lT1lell i > 1. If G' = G1 AGz, then by IH, I b G1 and 
I + G2. So I + GI A G2. If Gz = 3x,G1. then by IH, there is a t E H, such that I [t/x,]G1. 
So I b 3x,G1 by Theorem 5.6. 
a)  Follows from Theorem 4.1, since for a Herbrand interpretation I, we can identify I with S1. 0 

Lemma 6.2 Let G he a closed yon1 forn?rrla. Then P t G' i f l  thew is u P-derivation for G. 
Proof  See [28]. 
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Theorem 6.3 Let G be a closed goal formula. Titen P I- G iff P G. 
Proof By Theorems 5.9',5.8, P + G iff T$($) + G. Let In = T$(4) for n E w .  Now we need to 
prove that there is a P-derivation GI,.  . . , G' for G iff there is an n E w such that In G. 
+) By induction on 1 .  When G is T, lo + T. When G is G1 A G2, then there are P-derivations for 
GI and G2 whose lengths are less t11a.n 1. So by IH, there are nl ,  nz E w such that I,, 1 G1 and 
I,, + G2. Assume, wlog, nl < n2. Then In, + G2, SO In2 + G1 A G2. When G is 3x,G1. Then 
there are a term t E Ha and a P-derivation for [t/x,]G1 whose length is less than I .  So by IH, 
there is an n E w such that In + [t/x,]G1. Therefore I, 1 3x,G1 by Theorem 5.6. When G is a 
rigid atom A. Then there are a number j < 1 and a definite clause A t G j  E JPl. By IH, I, ~ j .  

Therefore In+1 + A. 
(5) We prove the claim by induction on n.  First a.ssuiiie the claiin true if In G. To prove the claim 
for n + 1 assume In+1 + G. Then there is an In+l-derivation G', . . .  , GnL for G by Theorem 6.1. 
Now we prove, by induction on i, t11a.t there is a. P-deriva.tioi1 for G;, for each i E [m]. If G; is T ,  it 
is immediate. If Gi is a rigid atom A, then since ..I E In+l ,  there is a definite clause A + G1 E [PI 
such that In + GI. Then by our first a.ssumption. there is a. P-derivation for GI.  We now get a P 
derivation for A by appending A to this sequence. When Gi is G1 A G2. Then by our second IH, 
there are P-derivations for G1 and G2. Now we get a. P-derivation for G~ by appending G~ to the 
end of concatenation these sequences. Mihen Gi is 3x,G1. By second IH, there is a term t E Ha 
such that there is a P-derivation for [t/z,]G1, to \vhich we attach Gi to get P-derivation for Gi. 

7 Equality and DIE-Interpretations 

Much of the research in logic programming concentrates on extensions of Prolog. An important 
issue is the integration of the essential concepts of functional and logic programming. Another issue 
is the use of equations to define data types. JVorks along these lines can be found in [ll, 181. 

In this section we will develop seiilantics for higher-order logic programs augmented with an 
equality theory I .  We will establish the existence of the least iilodel and least fixpoint semantics. 

Let D be a frame and R an equivalent relation on D. For each type cr E 7, we write R, for the 
restriction of R to D,. Then 

R = U R,. 
aE7  

Let d be an element of D,. Then [dlR is the equivalent class containing d. We also say that R is a 
congruence relation on D if R is an equivalent relation on D and for all a ,  ,O E T ,  for all d E Da,i), 
for d l  c E D,, [dIR[clR = [dcIR. bjle sometillles write [dlR as [dl when the congruence relation is 
clear from the context. 

Since = is a binary predicate symbol, any interpretation of it should be a binary relation R 
over a frame D .  And R should be an equivalence relation and congruence relation, because R must 
satisfy the following axioms of equality. 
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Given a frame D and a congruence rela.tion R on D ,  we define a quotient frame D / R  as a frame 

{Da/Ro)cy- 
If 3 = ( D ,  J )  is a pre-interpreta.tion, 3 / R  is defined to be a pre-interpretation 

( D I R ,  J') such that  for each constant c, J'c = [ J C ] ~ .  

Lemma 7.1 Let R be a congruence relatiorz on D.  If a pre-interpretation 3 = ( D ,  J )  is geneml, 
then F I R  is also general. 
Proof Let V be a valuation function in 3, and 3 / R  = ( D I R ,  J') and 9 an assignment into F I R .  
Then there is an  assignment 9' into 3 such tha,t 9 = 9' o [ ' I R .  Define a binary function V' such 
that  for each term t ,  Vb t  = [Vwlt]R. We show V' is a valuation function in 3 / R  by showing that 
for each term t , ,  V b t ,  E D,/R, by induction on I , .  

When t ,  is a variable x,, Vl,z ,  = [V,tx,] = [ p ' x , ]  = px,. Whell t ,  is a constant c,, VLc, = 
[V,+,,C,] = [Jc,] = J'c, When t ,  is f,3-as,3, 

V6(fp-,sp) = [vvj(  f o - ~ ~ a  )I 
= [(V,tfo-o ) (VU~SP )I 
= [V,t f , j ~ ~ ] [ V , ~ s ~ ]  by definition of R 
= (Vl,  fp,,)(V>,co) by induction hypothesis 

When t ,  is Xxgs,, let 
dl = V ~ , ( X X , ~ . ~ ~ )  = [V,;,Xxas,] 

= [Ah E Dl3 . V , l [ b / ~ ~ ] ~ r l  

For b E Dp, 
dl[b] = [V,1Xx,~s,][6] 

= [(V,~Ax,~s,)b] by definitioi~ of R 
= [ V ~ ' [ b l r c l l  1 
- 
- ":i[bll~sls' by induction hypothesis 

Corollary 7.2 Let X 3  be the Herbrond pre-ir~ter~);(,r~ttrtio,2, tlzen X F / R  is general. 

In the remaining of this section we a,ssunle tl1a.t. every pre-interpretation we mention is general. 
Since a congruence rela.tion R over a. pre-int,er.pret,a.t,ion 3 ca.n be taken a.s a.n interpretation of the 
equality symbol =, we have 

Proposition 7.3 Let P be a progrcrnz, I an  eyt~cllity theory and A be a closed atom. Then 

P, I + A e P ,  I kFIR  A for all pre-interpretation 3 
( 1 1 7 d  C O I ~ ~ I - I ; ( , ~ O ) C C  relation R ouer .F 

We want the existence of a ca.noilica1   nod el for tlre equality theory, i.e. we wish the existence 
of a congruence Ro over 'If3 such that, 
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Proposition 7.4 & s ,  = t ,  i f l  [saIRo = [t,lRo tohere s, and t ,  are closed terms. 

But this can be  achieved only if the theory & ha.s a. finest congruence relation Ro. This motivates 
our choice of using Horn equality clauses in our framework presented below. 

A definite clause logic program P is defined t o  be a finite set of definite clauses 

where A is a rigid atom in Goal, i.e. not an equation, ea,ch e; is an equation and G is a goal formula 
in Goal. 

A Horn equality clause ta.kes one of t.wo forms 

where n > 0 and all the ei's therein are equations. As usual, variables in Horn equality clauses are 
implicitly universally quantified. We define a Horn clause equality theory to  be a set of equality 
clauses. A given consistent Horn clause equa.lity theory C defines a logic programming language 
whose programs, called definite logic progrcrms, are the pairs ( P ,  I) where P is a definite clause 
logic program. 

Lemma 7.5 Let 3 be a pre-interpretntion (D,  .I).  Tlien there exists a finest congruence over 3 
generated by each consistent Horn clalrse equcrlity theory L .  
Proof Consider models of & over the fra,me D ,  and for our purposes here, a model is a set of pairs 
from D. Suppose now that  I is the intersection of a set of models of C. If I is not a model itself, 
then there are a clause C of the form 

9 = t - 91 = 1 1  A . . . A  J,, = t,, 

or of the form 
- ~1 = t l  A - .  . A .s, = t7 ,  

and a n  assignment into D such that  I does not sa.tisfy C' under 9. Let 

V q s  = C, vq t  = '1 
V,s; = c; V,t, = d ; ,  i E [n] .  

Then if C is of the first form then ( c ; ,  d ; )  E I for all i E [n] ,  while ( c ,  d) @ I ,  contradicting the fact 
tha t  ( c ,  d )  is in the models of the set in question. If C is of the second form then (c ; ,  d;)  E I for all 
i E [ n ] ,  which is clearly impossible. The finest congruel~ce tllen is given by the intersection of all 
models of &. 

We thus may now write 3 / C  to denote this finest congruence. In a situation where both .F 
and 3 / &  are being discussed. we write V for the evalua.tion function in 3 and write V' for the 
evalua.tion function in FIG. 
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Corollary 7.6 Let C be a clause o f f  then C is ~~cilicl under 3/&. 

As a consequence 

Lemma 7.7 Let ( P ,  &) be a definite yrogronz and A a closed atonz. Then 

( P ,  &) A ('P, f )  bFIE A for (ill pre-interpretation 3. 

Proof Let F = (D, J). Then i t  suffices to  prove that  ( P ,  I) A ( P ,  f) bFIR A for all R. 
*) Let Ro be  the finest congruence relation. For sonle R ,  let I be any DIR-interpretation 

such that  I (P ,E) ,  but I A. Construct the followillg DIE-model I' by defining that 
It + p([dlIRo, . . , [dnjRo) iff I + l ~ ( [ d ~ ] ~ .  - - . , [d l , ]R  ) for all predicate constant p. This is well 
defined because Ro is finer than R. It  is now ea.sy to see that I' I= ( P ,  f )  but I' A. 

Lemma 7.8 Let ( P ,  E )  be a definite progr(inz cuzd .A (1 clo.scd atona. Then 

( P ,  &) A P b7/f rl for (111 pre-iizterljretation 3 

Proof This lemma follows from Lenlma 7.7 and C:orolla,ry 7.6. 

Theorem 7.9 Let ( P ,  E )  be a clefinite 1)rogrcrnz crnd ..I a closed crtom. Then 

Proof This theorem follows from Lemma. 7.8 a.ntl the fact that  P is in clausal form. 

We now give definitions with resl~ect. t,o a. given logic program ( P ,  f ) .  
We consider the fispoint formalization of a.n intuitive semantics of our logic programs. Let 3 

be a pre-interpretation ( D ,  J). Then T(.r,E) maps fro111 ancl into DIf-interpretations and is defined 
as follows: for Dlf-interpretation I ,  

T ( p , e ) ( I )  = { p ( a l ,  . . . . a,) E II( D / r  ) : there are a clause 
y ( l l , . . . . t , , )  -- el A . . . A e , A G i n  P 
and an assignment into D I E  such that  
VC,ti = a; ,  for i E [ I ? , ]  and 
I 1 E I  A . . . A t,, A G[p]). 

Lemma 7.10 T ( p F )  is moi~otonic. 
Proof Let Il Iz I I (D/ f ) .  Assunle p(a1,. - -  , a,) E T ( . F , E ) ( I l ) .  Then there are a clause 
p( t l , .  a * ,  t,) c el A - . A em A G E F' and an assigllliient 9 into D l &  such that  Vbt ,  = a, for i E [n]  
and Il + el  A A em A G [ q ] .  So Il b G[p] and for all j E [nz], Il e,[y] .  Since satisfaction 
of equations does not depend on interpretations. I2 e,,[p]. for all j E [ m ] .  And by Theorem 4.6 

Iz 'F G[y] .  Therefore I2 + el A . . A el,, A G'[q]. 0 

We can prove following lemnla sinii1al.l as L e l ~ ~ n ~ a  4.S. 
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Lemma 7.11 Let I & I I (D/&) .  Then 

Using above lemma and monotonicity of T ( p 7 ~ )  we 11a.ve the intersection properties of models. 

Lemma 7.12 Let Il and I z  be DIE-nzodels of ( P ,  E ) .  
Then Il n I2 also a DIE-nzodel of ( P ,  I). 

We can now establish the existence of the least, model. 

Theorem 7.13 There is the least DIE-motlel of (P.2:). 
Proof By above lemma the intersection of all Dl::-nlodels of (T', C )  is itself a Dl&-model of ( P ,  &), 
which is obviously the least DIE-model. 

Lemma 7.14 T(P ,E)  is coi~tinuous. 
Proof Let ( I k ) k  be an w-chain of DIE-interpreta.t,iolls and I ,  = UkIk .  We now need to show that 

By monotonicity of T(P,c)  we ha.ve 

In order to  establish 

T ( P , f ) ( I w )  c UA-T(F,:)(IA-), 

assume p(al ,  .-,a,) E T ( P , E ) ( I w ) .  Then there are a clause l ) ( t l , .  . . , t,) +- el A . . A em A G in P 
and an assignment 9 into D l &  such t11a.t Vkt i  = (1; for i E [n] and I, el A . . . A  em A G[p]. Then 
I ,  + G [ p ] ,  so there is a I; E w such t11a.t Ik G[p]. And as before Ik + e j [ p ]  for j E [m]. So 
Ik el A . - A e, A G [ 9 ] .  Therefore there is a. k E w such that p(a l ,  . ; 0 ,  a,) E T ( p , E ) ( I k ) .  

By continuity of T ( P , ~ ) ,  and Lenlma 7.11. we now have 

Theorem 7.15 T b , E ) ( 0 )  is the lec~,sI fix1joi1ll of T ( F , f )  o11(1 tht least DIE-model of ( P ,  &). 

We are now in a position to give the declara.tive sema.ntics of higher-order logic program with 
equality as a natural extension of the declarative semantics of the traditional first-order logic 
programs. 

Theorem 7.16 There is a least HI&-naoclel M ( P , ~ )  of (T'.::): and for all A E n ( H ) ,  
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8 General Programs 

In this and following sections, we study various aspects of negation. Since only positive information 
can be a logical consequence of a definite program, special rules are needed to  deduce negative 
information. The most important of these rules are the closed world assumption and the negation 
as failure rule. Next section introduces general programs, which are programs for which the body 
of a program clause can contain nega.tion symbol. The major results of this paper are soundness 
theorems for the negation as failure rule and SLDNF-resolution for general programs. 

The framework of definite clauses presented before allows us to  obtain only "positive informa- 
tion", i.e. the only goals which are logical consequences are positive. The lack of ability to  obtain 
"negative information" is a major dra,wback from both the theoretical and practical point of view. 
In dealing with models of logic for1nula.s in general. there is duality between both t ru th  values. In 
practice, this duality can be extremely important, for example in database applications 

There are two main approaches to  this problem. The first is to extend the language of definite 
clauses. For example, one fami1ia.r extension used in Prolog systems is that  of clauses containing 
a t  least one positive literal. Known colloquially a.s "nega.tion in the body", this extends definite 
clauses, which are clauses containing exa.ctly one positive literal. 

The second approach is to adopt special rules or a.ssumptions wllich tell us, under given circum- 
stances, when information is nega.tive. Alnongst tlie lnost pronlinent of these are the closed world 
assumption and the negation as failure rule. The first states tha.t all atoms which are not logical 
consequences are false. The second is implement,a.t,ioi~ dependent.; it sta.tes tl1a.t an atom is false if 
all at tempts t o  prove it termina.te unsuccessfully. 

Our approach is a combination of both these approa.ches. Based on the concept of completed 
databases and the negation as fa.ilure rule of Clark [ lo] ,  our complete logic programs, written 
(P*, C*), allow us t o  have nega.tive goa,ls as logical consequences, whereas a definite clause program 
( P ,  C) can not. From an opera,tional point of view. we a.dopt a negation as failure rule. We justify 
our approach by showing that  these declara.tive a,nd opera.tiona1 aspects of negation coincide. 

9 Programming with the Completion 

In this section, general programs are introduced. These are programs whose program clauses 
may contain negation symbols in their body. Tlle completion of a program is also defined. The 
completion will play an important part in tlle soundness results for the negation as failure rule and 
SLDNF-resolution. The definition of a correct answer is defined for general programs. 

A formal definition of coillplete logic programs requires tlie concept of unification completeness 
of an  equality theory. 

We now define generalized unification over an equality theory LC. An I-unifier of two terms s 
and t is a substitution 0 such that I + 0,s = 81. Ail important property is that  two terms are 
E-unifiable iff there is a closed substitution over H of the ternis such that the closed instances are 
both in the same class of the finest congruence over I! generated by C .  

This does not mean, however, that i f  two terms are equal in another algebra modelling & then 
they are I-unifiable. 
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- 
Let 3 = sl, - - . , s, and t = t l ,  . - . , t, be two sequences of terms of length n, and write 3 = 7 for 

We already have, by definition, an  intimate connection between truth in & and &-unification; two 
sequences of terms 3 and 5 are &-unifiable iff I 1 3T(3 = 7). With negation issue a t  hand, we need 
a dual property; tha t  is, we need to  establish a rela.tionship between non-existence of &-unifiers and 
falsity in I .  We thus require that  an  equality theory dictates that  equality holds only if &-unification 
is possible. To express this formally, if 0 is the substitutioil 

let eqn(8) denote the conjunction of equations 

For each pair 8,7 of sequences we require the existence of a set l i (3 , i ) ,  possibly empty, possibly 
infinite, of C-unifiers such that  if g = yl . .  . -, yk are all free variables in 3 and 't then 

where 3 denote existential quantifica.tioi1 of those free varia.bles in eqn(0) which are not in 8. We 
adopt the convention that  an  empty disjunctioll is false. Thus the above expression means that  
if an  assignment of the free variables in terms 3 a.ud f is such that  3 = 5 is true in a model of &, 
then a t  least for one of the f-unifiers 0, 3eq11(0) is also true in the same model and assignment. 
Consequently, whell there is no unifiers of T and i (i.e. l i(x.7) = 0), & 3 # 7. 

The essence of unification completeness is t11a.t every possible solution of any given equation can 
be represented by an &-unifier of the eclua.tion. Iu  pasticula.r, when there are no I-unifiers, there 
can be no solution. 

Let 3 and 7 be two sequences of terms of equal length, and a and 0 two &-unifiers of 3 and 7. 
Then we say that  a is a more genenil f-unifier than 0, denoted by a 5 0 iff a is a more general 
substitution than 8 is. An I-unifier a is nzazinzt~~l iff there is no &-unifier which is more general 
than a. 

Next we extend the definition of goa.1 formula. to  t,l~a.t of general goal formula to  incorporate the 
negation symbol. 

Definition 9.1 A genercrl goo/ for.~~lulo is tlefit~~cl i utlucti\.ely as follows: 

(a) An equation of the forill s, = i,, \vl~cre .\,, . t,, E T ( Y )  is a general goal formula. 

(b) T is a general goal formula. 

(c) A11 atomic goal A is a general goal f o r ~ ~ ~ u l a .  

(d)  If GI  and Gz are general goal formulas. tllen so are GI  V Gz? G I  A Gz, 3xG1 and 7G1. 



20 Proceedings of the 1992 XProlog Workshop 

Note that  atomic goal formulas and terms s,, t ,  in equation s,  = t ,  do not contain symbols = and 
1. 

We shall use the following abbrevia.tions: 

1. VxG for 1 3 x l G  

2. G I  > G2 for ( - G I )  V G2 

3. s # t for l ( s  = t ) .  

Definition 9.2 A general progr(i~n C . / ( I Z I P ~  is a cla.tise of tlie for111 

where A is a rigid atoll1 and G is a general goal formula. We call A the head of clause and G the 
body of clause. 

In 1191 normaj programs in first-order logic are defined. These are programs whose program 
clauses my contain negative "literals" in their body. In higher-order logic, however, normal pro- 
grams are meaningless; if atom of a negative literal is flexible then by substituting a term for the 
head predicate variable of the atom we have a general negative goal formula which is not literal. For 
example, let -Pa be a negative literal where P is a predicate variable. By applying the substitution 
[Ax . px V q x / P ]  t o  this literal we obtain a negative goal formula  pa V qa) which is not a literal. 

Example 9.3 The well-ordered predica,te ,1170 can be defined a.s follows. 

wo(X) +- V Z ( Z  S A nonentl) ly(Z) 3 haslectstelement(Z)) 
,nonempty(Z) - 3 U ( Z ( l i  ) ) 
hasleastele~-rzent(Z) - 31r(Z(1T)  A V l , ' ( Z ( I ' )  > ZJ 5 V ) )  
-x G I' - V Z ( * Y ( Z )  3 1 7 ( Z ) )  

The increased expressiveness of progra.ms ant1 goa.ls is useful for expert systems, deductive 
database systems, and general purpose progra.nzming a.pplications. In expert systems, it allows the 
statement of rules in the knowledge ba.sC in a forrr-I closer to a. na.t,ura.l language statement, such as 
would be provided by a human expert. This ma.kes i t .  ea.sier to u~lders ta~ld  the knowledge base. 111 
general purpose progra.mming, a,pplicat,ions like t,lle a.bove exa.mple occur often. If this increased 
expressiveness is not available it is only possible to express such statement rather obscurely. 

Definition 9.4 The definition of a predicate constant p E I1 in  general program P is the set of all 
program clauses in P which ha.ve p as top level synil)ol of tlieil. heads. 
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Every definite program is a general program, but not conversely. 
In order t o  justify the use of the negation as failure rule, Clark[lO] introduced the idea of 

completion of a general program. We next give the definition of the completion. 
Let p(t l , .  . , t,) c G be a, pr0gra.m cla.use ill a. general pr0gra.m P. The first step is t o  transform 

the given clause into 
p(x1,. . . , 2,) + 21 = i l  A . . . A zn = t ,  A G 

where 21,. - a ,  x, are variables not appea.ring in the cla.use. Then if yl, - , y, are the free variables 
of the original clause, we transform this into 

Now suppose this transformation is ma.de for each cla.use in the definition of p. Then we obtain 
k 2 1 transformed forrnulas of the forin 

l j ( X l : * . , : C , , )  - Ek 

where each Ei has the general form 

and is still a general goal formula. The conzpleted (Lefirzition of 11 is then the formula 

Note that  El V . - .  V Ek is also a general goal formula. Some predicate constants in the program 
may not appear as top level symbol in the head of any program clause. For each such predicate 
constailt q, we explicitly add the clause 

This is the definition of such q give11 explicitly by t.lre program. We also call this clause the completed 
definition of such q. 

Definition 9.5 An augnzented general logic progrnna T" corre.sljoizding to program P is a collection 
of completed definitions of predicate constant5 in T'. 

In the classical first-order case we form the completion c o m p ( P )  of a program P by taking 
P*, the augmented logic program corresponding to program T', and adding the axioms of Clark's 
equatioi~al theory C*. These axioms. asserting that two terms are equal iff  they are unifiable, give 
a unification complete equality theory. corresl)ontling i n  a natural way to the standard equality 
theory C consisting of the axioms of identity. Tlius. for equation e we have C* + e iff C e .  In 
general there is no unique way of estending an c.cluality theory cC to a unification complete one &* 
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having this relation to  i t  so we can no longer speak of the completion of a program P with equality 
theory & but must as in [16] consider a pair (P*,  C*) where P* is an augmented general program 
corresponding t o  program P and &* some unificatio~l complete equality theory. (If P is thought of 
as having some underlying equality theory C, then we would require &* e iff & e ,  but since 
this does not specify I* completely it is presuma.bly I* which is directly given.) iFrom now on we 
always use (P*, &*) in this sense. 

Definition 9.6 For a given set C of constants and equality theory I ,  the &-unification problem in 
the language L ( C )  is t o  decide, for arbitrary terms s, t E T ( C ) ,  whether the set U(s, t )  of &-unifiers 
of s and t is non-empty. The nth-order f-unification problem is the &-unification problem for an  
arbitrary language of order n. If an equa.tiona1 theory cC does not contain other equational clause 
than the axioms of identity then we write C for l and write just unifier or unification for C*-unifier 
or C*-unification respectively. 

For example, the first-order unification problem is known to be decidable. Unfortunately, this 
does not hold for higher-orders or under genera.1 equality theory. 

Theorem 9.7 The second-order unifictrtiori ~ ) ~ . o b l c i i ~  i.s zrizdccidable. 

This result was shown by Goldfa.rb[lS] using a. reduction fro111 Hilbert's Tenth problem. This 
result shows that  there are second-order ( a n d  therefore a.rbitrarily higher-order) languages where 
unification is undecidable. 

Besides undecidability of I-unifica.tion, anot,ller problem is that  mgu's may no longer exists, a 
result first shown in [14]. 

Example 9.8 The two terms F ( n )  a.nd (1 have t,he unifiers [XxnlF] and [XxxlF], but there is no 
unifier more general than both of these. 

This leads us to  extend the noti011 of a. mgu to  the l-unification case by considering complete 
set of &-unifiers. 

Definition 9.9 Given two sequences of terms, 3 and 7, a,nd a, finite set W of variables, a set S of 
substitutions is a complete set of C-rrnifier.5 o f 7  a1tcl7 cruwy from TV (which we shall abbreviate by 
CSU(s,7)[W]) iff 

1. For all a E S ,  Donz(a) C FL7(3,i) and I n t r ( a )  fl (I-T7 U Donz(a)) = 0. 

3. For every 8 E U(S,?), there exists solne o E .I;' such t.11a.t a _< B[FV(S,I)]. 

When W is not significant, we drop the notation [ I I -1 .  

Example 9.10 The following set C' of equality theory is corresponding t o  the equality theory C 
and C* is unificatioil complete. All terms appearing in C' are in 71-espanded form. 
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1. A T .  l2? # t where the term t is rigid and F E F V ( t ) .  

2. A T .  f (3) # AT - g(i) where f  and y are two different constants. 

3. A T .  xi(8) # A T .  xj(7) where ?i! is a list of varia.bles of length k and i, j E [k] such that  i # j. 

4. s; # t; -+ A T .  f ( ~ )  # AT. f ( T )  where 3 and 7 are two lists of terms of same length n and i E [n] 
and f is a constant. 

5. s; # t;  -, AT xj(B) # A T  xj(7) where S and 7 are two lists of terms of same length n and 
i E [n] and Z is alist of variables of length k and j E [k]. 

As usual the free variables in equality clause are implicitly nniversally quantified. Note that  a naive 
extensioll of Clark's equality theory to  higher-order equa.lity theory does not work. For example 
clause 1 corresponds to  cla.use 4 of Clark's equality tlleory presented in page 79 of [19]. These 
clauses are needed because of occur check in unifica.tion algorithms. But in higher-order case the 
two non-convertible terms X and Fat- are unifiable. since there is a unifier [ A y  . y / F ] .  Note also 
that  both of these terms are flexible. If one of the t,wo t.erms is rigid then the occur check will also 
work for higher-order unification. 

To address the operatioilal seinailtics of complete logic programs, we return to general logic 
programs. Corresponding to  each (T", I*). we obtain a logic program ( P ,  I) as follows. All that  
we require of the desired & is that  it shares with I' tlre same finest C-congruence. There can be 
many ways of defining such, e.g., f = { E  : 6 is a closed equatioil over H and &* + e ) .  

The general logic program P we obtain fro111 P* is defined as follows. For each predicate 
definition of type (1) in F*, obtain k definite clauses where k is the number of disjunctions in the 
definition body. Then if 

3y1 . - - 3 y , ( x 1  = i 1  A A x,, = t, A G )  (3)  

is one such disjunct, obtain the corresponding general clause 

Note that  we do not construct ally general clauses from predicate definitions of type (2) in P*. 
Thus we defined ( P ,  &) corresponding to  (P' .  K* ). 

10 Semantics for general programs 

In general progra.ms, we lrave to interpret the l~cgatiol~ syl11l)ol to give the definition of satisfaction. 

Def ini t ion 10.1 Let M = (D. I) be an interpretation of L. (3 an assignment into M. When F is 
a formula in C, we write M + F [ p ]  to say that .itl satisfies F with respect to 9. For all general 
goal formulas G ,  GI, G2,  for each rigid atoin .-l. 

1. W h e n s , , t , ~ T ( X ) , , M  + s o  = t,[p]iffV,ai, = V q t , ,  
M I= s, r t,[(3] iff  e1 (Vcs ir )  = er(Vql i ,  ). 
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3. M ,L p(tl, . - ,  tn)[y]  iff (V,tl,. . . , V,t,) E I p  if 1, is a. constant 
or (V,tl,.-.,V,tn) E 9 o er(p)  if p is a variable 

4. M i= GI v Gz[v] iff M k G~[c l]  or M b G ~ [ Y ]  

5 .  M + G1 A G&] iff M i= Gl[y]  and M I= Gz[Y]  

6. M 32,G iff there is a d E D, such that M G[y[d/z,]] 

7. M k lG1 [v] iff M k [ill. 

We write M F t o  say that a forillula F is 11rrlid in JW if M t= F[p] for all assignments y into 
M. Given a general program P ,  we say that .A4 is a naoclel or D-nzodel for P, and write M b P,  
if each general clause in P is valid in ibf. Given a closed goal formula G,  we say that  G is a logical 
consequence of P ,  and write T' + G' if G' is valid in all illotlels of T'. 

Lemma 10.2 Let P be a general program. Then P is (1 logical consequence of P*. 
Proof Let (D, J )  be a genera.1 pre-interpret,a.tiol~ ant1 I a D-interpretation such that  I is a model 
for P*. We want t o  show that I is also a illode1 for P. Let p(t l ,  . - .  , t,) + G be a general clause in 
P whose free variables are yl,. . ., y,, , a.nd p be an assignment into D such that  I + G[y] .  Assume 
V,t; = d; for i E [n]. We need to show that y(r l l ,  - .  + ,  d , , )  E I .  

Consider the completed definitio~l of 11 

and suppose E; is 

3yl - .  .3y,,(:cl = A . . . A X,, = t ,  A G'). 

Let the assignment 9' into D be (p[rll/xl] . .[rl,/.z.,,]). Then for each i E [n], V,,ti = d; and 
I \ G [ y f ] ,  since xj's do not occur in G'. Therefore 

I t= ~1 = I 1  A . . . A  . I . , ,  = I , ,  A G[p'] 

and p ( d l ,  . . , d,) E I .  o 

We can define T operator as in Section 7. Kote that T operator for general program is generally 
not monotonic. For example, if P is tlre prograni 

then T(P,E) is not monotonic. However, if  7' is a tlefii~ite program, then it is monotonic. 
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Lemma 10.3 Let P be a general program and I be n DIE-interpretation. Then I is a model for 

( R E )  iff T ( P , & ) ( I )  C I .  
Proof +) Assume p(dl, - - . , d,) E T ( P , ~ ) ( I )  for some p(dl, . - , d,) E II(D/&). Then there are an 
assignment cp into D l &  and a clause p(t1, . -  ., t,) -- G E P such that V,t; = d; for all i E [n] and 
I G[Y]. Then since I P, I p(tl , .  . , tn)[p]. Therefore p(dl, . . . , d,) E I. 
e) Similarly. 

Since model intersection property is closely rela.ted with monotonicity, model intersection prop- 
erty does not hold as following example shows. 

Example 10.4 Let P be the prograill 

Then {p, q} and {p, r} are models of P. But their intersection { p }  is not a model of P .  

The next result shows that fixpoints of T(T,:-) give illodels for (P* ,  I). 

Lemma 10.5 Let I be a DIE-interpretcitioiz The12 
I is a fixpoint of T(P,E) iff I is a moclel for (P* ,  E). 
Proof Let p E II and recall that there is only one definition of 1) in P * .  If it is of the form ( I ) ,  i.e., 

then this definition is satisfied by I iff  for all a.ssignment p int,o DIE where px; = d;, i E [n], 

p(dl,. . . , d,) E I for some E;. 

V',t, = (1,: j E [ ~ r ]  and I G[p] Y .  

Since for each E; there is a definite clause about 1) in F and vice versa, this is the same as 

p(d l , . . . ,dn)  E I p ( d 1 : . .  .d , , )  E T(T , r , ( I )  for all p ( d l , . . . , d n )  E II(D/E) 

If, however, the definition of p is of the forni ( 2 ) .  

7p(Z) is sa.tisfied by I p ( J )  # I for all 2 E DIE.  

By definition of T(P,E), we have for each such 1, tha t  for all DIE-interpretations I and all ;i E Dl&,  

l ) ( a  !2 T(F.:-)(J) 

Hence (P* ,  &) is satisfied by I iff T(F.:-)(I) = I. 
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11 ( F ,  8)-derivat ion 

In this and next sections we describe a mechanisn~ t11a.t determines whether the existential closure 
of a goal formula is a logical consequence of a set of program clauses. We would like t o  describe 
a procedure tha t  conducts a search for an appropria.te derivation sequence that  is directed in a 
sense by the given goal formula. We ca,ll this procedure a ( P ,  &)-derivation. ( P ,  &)-derivation may 
be looked upon as a generalization to  higher-order context of the notion of ( P ,  &)-derivations that 
were introduced in [16, 171, and are prevalent in most discussions of first-order logic programs with 
equality as the extension of SLD-derivations. 

Let the symbols 6 , C  and 8, perhaps with subscripts, denote sets of general goal formulas, 
general program clauses, and substitutions. respectively. Let us call a finite set of general goal 
formulas a goal set. We then define the rela,tion of 1)eing "(P, C)-derived from" between triples of 
the form ( 6 ,  C, 8) that  is basic to  the definit,ion of a ( F ,  C)-deriva.tion in the following manner. 

Definition 11.1 Let P be a progra.111. We sa.y a triple (G2. C2, 62) is ( P ,  C)-derived from the triple 
(GI, C1, 81) if one of the following situations holds: 

1. (Goal reduction step) 82 = E and there is a. goa.1 formula G in goal set 61 such that  

(a) G is T and G2 = GI - {G'), or 

(b) G is G' A G2 and G2 = (GI - {G))  U {GI. G2) ,  or 

(c) G is GI V G2 and, for .i E [2], G2 = (GI  - {G) )  U {Gi), or 

(d) G is 3x,G1 and for new va.riable y, E A, to goal set G1 it is the case that  6 2  = 
(61 - {GI)  u { [ ~ a l x a I G *  1. 

2. (Backchaining step) Let G' be a rigid atoll1 in goal set such that  C2 is a variant A c G' of 
a clause in P with no variables in  conlmon wit li t l~ose in GI and 82 is an &-unifier of A and 
G ,  and G2 = e2((G1 - {G') ) U {GI} ). 

3. Let G be a n  equation e in goal set GI such that there is a.n C-unifier 8 of equation e. Then O2 
be an &-unifier equation e \vliich is more genera.1 tl1a.n I I .  And G2.=  8z(Gl - {e)). 

In each of the above steps the goal formula G is called the selected goal in the goal set GI. 0 

Definition 11.2 Let 6 be a goal set. Tllell we say that a (finite or infinite) sequence 

is a ( P ,  &)-derivation sequence for. G just in case (7" = 6;. do = E ,  and for each i, (G;+l, C;+l, is 
( P ,  &)-derived from (G;, Ci, 8;). 

We now introduce the concept of a, selection rule. which is used to  select goals in a ( P , f ) -  
derivation. 

Definition 11.3 A selectioiz rule is a function fro111 a set of goal sets to  a set of goals such that  
the value of the function for a goal set is a goal. calletl the selected gocll in that  goal set. 0 
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Definition 11.4 A ( P ,  &)-derivation sequence (G;, C;, 0;)0si5n terminates, i.e. is not contained in 
a longer sequence, if there is no triple (Gn+l, Cn+l, &+I)  which can be ( P ,  &)-derived from. If Gn 
is empty, or consists solely of flexible a.toms, we say that i t  is a successfully terminated sequence. 

Note that  if there are any goal formula~s in G,, then they are of the form 

where P is a variable whose type is of the form 01, . , a, -. o. Let FP(Gn)  be the set of such 
predicate variable P in (7,. Note that  if Gn is empty then so is FP(6, )  and for any substitution 8, 
8 f FP(G,) is an identity substitution. 

Definition 11.5 A (P,I)-derivation is fil.ir if i t  is either terminated, or for every goal G in the 
derivation, (some further instantia.ted version of)  G' is selected within a finite steps. 

Definition 11.6 A selection rule R is f ( ~ i r .  if every (T'. I)-deriva.tion using R is fair. 

For each predicate type x we define the wft E,  

where x; is a variable of type a.i for i E [n].  And we define a generalized substitution 

O = {(y,, E,) : K is a predica.te type and y, E 4,). 

Definition 11.7 A ( P , & )  derivation sequence ($7i,Ci,B.i)oji5,, for G that is a successfully termi- 
nated sequence is called a ( P ,  C)-derivation of $7 and 

is called its answer substitutio~z. If 5' = {C;) then \jTe also say that the sequence is a ( P ,  I)-derivation 
of G. 

The following defines the success, finite failure, arid general failure sets, denoted by SS(P, f), 
F F ( P ,  &), and G F ( P ,  I )  respectively for a given logic program ( P ,  I ) .  

S S ( P , & )  = {p(3) E n ( H )  :there exists a, successful 
( P ,  C)-deriva.tion sequence of p(3))  

F F ( P ,  I )  = (p(8) E n ( H )  : for any fa.ir selection rule, 
there exists a, number n such that all ( P ,  f)-derivation 
sequences of 143) a.re finit,ely failed with length < n )  

G F ( P , I )  = {p(s) E I I ( H )  : for any fair selection rule, 
all ( P ,  E)-deriva.tion sequences of p(3) are finitely failed ) 

General failure is, in general, different from finite failure because there can be a closed atom 
which does not have an infinite derivation sequence a.nd yet there is no number n such that  all 
derivation sequences of this atom a.re finitely fa,iled ~vi th  lengtli 5 n. This possibility arises because 
L can be such that  there is an infinite set of nlasiilia.lly genera,l L-unifiers for some pair of terms s 

and t .  
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Example 11.8 Let & = { f (x, f ( y, z ) )  = f (f (x,  y  ). z ) ) ,  the theory of an associative function. 
Noting that  the equation f (y ,a)  = f (a ,  y )  has an infinite number of maximally general I-unifiers 

the program P 

is such that  F F ( P ,  I )  # GF('P, I ) .  This is easily verified by considering the initial goal p(a). So 

However, if I is such that  for all pa.irs of terms .$ and t ,  there is a finite set of maximally general 
unifiers which subsun~es all the C-unifiers of .s and 1 ,  then FF(T ' ,E) . i s  identical to G F ( P , I ) .  In 
higher-order case even for the equality tlreory C there are solile pair of terms s and t for which 
there is no finite set of maximally genera.] unifiers. So in general F F ( P ,  I )  # G F ( P ,  f). 

Example 11.9 Let the program (T' ,  C* ) be such tl1a.t 7' consists of the following clauses 

The unifiers of the equation F (  f ( a ) )  = f  ( F ( c r ) )  are 

[ X y -  f " y ) / ~ ] ,  f o r k  E w. 

12 SLDNF-resolution with Equality 

In this section we define an  appropriate version of SLDKF-resolution for higher-order general pro- 
grams and goals with equality theory and prove. in nest section, for it the analogue of Clark's 
fundamental theorem[lO], that  if a goal succeetls it is a coilsequence of the completion of the pro- 
gram, and if i t  fails then its negation is a. consequence. I t  is t,o be expected that  most of the other 
properties of SLDNF-resolution could he ]~~.ove<l ill this more general context, but tile results are of 
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(b) G, is a closed negated goal l G 1  aad there is an SLDNF-refutation of rank < v of {G1}, 
or 

(c) G, is an  equation e and e has no &*-unifier. 

(d)  G, is an  inequation s # t where I* /= a = 1. 

Note that  an  SLDNF-refutation (respectively, generally failed SLDNF- tree) of rank v is also an  
SLDNF-refutation (respectively, generally failed SLDNF-tree) of rank p ,  for all p 2 v. 

Definition 12.2 Let ( P , l * )  be a general program and G a general goal formula. An SLDNF- 
refutationof(P,&*)~{G)isanSLDNF-refutationfor(P,E*)kl{G)ofrankv,forsomev. 

Definition 12.3 Let ( P , E * )  be a, general 1)rogra.m a.nd G' a general goal formula. A generally 
failed SLDNF-tree for (P,cC*) kl {G} is a generally fa.iled SLDNF-tree for ( P , E * )  kl {G) of rank v, 
for some v. 

If a goal set contains only flesible atoms and 11ega.ted at.oms which are not closed, then no goal 
is available for selection. We now formalize this notion. By conzp~~tation of ( P ,  &*) {G),  we mean 
an at tempt to  construct an SLDNF-derivation of ( 'P .  C * )  M {G).  

Definition 12.4 Let ( P , & * )  be a general progralu a.nd cj is a general goal set. We say a com- 
putation of ( P ,  &*) kl G flounders if a.t some poilit in the colllputa,tion a goal set is reached which 
contains only flexible atoms and nega.ted a.toms which are not closed. 

In 2.(a) of the definition of SLDNF-refutation, the transformations for negated formulas have 
been presented t o  try to  overcome the limitations of the negation as failure rule. For example, 
without 2.(a).iii), the computation of ( P ,  E*) td { l l G }  can flounder if G contains any free variables. 
This problem disappears once the goal is transformed to  G. Similar problems are overcome by 
2.(a).i), and ii). 

Now tha t  we have given the definition of computed answer, we consider the procedure a logic 
programming system might use to  compute answers. The basic idea is to use (P,&*)-derivation, 
augmented by the negation as failure rule. Lf'lien a non-negative goal is selected, we use essentially 
(P,&*)-derivation t o  derive a new goal set. However, when closed negative goal is selected, the 
goal answering process is entered recursively in order t o  try to establish the negative subgoal. We 
can regard these negative subgoals as separate I ~ I ~ I ~ ( L S .  \vllich must be established to  compute 
the result. Having selected a closed negative goal 4' in some goal set, an at tempt is made to  
construct a generally failed SLDNF-tree with root {G)  before continuing with the remainder of 
the computation. If such a generally failed tree is constlucted, then subgoal set {YG) succeeds. 
Otherwise, if an  SLDNF-refutation is found for { G ) ,  then the subgoal set { l G }  fails. Note that 
bindings are only made by successful calls of po5itive rigid atoms. Negative calls never create 
bindings; they only succeed or fail. Thus llegatjoll a, failure is purely a test. 

Example 12.5 Let P consist of the following cla.uses 

:c E y - Vt l (n. (  t l )  > y( ( 1 ) )  

~ ( ( 1 )  - T 

q(c1) - T 

q(b) - T 
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which succeeds since the final goal is an abbreviation of closed goal 1 3 u l ( l p ( u )  V q(u ) )  and we can 
build a failed SLDNF-tree for 3 u l ( l p ( u )  V q(u) ) .  

A failed SLDNF-tree for ( F , C * )  kJ {q C 1)) is 

which is failed, since the final goa.1 is an abbreviation for 1 3 u l ( l q ( u )  V p(u) )  and there is an 
SLDNF-refutation for (P,C*) U {3u1( lq ( z l )  V p ( u ) ) }  

which succeeds because of the failed tree. 

14 1 

13 Soundness of SLDNF-derivation with Equality 

Let G be a general goal set {GI,  a ,  G,,) which occurs in a place where normally a formula can 
do. Then by G we mean the conjunction GI A . - .  A C;,,. .And we adopt the convention that empty 
conjunction is true. 

Theorem 13.1 If T' is a genercrl pr,ogrclnz. t:' (1 1rri~7'Jicrrtio1~ conzplete equality theory and 6 is a 
general goal set, then for all ordirzcrl.~ I /  
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(a) if ( P ,  &*) kj G has a yeneradly fuiletl SLDATF-tree of rcrzk v then (P*, E*) + 4. 

(b) if ( P ,  &*) G has a72 SLDNF-refiitc~tio~z oj rt1,nX: v tllitll answer 0 then (P*,  &*) )= 06. 

Proof We prove these simultaneously by induction on u. 

(a) We prove the contrapositive, that if there is a HIE*-model I for (P* ,  &*) in which 3(G) is true, 
then ( P ,  &*) kj {G} cannot have a generally failed tree of rank v. 

We do this by showing that if an existential closure of a node goal set G in such a tree is true in 
I then so is for some successor node goal set G', which implies the existence of an infinite branch, 
contrary to  the definitions of generally failed tree. Note that an existential closure of a goal set 
{GI, .  . -, G,} is true in I means there is some assign~nent 9 into HIE* such that 

So there is an assig~lmeltt 9 such t11a.t for ea.clt goal G, in the goal set, 

If the selected goal G, in the node goa.1 set I7 is G1 G' then by hypothesis G1 and G2 are 
true in I. So there is a unique child goal set G' 

all goals of which are true in I. 
If tlte selected goal G, in tlte node goal set g; is G1 V G2 then by hypothesis G' is true in I for 

some i E [2]. So there is a child goal set L,j' 

all goals of which are true in I. 
If the selected goal G, is 3yG1, the11 by liypot,hesis G1 is true in I under assignment ~ [ d l y ]  for 

some d E HI&*. There is a unique clliltl goal set I;' 

where z is a new variable to G .  So all of goals in G' a,re true ilt I uitder assignment ~ [ d l t ] .  
If the selected goal G,, i11 the node goa.1 set C; is 1(G1 A G2) then there is a unique child goal 

set (7 
( G  - {+I A G2)})  u {(-GI) v ( 1 ~ ~ ) )  

all of whose goals are true in I under p, since (1G") V (7G2)  is implied by y(G1 A G2). 
If the selected goal G, is 7(G1 V G2)  or l l G 1 ,  then the proofs are similar to above case. 
If the selected goal G, in the node goal set I7 is a negated closed goal 1G1 then by hypothesis 

G1 is false in I, so by (b) of induction 11yl)othesis {GI) cannot have refutation of rank < v, so this 
cannot be a leaf node. So there is a uniclue child goal set which simply omits 7G1 and is also true 
in I. 
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If the selected g o d  is an equation s = t then, since this is true in I under assignment cp, and &* 
is unification complete, there is some I*-unifier 0 of s and t such that  3xeqn(8)  is true under the 
assignment where are the variables in 0 not in s or 2 .  Clearly these variables may be chosen - - 
different from Z so that  eqn(0)  is true in I under assignment cp[d/h] for some 2 E H / E * .  Now 
eqn(8)  implies 

z = O x ,  for each vaxiahle z ,  

hence 
F * OF, for ea.c11 formula F. 

So all the goals in 
H ( < ;  - { .5  = 1 ) )  

are true in I under pv/E]. The given notie has a cl~iltl goal set. G' 

1 7  @ ( i t  - {a  = t ) )  

for some 8' more general than 0 ,  i.e. sue11 tha t  there is a, substitution a satisfying 

Now if a F  is t rue for some assignnlent $! then F is true for some variable assignment (viz. the 
assignment a o VL). So all of goals in O'(G - {,< = t ) ) are true in I under some variable assignment. 

If the selected goal is an inequa.tion s # f then since this is true in I under variable assignment 
cp the node cannot be a leaf node, since that requires C* + s = i. So it has a unique child goal set 
G ' 

r; - {s # 2 )  

all of goals of which are also true in I under va.ria.ble a.ssignment p. 
The last and main case is where the selected goal G,, is a rigid atom ~ ( 3 ) .  The completed 

definition of the predicate 11 in P* is of t,he form 

where each Ei is of the form 
37(s = i A G )  

correspondillg t o  a program clause 
1 ~ ( 7 )  - (; 

where 7 are new variables not occurring in a.ny sucli clause, a.nd 5 are the free variables of the 
clause. It is easily seen that  the same completed definition of p is obtained whatever variants of 
the program clauses are used, so we nlay a.ssume that the same variants are used as are chosen 
in verifying the definition of generally failed SLDNF-tree at this node so that  the variables 7 are 
distinct from the variables T. Since y(X) is true i l l  I under p one of the formulas 
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must be true, i.e. since the variables 7 are distinct from the variables z, 

is true in I under a variable assignment '3[;i/y] for some 2 E H I C * .  Since &* is unification complete, 
3 = 7 implies the existence of some $*-unifier 8 of s and t ,  As above this implies 

is true in I under a variable a.ssignment p[;i/jj][~/%] where % are new variables of 6 (chosen distinct 
from z ,~ ) .  Now by the definition of generally fa.iled tree? since 0 unifies p(3)  and p(7)  there must 
be an &*-unifier 8' of p(S)  and p(T)  ant1 a sul~stit~ut~ion a such t11a.t f* /= 8 = 8' o a and a child goal 
set 

of ( (< ;  - {],(7)} ) u {GI ). 

As in the last case, all these goals are true in I for some varia.ble a.ssignrnent. 
(b) This is proved by induction on the lengt,Il 1 of the refuta.tion. 
I is zero. Then G is empty or consists only of flesible a.torns. If G is empty, i.e. true, then 

(P*,  E*) + G. If G consists only of flexible atoms. then HG is of the form T A . . A T. So obviously 
(P*,  E * )  + 6G. 

For the inductive step suppose 1 > 0 and C;,, is the first selected goal in the node goal set 
Go = G. 

If G, is of the form G1 A G2, then H I  is the identity substitution E and the unique child goal 
set GI is 

(Go - {G1 A G2} ) u {GI. G2}. 

By induction hypothesis on 1 

Since 61 {GI, G2) implies Q1{G1 A G*}? SO 

If G, is of the form G" V G2,  then 0 ,  is the itlentit. substitution E and next goal set GI is 

for some i E [2]. By induction hypot,hesis on I 

Since O1 {Gi} implies 81 {G1 v G'}, so 
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If G, is of the form 3yG1, then dl is the identity substitution E and the unique child goal set 
GI is 

(Go - {3yG1)) u {[zly1G1) 

where z is a new variable t o  Go. By induction hypothesis on 1 

Since 81 { [ z /  y]G1} implies dl (3 yG1), so 

(P*, I*) I= (81 0 - 0 01 0 ( O  1 FP(Gl)))Go. 

If G, is a rigid atom then there is a variant .4 - G of a program clause and &*-unifier el of 
G, and A, and the next goal set GI is 

By induction hypothesis on 1 

But 
P* I= (01 o . - . o H / o ( O  [ F P ( G l ) ) ) ( A  - G )  

and 
En 1 0, GYIL - 0] -4, 

as required. 
If G, is an  equation s = t then the nest, goal set (T1 is 

where is a n  C*-unifier of s and t .  By induction hypotliesis on 1 

Since f* I= Bls = Bit, it follows t11a.t 

(P*. E*) I= ( H I  0 . . . o H I  0 ( O  I FP(G/) ) )Go 

as required. 
If G, is an  inequa.tion s # 2 .  then the liest goal set is 
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where Bls and Bit are not £*-unifiable, i.e. 

E* B1s # Olt 

since I* is unification complete. So 

(P*,  f*) (81 0 . , .O 01 0 (0 T FP(G1)))Go 

as required. 
If G, is of the form 7(G1 A G2), then O1 is the identity substitution E and the unique child goal 

set G1 is 
(Go - { l (G"  A G ' ) } )  U ( (1~ ' )  V (1~')). 

By induction hypothesis on 1 

Since 81 ((-GI) V ( l G 2 ) )  inlplies 01(7(G1 A G 2 ) ) ,  so 

( F * , E * )  (6, 0 . . - 0  Hi 0 ( O  1 FP(Gi)))GO. 

If G, is i ( G 1  V G2) or 14'' t.hen the proofs a r c  similar to the above case. 
If G, is a. closed negated goal 7G1 t,llen t.l~ere is a generally hiled SLDNF-tree of rank < v for 

(P, C*) ttl {GI} and the nest goal set GI is 

So by (a) of induction hypothesis on z/ 

( P = . f W )  + l G 1 .  

By illduction hypothesis on 1 

Since B1 is the identity substitution E we obtain 

a.s required. 

14 Conclusion 

We have built model theoretic semant,ics for higher-order logic programming languages and estab- 
lished the least model and least fixpoint sen~ilnt,ics for such languages. T w o  major relevant aspects 
of classical first-order logic ha.ve been il~otlel rhe01.y il .11~1 proof theory; model theory corresponds to 
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specification and declarative notions, proof theory corresponds to  operational semantics and imple- 
mentations. A proof theoretic characterization of higher-order logic programming is well developed 
in [26, 24, 281; this characterization is based on the principle that  the meaning of a logic program, 
provided by provability in a logical system, should coincide with its operational meaning, pro- 
vided by interpreting logical connectives as simple and fixed search instructions. The operational 
semantics is formalized by the identifica.tion of a. c1a.s~ of cut-free proofs called uniform proofs. 

Even though Miller[25] worried about "unquestioned" use of model theory, we believe that  model 
theoretic development for higher-order logic programming is essential; the existence of a declarative 
definition provides an  important yardstick a.gainst \vl~icll the correctness of an implementation can 
be measured, for example, without i t ,  we would not be able t o  even state the soundness and 
completeness theorems. This situation is even more amplified when the soundness of negation as 
failure is needed t o  be justified; in order to assess the proof theoretic power of completions, in 
contrast t o  the case of models of definite progra.ms. it is not sufficient to  restrict here attention to  
Herbrand models. I t  is necessary to consider arbitrary models. 

There is a well-known philosopl~ical problem [12]; a knowledge and belief operator such as 
knows creates an opaque contest and disallows sul~stitut,ion of equals by equals in an opaque 
contest. Our logic programming 1a.nguagt.s a.lso crea.te a simi1a.r problein; i.e. since they include the 
propositional type in its primitive set of types, they allow such opaque contexts. This situation can 
be paraphrased, in our own terms, as: estensiona.1 itlent,ity of arguments does not imply extensional 
identity of applications of such a.rguments t,o a.n opaque opera.t.or. To solve this problem the 
researchers in Artificial Intelligence proposetl t,o view a concepts as an object of discourse in logic 
[21]. In this paper we also take the sirni1a.r position: we a.rgue that  intentions rather than extensions 
should be main objects of domain of discourse in higher-order logic programming. 

We showed that  higher-order logic progra.mrning possesses the unique semantic properties of 
first-order logic programming such as the lea.st, model a,nd lea,st fixpoint semantics, finite failure 
and negation as  failure. 

The work of this paper has, thus. a.chieved a la.rge part of its original objective, namely that  
of developing a model tlzeoretic sema.ntics for l~igher-order logic progranlming languages that  has 
been proved t o  be so successful for first-order logic progra.~liming. 
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1 Abstract 

XProlog is a logic programming language accepting a more general clause form than standard Prolog 
(namely hereditary Harrop formulas instead of Horn formulas) and using simply typed A-terms as 
a term domain instead of first order terms. Despite these extensions, it is still amenable t o  goal- 
directed proofs and can still be given procedural semantics. However, the execution of XProlog 
programs requires several departures from the standard resolution scheme. First, the augmented 
clause form causes the program (a set of clauses) and the signature ( a  set of constants) to be 
changeable, but in a very disciplined way. Second, the new term domain has a semi-decidable and 
infinitary unification theory, and i t  introduces the need for a P-reduction operation a t  run-time. 

MALI is an  abstract menlory that is suitable for storing the search-state of depth-first search 
processes. Its main feature is its efficient memory management. 

We have used an original XProlog-to-C translation: predicates are transformed into functions 
operating on several continuations. The compilation scheme is sometimes an adaptation of the 
standard Prolog scheme, but a t  other times it has to 11a.ndle new features such as types, P-reduction 
and delayed unification. 

Two keywords of this implementation are sharing and folding of representations. Sharing 
amounts to recognising tha t  some represelltation already esists and reusing it. Folding amounts to 
recognising that  two different representations represe~lt the same thing and replacing one by the 
other. 

We assume a basic knowledge of Prolog and AProlog. 

Introduction 

The logic programming language XProlog [28,27,29, 14,12,26,13,30] improves greatly on standard 
Prolog because it features very powerful operations on terms and programs while still giving them a 
logical semantics. A keyword commori to  all these features is scoping. A-terms introduce scoping at 
the term level, esplicit quantifica.tions (universal a11d esistential) introduce scoping a t  the formula 
level, and the deduction rules for esplicit quantification and implication introduce scoping in proofs, 
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i.e. a t  a dynamic level. Deduction rules for XProlog are usually given in the framework of sequent 
proofs. 

XProlog requires some implementation effort for being able t o  compete with Prolog in efficiency 
(and then in popularity). Another condition for popularity is to overcome the idea that  it is a 
"difficult" language, but this is another story. The initial implementation of XProlog by Miller and 
Nadathur, and the second one, eLP, by the Ergo Project a t  Carnegie-Mellon University, were far 
from being able to  compete with Prolog. Since then, a few teams have worked on the implemen- 
tation of XProlog. As far as we know', current teams are Nadathur, Kwon and Wilson at Duke 
University [20, 19, 341, Jayaraman a t  the University of Buffalo (formerly with Nadathur), Elliott 
and Pfenning a t  CMU [ l l ] ,  Felty and Gunter a t  Bell Labs, and the authors a t  Inria. 

Other works are done in a similar framework for integrating linear logic and logic program- 
ming (Pareschi and Andreoli [4], Hodas and Miller [17]), or higher-order type systems and logic 
programming (Elliot [lo], Pfenning [36, 371). 

We present in this paper the broad lines of our iinplementation of XProlog: Prolog/Mali. We 
have implemented XProlog for its own merits, and a5 a delnonstration that  memory management 
issues are a good guide for implementing logic programming systems. Speed was always our second 
concern. 

We assume a knowledge of Prolog and XProlog, their semantics, and their basic algorithms: 
logical variable, search-stack, unification, A-unification [IS], deduction rules, and uniform proofs [32, 
301. We adopt an architectural presentation: in section 3, we present the kernel subsystem that 
is in charge of the elementary representation problems. in section 4, we present a software layer 
which is both a specialisation artd an extension of the kernel, finally, in section 5, we present the 
compilation scheme. We conclude in section 6. 

3 MALI 

MALI [6, 381 (Mbmoire Adaptbe a u s  Langa,ges Ind6terministes - memory for non-deterministic 
languages) can be specified as the abstract da.ta type stack of mutable first-order terms. This 
abstract data  type encompasses the representa.tion of the sta.te of every logic programming language 
that  performs a depth-first sea.rch in a. search-t.ree. 

MALI is the name of a general principle tl1a.t 11a.s several implementations. The name of the 
implementation we used in Prolog/Mali is A4ALIt106. 

We present what MALI brings to the overall system, and, to avoid any ambiguity, what it leaves 
undone. 

3.1 What MALI brings to Prolog/MALI 

3.1.1 A data-structure 

MALI brings an  abstract data-type which we call MALI'S term. MALI'S terms may be described 
more concretely as gra.phs with nodes tl1a.t can be reversibly substituted. MALI'S terms are organ- 

'We thank the committee member who updated our knowledge-base 
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ised in a term-stack which is itself a term. A collection of node constructors is offered, among them 
atoms (i,e. leaves), compound nodes (i.e. cons or tuples), and levels (i.e. term-stack constructors). 
Some of the compound node constructors are called mutable constructors, and the terms constructed 
with them are called muterms. Mutable nodes can be subject t o  reversible substitutions, according 
to  a discipline that is close to  the substitution of logical varia.bles in Prolog. According to  the disci- 
pline, muterms, substitutions, and the term-stack are in the same relationship as logical variables, 
substitutions, and the search-stack of Prolog. For every kind of node constructor, commands and 
operations exist for creating and reading them, and for accessing their subnodes (if any). Com- 
mands also exist for substituting terms for muterms, and for manipulating the term-stack (pushing, 
popping, and pruning the term-stack). 

Every node constructor can be given an elementary typing via the use of sorts. This makes it 
possible t o  "decompile" the representation of an application term. For instance, Prolog's integers 
and constants can be both represented by MALI's atoms, which must be discriminated by their 
sorts. 

In the sequel, we note2 ( l e  S  R N) a term-stack3 of sort S,  top value4 R and substack N, 
(at s V )  an atom of sort S and value V,  ( [ml cO S )  a [mutable] nullary compound term of sort S, 
(Cmlc2 S TI T2) a [mutable] binary conlpound tern1 of sort S and subterms TI and T2, and 
(Cmltu S N T i  . . . Tn) a [muta.ble] conlpound term of sort S and N subterms Ti to Tn. We use a 
labelled notation, labelaterm and labe l ,  to note different occurrences of the same term. A term 
may have several labels through substitution, labell@label2(Dterrn. Terms with labels in common 
share the same representation; they must be compa.tible up to a substitution. Terms with different 
labels (or no label) are different even if they have the same notation; to apply a substitution to one 
has effect on the others only through occurrences of shared subterms. 

It should be clear from this short description that one of the intended usages of muterms and 
the term-stack is the implelneiltation of logical variables and of a search-stack. However, this is the 
only commitment with logic programming, and other usages a.re possible. MALI knows nothing 
about the basic mechanisms of Prolog (resolution, unification), or about XProlog's deduction rules 
and A-terms. 

3.1.2 A memory management 

MALI's terms need memory for their representation. This memory is automatically managed 
in a way that is optimal with respect to the level of knowledge that is available to  MALI. The 
restriction means that application-dependent accessibility properties are not taken into account by 
MALI. They can be taken into a.ccount indirectly by a. proper mapping of the application structures 
onto MALI's terms. 

We call usefulness logic the rela.tion that describes which run-time data-structures are useful in 
a given programming 1angua.ge independently from ally pa.rt.icu1a.r a.pplica.tion. The usefulness logic 
of the core of logic programming is that 

'The notation is only a convenience for comlnenting on MALI's t.erm; i t  is not part of the programming interface. 

3A level, in MALIvOG's jargon 
4 A  root, in MALIvOG's jargon. 
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Every useful term is accessible from some secl.rch-node under the binding environment 
of the same search-node. 

To compare, the usefulness logic of the core of functional programming says that 

Every useful term is accessible from some root; 

binding environments are not mentioned. So, if one uses a functional programming system for 
implementing a logic programmi,ng system and nothing special is done for memory management, 
the usefulness logic that is actually implemented cannot be more precise than 

Every useful term is accessible from some search-node under some binding environment. 

It is usually worse and considers the union of all the binding environments. 
The two important features of MALI'S memory management are early reset and muterm shunt- 

ing. Early reset causes substitutions to be undone5 by the memory manager seeing that some 
muterm is never accessible when substituted. Muterm shunting means that substitutions, which 
are created reversible, may be made definitiveG seeing that some substituted muterm is never ac- 
cessible when not substituted. These two features are described at  great length in the MALIvO6 
tutorial [38]. 

Commands exist for controlling nleinory mana.gement: supplying MALI with new memory 
resources, taking useless resources from MALI, or sta.rting a garbage collection. 

3.1.3 Debugging tools 

MALI offers debugging tools for assisting a user in the development of an application. Debugging 
tools allow to  check preconditiolls of commands. to display compoilents of MALI'S state, and to 
trace commands. 

It is important that at  every level of an architecture (software or hardware) debugging tools are 
available. It makes the complexity of coinposing layers tractable. We will not dwell too long on 
this subject in other sections; it is enough to know that the specialised intermediate machine (see 
section 4) also has debugging tools for checking a fair use of everything it defines. The Prolog/Mali 
system also has debugging tools, but the ultinlate level is the level of the XProlog applications 
which should also come wit11 their debugging tools. This is up to the discipline of XProlog users. 

3.2 What MALI leaves uildoile 

3.2.1 A memory policy 

We distinguish the management of memory inside an a.pplication, which aims a t  improving the use 
of some memory supplies, and the maaagemellt of memory a t  the interface with a host system, 
which aims a t  configuring the supplies. We call naenzory policy the set of decisions related to 
memory supplies. The decisions range from t,he a.mount of memory supplied to MALI, the way this 

'Without waiting for backtracking to undo these substitutions. Hence the name "Early reset". 
'Roughly, the  effect is to  collapse chains of substitut.ions. Hence the name "hluterm shunting". 



P. Brisset and 0. Rjdoux 45 

memory amount evolves, t o  the amount of computing power dedicated to  memory management 
(z the frequence of the calls t o  the garbage collector). 

A memory policy can be very sophisticated because i t  deals with many interrelated parameters. 
For instance, it is likely that ,  in order t o  diminish the computing power dedicated t o  memory 
management, the total meinory allocated t o  MALI must be increased. However, supplying more 
memory t o  MALI may dec, ase the availability of the host system. 

Elementary commands for designing a sophisticated memory policy are available in MALI, but 
no policy is specified. 

3.2.2 Appl ica t ion  level  t e r m s  a n d  execu t ion  s c h e m e  (unification,  resolut ion,  ...) 

The only commitment of MALI with logic programming is the term-stack and the mute rh  sub- 
stitution. Everything remains to  be done as for the representation of the data-structures of an 
application. The implementor must find a ma.pping from its application terms onto MALI's terms. 
In XProlog for instance, the representa.tion of sii11~1y typed A-terms, their unification and nor- 
malisation must be mapped on MALI's terms, and on procedures using MALI's commands and 
operations. 

The only hint for mapping appli~a~tion terms a.nd their opera,tions is that  it is clearly intended 
that  muterms and the term-stack ca.n be used for representing logical variables and a search-stack. 

MALI offers an efficient memory mana.gement but brings no solution t o  the time efficiency. The 
packaging of MALIvO6 is designed to  hinder as little as possible any effort t o  yield speed efficiency. 

3.2.3 P r o g r a m  represen ta t ion  

MALI has no notion of program. It is not even intended that an application level program should 
be represented in MALI. This is a totally iildepeildeilt issue. 

4 A specialised intermediate machine 

We have designed a specialised intermedia.te ma.chine (SIhl17), of the level of the WAM [39, 31, for 
filling parts of the gap between MALI aad XProlog. 

The SIM is a specialisation of MALI because it forces some interpretation on MALI's terms. 
It is also an extension of MALI because it defines new notiolls that  have no equivalent in MALI 
(e.g. unification, continuations). As a specia.lisa.tion of MALI, the SIM defines specialised node 
constructors, and commands and operations for crea.ting, reading, and traversing them. As an 
extension, i t  defines commailds for implementing the new notions for every specialised node con- 
structors they apply to. 

The SIM still says nothing of what will be a progra.m, and what decisions have to  be made for 
ensuring an  efficient usage of the machine. This is up to  the compilation scheme. 

We review what the SIM brings to  the overall system. 

'SIM is not a brand name for this specialised intermediate machine; it only designates this layer in a software 
architecture using MALI. 
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4.1 XProlog terms 

To choose a representation for terms in the context of XProlog is a new problem because the 
requirements of logic programming (Prolog technology), of simply typed X-calculus, and of uniform 
proofs of hereditary Harrop formulas must be met a t  the same time. 

Prolog technology requires the representatioll of logical variables and substitutions. It also 
requires that substitutions be reversible because the search for a proof is done by a depth-first 
traversal of a search-tree. 

Simply typed X-calculus requires the representation of abstraction and application, the rep- 
resentation of types, and the capability to compute at  least long head-normal forms because the 
unification procedure needs them. To meet the first requirements, long head-normalisation should 
be reversible too. 

Proving hereditary Harrop sequents is required to represent universally quantified variables and 
to  check the correction of signatures. It also requires the handling of implied clauses but this has 
little to do with our representation of terms. 

We only describe our implement.a.tion dec.isions. The rea.sons for the decisions are discussed in 
a technical report by the same a.uthors [ 8 ] ,  and in the thesis of the first author [7]. 

4.1.1 Types 

One of the differences between Prolog and XProlog is that the terms of XProlog must be typed for 
X-unification to  be well defined. Huet's procedure clea.1~ with simply typed X-terms, but XProlog 
extends simple types with type variables (type schemes). This results in generic polymorphism. 

Follows a sample declaration for polymorphic hoillogeneous lists and a polymorphic ternary 
relation on them. 

kind l i s t  type  -> t y p e .  
type [I ( l i s t  A). 
type ' . '  A -> ( l i s t  A) -> ( l i s t  A). 
type append ( l i s t  A) -> ( l i s t  A) -> ( l i s t  A) -> o 

The list Ci ,21 can be represented in MALIvOG like 

(c2  S-LIST ( a t  S-INT 1) (c2  S-LIST ( a t  S-INT 2)  (cO S-NIL))) . 
The type A -> ( l i s t  A )  -> ( l i s t  A )  can be represented in MALIvOG like 

( c 2  S-ARROW 
AO(mc0 S-UNK-T) 
( c 2  S-ARROW l i s t A Q ( t u  S-APPL-T 2  ( a t  S-SYMB-T l i s t )  A) l i s t A ) )  . 

Type unknown A is represented as a, mut,able nulla.ry compound because it must be reversibly 
substitutable, and it has no other informa.tion a.ssocia.ted to it. Note the sharing of ( l i s t  A) 
indicated by the use of label l i s t A .  

The idea of generic polymorphism in (X)Prolog is t11a.t. 

Types of diflerent occurrences of u. con.staizt art indepe~zdent instances of its type scheme. 

Types of diflerent occurrences of (any bind of) (1. vnriable are equal. 
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In (A)Prolog, one must also choose whether a cla.use of the program can be selected on grounds 
of the type of its predicate syn~bol or not. We 11a.ve chosen to forbid selecting a clause on these 
grounds. It means we follow the dejizitionnl genericity principle [23]: 

Types of different body occurreizces of u predicate coizsta,izt are independent instances of 
its type scheme, whereas types of different head occurrences are renamings of the type 
scheme. 

With this principle, type inference leads to  a non-uniform semi-unification problem which has been 
shown t o  be undecidable by Kfoury, Tiuryn and Urzyczyn [21]. In our implementation, types of 
constants (predicative or not) are only checked, and types of (any kind of) variables are inferred. 

The reason for sticking to  definitional genericity is t11a.t it is the most natural when predicates 
are seen as definitions and type schemes as abstractions of the definitions. It is also required for 
allowing a simple but sound modular analysis of programs. We want to be able to type-check a 
module using the type schemes of the modules it imports but not the modules themselves. 

In AProlog, it is necessary to represent types at run-time for controlling unification, and some 
conditions are missing for having a senzoiztic soz~izdness result of the kind "Well typed programs 
cannot go wrong"'. 

The problem wi semantics soundness is tl1a.t nothing restricts XProlog constants to have the 
type preserving property [15]: 

Every type variable in  a type schenze shoulrl nppear in the result type (the type to the 
right of the right-nzost ->). 

The advantage of having the type preserving property is that the types of the subterms of a term 
built with a type preserving constant can be inferred from the type of the term. The disadvantage 
is that it is not flexible enough for representing dynamic types [I]. 

Types for "not going wrong" We call forgotten type variables the type variables that do not 
occur in the result type of a non-preserving type scheme. We call forgotten types the instances of 
the forgotten type variables. Only forgotten types need to be represented at  run-time for avoiding 
"going wrong". They must be attached as supplementary arguments to  the term constructors 
that are not type preserving. These pseudo-arguments rnust always be unified before the regular 
arguments. This makes A-unification problems a.lways well-typed. 

In fact, what is implemented is the representaiion and unification of terms of a polymorphic 
type system [5 ] .  It is as if a symbol defined a.s 

kind dummy type .  
type forget - -> dummy. 

were defined as 

type forget -  ' P I '  A \  ( A  -> dummy). 

'111 this context, "going wrong" means "trying to solve ill-typed unification 
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where 'PI' is the product type quantifier, and a term like (forget 1) were (forget- int  1 ) .  The 
term (forget- in t  I )  can be represented in hiALIvOG like 

(tu S-APPL 3 (at S-SYHB forget-) (at S-SYMB-T int)  (at S-INT I)) 

Note that ,  unlike Typed Prolog [31, 231, there is no special syntax in XProlog for declaring 
predicate constants. They are only distinguishable by their result type, o. So, every predicate 
constant forgets every type variable in its type because its result type contains no type variable. It 
can be shown that  if the predicates obey the definitional genericity principle, unification of these 
forgotten types will always succeed; type unification of types forgotten by predicate constants is only 
required for conveying types along the computation. In a system that  does not need tha t  conveying 
(say, standard Prolog), the forgotten types of predicate constants need not be represented [31, 151. 
In XProlog, conveying the types is required for controlling unification. 

T y p e s  f o r  control l ing p ro jec t ion  in  unification Let us first recall the core of Huet's X- 
unification procedure [IS]. 

For a pair < AT - (F q), AZ . (@ <) >, where F is a logical variable ( a  flexible head) and @ is 
not a logical variable ( a  rigid head), at  most p+l  substitutions are produced by two rules. 

1. If @ is a constant, the imita,tiorz rule produces F - Xu. ( @  c). 
2. For each 0 < i 5 p such that  T ( s ; )  = T I  - . . . T,,, - T ( ( F  q)), the projection rule produces 

F + XE - (u; E,). 

Every Ek in stands for (Hk  E ) ,  where HI;  is a new logical variable with the appropriate type. 
The projection rule is controlled by a type condition ( 2 .  above). For the condition being testable 

a t  run-time i t  is enough that  logical variables are equipped with their types. 
Note that  the types of logical variables themselves need never be unified because when a unifi- 

cation problem is t o  be solved then it is well-typed (i.e. the two terms of the problem have identical 
types). This is a side-effect of unifying first the forgotten types in the pseudo-arguments and then 
the regular arguments. 

In AProlog, nothing prevents having a. type with a, variable result type. This makes the checking 
of the type condition unsafe: there caa be no a.rgnment sa.tisfying the condition in some binding 
environment while projection is possible in a, more precise binding environment. The only safe 
solution is t o  suspend unification until the result type get known. However, the traditional solution 
is to  commit the result type to  be a consta.nt [35]. l i e  believe that  nothing satisfactory will be 
done before these flexible types are.better understood. 

Types f o r  new logical var iables  It is easy to  attach a. type to logical variables coming from the 
program: it is an outcome of the type inference/checking. But the imitation and projection rules 
of A-unification introduce new logical variables tl1a.t col.respond to  nothing in the source program 
(the Hk's). They must be atta.ched a. type a.nyway. They all have types zq + . . . 4 up + ?? where 
the vi's are the types of the arguments of t,he flexible 1lea.d: a.nd ?? depends on the rule. 
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In case of projection, the ?? of every new logical variable H j  is rj (see above in the condition 
controlling projection). In case of imitation, the ?? is the type of the corresponding argument of 
the rigid head. So, it remains to  be able to  infer the types of rigid heads in unification probkems. 

There are three kinds of rigid heads: A-varia.bles (but they cannot be imitated), function con- 
stants, and universal variables (they are introduced for solving universally quantified goals). First, 
we attach their type to  every universal variable. Second, we observe that  the type scheme of a 
constant, plus the forgotten types attached t o  i t ,  plus the result typeg, give enough information 
for reconstructing the full type of the constant. A type reconstructing function is generated a t  
compile-time from every type scheme declaration. It gets the forgotten types from the constant 
head and the result type from the flexible hea.d, a.nd it returns the type of the constant head. 

4.1.2 XProlog terms 

Terms are represented using the full copy technique (as opposed to  structure-sharing or a mix of 
structure-sharing and copy) for memory inanagelnent reasons: this gives the most precise alloca- 
tion/deallocation operations for any type of control. and XProlog needs to  depart from the standard 
control. 

A novelty of XProlog is that terms need normalisation. In Prolog/Mali, normalisation alters 
the representation of term for sharing reduction effort, and also for memory management. A-terms 
are represented by graphs, and normalisatioil is iml>lemented as graph-reduction. 

Abstractions and applications We will see that logical va.riables a.re not the only application 
level structures that  can be represented by AlALI's muterms. 

Abstractions and applications are represented by reversibly mutable graphs, so that  it is possible 
t o  physically replace a redes by its reduced form in the graph. This provides sharing of the reduction 
effort. Reversibly means that mutations (reductions) can be undone when backtracking. This is 
the result of inserting graph reduction in a. Prolog contest. 

Substituting new representations for older ones in a reversible way forces to  store all the history 
of every term representation. However, MALI'S inenlory ma.nagement, especially muterm shunt- 
ing, will remove every useless old representa.tion. hiIuternl sliuntiilg shortens the history of term 
representations. 

Terms are represented as much as possible in their long head-normal form. So, abstractions 
and applications are in fa.ct tuples of nested eleillentary abstractions and applications. The term 
Xnsz . (s (n s 2)) can be represented in MALIvOG like 

(mtu S - A B S T  4 
nQ(c0 S-VAR) sO(c0 S - V A R )  zQ(c0 S - V A R )  
(mtu S-REDEX 2 s (mtu S-REDEX 3 n s 2))) 

The applications are potential redexes? hence the sort S-REDEX.  

'In the context of unification, it can be fottnd in tile flexible head 
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First-order terms We call inforlllally first-order ter~izs the rigid terms whose head is a constant. 
They are distinguished as much as possible because they are definitely in long head-normal form 
and they can be  unified by a chea.per procedure. 

Universal variables and logical variables In the following, we say that  a logical variable 
captures a term if i t  is bound t o  a value that  conta.ins the term. So, a logical variable is able t o  
capture terms of any type provided they are properly wrapped in a binding value. 

Universal variables are among the new constructs of XProlog that  enforce checking scoping 
conditions. A universal variable can be ca.ptured by every logical variable of its scope, whereas 
i t  cannot be captured outside its scope. 1.e. in context . . .Vx . . .3U . . .Vy . . ., universal variable x 
can be captured by logical variable U, but y cannot. A-variables are essentially universal, they 
are always bound in the rightmost part of the context. So, they can never be captured by logical 
variables. Constants are also essentially universal, but they are always bound in the leftmost part 
of the context. So, they can always be ca.ptured by logical variables. 

Scopes of universal variables are represented by their nesting level. A nesting level is attached to  
every logical variable and every universal va.riable, a.nd a register contains the value of the current 
nesting level. When a universally qua.ntified goal is executed, the nesting level register is first 
incremented, and then a new universal va.riable is created with the new nesting level value. Every 
further creation of logical variables within the scope of this goal but out of the scope of any nested 
universal quantification will be done with the new nesting level value. We assume that  the initial 
nesting level is 0. 

Given that  logical variables and universal va.ria.bles nlust also carry their types, they can be 
represented in MALIvOG like 

(mc2 S-UNK type (at S-SIG nesting-level) ) 
(c2 S-UVAR type (at S-SIG nesting-level)) 

When a n  at tempt is made to substitute a. term for a logical variable, the scopes of the term and 
all i ts  subterms are checked using the nesting levels. If the term contains universal variables of a 
higher nesting level than the logical variable then the substitution is illegal. If the term contains 
logical variables of a higher nesting level than the substituted logical variable then their nesting 
levels should be lowered to  the nesting level of the substituted logical variable. If a universal 
variable or  a logical variable with a higher nesting level is in fa.ct in an argument of a flexible term 
then the scope-checking must be suspended because the problelllatical universal variable or logical 
variable may disappear as a side-effect of another substitution. For instance, X1 c (U' 1 Y2)  is 
a problematical s u b s t i t ~ t i o n ' ~ ,  but after substitution U1 - Xzy . ( F '  x )  is applied, it is no more 
problematical. 

We have seen that  logical varia.bles ca,nnot cagture A-va.riable, and can only capture universal 
variables whose scope they belong to. .4 flesible term can be seen as a generalisation of the logical 
variable which is explicitly allowed to capture supplementary terms (the arguments). For instance, 
the flexible term above is a generalised logical variable tl1a.t is inlplicitly allowed to capture the 
universal variable of level 1 and every consta.nt, and is esplicitly allowed t o  capture 1, which is only 

''The nesting levels are written as superscripts 
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redundant because it wa a.lready implicit, a.nd wllicli is not redundant because of the nesting 
level of U l .  

One of the effects of substituting a term to a logical variable is to  diminish the allowance of 
a generalised logical variable (see the same flexible term after substitution U' +- Xxy - (F' x)  is 
applied). Allowance cannot increase because the binding value of a logical variable must be in its 
allowance. 

The main consequence is that  no decision related to  the occurrence of some patterns can be 
complete when involving flexible terms. We have esposed it for scope-checking, but i t  is also true 
for the occurrence-check in unification (S - t is a legal substitutioii only if X # F V ( t ) ) .  If some 
term has an  occurrence in a flexible term, a substitution may take it away. 

4.1.3 R e d u c t i o n  

Reduction is implemented a.s graph-reduction. Since abstra.ctions and applications are not repre- 
sented one a t  a time but as tuples, reduction considers simultaaeously several P-redexes. This saves 
term traversing and duplication, hence time and menlory. 

The basic scheme is to duplicate the left-most pa.rt of a. redes, and to  replace A-variables occur- 
rences by the  arguments. A critical improvenle~it over the basic schellle is to recognise combinators 
which are subterms of the left-most pa.rt of redeses; they need not be duplicated. Every logical 
variable, every goal argument, and every insta.nce of a term that  is a combinator is a combinator. 
This shows that  many terms are con~bina,tors and that once a. combinator is detected it is safe to tag 
it as such. Tagging amounts to  having more sorts for representing the terms of the cross-product 
(combinator/non-combinator) x (a.bst,ra.ction/application ). 

This improvement is fundamental and cha.nges the colllplesity of useful XProlog predicates [9]. 
It is not committed t o  our a,rcllitecture; it only has to do with reduction. 

The now conventional names for the different procedures of A-unification are SIMPL, MATCH and 
TRIV. We add UNIFl and a specialised unificatio~i command of the SIM for every kind of term 
constructors. The main idea is to consider the different uiiificatioll procedures as as much sieves. 
If a unification problem cannot be handled by a procedure it is passed to  the next one. 

Special ised unification c o l n i n a n d s  A sequence of specialised unification commands is gen- 
erated by the compiler for every clause 11ea.d. Specialised unification commands can be seen as 
resulting from a partial evaluation of the general unifica.tion procedure. In case there is not enough 
information in the head (e.g. a. second occurrence of a. logical variable), the control is passed to  
procedure UNIFl. This is much like w11a.t is done in standa.rd Prolog systems. In case the head 
term is higher-order, they only build a, representation of the unifica.tion problem and pass it t o  
SIMPL. 

UNIFl A first-order unification procedure, lJn'IF1. is used as much as possible on the so-called 
"first-order tern~s"  (terms with sort S-APPL) until a higher-order term is met. 
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SIMPL When a higher-order term pops up in UNIF1 or in the specialised unification commands, 
one switchs t o  procedure SIMPL. The outcollle of SIMPL is a set of flexible-rigid pairs which, if it 
is not empty, is passed t o  procedure MATCH. If it is empty, a success is reported. 

Procedure SIMPL may report a failure if a, clash of constants or A-variables occurs. 

MATCH Procedure MATCH is the non-deterministic part of A-unification. It is described as 
the core of Huet's procedure in section 4.1.1. 

Its non-determinism and the one coming from the proof-search are merged in a single search 
process. To do the  merging easily, we write the control of MATCH in AProlog. Only the great lines 
of MATCH are written in AProlog: the non-deterministic choice between imitation and projections. 
The actual imitation and projection rules are implemented as deterministic built-in predicates. 

Suspensions Flexible-flexible pairs cannot usually be solved as such because they have too many 
arbitrary solutions. They are suspended. We use the versatility of MALI'S muterms for encoding 
the suspended flexible-flexible pairs within the flesible hea.ds as a constraint. As soon as one of the 
flexible heads becomes bound, its constra.ints a.re checked. This is similar to  the attributed variable 
technique described by Le Huitouze [24]. 

TRIV A flexible-rigid pair is not passed directly to  procedure MATCH, nor is a flexible-flexible 
pair automatically suspended. They are first passed to  procedure TRIV, which tries to  solve them 
in a fast deterministic way. TRIV applies va.rious heuristics; if none works the pair is actually 
passed t o  MATCH or suspended. 

The heuristics aim a t  finding pairs of the for111 < .I-, > under various disguises. If such a pair 
is discovered and logical variable S does not occur in term t then X t t is the solution to  the 
unification problem. In a way similar to the scope-checking in section 4.1.2, the occurrence-check is 
more complicated than for the first-order case because not all occurrences of X in t are dangerous. 
If one is found and it is dangerous then unification fails. If it is not dangerous then TRIV passes 
the pair to  MATCH. 

Some disguises under which a good TRII '  procedure nlust recognise a trivial pair are 

1. < Ax.(X x ) , t  >, which is 11-equivalent to  a. trivial pair, 

2. and < xi ui+' . . . ui+j,  t >, where the superscripts represent the scope nesting, and the uk's 
are universal variables; it is equivalent to < 1 > for a new logical variable XI. In this 
case, the solution substitution is ,x-' - Axl . .  . n - j  . [ai+' + x l ] .  . . [ui+j +- xj]t for taking into 
account the  disguise. 

The second disguise is very frequent beca.use a, lot of AProlog programming is about exchanging 
universal variables and A-variables (i.e. essentially universal quantification a t  the formula level and 
essentially universal quantification a.t the tern1 level). The following predicate is an  example of the 
exchanging trick: 

type l i s t 2 f l i s t  ( l i s t  A )  -> ( ( l i s t  A )  -> ( l i s t  A ) )  -> o  
l i s t 2 f l i s t  L FL :- p i  l i s t \ ( c o n c  L l i s t  (FL l i s t ) )  . 
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The predicate relates the standard representa,tion of a list (say C1.2,31), and its functional repre- 
sentation (z\ C1 ,2,3 1 zl ) [9]. 

Folding representations The logic of unifica.tion is to  find a substitution making two terms 
equal. If they are equal then they ca.n share the sa.me representation. We have seen that  both 
abstractions and non-first-order applications are represented by muterms. So, it is easy t o  make 
the two terms share the same representation by substituting one for the other. The effect is to  fold 
the representations because two terms with initially different representations end up to  have the 
same. This substitution must be reversible (like the others: solution substitution and A-reduction 
substitution). Reversibility comes a.s a. consequence of using muterms. Folding saves unification 
effort because identity of representation is much ea.sier to  check than equality. It also saves memory, 
hence garbage collection time. 

Terms in unification problems must be in long head-normal form before being compared. After 
applying the substitutions invented by inlitation or projection, the flexible term may be no more 
in long head-normal form. However. its new long 1iea.d-normal form is easy to deduce from the 
term and the substitution without using the P-reducer. So, imitation and projections invent a 
substitution value, substitute it for the 11ea.d of the flexible term. coiiipute its new long head-normal 
form, and substitute it for the flexible term. 

For instance, unification problem < t l ,  t 2  >, ~vhere tl = Ax . t3, t3 = ( U  (x S1)), and 
t2 = Ax. (x  S2) ,  yields three substitutions aft.er one run of M.4TCH: 

1. U c Xy . y (projection substitution), 

2. tJ + (x S1) (for direct long hea.d-normalisa.tio~l of f l  before passing it to  SIMPL), and 

3. tl + t z  (substituting equal for equal). 

Remember that  unknowns, abstractions, and potential redeses are all represented by muterms. So, 
they are reversibly mutable. 

The conclusion is that  much more substitutions than the so-called solution substitutions are 
done. The supplementary substitutions contribute to  sa.ving unification and reduction time, and 
to  saving memory. 

Prolog control The representation of t lle sea.rc1i-stack co~ltrolling the search process uses 
MALI'S term-stack. It is considered a.s a failure continucltion. Specialised commands are defined 
for manipulating the failure continua~tion. Tlle represelltation of the proof-stack controlling the 
development of the proof tree a,lso uses MALI. It is ma.pped on compound terms. It is considered 
as a success continuation, and other comniaads are defined for manipulating it. 

Since the term-stack and compound-ternis are regular MALI'S terms, we have a uniform repre- 
sentation of XProlog terms and control. This ma.kes coutinua.tion capture (of both kinds) trivial. It  
appears tha t  implementing the Prolog cut merely requires to  ca.pture the failure continuation when 
entering a clause ( a  reification) and reinstalling it (a. reflection) when executing the cut predicate. 
All this comes for free by using MALI. 
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Given program 

in (f a). in (f b). 
trans (f XI (g X I .  
out X :- ... 
:- in I, trans 1 0 ,  /*I*/ !, out 0 

when label /*I*/ is reached, the resolution state can be represented in MALIvO6 like 

success~continuation = 
cut-goal@(tu S-GOAL 3 (at S-SYMB cut) 

eosQ(1e S-CHPT 
(c2 S-ROOT (at S-INT 2) 

(tu S-GOAL 2 (at S-SYMB end-of-search) (cO S-NIL)) 
- 1 

out-goalQ(tu S-GOAL 3 (at S-SYMB out) 
OQgaQ(tu S-APPL 2 (at S-SYMB g) (at S-SYMB a)) 

eopQ(tu S-GOAL 2 (at S-SYMB end-of -proof) (cO S-NIL) ) ) ) 

failure-continuation = 
in2@(le S-CHPT 

(c2 S-ROOT (at S-INT 2) 
(tu S-GOAL 3 (at S-SYMB in) ItD(rnc2 S-UNK type (at S-SIC 0)) 
(tu S-GOAL 4 (at S-SYMB trans) I DO(mc2 S-UNK type1 (at S-SIG 0)) 
cut-goal) 1) 

eos) 

Label O occurs in success-continuation and failure-continuation accompanied with different 
terms. Terms in success-continuation differ by a substitution from terms with same labels 
in failure-continuation, but they share the same representation anyway. We leave unspecified 
the types type and type1 of unknowns I a,nd 0. Note that  the argument of goal ! is a substack of 
the search-stack. Binary constructs of sort S-ROOT represent the roots of the choice-points. They 
contain a clause number and a success continuation. After goal ! is executed, the state is 

success,continuation = out-goal 
failure-continuation = eos 

In real-life, the first goal of a success continna.tion is dispatched into several registers. This saves 
"consing" and "deconsing" the continuation. 

Universally quantified goals They are implemented as we have said about universal variables. 
The current nesting level is in fact a sig~zclture corztz~zuntio~z. It has the same search-dynamism as 
the success continuation. This meails that it is saved (i.e. pushed on MALI'S term-stack) and 
restored (i.e. popped from M.4LI's term-stack) with t h e  success continuation. 
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Implication goals Implication is the other new construct of XProlog that  enforces checking 
scoping conditions. The premise of an implication goal nlust be added t o  the program for the 
length of the proof of its conclusion. 

Every premise is compiled as a clause whose logical va.riables are the proper logical variables 
of the premise, plus the logical varia.bles of the nesting clause that  occur in the premise. Premises 
are activated when their implication goals a.re esecuted. The scope of premises is controlled by a 
program continuation [7] that  is implemented as MALI'S terms, and has the same search-dynamism 
as the success continuation and the signa.ture continuation. The program continuation is made of 
closures tha t  enrich every active premise with a context corresponding to the logical variables of 
the nesting clause that  occur in the premise. 

Predicates that  can be extended by implica.tion are declared dynamic so that  not every predicate 
pays for implication. When a goal of a dynamic predicate is esecuted, one first searches the program 
continuation for matching premises. 

This scheme is similar t o  what Jayarama,n and Na.dathur propose [19]. The only difference is 
that  there is only one thing to  say a,bout t,lle int.erfereizces with ba.cktracking: it is automatically 
done by MALI. 

4.1.6 A memory policy 

The choice of a memory policy wa.s left undefined a t  the level of MALI. It is still too soon t o  wire 
it a t  the level of the SIM because the sa.me 111a.chine will be used in XProlog applications with 
totally different memory requirements (any combina.tion of consumption rate and instantaneous 
working space). Since generated applica.tions axe portable, the same machine will also be used in 
different configurations of host systerns (any combina.tion of CPU speed and sizes of main memory 
and secondary memory). 

We designed a memory policy which is both parameterisable and adaptative. The supplies 
given t o  MALI, the part it actually uses, aad other pa.ra.meters are continuously monitored, and 
evolution parameters are changed a.utoma.t,ica.lly. However, this may not be flexible enough and 
every executable file resulting from the compilation of a Prolog/Mali program accepts conventional 
arguments for configuring the memory policy to the users's ivill. 

5 A compilation scheme 

XProlog programs are translated into C programs which serve as a glue for putting together se- 
quences of SIM commands. The use of C is purely incidental, but its availability and portability 
are good points. The C program is colnpiled with the regular C compiler/linker, producing an exe- 
cutable file for the host system. The genera.ted C progra,m is responsible for realising the standard 
interface (call/return conventions, input/output ports) with the host system. 

The commands of the specia.liset1 intermedia.te machine are assembled so that  when the gen- 
erated program is executed, it ha.s the intended proof-search behaviour. Many arrangements are 
possible for producing the intended behaviour. Compiling becomes really valuable when special 
source patterns exist for determining efficient a.rra.ngements. Efficient arrangements are in fact spe- 
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cialisations of a general executioil scheme. We list the patterns our compiler currently recognises 
and the associated specialisations and sa,vings. 

5.1 Special static patterns 

5.1.1 F o r g o t t e n  t y p e s  

We have seen that  types must be represented to  some esteilt at  run-time. A naive solution would 
be to  represent the types of every term and subterm. The important pattern that  improves the 
representation of types is the occurrence of forgotten types in type declarations. They indicate 
the only places in which types need to  be represented for checking the well-typing of unification 
problems. 

Furthermore, the type checking/inference done a t  compile-time indicates which types are iden- 
tical and can share representa.tion. 

Type declarations are transla.ted into type reconstruction functions (also coded in C). 

5.1.2 C o m b i n a t o r s  

/?-reduction requires duplicating left members of redeses. It is easy to  see that  combinators need 
not be duplicated and that  their representa.tion can be shared. 

Since substitution values are a1wa.y~ combina.tors, all instances of combinators of the source 
program are combinators. So, it is worth recognising t.hen1 a t  compile-time. Our experiments 
show that  it is a very important pa.tten1, and t l ~ t  using it properly changes the complexity of 
programs [9]. 

5.1.3 First-order appl ica t ions  a n d  c o n s t a n t s  

The general unification procedure of XProlog is Huet's procedure augmented with dynamic type 
checking. However, first-order terms deserve a, more direct unification procedure. So, these patterns 
are compiled rather classically. The representation of first-order applications is chosen to  be easily 
recognised so that ,  at  run-time, unifica.tion and - reduct ion a.re improved. 

Source clauses are Pq-normalised before generation. This provides a macro-like feature which may 
iinprove the prograillming style. Furthermore, first-order applications are put in 11-long form. This 
makes dynamic long head-normalisation less necessary. 

Q-expansion must be done carefully so that it does not create artificially large P-redexes. So, 
abstractions tha t  are created by q-expansions are tagged, and P-redexes built with them are re- 
duced using equality (X,x.(E z) F) =p (E  F). New sorts are required for representing the terms of 
the cross-product (combinator/non-combinator ) x (eta-expanded/on-eta-expanded). Again, it is a 
very important pattern that  changes the complexity of programs [8]. 
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5.1.5 A weak substitute for clause indexing 

Clause indexing is the exploitation of the clause heads contents for computing more direct clause - 

selection procedures. It is not yet implemented in Prolog/Mali. 
Usually, when control enters a clause that  is not the last clause of a predicate, a choice-point is 

created (or an  already existing choice-point is updated). It can be a waste of time and memory if 
a succession of choice-point creations a.nd choice-point consumptions is used to  select a clause in a 
predicate. Clause indexing helps selecting more directly the proper clause. 

The lack of clause indexing is somewhat compensated by delayed creation of choice-points. - 

Delayed creation of choice-points amounts to  indicating that  a choice-point is t o  be created instead 
of creating it. The creation must be resumed as soon as a logical variable is substituted, or when 
unification succeeds (if no logical variable is substituted). If a failure occurs while the choice-point 
creation is still delayed, failure is merely implemented as a jump. 

More interestingly, substitutions of a head-normal-form t o  a non-normal form do not count 
as substitutions of logical variables. So, they do not trigger the choice-point creation. The neat 
effect is that  a goal argument will be reduced only once for all the attempts a t  unifying a clause 
head, whereas if the choice-point were created as soon a.s ordered then the goal argument would be 
reduced for every unification a.ttempt, alltl unredaced a.t every ba.cktrack. For instance, in 

test 0 :- do-something. 
test 1 :- do-something-else. 
query :- N = s\z\ (s(s(s(s(s(s(s z ) ) ) ) ) ) ) ,  M = 1, test (N x\x M). 

redex (s\z\(s(s(s(s(s(s(s 2) ) )  ) ) ) )  x\x 1) is reduced only once instead of twice. Note that  the 
brute force solution consisting in reducing a goal before unifying 

1. kills lazyness, 

2. and does not eliminate the need for normalising during unification because substitutions might 
build redexes. 

So, delayed creation of choice-point gives a partial solutioil to  a critical problem that  appears every 
time normalisation of t q m s  or a,wakening of constraints a.re possible. 

5.2 The trailslation 

AProlog programs are translated into C on a predicate-to-function basis. Every predicate is imple- 
mented as a function of the coi~tinuations (success. signature, program, and failure) that  returns 
new values for the continuations. 

The functions never call each other: recursion is taken into account by the success continuation. 
Functions are called by, and return to. a  noto or, wllich can be considered the last remnant of an 
interpreter. Some static patterns. sucli as left-recursion, allow to avoid going through the motor. 

As we have seen in section 4.1.1, type schel~les are translated into type reconstruction functions. 
Furthermore, every constant (predicate and function constants, and type constructors) is translated 
into a C structure containing tlieir external 1.epresentati011, their arity, their predicate function or 
type reconstruction function, if needed, and any useful il~formation. 
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6 Conclusions 

The PrologJMali compiler is written in XProlog and the run-time libraries are written in XProlog 
and in C. The Prolog/Mali system 11a.s been completely bootstrapped. It implements all the core 
of XProlog plus various extensions. One of the most notable extensions is the continuation capture 
capability. It is used for implementing the cut and a catch/throw escape system. 

Prolog/Mali is freely available, and used in several resea.rc11 teams in domains such as automated 
theorem proving, automated learning, and meta-programming. Some of the benchmarks used for 
comparing Prolog/Mali with other implementations come from these teams. 

6.2 Comparisons with other works 

ideal linear - - 

Figure 1: Comparison of time complexities wlien reversing a. function-list (list-length x run-times 
in seconds, log-log scale) 

It has not been possible to  compare our system with the other most recent attempts for im- 
plementing XProlog (Nadathur, Jayaraman, Felty), because of the lack of availability of complete 
systems. However, papers and tecl~nical reports by Nadathur and Jayaraman [33, 20, 191 show 
that their approach and ours are somewhat different and difficult to  compare on the paper. In few 
words, they choose to base their design on a \\.Ah1 augmented for handling XProlog's specifics. 
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Figure 2: Comparison of run-times when executing a tactical theorem prover (Prolog/Mali run- 
times in seconds x speed-ratio) 

They represent A-terms and reduction in an environment-based fashion. Note that  the differences 
may be blurred by optimisations that  apply techniques from one paradigm for improving the other. 

A technical report by Iiwon, Nadathur and \Vilson [22] proposes a handling of types a t  run- 
time which is similar to  ours, except that forgotten types are not the only types represented in 
constants. Note that  their basic technical choice. and Jayaraman's. is to  extend a structure-sharing 
implementation of the WAM: it also applies to the representation of types. 

The only XProlog system with which we have made extensive comparisons is eLP. It is already 
an  "old" system. eLP is an interpreted system written in Lisp. The fact tha t  it is interpreted 
could have explained a constant speed factor between eLP and Prolog/Mali. However, what is 
observed is a difference in complexity that  interpretation costs cannot explain alone. We compared 
Prolog/Mali and eLP in a black-box mode. knowing nothing of the implementation of eLP. The 
comparison has been done using special purpose programs for exhibiting qualitative differences, 
and also using regular programs from XProlog users. 

The memory management improvement over eLP is dramatic for any kind of program. It is 
also better than many implementatiol~s of standard Prolog. The Lisp system that  supports eLP 
has its own memory management, which might be efficient as far as Lisp evaluation is concerned. 
But it does not know about logic programnling usefulness logic. and does nothing when early reset 
and muterm shunting are in order. It is a definitely bad idea to leave a non logic programming 
system in charge of logic programnling memory management. Note that  this does not forbid 
implementing logic programming in a foleigii language: tile only thing is that  logic programming 
memory management has to be redone in that  language. 

Special purpose programs show an arbitrary speed-up of Prolog/Mali over eLP's. The com- 



GO Proceediugs of the 1992 XProlog Workshop 

plexity of both unification and reduction is higher in eLP. We believe that  the systematic sharing 
and folding of representations, and the detection of combinators play a critical part in the better 
complexity of Prolog/Mali. Delaying the crea.tion of choice-points also improves the complexity of 
search. Figure 1 shows the beha.viours of eLP a.nd Prolog/Mali when executing the program that  
naively reverses a function list. Times are given in seconds as a function of the length of a list. 
Scales are logarithmic on both axes. Continuous lines correspond to  the ideal linear or quadratic 
case. The slopes of the lines, 1 and 2, indicate a linear complexity for the first and a quadratic 
complexity for the second. 

Regular programs (mainly a denlonstrator with tacticals, and a demonstrator with a learning 
component) show a speed-up between 25 a.nd 250. Interestingly enough, for a given program, the 
speed-up grows with the time required for executing a query. This shows that  eLP does not scale up 
very well. Figure 2 shows the speed-up of Prolog/Mali over eLP for a set of small theorem proving 
problems. Every point correspond to a particular problem. Execution times with Prolog/Mali are 
on the X-axis and the speed-ups (Prolog/IvIali on eLP) are given on the Y-axis. 

Finally, we compared Prolog/Mali with modern (fast)  inlplementations of standard Prolog. 
When using regular progra.ms (nminly a.n early version of our c.ompiler), Prolog/Mali is less than 
10 times slower than Prolog (z 5 on the average). Special purpose programs could show arbitrary 
differences (e.g. we have not yet implemented cla.use indexing in Prolog/Mali). This comparison is 
a little bit unfair for Prolog/Mali, aad for XProlog in general, because it executes the first-order 
Horn clauses fragment of XProlog with a higher-order hereditary Harrop formulas technology. When 
what the user requires is exclusive to XProlog, the sta.ndard Prolog programmer has t o  implement 
it a t  the Prolog level; it is certainly less efficient, and less safe too, than what a XProlog system 
offers. 

6.3 Further work 

Although our implementation of XProlog enjoys nice complexity properties, and its performances 
are encouraging, it is rather slow when it is compared with the current state of the a r t  for standard 
Prolog. In i ts  present state the control of search is compiled but unification of higher-order terms 
is not and there is no clause indexing. Our current implen1enta.tion task is to  devise a compilation 
scheme for unification and indexing so as to bring the performa,nce level of the standard part closer 
t o  the current state of the art .  

To improve performances, more static analysis ought to  be performed. For instance, it is 
important t o  detect when the full mechanism of Huet's unification is not needed. The LA [25] 
fragment of XProlog has a unitary and decida.ble unification theory. Belonging to  LA is easy to  
test a t  run time but it could be lnore efficient to detect that  some predicate or some argument will 
always be in LA.  Note that  the L,, property generalises every pattern that  the TRIV procedure 
currently recognises. 

Last observation is that  the type system deserves further study. It should be studied for itself 
because it is not flexible enough. It should also he studied for its interaction with compilation 
(indexing and projection). By flexibility, we do not mean permissivity, but only the ability to  deal 
with complex situations. The lack of flexibility is in fact nothing special to XProlog, it can already 
be observed in trying to  type built-in predica.t,es read a.nd name in Typed Prolog [31, 231. It is only 
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more noticeable in XProlog than in Typed Prolog because types are mandatory whereas they are 
only a bonus in Typed Prolog. Predicates read and name can only be simply typed like 

type read 
- -> 0 .  

type name 
( l i s t  i n t )  -> - -> 0 .  

These predicates with these typings are not definitionally generic, and the arguments with the 
anonymous types cannot be used souildly in ally specific context because their types are related 
with nothing. It seems that  we need higher-order types such as 

type read 
'PIJ A\ ( A  -> 0 ) .  

type name 
( l i s t  i n t )  -> ' P I '  A\ ( A  -> 0 ) .  

6.4 Remarks on focusing on illenlory i ~ l a n a g e ~ ~ ~ e n t  

Our main implementatioil concern has been ~ n e m o v  management. We always tried t o  have mem- 
ory management problems solved before tilne efficiency problems. This is reflected in the software 
architecture of Prolog/Mali, in which the kernel (11-4LI) knows allnost everything about memory 
management but nothing on the procedures that will he used, the specialised abstract machine 
knows less about memory management, and a little bit more about the procedures, and the gen- 
erated code knowns about the procedures (it is part of them) but is really naive as far as memory 
management is concerned. 

However, a reasonable time efficiency has been achieved, and still more can be gained with 
further efforts. 

This architecture can be used for implementing many other kinds of logic programming systems. 
It cannot compete for implementing standard Prolog systems because very efficient and specialised 
techniques have already been designed. It is perfectly fit as soon as complex data-structure and 
control are in order. An implemel~tatioil redoing a specialised version of Mali's memory management 
from scratch could always be faster but will certainly be much more complex. 
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1 Abstract 

Languages such as A-Prolog and Elf advocate an approach to program manipulation based on 
higher order abstract syntax, with substitution built in to  the language evaluator. Recently sub- 
stitution has received fresh attention with concrete versions of the A-calculus where substitutions 
are made explicit as terms in the language. In this paper we show how explicit substitutions may 
be introduced into a language for manipulating higher order a.bstract syntax. The implementation 
of full substitution in the evaluator may be avoided by using a metalanguage which supports a 
generalization of Miller's patterns. We briefly comment on the motivation for such an approach to  
substitutions. 

2 Introduction 

"I don't really like deBruijn numbers nzyself." .N. G. deBruijn. 

The Aa-calculus [I] has recently been proposed a.s a, formalism for reasoning about implementa- 
tions of the A-calculus. This formalism is based on a concrete formulation of the A-calculus where 
variables are replaced by deBruijn numbers [5], and where substitutions are made explicit in the 
(two-sorted) term language. Applications of this calculus include the derivation of a Krivine-like 
abstract machine and a type-checker for the second-order A-calculus. A similar system (ACCL) has 
been independently developed by Field [9], who has also developed a labelled version of his system 
to  reason about optimality. Anotller similar system has been proposed by Nadathur and Wilson as 
a foundation for implementations of A-Prolog [ l i ] . .  

In this paper we propose a similar system which incorporates explicit substitutions into the 
A-calculus. However in contrast to the first-order a.pproa.ches mentioned above, our system is based 
on higher-order abstract syntax [16, 81: rather than representing variables concretely as deBruijn 
numbers, we represent them instead as variables in the metalanguage, with variable binding in 
the object language A-calculus represented by A-a,bstraction in the metalanguage. We formulate 
typing and equality rules for this calculus where applications of "free" function variables employ 
an extension of a restriction discovered by Miller [15] (see also [18, 191). Our extension enjoys the 
same pleasing properties of decidability and most general unifiers that Miller's patterns ensure (the 
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details are worked out in a compailion paper [7]). We make essential use of our generalization of 
patterns t o  product types in what follows. 

Since our interest is in specifying and implementing type-checkers for languages with higher- 
order type systems (e.g. Quest [3], Pebble [2]), we present a type-checker based on explicit higher- 
order substitutions. Viewed as a (determinate) logic program, this type-checker can be implemented 
directly in a language which supports products, extended patterns and polymorphic (non-uniformly 
parameterized) data  types. 

With the reader's indulgence, we use variations of the same A-calculus for both metalanguage 
and object language in this paper. The core A-calculus is Luo's Extended Calculus of Constructions 
[14], a system with predicative general products (dependent function types) and general sums (de- 
pendent sum types), a cumulative hierarchy of type universes, and impredicative logical quantifiers. 
We have designed a n  LA-like logic programming language, based on placing syntactic restrictions 
on this calculus, which ensure decidable unification and a complete operational semantics relative 
to  a realizability semantics. The type-checking algorithm provided in Section 6 is implementable 
with minor modifications in this metalanguage. The object language is Luo's system restricted to  
general products and type universes, where the main issues arise. Thus the type-checker we develop 
as a metalanguage program may be considered as a type-checker for the metalanguage. 

Regarding the usefulness of this approach, we hope that  i t  will aid in the development of auto- 
mated reasoning and programming environment tools based on higher-order abstract syntax. For 
example i t  may serve as the basis for providing explicit substitutions as "classes" in a metalanguage 
with an  appropriate notion of "inheritance." Finally we conjecture that  further enrichments of the 
metalanguage may strengthen the power of the formalism for reasoning about reduction strategies; 
for example the addition of linear connectives may enable us t o  reason in the metalanguage about 
sharing [13, 101, a deficiency with the Aa-calculus [4, 91. 

3 LuoSs Extended Calculus of Constructions 

The core A-calculus we will be using for both metalanguage and object language is Luo's Extended 
Calculus of Constructions. We will not concern ourselves too much with the structure of the 
metalanguage (details a.re provided elsewhere [GI) .  The salient features are: 

1. a special constant Type representing the "kind" of all types; 

2. a dependent function type IIr : A . B, including quantification over types (terms of kind 

Type); 

3. A-abstraction for representing object language terms with va.ria.ble binding, with Ax : A .  M 
E H x : A - B ;  

4. application Al (AT)  for Ai! E IIx : .A . B. A7 E -4; a.nd 

5. products (pairs), with product type A x B and left and right projections r l ( M )  and 7r2(M). 
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For readability we will adopt the abbreviation M ( N l ;  . . .; N,) for (. . . ( M ( N l ) )  . . . N,)  (more tra- 
ditionally written as ( M  N1 . . . N,)). Also [ n ]  will denote the set (1,. . . , n). We will adopt the 
traditional abbreviation that  A+B denotes the function type IIx : A .  B where x $Z FV(B). 

To ensure decidable unification, Miller has proposed restricting applications of a "free" function 
variable F to  have the form F ( x l , .  . . , x,), where the xi's are A-bound and distinct [15]  (see also 
[18, 191). With the introduction of product types, this restriction can be generalized to  allow 
applications of the form 

F ( P ~ ( x I ) ,  - - .  pn(xn)) 

where each p; is a sequence of projections applied to a A-bound variable x, (i.e. 
p i ( x i )  - n;, (. . . (n;,, (xi ) ) .  . .)), and where moreover if xi = z j ,  i # j, then neither p; nor pj are 
prefixes of each other. Note in particular that this allows repeated occurences of a A-bound vari- 
able in a pattern. Decida,bility of unifica.t,ion a,nd most general unifiers are maintained with these 
generalized patterns [TI. We make essential use of these generalized patterns in composing higher 
order substitutions, discussed in the nest section. 

The foundations for this metalanguage lie in Luo's Extended Calculus of Constructions [ 1 4 ] .  
The major difference between ECC and the metalanguage just described is that the former explicitly 
stratifies types into a cumulative hierarchy of type universes. For terms of the metalanguage we will 
leave this stratification implicit [12]. However we make this stratification explicit when we take ( a  
subset of) Luo's ECC as the object 1angua.ge. We will provide a slightly non-traditional presentation 
of a subsystem of ECC (restricted to dependent function types and type universes) using higher 
order abstract syntax. This will serve to  demonstrate the use of higher-order substitutions both 
for implementing 0-reduction and for type-checking with dependent types2. A representation for 
terms of our ECC subset is given by the follo~ving metalanguage signature: 

Term : t y p e  
t y p e  : Nat + Term 

p i  : Term + (Term - Term) -+ Term 
abs  : Term + (Term - Term) - Term 

apply : Term - Term - Term 

Terms in the object language have the form: 

type(i) ,  p i (A;  B), abs(A; Al), apply(A4, N )  

representing respectively (the name of) a, type universe, the dependent function type, A-abstraction 
and application. 

Figure 1 in the Appendix gives the typing rules for the object language. To keep the number 
of rules t o  a minimum we present, the system using equality judgements r D M = N E A, with the 
abbreviation: 

def ~ D J / ~ E A  = ~ D A I = A J E A  

' ~ l t h o u ~ h  we col~ld have used e.g. t,he secoltd order A-calculus as a possibly more familiar example for type- 
checking, our presentation is short.ened using ECC because of the common structure for terms and types. 
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We will use judgements of the following forms: 

Environments r ..- . nil ( r , x  : A 
Judgements J ::= r env I r D M = AT E A 1 I? b M 5 N E A 

Note that the following rule is derivable from CUM: 

We will refer to  the system in Figure 1 as AD. 
The equality rules, oriented as a. rewrite system, a,re obviously confluent and Church-Rosser3. 

Denote the judgement that M rewrites to N by I? D M -a N E A ,  and let r I-ECC 3 denote 
derivability of the judgement I? D 3 using the rules of A,!?. Then Luo has verified the following 
properties for ECC: 

Proposition 3.1 The following properties are true of ECC [id]: 

Church-Rosser If I' D N1 = N:! E A, I' [> N 1  E A and r D N2 E A,  then there is some M such 
that D N1 -p A4 E A and I? D N2 -p  44 E A. 

Subject Reduction If I? D A4 E A and I' D Ad -p  N E A,  then r D N E A. 

Strong Normalization If I? b M E A then A4 is strongly nornzalizable. 

Decidable Type-Checking Type checking, corzvertibility and curnulutivity are decidable. 

Minimal Types Any  well-typed term M of ECC has a iniizimal type A such that (1) I' D M E A 
and (2) for any A' szrch that I' D A4 E A', zue h,ave I' t> A 5 A E type(i)  for some i E w.  

In the next section it will be useful to  consider reduction on untyped terms of AP; we will denote 
this by M +p N. Note that the Church-Rosser property still holds for untyped reduction due to 
the absence of critical pairs. 

4 ECC With Substitutions 

The formulation of the Ap object language in the previous sectioil relied in several places on the use 
of @reduction to  implement substitution. In this section we remove this reliance on P-reduction in 
the metalanguage by making substitutions explicit in the object language. For brevity we refer to 
the resulting system as ABa.  

3We have omit ted t h e  equality rule: 

since confluence fails with a naive equality relation (because of cumu1at.ivit.y). 



D. D uggan 6 9 

We introduce a new type constructor Subst into the object language for substitutions. In 
our system substitutions will be trees of (value,type) pairs (rather than lists as in the Xu-calculus 
and ACCL). Thus the (metalanguage) type of a substitution is parameterized by a product type 
reflecting the structure of the substitution. Note that we are making non-trivial use of both product 
types and polymorphism in the definition of substitutions. The additions to  the object language 
signature of the previous section are4: 

Subst : type  -; type  
clos '  : IIS : t y p e .  ( S  --. Term) i Subst(S) + Term 
mapu : IIS1 : t ype .  USz : t ype .  (S1 + Subst (S2)) -; Subst (S1) + Subst (Sz) 
[-,-I : Term i Term -- Subst (Term) " : IIsl : t y p e .  IIS2 : type - Subst (Sl) + Subst (SZ) --. Subst (Sl x Sz) - 0 -  

Here the subs t  term constructor represents the application of a substitution to  a term. Basic 
substitutions are built using the [-,-I constructor. Thus whereas in AD we had 

in ABu the rule is formulated as 

I', x : A t, A ~ ( x )  E B(x )  I ' D N E A  BETA I? I> apply(abs(A; 44); N )  = clos(A4; [A;, A]) E  c los(B;  [N, A]) 

These c l o s  terms are similar to  the hiyheriorder closures introduced by Hannan and Miller [ll]. - - 

For this approach to be useful we must be able to maintain these closures in the form 
clos(Xx t(M1(x);. . . ; M,(x)); s )  where t is the outermost term constructor (not c los) .  Therefore 
we have the following rule for composing substitutions: 

This rule makes use of the two other constructors for substitutions: - o - forms the composition 
of two substitutions, while map applies a, substitution to another substitution (In Aa-calculus and 
ACCL, these constructors are combined into a single composition operator, with a reduction rule 
mapping the second substitution over the first ). For the purposes of higher-order abstract syntax, 
the crucial point is that whereas the original term Ad has two free variables being substituted for 
by two separate substitutions, the resulting term has one free variable being substituted for by a 
single composite substitution, with the previous free variables specialized to projections out of this 
composite substitution. The rules for applying a. substitution ("projecting out of an environment") 
then rely on matching against the projections inserted by the composition rule: 

r D s2 E subs t  ( s )  r D c ~ o s ( A ~ ; s ~ )  E B 
I' I, c los(Ar .  iM(rr,(r)); sl o s 2 )  - clos(A4; sl)  E B 

r D sl E subst ( s )  r D C ~ O S (  M ;  s2) E B 
Su BSTR r D clos(Ax . A4(rrz(x)); sl o sz )  c lo s (M;  s2)  E B 

*The quoting annotation ' is borrowed from L E A P  [20], and signifies inference of an implicit (type) parameter 
based on the types of the remaining arguments. 
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Figure 2 gives the basic type rules for ABu. Aside from the introduction of explicit substitutions, 
these rules do not differ much from the original type rules in Figure 1. The type rule which is 
noticeable by i t s  absence is a rule for typing closures. In fact since our substitutions are essentially 
untyped a t  the object level such a rule is not sound with respect t o  the original system. Instead (as 
with the second order Xu-calculus [I]) we present rules for pushing substitutions inside of terms and 
typing the result; in general deciding well-typedness is inextricably tied with applying substitutions. 
We conjecture that  such a closure rule would be sound in a system where dependent product types 
and LF-like encodings of terms were used t o  represent explicitly typed substitutions. 

Figure 3 gives the rules for permuting substitutions with term constructors (including the 
CLOSSUBST rule for composing substitutions). Figure 5 gives the equivalence rules for substitutions, 
including rules for pushing substitutions inside of other substitutions. Here again we have a rule 
(MAPSUBST) for composing substitutions, analogous to  CLOSSUBST. 

The rules BETA, CLOSCONST, C L O S ~ ~ . ~ R  CLOSL, CLOSR, CLOSPI ,  CLOSABS, CLOSAPP, 
CLOSSUBST, M A P T E R M ,  MAPCOMP and ~ I A P S ~ J B S T  constitute a higher-order rewrite system 
(HRS) as defined by Nipkow5[18]. \Tie now follow a line of reasoning similar to  that  for the Xa- 
calculus [I] to  verify the confluence of this system. To this purpose we separate the HRS into two 
subsystems: A B  (constituting of only the BETA rule) and Aa (constituting of the remaining rules). 
We denote (untyped) reduction under ABa,  AB and .ha by -B,, - i ~  and -+,, respectively. Recall 
that  untyped P-reduction over terms of A p  is denoted by --p. 

The type rules for object-language terms are given relative to  a type environment I?, with any 
free variables in an  object language term bound in r. When considering the term equivalence 
rules as a HRS, the meta-variables in the schematic rewrite rules are considered free and the "free" 
object language variables are A-bound in the metalanguage representation. When reasoning about 
the correctness of the HRS, we will assume that  there are no free meta-variables in terms (any free 
object language variables are bound in r).  A metalanguage term 34 with free variables in I' may 
be considered as  a n  abbreviation for X I ? .  M. so in this sense we are restricting ourselves to  "closed" 
terms. 

Lemma 4.1 (Termination of Aa) The HRS Aa is Noetherian i.e. terminating. 

PROOF: We adapt Field's termination proof for ACCL. To reason about termination we will use a 
lexicographic semantic path ordering, although with a. slightly non-standard approach. In particular 
we assume given, in addition t o  the usual term constructors, a countably infinite set of variables 
X =  { x i } i e ,  from which all A-bound varia.bles are taken. We define the following precedence on 
constructors: 

c l o s  =,map +,apply >,abs >,pi  >,- o - >,[-,-] 

The atomic terms are of the forin T, , ( .  . . ( i ~ ~ , ~ ( z ) ) .  . .) for z E A'; we make these equivalent under 
the equivalence =,and less than all of the other constructurs under the precedence 3,. 

'With the generalizatioil that patt.erns are ext.ended t.o  product.^, and the restriction that right-hand sides are also 
patterns. We conjecture that Nipkow's Higher Order Critical Pairs Lemma still holds for this system. 
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The following measure gives a rough estimate of the eventual size of a term or substitution after 
normalization of substitutions: 

d ~ f  
1x1 - 1 

Ini(A4)l 9 / M I  

I apply(A4;N) I *' 1 A,! I + I N 1 + 1 

I abs(A;Ax.M) I gf I A 1 t 1 M I + 1 

Ip i (A;Ax.B)I  5 I A / + J  B / + l  

I c los (Xr .  Adis) I gf I M / . 1 s 1 
I [W,A]I  dC' I M 1 

def 
I s 1 o s 2  1 = max(Is1 1.1~2 I) 

def Irnap(Xx-sl;s2)I = I s l I . j s 2 )  

For object language terms A4 = t l ( K )  and AT s t2(n',), define the precedence ordering M k t N  
by the lexicographic combination of k, and eventual size under a-normalization: 

Finally kt is extended t o  a siinplification ordering k: 

1. Mi N for some i E [ ~ i x ] ,  or 

2. M k t N  and M > N j  for all j E [n], or 

3. M zt N ,  (MI ,  . . . , ) k* (All, . . . , ATn) and M > ATj for all j E [n]. 

Here k, is the lexicographic extension of to sequences, with Ax M k  N if M k  N ,  M k  Ax - N if 
MkN,  and Ax. M k X x .  N if AllkN. 

We can then verify that  > is a silnplification ordering, and that  M > N  where M and N are left 
and right hand sides, respectively, of any rule in the HRS. 

Lemma 4.2 (Confluence of h a )  .\a is conflue?zi on a-closed ternzs i.e. if r 1, M E A, M -+: N1 
and M +: NZ, then there exists nlz h' sucll that AT1 -: N ciizd N2 -: N .  

PROOF: We verify local confluence by an exa.mination of higher order critical pairs [18]. Confluence 
then follows from termina.tion. The difficult case is for the critical pair formed by CLOSL and 
CLOSSUBST in 
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clos(Ax . c los (M(n l  (x)); sl (nl  (5))); s2 o s;) 

We verify by induction on (maximal length of a-reduction sequences, size of term) that: 

The base cases are for atomic terms of the form A4 = Ax . Ay . K;, (. . . ri, (x) . . .) for z E {x, y), 
M - Ax . Ay . z for z g' {x, y), and A i  = Ax . Ay - type(i).  13 

We now let o ( M )  (u(s)) denote the (unique) normal form for the term M (substitution s )  under 
the Aa HRS. The  remainder of the proof of confluence for ABu follows very closely that  for the 
Aa-calculus, in particular using Ha.rdin's interpreta.tion technique and confluence for Ap. 

We,verify that  the HRS ABu is a correct implementation of substitution. The following rules 
are for the judgement form r D {N/z)A4 * Ad': 

Ass r D {N/x)A =+ A' r ,  y : A' D {N/r) ( ,M(y))  * Mt(y) 
T D {N/x)abs(A; A4) * abs(A1; M') 

PI r t> {N/x}A * A' r, y : A' D {hr/x)(B(y)) ==+ Bt(y)  
r D {N/x)pi(A;  B) pi(A1; B') 

We can then verify the following lemma. by induction on the structure of a. term M (or equivalently 
by induction on a derivation in the inference system just defined): 

Lemma 4.3 Suppose I?, x : A kEcc A4 E B. If I' I- {AT/x)A4 * A4' then 

u(clos(An: . Ad; [A', .A])) = A4' 

Corollary 4.1 Suppose r k ~ c c .  M E A and F kEcec. E -4. If A4 -0 N then M -;3, N .  

PROOF: By the definition of P-reduction and the previous lemma, it suffices t o  perform a Beta- 
reduction and then normalize with respect to A0i.e. if A4 -13 hT then 3M'  . M -B M' and M'  +: N .  
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Corollary 4.2 0-reduction is conjltre~zt on Au nornzal forms. 

Lemma 4.4 

1.  For closed terms M and N ,  if A 1  +B N the12 o(A1) o ( N ) .  

2. For closed substitutio~zs s cuzd t .  if s -B t the12 ~ ( s )  -j ~ ( t ) .  

Theorem 1 ABo is confluent on closed terms. 

PROOF: Using Hardin's interpretatioll technique [l] and Lemma 4.1, Lemma 4.2, Corollary 4.2 
and Lemma 4.4. Hardin's technique amounts t o  verifying the following diagram (where the vertical 
arrows represent reductioil to a-normal form): 

( Beta U a )* (Beta  U u)* 
.<+.-• 

This crucial result is the basis for the type-checking algorithm presented in the next section. 
Finally we formulate a statement of correctness for A B a  relative to  AD: 

Theorem 2 (Soundness of A B o )  

1. If I-, I? N I" env then a ( r )  = u(I") and tECC a ( r )  env 

2. If r l--, M - N E A then u ( r )  tECC u ( M )  = a ( N )  E ~ ( i l ) .  

4. If r I-, s - t E Subst ( S )  then 

(a) if S = T e r m  then o ( s )  r [ M ,  A] = a(l) for sonze M ,  A such that a(r) tECC M E A. 

(b) otherwise S E ( S1 x $ 2 )  for some ,S1. .S2: then u(  s) z s1 o s2 -- ~ ( t )  for some sl , sz 
such that I-, sl E Subst ( S 1 )  and T I-, s2 E Subst ( 5 ' 2 ) .  

It is unclear how to  obtain an a.nalogous completeness result. Although it has been suggested that 
this can be done for the Xu-calculus by rewriting closures to  BETA-redices, this does not seem to 
adequately handle definitional equality in the type system. 
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5 A Type-Checking Algorithm 

Finally we briefly present a type-checking algorithm for Ap based on the system presented in the 
previous section, and state without proof the conditions for its correctness. Figure 6 presents the 
type-checker as a collection of inference rules, where closures are type-checked essentially by pushing 
substitutions inside of terms and type-checking the result. 

These rules use numerous auxiliary algorithms. The rules for checking for cumulativity and 
convertibility (in Figures 7 and 8, respectively) are very similar, and amount to  interleaving re- 
ductions t o  WHNF with recursive checking of subterms. Figures 9 and 11 give the algorithms for 
reducing terms and substitutions, respectively, to  W HNF. Finally Figure 10 gives the algorithm for 
type-checking substitutions. 

In contrast t o  the type system of ABa, the type-checking algorithm does not "validate" the 
environment for each use of a. va.riable. Rather it assumes a a  initial valid environment and then 
maintains the validity of the environment as terms are added to i t .  Also the WHNF reduction 
algorithms do not type-check their result, a.nd rely for their correctness on the following: 

Lemma 5.1 

1. If r I- ,  M E A and 44 -;3, N the11 I? t ,  S E .A. 

2. If I? t ,  s E S u b s t ( S )  and s +;, t then r I - ,  t E Subst ( S )  

3. If r I-, M E A then I? I-, A E Type(i). 

4. If I' Fo c l o s ( M ;  s )  E A then r l-, s E Subst (S) for some S .  

Forthejudgement forms I? D M E A, r D A 5 A', r D M + N ,  r D M - N ,  r D s E Subs t (S )  
and r D s t ,  let r kalg A4 E A, r I-,[, A 5 A', r talg M + A', r Ealg M - N ,  r kalg s E S ~ b s t ( S )  
and Falg  s - t ,  respectively, denote derivability a.ccording to  the inference rules of the type- 
checking algorithm. The sta.tement of soundness for the type-checker is then given by 

Theorem 3 Suppose I- ,  T' - r env. Theri: 

1. If I' I-,lg M E A then r I-, M E A. 

2. I f r  k-,lg A E ~ y p e ( i ) ,  r F a ) ,  A' E Type(i) cinrl I? I-,,g A 5 A' then I-, A 5 A' E Type(i). 

3. If I' Farg M E A, r I-,I, N E A and r 114 - hi then r F, M N N E A. 

4. If I? I-alg M E A and r 1lJ - N then r l-, Ad - IIJ E A. 

6.  If r kalg s E S u b s t ( S )  and r talg s - t then r I - ,  s - t E Subs t (S1  
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6 Conclusions 

We have presented an approach t o  incorporating explicit substitutions into LA-like languages, based 
on a generalization of Miller's patterns to  product types. Although there appears to  be some promise 
with the approach, ultimately its usefulness may depend on iniplementational considerations. In 
particular the form of restricted P-reductions allowed in the Illetalanguage appear somewhat more 
complicated t o  implement than Po-reduction [15]. Although there are advantages t o  having substi- 
tutions outside of the inference engine in A-Prolog-like languages, it remains t o  be seen what the 
performance penalty for this might be. However provided this performance penalty is not too great, 
there are important pragmatic advantages to  providing substitutions outside of the programming 
language evaluator. Among these are that  applications that  do not use substitutions should not 
pay the price for their provision, and also t11a.t applications ma.y be provided in a more flexible 
way (e.g. as "classes") allowing them to be tailored for specific applications. This is important for 
example in providing "defined constants" in a theorem-proving environment, which are crucial for 
controlling the size of terms during comparison and printing. 
Acknowledgement: Paul Taylor's diagra.m pa,cka.ge was used to draw the diagram on Page 9. 

7 Appendix 
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E N V N I L  nil env 

r , x :  A env 

r, x : A, I" env 
~ , X : A , I " D X = X E A  

r env 
r D Type(i) = Type(i) E Type(s(l.)) 

r D A = A' E Type(i) I',x : A D B(x)  = B1(x) E Type(i) 
PI r D pi(A;  B )  = ~ i ( . 4 ' ;  B') E Type(i) 

r D A = A' E Type(i) T , z  : A D M ( z )  = A ~ ' ( x )  E B ( x )  
A s s  r D abs(A;  M )  = abs(.A1; lM1) E p i (A;  B )  

r env 
CUMTYPE r D Type(i) 3 Type(s(i)) E Type(j) 

l? D -4' 5 A E Type(i) I'.z : A' D B ( x )  5 B1(x )  E Type(i) 
CUMPI  r D ~ i ( . 4 ;  B )  5 pi(A1;  B') E Type(i) 

(x new) 

Figure 1: AD: Luo's Estended Calculus of Constructions 
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r, x : A, r' env 
r , 2 : ~ , r 1 ~ ~ N ~ ~ ~  

env 
TYPE r D Type(i) - Type(i) E Type(s(i)) 

PI r D A A' E Type(i) r ,  x : A D B(x )  - B1(x) E Type(i) 
r D p i ( A ;  B) - pi(A1: B') E Type(i) 

I? D A N A' E Type(i) T , z  : A D 114(2) .v M'(x )  E B ( x )  
A s s  r D abs(A; Ail) .v abs(A1; All) E p i ( A ;  B )  

r D A l  N M' E p i ( A ;  B )  ~ D N - N ' E A  
A P P  

I' D apply(A4; N )  .v apply(-44'; N ' )  E c l o s ( B ;  [ N ,  A]) 

r , ~  : A D A ~ ( x )  N A/~(z) E B ( X )  r D ~ V - N E A  
BETA r t> app ly (abs (  A; Ad ); I\' ) - c l o s (  A{; [A', A]) E c l o s ( B ;  [N, A]) 

D A4 .v A l l  E A r - I?' env 
r1 D Ad - 44' E A 

r env 
r D Type(i) 5 Type(s(i)) E T Y P ~ ( ~ )  

CUMPI r D A' 5 A f Type(i) r, x : A' D B ( x )  5 B1(x) E Type(i) 
r D p i ( A ;  B )  5 pi(.-ll: B') E Type(i) 

Figure 2: hBa:  EC'C' \iVitl-I Esplicit Subst i tut ioi~s 
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r D [Ai l ,  A] E Subst  (Term) 
r D C ~ O S ( A ~  y ;  [ I W ,  A])  .v M E A 

CLOSPI 
r D pi(clos(A; s ) ;  Xy . clos(Xx . B(x; y); s))  E C 

r D clos(Xx . pi(A(x); B(x)); s )  - pi(clos(A; s); Xy . clos(Xz . B(z;  y); s))  E C 

r D abs(clos(A; s ) ;  Xy . clos(Xx . M(x;  y); s))  E C 
C ~ o s A s s  r D clos(Xx . abs(A(x); Ail(z)); s )  -- abs(clos(,4; s ) ;  Xy . clos(Xx . M(x; y); s)) E C 

CLOSAPP 
r D apply(clos(A4; s ) ;  c lo s (N;  s ) )  E C' 

r D clos(Xx.  apply(~l/l(x); N ( 2 ) ) ;  s )  -- apply(clos(A4; s); c lo s (N;  s)) E C 

I? D clos(Xa: . A ~ ( x ~ ( z ) ;  x?(x)) ;  sg 0 map(s1; s z ) )  E C 
CLOSSUBST r D clos(Xx . clos(Ail(r); sl (z)); s2)  - clos(X3: . 2 1 1 ( ~ ~  ( x ) ;  A ? ( x ) ) ;  S? o map(s1; s?))  E C 

Figure 3: ABa(cont'd ): Substitutioxl Rules for Terms 



D. Duggan 

ENVNIL nil - n i l  env 

I? - I" env I? D A - A' E Type(z) 
(x new) ENVEXT 

( r , x  : A )  - (I?', x : A') env 

I? - r' env 
rf N r env 

rl w r2 env r2 - r3 env 
ENVTR.L\NS rl - r3 env 

Figure 4: ABo(co~~t 'd ) :  Environment Equivalence Rules 

MAPCONG r D s2 - S; E Subst  (5'2) I' D map(sl; sk) E s u b s t  (S1) 
r D map(s1; 3 2 )  - map(s1; sk) E Subs t  (S1 1 
r D A w B E T y p e ( i )  T D M w N E A  

r D [dl, A] - [Ar, B] E Subst  (Term) 

I? D [c los (M;  s), c los(A;  s)] E Subst  (Term) 
r D map(Xx . [A4(x), A(x)]; s )  - [ c l o s ( M ;  s), c los(A;  s)] E Subs t  (Term) 

r p map(sl; s )  o map(s2; s) E Subst  (S1 X Sp) 
r p rnap(Xx - s l ( x )  o s2(x):  s )  - map(sl; s )  o map(s2; s )  E ~ u b s t ( S 1  x S2) 

l? D map(Xz . s l ( i r l ( ~ ) ;  A ? ( I ) ) ;  s o map(sz; s)) E Subst ( S )  
r D map(Xx . map(sl(z); s?(z) ) ;  s )  -- map(Xx . sl(al(x);  K ~ ( x . ) ) ;  s 0 map(s2; s)) E Subst(S) 

Figure 5: ABa(coi1t'd): Equivalence Rules for Substitutions 
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r D A E  A' I? DA'-Type( i )  r , x : A  D ~ ~ ( X ) E  B ( x )  
A s s  r D abs (A ,  M )  E p i ( A ,  B )  

A P P  r b h . l ~ B '  b B ' p i ( 4 , ~ )  ~ D . N € A '  r ~ ~ 4 ' 3 . 4  
I? D apply(4.l;  N )  E c l o s ( B ;  [N, A']) 

I' D clos(A4; s )  E B' I? D B' 2- pi(.4; B )  r D c l o s ( N ;  s) E A' r D A' 3 A 
CLOSAPP r b c l o s ( X a .  apply(Ail(x):  , W ( r ) ) :  s) E c l o s ( B ;  [ c l o s ( N ;  s ) ,  A']) 

Figure 6: Type Checking Algorithm for ECC 
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r D M --i pi(A; B )  D M' ?- pi(A1; B') r D A' 5 A I?, x  : A' D B(x )  5 B1(x)  
r ~ p i ( A ;  B )  5 pi (A1;  B') 

Figure 7: Cuillulativity Algorithm for ECC 

EQPI r D M - p i ( i l :  B )  D 1 '  - p i (  B )  r D .4' - A r, x : A' D B ( x )  - B1(x) 
r D p i ( . 4 ;  B )  +- pi (A1;  B') 

Figure 8: Term Equivalence Algorithm for ECC 
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r D Ad -- abs(A: ill1) I' D clos(M1; [N, A]) - M" 
r D apply( Ad; N )  - M" 

r D A4 - apply(Alf; N') 
r D apply(A4; hi ) - apply(apply(M'; N ' ) ;  N )  

REDCLOSPI r D clos(Xx. p i (A(z) ;  Bin:)); s )  - pi(clos(A;  s); Xy . clos(Xx. B(x; y); s)) 

REDCLOSABS r t> clos(Xn: - abs(A(x); M ( n : ) ) ;  s )  - abs(clos(A; s); Xy . clos(Xx . M ( x ;  y); s)) 

REDCLOS APP r D clos(Xx . apply(Ad(x); N(x)); s )  ?;. apply(clos(Ad; s) ;  c lo s (N;  s))  

Figure 9: W H N F  Reduction Algorithm for Terms 
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r D A E A '  r DA1-Type(i) r D M  f B r D A  w B 
T D [Ad, A] E Subst(Term) 

T D map(Xx - s1(7il(x); KZ(X));  s  o map(s2; s))  E Subst(S) 
MAPSUBST r D map(Xx . map(sl(z): ~ ( 2 ) ) ;  s )  E Subst(S) 

Figure 10: Type Inference for Substitutions 

REDMAPTERM 
I' D map(Xx - [Ad(x), A(x)]; Y )  - [c los(M; s) ,  clos(A; s)] 

r D map(Xx . sl (nl(x);  ~ ~ ( 2 ) ) ;  s o map(sz; s))  - s' 
REDMAPCOMPOSE r D map(Xx . map(sl (x) :  4 2 ) ) ;  S) cu' S' 

Figure 11: WHNF R.eduction Algorithm for Substitutioils 



Proceedings of the 1992 AProlog Workshop 

References 

[I] Martin Abadi, Luca Cardelli, P.-L. Curien, and J.-J. Lkvy. Explicit substitutions. Journal of 
Functional Programming, 1(4):375-416, 1991. 

[2] R. Burstall and B. W. Lampson. A kernel language for abstract data  types and modules. In 
G. Kahn, D. B. MacQueen, and G. Plotkin, editors, Semantics of Data Types, pages 1-50. 
Springer-Verlag, 1984. Lecture Notes in Computer Science 173. 

[3] Luca Cardelli. Typeful programming. Technical report, DEC Systems Research Center, 1989. 

[4] P. Crkgut. An abstract machine for the normalization of A-terms. In Proceedings of ACM 
Symposium on Lisp and Functional Programming, pages 333-340, 1990. 

[5] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic 
formula man.ipulation, with application to the Church-Rosser theorem. Proceedings of the 
Iconinklijke Nederlandse -4kademie tun lifetenschappen, 75(5):381-392, 1972. 

[GI D. Duggan. A type-theoretic fra.mework for metaprogra.mming. 111 preparation, 1992. 

[7] D. Duggan. Unification with extended patterns in ecc. In preparation., 1992. 

[S] C. Elliott and F. Pfenning. Higher order abstract syntax. In Proceedings of ACM SIGPLAN 
Conference on Programming Langunge Design and Inzplementation, 1988. 

[9] John Field. On laziness and optimality in la.n~bda interpreters: Tools for specification and 
analysis. In Proceedings of ACAl Synzposiunz on Principles of Programming Languages, pages 
1-15, 1990. 

[lo] Georges Gonthier, Martin Abadi, and Jea,n-Jacques Lkvy. The geometry of optimal A- 
reduction. In Proceedings of AChl Syiiz110siuiiz 0 1 2  Principles of Programming Languages, 1992. 

[ l l ]  John Hannan and Dale Miller. From opera.tiona1 selnantics to abstract machines (preliminary 
results). In Proceedings of A CM Syrnposiunz on Lisp and Functional Programming, 1990. 

[12] R. Harper and R. Pollack. Type checking with universes. In Proceedings of the International 
Joint Conference on Theory and Prclclicc of .Softu~arc Developnzent, 1989. 

[13] Joshua S. Hodas and Dale Miller. Logic programming in a fragment of intuitionistic linear 
logic. In Proceedings of IEEE Symposiz~m on Logic in Computer Science, 1991. 

[14] Z. Luo. Ecc, an extended calculus of constructions. In Proceedings of IEEE Symposium on 
Logic in Computer Science, pages 385-395. 1989. 

[15] D. A. Miller. A logic programming 1angua.ge wit,li la,rnbda.-a,bstraction, function variables and 
simple unification. In P. Schroeder-Heister, editor. Extensions of Logic Programming. Springer- 
Verlag Lecture Notes in Computer Science, 1990. 



D. Duggan 8.5 

[16] D. A. Miller and G. Nadathur. A logic programming approach to  manipulating formulas and 
programs. In Proceedings of the IEEE Symposivnz on Logic Programming, 1987. 

[17] Gopalan Nadathur and Debra Sue Wilson. A representation of lambda terms suitable for 
operations on their intensions. In Proceedings of ACPI Symposium on Lisp and Functional 
Programming, pages 341-348,1990. 

[18] Tobias Nipkow. Higher order critical pairs. In Proceedings of IEEE Symposium on Logic in 
Computer Science, 1991. 

[19] F. Pfenning. Unification and anti-unification in the calculus of constructions. In Proceedings 
of IEEE Symposium on Logic in Con21)uter Science, 1991. 

[20] F. Pfenning and P. Lee. Leap: A laaguage with eval and polymorphism. In TA PSOFT'89: 
Proceedings of the Iizternatioiactl Joint Co~afereiace on Theory and Practice in Software Devel- 
opment, 1989. 



Proceedings o f  the 1992 XProlog Workshop 



Defining Ob ject-Level Parsers in XProlog 
Extended Abstract 

Amy Felty 
A T k T  Bell La.l~oratories 

600 Mountain Ave. 
Murray Hill, N J  07974 USA 
felty@research.att.com 

1 Introduction 

The higher-order logic programming language XProlog contains the simply-typed A-terms as its 
basic data structures. These terms can be used to elegantly express the higher-order abstract 
syntax [12, 81 of objects that ii~clude notions of bound variables such as formulas, proofs, and 
programs. Current implementations of XProlog. however, have no provision for a programmer to  
provide a concrete syntax for a particular object-level language. Such a capability is desirable, for 
example, in implementing an interactive theorem prover. Providing the user with a familiar syntax 
for the logic being implemented can greatly enhance interaction. 

In this abstract, we propose an approach to provjtling programmer-defined concrete syntax. 
A simple grammar specification language will be used to describe grammar rules that translate 
the programmer's object-level concrete syntax to XProlog syntax. On the left hand side of each 
grammar rule, we include a term describing how to build the abstract syntax for the rule as a 
whole from the components on the right hand side. These terms represent an intermediate form 
approximating the higher-order syntax. They can be viewed as untyped A-terms, extended to 
handle occurrences of both bound and free (logic) variables that are encountered in the object-level 
input. 

From a grammar specification, we want to  automatically generate a parser for an object language 
that can then be accessed by the AProlog programmer. There are many ways to generate such a 
parser. For illustration purposes, we will describe a technique using the Yacc parser generator 
[5] that was used in performing some initial esperiinents using the experimental Standard ML 
implementation (LP-SML) [2]. The impleil~entatioi~ described here will generate parsers that use 
a two-step approach to  parsing where the first step translates concrete syntax to an intermediate 
syntax which corresponds to the usual notion of parse trees, also called first-order abstract syntax. 
The second step, which translates first-order to higher-order abstract syntax will be presented as 
a XProlog program. Although a one phase approacli implemented directly in ML may be more 
efficient, presenting the second phase as a XProlog program plays two roles. First, it provides a 
clear specification for what needs to be ii-uplelnented in any one-phase approach, making operations 
such as those needed to handle variables and constants explicit. Second, it illustrates the use of 
A-terms for expressing and nlanipulating higher-ortler abstract syntax in AProlog. 

To illustrate the grammar specificatioir language and its implementation, we will use a simple 
object language as an example throughout this papel. Our object language will be first-order 



88 Proceedings of the 1992 AProlog Workshop 

formulas. In the next section, we discuss higher-order syntax and introduce constants for expressing 
the higher-order syntax of our first-order object 1angua.ge. These constants are used to  build the 
terms that  are manipulated internally by a AProlog program, for example an  interactive theorem 
prover for first-order logic. We then define a concrete syntax for such formulas that  will be used 
by a user interacting with such a theoreni prover. Then, in Section 3, we present the grammar 
specification language. Since part of the implementation will be described via a AProlog program, 
we describe this language and an interpreter for it in Section 4. In Section 5, we discuss the 
implementation of parsers from gramn1a.r specifica.t.ions, and present the non-logical primitives 
added t o  XProlog to  incorporate parsers. In Section 6, we present the AProlog program for the 
second phase of parsing, and in Sectioil 7 we conclude. 

2 Abstract Syntax in XProlog 

The terms of AProlog are essentially those of the simply typed A-calculus. We assume a fixed set 
of primitive types. Function types a.re c~nst ruct~ed using tlie binary infix symbol ->; if r and a 
are types, then so is r -> o. The type constructor - >  associa,tes t o  the right. If ro is a primitive 
type then the type 71 -> . . - ->  Tn -> ro has 7 1 , .  . . , Tn as argument types and TO as target type. 
For each type r ,  we assume that  there a,re denumera.bly many constants and variables of that  
type. Simply typed A-terms are built in tlie usual wa.y using constants, variables, applications, 
and abstractions. Equality between A-terms is taker) to  mean pq-convertibility. We shall assume 
that  the reader is familiar with the usua.1 notions a.nd properties of substitution and a, P ,  and 
conversion for the simply typed A-calculus. See [4] for a fuller discussion of these basic properties. 

In this paper, we adopt the syntas of tlle LP-SML implementation of XProlog. Free variables 
are represented by tokens with an upper ca.se initial letter and constants are represented by tokens 
with a lower case initial letter. Bound va.ria.bles can begin with either an upper or lower case letter. 
A-abstraction is represented using ba.cksla.sl1 a.s a,n infix sy111b01. Terms are most accurately thought 
of as being representatives of pq-conversion equivalence cla.sses of terms. For example, the terms 
X\(f X), Y\  ( f  Y), (F\Y\(F Y) f and f a.11 represent tlle same class of terms. 

Primitive types are introduced using kind c/ecloi.otions and constants are introduced using type 
declarations. For example, the following decla.ra,t,ions introduce a, new type and a binary functional 
constant. 

kind i type. 

type f i -> i ->  i. 

To represent a first-order logic, we introduce two primitive types: f o m  for object-level formulas 
and t m  for first-order terms. We then introduce constants for the object-level connectives as follows. 

kind  tm type. 
kind form type. 

type and form -> form -> form. 
type o r  form -> form -> form. 
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t y p e  imp form -> form -> form. 

t y p e  neg form ->  form. 
t y p e  f o r a l l  (tm -> form) -> form. 
t y p e  e x i s t s  (tm -> form) -> form. 
t y p e  f a l s e  form. 

By declaring f o r a l l  and e x i s t s  to  take functional arguments, we have defined object-level binding 
of variables by quantifiers in terms of A-abstraction, the meta-level binding operator. Thus, bound 
variables of the object language are identified with bound variables of the metalanguage of type 
t m .  This representation of formulas was first introduced by Church [I]. We can also introduce 
constants a t  the meta-level to  represent const.a.nts. function synlbols, propositions, and predicates 
of first-order logic. For example, for a logic cont,a.ining a. constant c, a unary function symbol f ,  a 
unary predicate p, a binary predica.te (I, and a proposition r ,  we give the following declarations. 

t y p e  c t m .  
t y p e  f t m  -> t m .  
tYPe P t m  -> form. 
tYPe 4 t m  -> t m  -> form. 
t y p e  r form. 

Using these definitions, the first-order forniula Vn.(p( j(.x ) )  2 q( c ,  z ) ) ,  for example, is represented 
by the A-term: 

( f o r a l l  X \  (imp ( p  (f XI) ( q  c Z ) ) )  

In our example, we will assume that  a user interacts with a program such as a theorem prover 
using a more familiar concrete syntax that  will be transfor~ned internally to  the above syntax. The 
concrete syntax we adopt here will closely resemble the usual syntax. In particular, we replace 
the commonly used symbols A,  V, 3, 1, V, 3, 1 with the ascii strings t ,  o r ,  =>, n o t ,  a l l ,  some, 
f a l s e ,  respectively. I11 addition, we will use a dot after a quantifier and bound variable, which may 
sometimes replace the parentheses around the quantified expression. For instance, when entering 
the formula in the example above to  a tlleorem prover. a user would type: 

a l l  x .  p ( f ( x ) )  => q(c ,Z)  

In our grammar specification language, we must include a provision for specifying the class of atoms 
of the metalanguage to  which a particular identifier of the concrete syntax may belong. We choose 
t o  allow concrete syntax to  contain any one of the three atomic expressions in the metalanguage: 
constants, free (logic) variables, or bountl variables. As we will see, bound variables will be treated 
the same as constants, and thus we will have only two categories of atoms. During parsing of 
a particular input, the class to wllicll each individual identifier belongs is determined. For our 
first-order logic, we will restrict occurrences of f i~l~ction symbols, predicates, and propositions to  
be constants, while atomic first-order terms can be either coilstants or variables. In the example 
above, x in the expression f (x )  will be parsed to a hound variable occurrence, Z to  a free variable, 
and c t o  a constant, while the predicates p and q and the function symbol f all correspond to  
constants of the metalanguage. 
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(left) ::= 

(I-term) ::= 

. I 
I 
I 

(atom) ::= 
I 

(r-elem) ::= 

I 
I 

( ( c ~ ~ ~ s s - I I ~ I ~ z ~ )  (1-term) ) 
( (r1t0112) (string) ) 
( (aioiiz) (ident) ) 
(ident) 
(app (1-term) (1-term) ) 
(abs (irlent) (I-term) ) 
const I var I cv 
( (class-name) (ident) ) 
( (lez-name) (string) ) 
( ( /ex-~zr~~ize) (ident) ) 

Figure 1 : Granllnar for Specifying Pa.rsers 

3 A Language for Specifying Parsers 

A grammar for a particular object 1angua.ge is specified as a set of rules of the form (left) --> (right). 
Figure 1 specifies the form that  the left a.nd right sides of each grammar rule must take. The left 
hand side must be a. (class-name) folloived by a.11 (I-term) which gives the form of the abstract 
syntax. This abstract syntax tree is built from the individual coinponents found on the right hand 
side. The right side of a grammar rule is a, list of elements described by (r-elem) above. An (r-elem) 
has one of three forms. If it is of tlle first for111 shown in the figure, the (class-name) indicates that 
the rules for the appropriake class must be used to pa.rse the next token(s) from the input t o  ob- 
tain an  item of this class. If successful, the term obtained will "instantiate" the identifier (ident) 
following (class-name). The remaining two forms handle literals or tokens in the input stream. A 
(lex-name) identifies a class of objects from tlie lexical analyzer. We do not go into detail about 
tI-ie lexical analysis phase in this paper, hut just ilote that  (lex-name) is provided t o  handle the 
interface between this phase and the parsing phase. We could simplify this interface by just allow- 
in .-?ue (lex-name) called l i t e r a l  or token. for example. In our example we will have two such 
cli s so that  we may distinguish between symbols and identifiers. When the argument following 
( Ic .  kame) is a string, the input must. matcli t.he string exactly. The strings " a l l "  and " . " in the 
syntax of universally quantified for111ula.s will he esa.mples of such tokens occurring in our grammar 
for first-order logic. When the argunient. following (ler-lzc~/)te) is an identifier, the next token in the 
input stream will instantia.te this identifier as long as it is from the class specified by (lex-nanze). 

The terms representing tlie abstract syn tax  tree have the form specified by the (I-term) grammar. 
They can be viewed as untyped A-terms estelltletl with constructors used to indicate classes for 
atoms. Expressions for atoms a.re specified by the first two clauses of the grammar. The constants 
const and var take as arguments objects t,llat will correspond to coi~stants or variables, respectively, 
of the metalanguage. The keyword cv takes an argument tl1a.t is permitted to  be either a constant 
or variable. These constants and varia.bles are represented either by a string or an identifier. A 
string specifies a specific constant or va.ria.ble. ,411 (I-ternt) can also be simply an identifier or can 
be an application or abstraction built using app and abs. Any identifier occurring in an (1-term) 
on the left of a grammar rule must also appear on t,lle riglit in an (r-elenz). 
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(formula A) --> (form-imp A) 
(form-imp (app (app (const "imp") A) B)) --> (form-and A) (symbol "=>") 

(form-imp B) 
(form-imp A) --> (form-and A) 
(form-and (app (app (const "and") A) B)) - -> (form-and A)  (symbol "t") 

(f orm-atom B) 
(form-and A) --> (form-atom A) 
(form-atom (app (const " f o r a l l " )  (abs X A))) - -> (symbol " a l l " )  ( i den t  X) 

(symbol " . ")  (formula A) 
(form-atom A) --> (symbol "(") (formula A)  (symbol ")I1) 
(form-atom (const A)) - -> ( iden t  A )  
(form-atom A) --> (pre-ap A) (symbol "1 "1 
(pre-ap (app (const  P) M)) --> ( iden t  P) (symbol " (") (term M) 
(pre-ap (app P M)) - -> (pre-ap P)  (symbol ",") (term M )  
(term M) --> (symbol "("1 (term M) (symbol "1") 
(term (cv MI) --> ( iden t  M) 
(term M) --> (pre-ap M) (symbol "1") 

Figure 2:  A C;ralnmar for First-Order Logic 

Figure 2 contains a grammar specifica.tion of a. pa,rser for our first-order logic using this language. 
We only consider conjunction, implica,tion, a.nd universal quantification here. The other connectives 
are handled similarly. This gramma.r illustra.tes hoiv precedence and associativity can be handled 
in this framework. Here, conjunction binds tighter than implication, and implication is right- 
associative, while colljunction is left-associa.tive. Each of the consta.nts symbol and iden t  appearing 
on the right hand side in the rules is a lexical cla.ss (or (lez-ncime)) for symbols and identifiers, 
respectively. These two classes are defined a.s regu1a.r expressions in the lexical analyzer. We do 
not give their specifications here. There are four classes for formulas in the grammar. The first is 
for the general category of formu1a.s and is defined by the first rule in the figure: A is a formula 
if A belongs t o  the form-imp class. This latter cla.ss ha.ndles implications and its associativity. 
The first of the two rules for this cla.ss state tha.t a formula is an implication if i t  has a formula 
with no top-level implication on the left. and a forillula possibly with a top-level implication on 
the right. In the abstract s y n t a . ~  term on t,he left, a.n implimtion is represented as the constant 
imp applied t o  its two formula, a.rgument.s. The keyword const is used in this term to  indicate 
that  its argument corresponds t o  a constant of the 1netalangua.ge. The second rule for formimp 
handles the case when there is no  top-level implication. Formulas with no top-level inlplication are 
described by the formand c1a.s~. The fact t.11a.t this c1a.s~ is a subclass of form-imp insures that  
implication does not bind as tightly a.s conjunction. This class is similar to  formimp except that 
the associativity is reversed. In this ca.se. f orm-atom is the su11cla.s~ for formulas with no top-level 
& or =>. A form-atom is either universa.lly quantified or is an a.tomic formula. The first rule for 
this class handles universal qua.ntifica.tion. 111 a particular insta,nce, the identifier that  is assigned 
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t o  X may have occurrences in the struct,ure assigned to A .  The fact that  these occurrences should be 
considered bound is recorded on the left by using the abs construct. In the second rule, we allow 
atomic formulas t o  be parenthesized. The third rule handles propositions. Since we stated in the 
previous section that  we restrict propositions to be meta-level constants, the keyword cons t  is used 
on the left side. The fourth and last rule of this class handles predicates applied t o  one or more 
arguments, as defined by the pre-ap class, and is terminated by a right parenthesis. A member of 
the pre-ap class can either be a predicate symbol followed by a left parenthesis and a member of 
the term class for terms of our first-order logic, or a pre-ap followed by a comma and then a term. 
A term as specified by the term class can occur inside parentheses, it can be atomic, in which case 
i t  may correspond to  a constant or variable of the metalanguage, or it can be a function symbol 
applied t o  one or  more arguments. The pre-ap class handles the third case in the same way that 
i t  handles predicates. The keyword const  is used 011 the right of the first rule of the pre-app class 
since both function syn~bols and predicates nlust be constants. 

4 XProlog 

Formulas are introduced into XProlog by including a pri~nitive type o for propositions, and intro- 
ducing suitable constants with their types for the logical collectives and quantifiers. In particular, 
we introduce constants for conjunction ( , ), disjunctions ( ; ), and implication (=>) having type o ->  
o -> o. The constants for universal quantification ( p i )  and existential quantification (sigma) are 
given type ( A  -> o)  -> o for each type replacing the "type variable" A .  A function symbol whose 
target type is o, other than a logical constant. will he considered a predicate. A A-term of type o 
such that  the head of its PI]-long form is not a logical constant will be called an atomic formula. 

We define two classes of propositions, cal1t.d gocrl foniazrlms and definite clauses (or just clauses). 
Let A be a syntactic variable for atomic fol.lnulas. G a syntactic variable for goal formulas, and D 
a syntactic variable for definite clauses. These two classeh of formulas are defined by the following 
mutual recursion. 

G := I G1,G2 I G1 ;G2 I sigma n:\G 1 p i  m\G I D=>G 

A logic program is a finite set of definite clauses. \\'hen we write definite clauses, we will omit 
outermost universal quantifiers. In addition. the ontermost implication, if there is one, will be 
written using : - which denotes the converse of implication. In a definite clause of the form A :  -G, 
the atomic formula A is called the hear1 of the clause. and C: is called the body. There is one final 
restriction on definite clauses: the head of a definite clause must have a constant as its head. The 
heads of atomic goal fornlulas on the other llaitd may be either variable or constant. 

A complete non-deterministic search procedure based on intuitionistic provability can be defined 
by the following six search operatioils [9]. In these operations, T' is the current program and G is 
the current goal. 

AND: If G is (GI  ,Gz)  then try to sho\v that l ~ o t l ~  GI alld C;2 follow from 'P. 
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OR: If G is (GI  ;Gz)  then try to  show tlla,t either GI or G2 follows from P. 

INSTANCE: If G is (sigma x\G1) then try t o  show t11a.t there is some term t of the same type 
as x such that  [t/x]G1 is provable from P .  

GENERIC: If G has the form (p i  x\G1) then pick a new parameter c and try t o  prove [c /x]Gf 
from P. 

AUGMENT: If G has the form (D=>G1) then proceed t o  attempt t o  prove G' from P U {D). 

BACKCHAIN: If G is atomic, we consider the current program. If there is a universal instance 
of a program clause which is equal to G then we ha.ve found a proof. If there is a program 
clause with a universal instance of the form G :  -GI then try to  prove GI from P. 

The XProlog interpreter makes choices which are left unspecified by the high-level description of 
tlie non-deterministic interpreter, ma.ny of which are similar to  those routinely used in Prolog. The 
order in which conjuncts and disjuncts a.re a.ttempted and the order for backchaining over definite 
clauses is determined exactly as in conventional Prolog: conjuncts and disjuncts are attempted in 
the order they are presented. Definite cla.uses a.re backchained over in the order they are listed in 
P using a depth-first search paradigm to 11a.ndle failures. In the extended language, clauses can be 
added dynamically by the AUGMENT operation. We specify that  new clauses get added t o  the top 
of the list. 

In the INSTANCE operation, the Prolog implemeiita.tion technique of instantiating the existential 
quantifier with a logic (free) variable which is la,ter "filled in" using unification is employed. Thus 
instead of picking a term t ,  the INSTANCE sea.rch opera.tion will introduce a new logic variable as the 
substitution term. A similar use of logic va.riables is ma.de in. implementing BACKCHAIN: a clause 
frorn P is chosen and an instance is nmde by replacing all outermost universally quantified variables 
with new logic variables. This universal insta.nce of t.11e cla.use is then unified with the current goal. 
This operation may partially or fully insta.ntiate the iietrr logic variables. The addition of logic 
variables in our setting requires liigller-order unificat.ion sil~ce these variables can occur inside A- 
terms. 

The presence of logic va.riables requires t11a.t GENERIC be implemented slightly differently than 
is described above. In particular, if the goal or tlie current program P contains logic variables, the 
new constant introduced by this operation must not, appea.r in the terms eventually instantiated 
for tliose logic variables. 

XProlog permits a degree of polymorphism by allowillg type declarations to contain type vari- 
ables (written as capital letters). We will 1na.ke use of this polymorpl~ism in our program for 
translating first-order t o  higher-order syntax. This program will be used t o  translate objects of 
arbitrary type. 

5 XProlog Primitives for Parsing 

In generating parsers from grammar specifications, it is possible to  employ one of the well-studied 
parsing methods or use existing parser generato]. tools [13, 7. 5 ,  6, 3, 111. Choosing t o  use a 
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particular method will have impact on what kinds of grammars may be accepted as well as on 
efficiency of the resulting parser. As an example, we choose the Yacc parser generator [5 ] ,  and thus 
implement LALR grammars. We use the ML-Lex and ML-Yacc tools to  implement lexical analyzers 
and parsers, respectively. These tools are the ML versions of the unix lex and yacc utilities. 

The first phase of the procedure uses tlie ML-Lex tool for generating lexical analyzers which 
transform an input stream to a list of tokens. We will say very little about this phase here. In LP- 
SML, a lexical analyzer for a user-defined object language can be derived in a straightforward way 
from the ML-Lex specification for XProlog syntax. I11 our example, we choose t o  parse identifiers 
in the same way that  XProlog does, so we take this information directly from the existing ML- 
Lex specification. We must then add rules for the literal strings representing the connectives of 
first-order logic. 

Any specification in our grammar specification langtlage can be transformed in a straightforward 
manner to  input to  ML-Yacc. We view the constants app, abs,  etc., as constructors for XProlog 
terms representing a first-order approximation of the desired higher-order syntax. The ML-Yacc 
phase of parsing will build the internal represelltation of these XProlog terms. For the final phase of 
parsing, in the next section, we present a XProlog program that transforms this first-order syntax 
to  higher-order syntax. Since XProlog terms are thl~ed.  we must make sure that  a term obtained 
from a translatioil from concrete syntax is correctly typed. As we will see, type checking is handled 
by the final phase of parsing. 

In order t o  accommodate user-definetl parsers. \ve provitle two new commands, use-parser  used 
t o  generate and load a parser, and p a r s e  used to call the parser on particular expressions in an 
object language. They have tlie following types. 

t y p e  use -pa rse r  s t r i n g  -> o.  
t y p e  p a r s e  s t r i n g  -> s t r i n g  -> ( A  -> o) -> o .  

The argument to  use-parser is the na.mt of tlic file containing the grammar specification. For 
exa.mple, if the grammar for first-order logit. in Figure 2 were in a, file called fol.gram, the command 
(use-parser "fol") will read in the file. create the specifica.tion of the lexical analyzer and use 
ML-lex t o  generate i t ,  and create the Yacc specifica.tion a.nd use ML-Yacc to generate the parser 
which translates concrete syntax to int<ermedia.t,e terms. A goal of the form ( p a r s e  P a r s e r  I n  
G) uses the parser named by P a r s e r  on the input In .  In writing the interactive component of a 
program such as  a theorem prover in XProlog, tlic progra.mmer will ma,ke use of standard read and 
write predicates as in Prolog. Here, we a.ssunle t,liat input can be obtained from read predicates in 
the form of a string which can then be pa.ssetl on to t,lie p a r s e  command. If the parse fails on the 
string In ,  the goal fails. Otherwise, an out,put tern1 Out is obta.ined representing the higher-order 
a.bstract syntax of the input term, and t,lreli t,lle goa.1 (G Out) is a.ttempted. Here, the type of Out 
is unified with tlie type of the bound varial~le i n  G ant1 an error is signalled if this type-unification 
fails. 

During execution of a XProlog pr0gra.m. new constants will be generated dynamically by the 
GENERIC operation and new logic variables will be generated by INSTANCE and BACKCHAIN. In an 
interactive session, we will want to ina,ke at  least S O I I I ~  of these constants and variables accessible 
to the user, so tha,t they may be a.cceptetl as inp~11 I,!. user-defined pa.rsers. For the purposes of this 
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paper, we will assume tliat there is some lnethod by wliich names are established for new constants 
and variables, and only those with establislied nanies can be accessed by the user. For example, 
one way in  which logic variables can get establislied names is by being printed out to  the screen 
by a n  output command. More specifically, if a term to be output t o  the screen contains a logic 
variable that  does not already have a name, a name is chosen that  does not conflict with the names 
of currently existing variables and is established for that  variable. 

Establishing the correspondence of the objects in the input stream t o  actual constants and 
variables with established names will take place during the second phase of parsing. To make this 
correspondence for variables, we will make use of a non-logical XProlog primitive f v a r  of type A 
-> s t r i n g  -> o. A goal of the form (f  v a r  V Name) will succeed if V is a logic variable with the 
established name Name. It will also succeed if V is a variable with no established name. If there is 
some other variable V ' with establislied irallie Name, V will be set equal t o  V '  . Otherwise, the name 
Name will be established for V. 

Logically, any variable found in a user's input that doesn't already exist with an  established 
name can be viewed as a new one generated by INSTANCE. In a goal of the form ( p a r s e  P a r s e r  
I n  GI, if the resulting term Out has 71  new variables XI, . . . . X, that  didn't already have established 
names, then consider the tern1 Out ' wit11 bound variables X I . .  . . , X, and body Out. Then, the goal 
we solve after a successful parse is actually: 

6 Translating First-Order to Higher-Order Syntax 

We introduce the type i t e r m  for the intermediate terms that  are constructed by the Yacc-generated 
parser. The constants app, abs ,  etc., int,rocluced in our grarnrriar clauses will be considered con- 
structors for terms of this type. They have the following types. 

tYPe aPP i t e r m  -> i t e rm - >  i t e r m .  
t y p e  abs s t r i n g  -> i t e r m  ->  i t e r m .  
t y p e  c o n s t  s t r i n g  -> i t e r m .  
t y p e  v a r  s t r i n g  -> i t e r m .  
t y p e  cv s t r i n g  -> i t e r m .  

In addition, we have the following ~>retlicates tliat will be used in implementing the syntax 
translation. 

t y p e  nameof A ->  s t r i n g  ->  o .  
t y p e  t r a n s  i t e r m  ->  A -> o .  

The nameof predicate handles the translation of constants and occurrences of bound variables in 
object-language terms. It relates a ~neta-level constant to the string containing its name. A type 
variable is used for the first argument since the:,? constairt:, can be of any type. Before translation 
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of a particular term, we start  with one nameof clause for every constant in the environment with 
an  established name. We also need to  know the type of each constant, so we must include type dec- 
larations. Dynamically generated consta.nts that  have no established name need not be considered 
since they have no external representa.tion visible to  the user. Constants with established names 
include a t  least all those declared by the programmer. Thus, when parsing a formula of first-order 
logic, for example, we must include a t  least. the following declarations and clauses. 

kind form type .  
kind t m  type.  

and form -> form - >  form. 
imp form -> form -> form. 
f o r a l l  (tm -> form) -> form. 
C t m .  
f t m  - >  t m .  

P t m  ->  form. 
9 t m  -> t m  ->  form. 
r form . 

nameof and "and". 
nameof imp "imp". 
nameof f o r a l l  " f o r a l l " .  
nameof c "c". 
nameof f " f " .  
nameof p "p". 
nameof q "q". 
nameof r " r"  . 

A nameof clause will be added dynamically for eacl~ binding occurrence of a variable that  is en- 
countered during parsing. Then, as parsing proceetls. each argument to  const or cv will be checked 
against the existing nameof pairs. For an argu~nent to const,  if it does not match anything, the 
parse fails. An argument to  cv, if i t  is not a constant, will be interpreted as a free variable. The 
t r a n s  predicate used for the general translation takes two arguments. The first is the input. It is 
the result of the  parse by the Yacc-generated parser, and thus is the intermediate first-order syntax. 
The second argument is the resulting term in  the desired higher-order syntax. The translation is 
defined by the following clauses. 

t r a n s  (app M N) ( P  Q) :- t r a n s  M P ,  t r a n s  N Q. 
t r a n s  (abs X M) N :- p i  c\  (nameof X c => t r a n s  M (N c ) )  
t r a n s  (const M )  N :- nameof N M, ! .  

t r a n s  (var  M) N :- f v a r  N M. 
t r a n s  (cv M) N :- nameof N M, ! .  

t r a n s  (cv M) N :- f r eeva r  N M .  
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The first two clauses handle applicatioil and abstraction. In an application, each argument is 
translated and the result of the first translation is directly applied to  the second. Note that  types 
must match in order for this clause t o  succeed. P must have a functional type and Q must have the 
appropriate argument type. Otherwise, the translation fails. The clause for abstraction transforms 
an intermediate term with occurrences of string representation of a bound variable t o  a term of the 
metalanguage containing an actual abstraction. In this clause, the GENERIC operation is used to  
introduce a new constant, say c, t o  play the role of the bound variable. The AUGMENT operation 
adds the atomic clause relating tlle string representatioll of the bound variable to  this constant. 
This clause is available while translating the body M. It will be used to  replace all occurrences of 
the string X in the intermediate term M to  the constant c. If successful, the result of the translation 
must match the template (N c ) .  N will be the term obtained by abstracting out all occurrences 
of c. I t  is important that  the new clause added by A U G ~ ~ E N T  be added to the top of the list of 
nameof clauses. If a bound variable is introducetl \vitll tlle same naille as an existing constant, it 
is important that  all occurrences within the scope of the bound variable get parsed as occurrences 
of this bound variable and not as the already existing constant. 

The last four clauses pertain to  translation of atoms. The non-logical feature cut ( ! )  of XProlog 
is needed in these clauses. It is used to  eliminate backtraching points. It is a goal which always 
succeeds and commits the interpreter to all choices lllade since the parent goal was unified with 
the head of the clause in which the cut occu~.s. Here, we do not want backtracking to cause an  
identifier to  be interpreted as more than one kind of atom. The first clause uses nameof to  translate 
constants or occurrences of bound variables. The nest clause translates free variables using the 
f v a r  primitive to  determine if the variable occurs in the current context, and to  generate a new 
one when i t  doesn't. The result of the translatioil is the already existing or the new variable. The 
next two clauses handle an atom that  can be either a constant or variable. The order in which 
they are attempted is important. First, it must be checked whether it occurs within the scope of a 
bound variable or  is a constant. If not, it is a logic variable. 

We end this section by discussing how the last phase of parsing fits in with the rest. As stated 
in the previous section, a goal of the form ( p a r s e  P a r s e r  I n  G) uses the parser named by P a r s e r  
on the input string In. It does so i n  tll~.ee steps. First. it ~vill run the lexical analyzer, and 
second, i t  will run the Yacc-generated parser on I n  to obtain a term, say Mid, the intermediate 
syntax representation of the input. Let p a r s e r  be the nanie of a XProlog module containing all 
the code presented in this section except the clauses specific to the first-order logic example. Let 
c o n s t a n t s  be the module colltaiiling the type declarations and nameof clauses for all the constants 
with established names in the current environ~iic~rt. The final step of the p a r s e  command is an 
at tempt t o  solve the following goal. 

p a r s e r  ==> ( c o n s t a n t s  ==> ( ( t r a n s  Mid Out) ,(G O u t ) ) )  

The ==> symbol is the meta-level connective that instructs the interpreter to  load the module 
named on the left of the arrow into menlory ant1 atltl all of tlle clauses in this module to  the current 
program. Note that  the p a r s e r  motlule is a static object. while the c o n s t a n t s  module nlust be 
created dynamically since it will depend on the  cznvi~.onment a t  the time the p a r s e  command is 
invoked. 
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7 Conclusion 

We have proposed a high-level specification language for integrating object-language parsers into 
XProlog. For illustration purposes, we described a two phase method of implementing this facility. 
There are several other possibilities. For example, still using tlie ML-Yacc facility, a one phase 
approach can be implemented directly in h4L and may be more efficient. To do so, instead of 
building the XProlog terms of type i t e rm,  we can view tlie constants app, abs,  etc., as ML functions 
which take their arguments and directly form the iilternal ML representation of the appropriate 
higher-order syntax. The operations handled by the t r a n s  program must now be handled by these 
functions. Thus, for example, these functions must distinguish between constants, bound variables, 
and free variables and keep track of tlleir scope, recognize occurrences of free (logic) variables that 
exist in the current environment, add to the current environment any new logic variables that  occur 
in a successfully parsed term, and verify that  tlie resulting term is well-typed. 

Another possibility is to consider a form of definite clause gramlnars as in Prolog [ll]. In fact, 
the grammar specification in Figure 2 already llas a form nlucli like a definite clause grammar. In 
[lo], an extension of definite clause grammars to handle scoping coiistructs is described. It would 
be straightforward to  implement our grammar in t h e  manner described in that  paper. In doing 
so, we obtain a XProlog program to  parse a list of tokens to a term of type i t e rm,  where the left 
hand sides of rules in Figure 2 correspontl to the Iieads of clauses and the right t o  the body. The 
list of elements on the right become a conjunction of subgoals. In fact, we can modify such a 
program so that  i t  incorporates the t r a n s  progsanr and performs parsing from a list of tokens to 
higher-order syntax in a single pliase. IIoivever. a XProlog program obtained from this grammar 
cannot be executed directly. To see why. note that tlrere is a rule for the f o r n a n d  class where 
the first element on the right also requires a tern1 from the fo rmand  class. In the corresponding 
program, form-and will be a predicate and using the clause corresponding to  this rule will cause 
infinite brallching in the search. This is a common problem in a grammar with infix operators. It 
is possible t o  change tlie grainmar to obtain an executable parser, though care must be taken in 
doing so. 

In this paper, we have introduced a p a r s e  comnland to esplicitly call a parser on a given input. 
At tlie point such a call is made, only the syntas of the given object language can be parsed. 
Object-level terms cannot contain arbitrary XProlog syntax inside them. In some cases, it may 
be desirable t o  mix the two syntases. For esample, the programmer may want t o  write programs 
that  use object-level syntax inside clauses. and may not want to have to  invoke a parse command 
explicitly t o  do so. For instance, a user sllol~ld a t  least be able to specify new infix symbols. To 
handle this, some method for integrating the exist i ~ i g  XI'solog parses with user-defined parsers will 
be needed. 
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1 Abstract 

In this paper a modular deductive database language based on embedded implications is presented. 
Our language can be considered a subset of A-Prolog [ 2 3 ] .  Its notion of embedded implication 
can best be compared to  that  of the module system of A-Prolog. We allow negation-as-failure 
in subgoals of a rule or query as well as in  the consequence of an embedded implication. The 
main motivation for the definition of our language has been the desire to make a notion of local 
definitions available for deductive database systems liaving a bottom-up query evaluation strategy, 
e.g. the LOLA-system [7]. 

Hap1 : = 1 maplist ( [I ,  [ I ) .  
maplist(CXIL],[YlR]) :- f ( X , Y ) ,  maplist(L,R). ) 

Conv := convert (In,Out) :- ( maplist (In,Out) <= Mapl ) . 
f (U,V) :- look-up(U,V). ) 

Figure 1: Sample progra.ms Mapl and Conv in basic syntax 

2 Basic Language 

A BNF-style grammar of our basic syntas is sl~o\vn in figure 2 .  Rules are implicitly universally 
quantified. This applies also to  t.he rules referenred by a.n implica.tiona1 subgoal. Only programs, 
i.e. sets of universally closed fornzulas, a.re a.llowed in the antecedents of implicational subgoals. 
This is a major restriction' as compared to A-Prolog [23]  and the languages proposed e.g. in [19], 
[16], [12], [ 5 ] .  Neither in rules nor in  goals lllultiple consequences or nested implications are allowed. 
However, such programs and goa.ls ca.n ea.sily be transformed into the basic syntax. Program names 
simply serve as placeholders for tlie corresponding rule sets. 111 particular, we do not allow mutual 
program references. Sample progra.msg in ba.sic synt.as a.re shown in figure 1. 

'Work is underway to define a less restrictive syntax t,llat still preserves bottom-up evaluability. 
2To the sample programs shown in t.his paper in general a variant, of the hfagic Set Transformation [2], [3] has t o  

be applied t o  generate safe, i.e. bot,t,om-up evaluahle. r l~les .  
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(query) 
(program) 
(rule-set) 
(rule) 

(body) 
(subgoal) 

(i-subgoal) 
(reference) 
(program-reference) 

(literal) 

(atom) 

(term) 

(predicate-symbol) 
(function-symbol) 
(functor) 
(variable) 
(program-name) 
(string) 

: - (body). 
(rule-set) 
C (rule)' ) 
(head). 
(head) : - (body). 
(subgoal) {, (subgoal) )* 
(i-subgoal) 
(literal) 
( (literal) <= (reference) {, (reference))* ) 
(program-reference) 
(program-name) 
(program) 
(atom) 
$not (atom) 
(predicate-symbol) 
(predicate-symbol) ( (term) { ,  (terln)}* ) 
(variable) 
(function-symbol) 
(function-symbol) ( (term) { ,  (term))* ) 
(functor) 
(functor) 
{ a  - z ) (string) 
{ A - Z I - ) (string) 
{ A - Z  ) (string) 
{ a - z l A - Z 1 0 - 9 ( $ 1 - ) *  

Optional parts are enclosed in the meta-symbols [. . .] and groups are enclosed in the rneta-symbols { .  . .). 
Repetition of a group is indicated by { .  . .I". The meta-symbols should be distinguished from the four syntax 
elements C, I ,  C, and ), respectively. 

Figure 2: BNF-style Grammar of Basic Syntax 

3 Bottom-Up Evaltzation 

As opposed t o  A-Prolog [23] and most other query laliguages with embedded implications proposed 
in the literature (e.g. [19], [4], [ 5 ] ) ,  our language does not have a. Prolog-like top-down evaluation 
strategy. 
Instead, a top-down query compilatio~z into aa  evaluating relational expression is applied in analogy 
to  the ordinary deductive database case (For more details see e.g. [Xi] ,  [7]). In a subsequent bottom- 
up query evaluation phase, the proper set of answer tuples is computed in a set-at-a-time fashion. 
Our query evaluation scheme thus generalizes the evaluation scheme of most deductive database 
systems because embedded implicatio~ls call be handled. Many researchers consider bottom-up 
evaluation superior over Prolog-like top-down eva.lua.tion if large quantities of data  have to  be pro- 
cessed, which will typically occur in databa.se-like applications, e.g. in traffic information systems. 
In the presence of context extensions as ilitroduced by embedded implications, a combination of 
resolution and context extension has to be applied in the top-down compilation step. Context 
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extension may precede the resolution step, if the predicate symbols are labelled by an appropriate 
context identifier, e.g. the 1exicogra.phically ordered list of names of the programs forming the 
context. In figure 3 the different program contexts encountered during processing the sample 
query : - ( convert (In, Out) <= Conv 1 . are made visible by labelling the predicate symbols. 
However, it is not necessary that  the context extension step precedes the actual query compilation. 
The results presented in [9] indicate how to interleave labelling and compilation for deductive 
database programs with embedded implications. For more details see [8] and [9]. 

.- 
Ma~llconv,~apll .- 
{ maplistlcOnv,,,,~ ([I , [I . 

m a p l i ~ t ~ , ~ , ~ , , ~ ~ ~ ~  ( CX I LI , CY I RI ) : - f lconv,~apll ( X  ,Y) r 

m a ~ l i s t ~ c o n v , ~ a ~ l l  (L  * R) . ) 

Figure 3: Program contexts made visible by labelling predicate symbols 

4 Perfect Model Se~na~ltics 

The operational semantics of programs in basic syntax as sketched above is an almost direct im- 
plementation of an iterated fixpoint semantics [I] or perfect model semantics [24], that  has been 
defined for stratifiable programs with negation-as-failure and embedded implications in [8]: Fol- 
lowing the line of [19] we define the generalized Herbrand interpretations and a validity relation 

between generalized interpretations and goals. The immediate consequence operator Tw of a 
set W of programs maps the set of generalized Herbrand interpretations onto itself. As a major 
difference t o  [19], we do not require a t  this point that generalized Herbrand interpretations are 
internally monotonic (see below). It can be shown that generalized interpretations in our slightly 
more general sense as well as the generalized immediate consequence operator have the essential 
model theoretic properties just as in the ordinary deductive database case (cf. [I]). Consequently, 
a minimal fixpoint of Tw is a minimal model with respect to # of the set of programs W. 
A natural ordering is imposed on a set W of programs by their implicational depth, i.e. the 
length of reference chains t o  other programs3. Therefore we can horizontally partition a set of 
programs into a sequence of i-strata W k ,  i.e. sets of programs with equal implicational depth 
k. It can be observed that  the elements of an i-stra.tum do not, refer to  ea.ch other and thus 

3Note, tha t  program names are allowed i n  the  ant.ecedents of embedded i~nplications. 
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may be processed simulaneously. By stratifiability with respect t o  negation every single program 
in an i-stratum Wk can be partitioned into an ordered set of n-strata. We can think of the 
collection of n-strata as partitioning every Wk in vertical direction. By every such vertical partition 
a corresponding immediate consequence operator is defined. In analogy t o  the fixpoint procedure 
for ordinary deductive database progra.ms, we compute a sequence of minimal fixpoints of the 
immediate consequence operators proceeding from the rightmost i-stra.tum W ,  t o  the leftmost i- 
stratum, and, within each i-stratum Ws, starting a t  the lowest n-strata and proceeding to  the 
highest n-strata. Using the techniques of [ I ]  it can be shown that a minimal generalized model of 
W is computed which, indeed, is the perfect generalized Herbrand model [24]. See [8] and [9] for 
more details. 

5 Negat ion-As-Failure 

Negation-as-failure is known to be problematic in ordinary deductive database programs due to its 
intrinsic nonmonotonic behaviour. On the other hand, deductive database programs often have to 
rely on implicit negative information. i.e. a form of negation-a.s-failure, because there are situations 
in which one simply does not have explicit nega,tive information available. For instance, one would 
like t o  avoid t o  explicitly sta.te an inequality axiom for every pair of constants introduced by base 
relations4. 
The situation grows more difficult if rules or queries have iinplicational subgoals. Sets of programs 
have t o  be processed simultaneously t o  account for references to  other programs (cf. [6]). If we 
allow an unrestricted use of negation-as-failure the generalized Herbrand interpretations generated 
by the immediate consequence operators are not in general internally monotonic (cf. [19]). From 
the more procedural point of view it might appear quite natural to  get a smaller set of true formulas 
when more information becomes available in an extended context. However, from a logical point 
of view the use of negation-as-failure should be restricted in a, wa.y that the internal illonotonicity 
of the generalized perfect model is preserved. .4n extension of our syntax and semantics allowing 
to  quantify over free variables of a module is currently under investigation. In many cases, this 
extension should make i t  possible t,o shift 11ega.tion-as-fa.ilure down to  the ba,se relations where its 
use can be controlled. 
As a more logical justification of negation-a,s-fa.ilure we refer the reader to the literature on cir- 
cumscription (e.g. [15], [17], [14]) which has been used since long by the A1 community to formalize 
nonmonotonic reasoning. 

6 Modules and Static Scopiilg 

Our semantics of embedded implications induces a, clyrzcrntic scopiny rule for predicates. While this 
behavior is suitable for hypothetical reasoning, it is clear t11a.t fro111 a software engineering point of 
view static scoping should be preferred [Is], [21]. Consequently, the basic syntax of our language is 

'See e.g. the definition of the notrmember-predicate in figure 5 and its use in the definition of path. 



Burkhard Freitag 

(module) 

(module-interface) 

(import-declarations) 

(export-declarations) 

(local-declarations) 

(module-imports) 

(declaration) 
(predicate-schema) 
(module-reference) 
(output-argument-list) 
(input-argument-list) 
(argument-list) 

(argument-spec) 

(module-name) 

$module (module-name) : 
(module-interface) (module-implementation) 

[ (import-declarations) ] 
[ (export-declarations) ] 
[ (local-declarations) ] 
[ (module-in~ports) ] 
( rule-set ) 

$ i m p o r t  
{ (decla.ration) )* 

$ e x p o r t  
{ (declaration) )* 

$ l o c a l  
{ (declara.tion) )* 

$impor t -modules  
{ <= (module-reference) . }* 

( predicate-schema. ) . 
(predicate-symbol) ( { < (functor) > )* ) 
(output-arguments) (module-name) (input-arguments) 
(argument-list) 
(argument-list) 
[I 
[: (argument-spec) { , (argument.-spec) )* I 
(predicate-symbol) 
(predicate-symbol) : =(predicate-symbol) 
(program-name) 

. . .  
Rules for basic syntax modified as follows 
(reference) (module-reference) 

I (program-reference) 

Figure 4: BNF-style C;rammar of Module Syntax 

extended by a notion of module parameteriza.tio11 a,nd predicate encapsulation. A BNF grammar 
of the module syntax is shown in figure 4. Sample modules can be found in figure 6 and figure 5. 

A module consists of an  interface and an i~itpIen-~erztatiolz. In the interface, the import and export 
predicate symbols have t o  be declared5. The implementation part starts with declarations of the 
local predicate symbols and a list of references to the imported modules. By importing a module, 
the definitions of (some of)  its exported predicates are made visible in the importing module. 
Consider the following declaration occurring in module Graphs of figure 5. 

$ impor t -modules  
<= [ l e n :  = l e n g t h  ,nmemb: =not-member] L i s t s  [I . 

'Currently, only the arity of predicate symbols is declared. The  symbols occurring in a predicate schema are 
dummy attribute names. I t  is planned, lioweve~. to extend dec la~a t io l~s  to type declarations, e.g. as proposed i n  [ 2 2 ] .  
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$module Graphs: 
$import 

::= edge(<node>,<node>). 
$expdrt 

: : = connected(<node>, <node>) . 
::= path(<node>,<node>,<list-of-nodes>). 

$local 
::= nmemb(<item>,<list-of-items>). 
::= len(<list-of-items>,<peano-integer>). 

$import-modules 
<= [len: =length ,nmemb: =not-member] Lists [I . 

{ 
connected(X,Y) :- edge(X,Y) . 
connected(X,Y) : - edge(X,Z) , connected(2 ,Y) . 
path(X,Y, CX,Yl) :- edge(X,Y). 
path(X,~, [XIPI) :- edge(X,Z), path(Z,Y,P), nmemb(X,P). 

3 

$module Lists: 
$export 

: := append(<list~of~items>,<list~of~items>,<list~of~items>). 
::= member(<item>,<list-of-items>). 
: :=  not~member(<item>,<list~of~items>). 
::= length(<list>,<peano-integer>). 

$local 
: := equal(<item>,<item>). 

{ 
append( ,L,L) . 
append(CXIL11, L2, [XIL3]) : -  append(Li,L2,L3). 
member(X, [XIL]) . 
member (X , [Y IL] ) : - member (X , L) . 
not-member(X. [I). 
not-member(X. [Y I L] ) : - $not equal(X ,Y) , not-member(X ,L) . 
length( C1,O). 
length(CXIL1 ,s(N)) :- length(L,N) . 
equal(X,X). 

1 

Figure .5: Modules Graphs a.nd L i s t s  

The programmer states that  the predicate synlbol l e n g t h  of module L i s t s  shall be visible within 
Graphs as the predicate l e n ,  and that  not-member shall be visible as nmemb. Semantically,   nodule 
import call be understood as a default illodule reference which is automatically added to the 
(possibly empty) premise of every subgoal occurrillg in a rule of the importing module [19]. The 
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$module Hap1 : 
$import 

::= f(Iterns,Items). 
$export 

: := maplist(list(ltems),list(ltems)). 
€ 
maplist ( C1, U 1. 
maplist([XIU, CYIRI) :- f(X,Y), maplist(L,R) 

1 

$module Conv : 
$import 

: := look~up(Items,Items). 
$export 

: :=  convert(list(Items),list(Itms)). 
$local 

: := map(1ist (Items) ,list (Items)). 
< 
convert (In ,Out) : - (map(In, Out) <= [map: =maplist] Mapl [f : =look-up] ) . 

1 

$module Table : 
$export 

. . . -  .- look-up(peano-integer,number) 
C look,up(O,O). 
look-up(s(O),l). 
. . .  1 

Figure 6: Sa,mple lnodules Mapl, Conv, and Table 

first connected-rule of module Graphs, for insta.nce. is tra.nsformed into" 

connected(X,Y) :- (edge <= Clen(U.V) :-length(U,V). 
nmemb(U, V) : - not-member (U, V) . ) , 
Lists-Rules) 

where L i s t s -Rules  denotes the rules of lnodule Lists. 
The local declarations are followed by a set of rules defining the exported and the local predicates. 
Imported predicates must not be defined within the importing module. In the module syntax, an  
implicational subgoal may have module references in its premise. A module reference is a program 
name surrounded by an input  and an output aryunaent list of the form [ p ,  := q,,  . . . , p ,  := q,], i.e. 
a list consisting of argument  specifications p, := q, where p, and q, are predicate symbols. 

The following scoping and parameterization rules a.pply to our module language: 

61n addition, every symbol of a module is labelled to provitle for encapsulation. See also the section on unique 
module labelling below. 
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Predicate symbols, regardless whether imported, exported, or local, are in general invisible 
outside the module, in which they are declared. 

Module parameterization is governed by the argument specifications occurring in the argu- 
ment lists of a module reference. Only by an input (output) argument specification can 
the imported (exported) predicate symbols of a module be accessed. Access is realized by 
automatically generated linking rules (see below). 

Syntactically, the predicate symbol, that is closer to  the module name, is the module param- 
eter, and the symbol, that  is closer to  the enclosing module or query, is the actual argument 
symbol. Local predicate symbols can not be accessed at  all from outside the module. 

In the module reference [map : =maplist]  Mapl [f : =look-up1 , for instance, the predicate sym- 
bol look-up is the actual argument for the input parameter predicate f ,  and map is the output 
predicate symbol serving as an actual argument of the output parameter predicate mapl i s t  
(see figure 6). As for imported modules. embedded implications with module references are 
transformed into an embedded implication in basic syntax. The convert-rule of module Conv 
shown in figure 6, for instance, is transformed into 

c o n v e r t ( I n , O u t )  :- ( m a p ( I n , O u t )  <= Cmap(X,Y) :- m a p l i s t ( X , Y ) .  
f (X,Y)  :- look-up(X,Y) . ) ,  

Mapl-Rules ) .  

where Mapl-Rules denotes the set of rules of lnodule Mapl. Note. tha.t these are already in 
basic syntax. 

If a parameter predicate symbol 1) is literally the same as its actual argument, the correspond- 
ing argument specification 11: =?I 1na.y be abbreviated to 11. 

The enclosing module7 is the scope of all symbols either used as actual arguments in module 
references, or occurring in the conclusioil of an implica.tiona1 subgoal, or occuring in unnamed 
rule sets, tha t  are part of the premise of an implica.tiona1 subgoal. These symbols must be 
declared as local predicate symbols of the enclosing module. 

Program names without argument lists occurring in the premise of a.n implicational subgoal 
are treated like unnamed rule setss. 

By a simple transformation the appropriate module instances can be obtained at preprocessing or 
compilation time. To this end, for each reference to a program a unique label is generated from 
the program name. The predicate symbols occurring in the program a.re subsequently prefixed by 
the so obtained unique symbol. Parameter passing is provided through special linking rules which 
the transformation generates from the user-defined input a,nd output argument lists of a module 
reference. The labelled and transfornled queries and lnodules a,re in the basic syntax and can be 
processed accordingly. For a, more detailed description of the module syntax see [lo] and [ll]. 

' B ~  convention, the enc los i~~g  module of a  top-level query is the (empt.?) tl~tnrmy module Top. 
'Note, that  unnamed rule sets and progratll narlle+ witllout argument 1ist.s are dynamically scoped within the 

enclosing module. By this feature hypothetical reasolrit~g call be realizecl. 
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Assume, for example, that  t o  an occurrence of the Conv-module has been assigned the label 0. Then 
every symbol of this module occurrence is labelled by 0, and every module reference occurring in 
Conv is assigned a new label, say 1. This process is continued until no new module reference 
is foundg. After labelling and transformation into basic syntax, the convert-rule of the current 
module Conv reads as 

where Mapl-1 denotes the set of rules of module Mapl after labelling each symbol by the label 1. 
In this example no further labelling is required since Mapl does not contain module references. 

In a language with higher order quantification the desired closure properties of a module M can 
be described by the formula ([13],[20]) V i n l  . . .Vinn,30z~tl . . .3out,M, expressing that  the input 
predicates in1, .  . . , inm are t o  be trea.t,ed a.s formal pa.raineters and, furthermore, tha i  the output 
predicates out l , .  . . ,out, may depend on the in,, . . . . in,,. If the existential quantification is re- 
placed by Skolem functions the higher order unification a.s introduced e.g. in [13] and [20]) gives 
the desired result. Our renaming transformation 11a.s essentially the same effect. 

By the above scoping rules it should not be possible to access local predicates from outside a 
module. This can be achieved by shifting the rules defining local predicates into the premises of 
the body literals of the rules defining esported predica.tes as proposed in 1191. 

If modules are  separately compiled into relation valued functions, we do not need the above de- 
scribed transformations. Instead, an appropriate paraineterization is chosen for the generated 
evaluating functions. However, the transformation approach as well as the higher order unification 
approach show, that  static scoping can be achieved without devia.ting very much from the pure 
logic language with embedded implications. 

A prototype system based on a preprocessor, that  performs context extension by a source-to- 
source transformation has been implemented on top of the experimental deductive database system 
LOLA1' developed a t  the Technische Universitat Miinchen ( T U M )  [7]. 

8 Future Work 

Currently, work is underwa.y to  define an appropria.te form of nega.tion-as-failure. In addition, we 
investigate the incremental compilation of luodules and the combination of functional and logic 
programming obtained this wa,y. Another tlirect.io~~ of fnture resea.rch is the decla.ra.tive formulation 

'Note, that  cyclic module references are not. allowed. 
10 T h e  LOLA project is a subproject of the joint effort. "Objektbanken fiir Experten" betweell several german 

universities. I t  is funded by the German go\lernrnent.al institution "Deutsche Forschungsgemeinschaft" (DFG) under 
contract B a  722/3-3 "Effizient,e Verfahren zur logisclren Dednktion iiber Objekthanken". 
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of constraints controlling the configuration of modules, which could be based on the notion of a 
module's signature as proposed e.g. in [25] . 
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Abstract 

This paper discusses the mechanical transforma.tion of an unambiguous contest-free grainmar 
(CFG) into a definite-clause grammar (DCG)  using a finite set of examples, each of which is a 
pair (s, m), where s is  a sentence belonging to  the la.ngua,ge defined by the CFG and m is a 
semantic representation (meaning) of s. The resulting DCG would be such that  i t  could be exe- 
cuted t o  compute the semantics for every sentence of the original DCG. Our proposed approach 
is based upon two key assumptions: ( a )  the sema.ntic representation language is the simply-typed 
A-calculus, and (b) the semantic representation of a sent,ence is a, function (expressed in the typed 
A-calculus) of the semantic representations of its parts (compositionality). With these assumptions 
we show tha t  a higher-order DCG can be systematically constructed using a unification procedure 
for typed A-terms. The needed procedure differs from the one given by Huet in that  the types 
for variables are not completely known in a.dva,nce; aad it differs from the one used in AProlog in 
that  there is an  additional source of nondeterminism in enumerating projection substitutions. We 
believe that  such a system would simplify the task of building DCGs when the semantic represen- 
tation involved quantified terms, and could be a, useful tool for generating natural query language 
front-ends for various applications. 

The goal of this work is to  develop a systeln that, tvill take as input an unambiguous context-free 
g rammar  (CFG) and a finite set of pairs (s, 1 7 2 ) ~  where s is a sentence belonging to  the language 
defined by the CFG and nz is the serna.ntic representa,tion (meaning) of s, and will produce as 
output a definite clause grammar (DCC:) (Pereira and Warren 1980, Pereira and Shieber 1987) 
capable of computing the semantic representations for all sentences of the CFG. We envisage that 
the system would actually work interactively, by querying the user for the semantic representations 
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for a series of key sentences (which it determines according to  some scheme) and reporting back 
t o  the user the synthesized DCG after each sentence until the user accepts the DCG. In order 
t o  narrow the search space of possible solutions, we adopt the following two constraints: (1) the 
semantic representation language is the simply typed A-calculus; (2)  the semantic representation 
of a sentence is some function (expressed in the typed A-calculus) of the semantic representations of 
the phrases that  constitute the sentence ( compositionality). Under these assumptions we believe 
that ,  if there is a DCG satisfying the input pairs, it is possible t o  systematically search for it; if 
there is no solution, the search may sometimes be nonterminating. 

The motivation for our work steins from the fact that  it is not easy t o  manually modify a 
CFG t o  obtain a DCG especially when the sema,ntic representations involved quantified terms (as 
in natural languages). However, by the compositiona~lit,y principle, the semantic representation of 
a sentence can be systema.tically obtained from those of its constituent phrases. Hence, it seems 
feasible, in principle, t o  have the computer a.ssist a, human in the transition from a CFG t o  a DCG. 
A potential use of our proposed system is that it might facilitate rapid prototyping of natural- 
language interfaces t o  databases, since the interface could be obtained by defining the syntax along 
with typical input sentences and their semantic representa.tions. Our proposed use of the simply- 
typed A-calculus not only has precedent for natural 1a.ngua.ge semantics (Dowty et a1 81, Miller and 
Nadathur 86), the availability of a, unification procedure for simply-typed terms (Huet 75) allows 
us to  reduce the problem of generalization from esa.niples to a unification problem. However, as we 
shall see later, certain importa.nt chaages to Huet's procedure are needed in our context, since the 
types for variables are not conlpletely known in adva.nce. 

The remainder of this paper is structured as follows: section 2 outlines the synthesis procedure; 
section 3 briefly discusses aspects of the synthesis procedure, especially compositionality, termina- 
tion, multiple solutions, and types; section 4 illustrates the procedure with an example; and section 
5 presents the current status and prospects of this work and brief comments on closely related 
work. Familiarity with the typed A-calculus and Huet's unification procedure is assumed. 

2 Syntl~esis of DCGs froill CFGs and Exai~lples 

In the pseudo-code below, we assume, for simplicity of presentation, that  a CFG rule has either 
a single terminal on its rhs or a sequence of one or more nonterminals (in practice, we permit 
both terminals and nontermillals on the rhs). As in Prolog DCGs, nonterminals are identifiers 
beginning with a lowercase letter, and terminals are such identifiers surrounded by [ and 1. As in 
AProlog (Nadathur and Miller 88), (F X )  stands for function a.pplication and X\E stands for AX.E 
(A-abstraction). We assume that  application is left-associa.tive, i.e., (F  X Y) is short-hand for ( (F  
X) Y). The basic scheme is given below, the top-level procedure being SYNTH. 

Procedure SYNTH(G) 

The procedure SYNTH takes as input a CFC; and constructs a higher-order DCG after obtaining 
the semantic representations for salnple sentences interactively. 

1. Let G be an unambiguous CFG 11a.ving n rules. \vith sta.1.t symbol s. 
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2. Construct the higher-order DCG as follows: 

a. If the i-th CFG rule is a; --> bil . . . bikt, the 2-th DCG rule will be 

( v v l - - . v k i )  ai((Fi Vl-..~'li,),Q'k,+l) --> bil(Vl,Q'il), - a -  bik,(Vk,,~ik,), 

b. If the i-th CFG rule is a; --> [ t ] ,  the i-th DCG rule will be 

a;(F;,ail) --> [t]. 

For the sake of clarity, we maintain the types for the function variables Fl, . . . , F, explicitly: 
In 2a, the type of I< is a; and the type of Fi is ail -- . . . + a;k, + ~ ; ( k , + ~ ) .  It is important 
t o  note that  the function variables Fl, . . . , F,, as well as the type variables aij, i = 1,. . . , n, 
j = 1, . . . , k; are free varia.bles of the DCC;, i .e., they a.re not universally quantified like the 
variables Vi. 

3. Solve for the variables F; in the above DCC; as follows. 

E + 4; done + false; i - 1; 

WHILE not done DO 

a. Generate a set of new sentences .seZJ; 1 5 j 5 k;, for some finite ki (selection strategy for 
these sentences is omitted here). For ea.ch se,, , input from the user its semantic representation 
nij, a simply-typed term of type t;,  . 

b. Execute the goal s ( M ,  tij, se;,, [ I ) ,  1 5 j 5 k;, using the constructed DCG of step 2. For 
each se;j, let m;j, 1 < j < bi, be the computed a,nswer for variable hl. 

c. E +  E U { m i j  = n i j  : 1 5  j < b; ) .  

d. Call SOLVE( E), whose definition is given below. If successful, SOLVE nondetermin- 
istically returns one of the multiple masilllally general unifiers which are possible. Assign 
done c true if either unification fails? or unifica.tion succeeds and all sentences of the CFG 
have been enumerated, or unification succeeds a.nd the user accepts the resulting DCG after 
replacing all variables F; in the DCG of step 2 according to  one of the unifiers of E and 
reducing all A-terms to their normal forms. 

END WHILE 

4. If unification failed in step 3d, print "no solution", else print the DClG found. 

Procedure SOLVE(E) 

Procedure SOLVE tries to  solve the set of higher-order equa.tions E by attempting to  find substi- 
tutions for the free function variables occurring in E. 

1. E t E ;  F +- {F;  : i = 1 . .  . I > ) :  LT - o ( the  empty substitution) 
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2. WHILE E # 4 D O  

a. Select equation e = (el,  e2) from E, and call SUBST(e)-note that  el is flexible and ez 
is rigid. If S U B S T  succeeds, it returns a substitution term t for the variable V a t  the head 
position of el. (Definition is S U B S T  is given below.) 

b. a t a{(V,t)) (composition of substitutions); E - E a .  Reduce all terms in E and c to  
their normal form. 

c. E c D E C O M P ( E )  (definition of DECOMP is discussed below). 

END WHILE 

3. Return a J. F (the restriction of a to the va.ria.bles F). 

Procedure S U B S T ( e )  

Let e = (el,  e2)', where 

and the (simple) type of @ is completely known, say b1 - . . . - 6, - /.?, but the type o f f  may not 
be completely known-only the number of arguments of f would in general be known. Procedure 
S U B S T  nondeterministically selects and returns an imi tat ion or a projection substitution for the 
head of el,  provided that  the appropriate type constraints are met. 

Im i ta t ion  substitution: applicable only if @ is a constant 
f + Awl . . . Xwp.(@ (hl  2 / 7 1  . . . lop) . . . ( h g  I L ' ~  . . . z i j p ) ) ,  where the type of w, is y,, provided 
the type of f can be unified with yl - . . . - 3p - P .  Each new function variable h, is 
assigned a type yl - . . . -- y, - 6,. for i = 1.. . ..(I. 

Project ion substitutions: 
f + Awl . . . Xtop.(wi (h l  wl . . . top) . . . ( h ,  ,1111 . . . top)), for ea.ch 1 5 i 5 p, provided the 
type (7;) of wi can be unified wit,h €1 - . . . - 61 - 13, and the type of f can be unified with 
71 + ... -+ Yp p. Each new function variable h ,  is assigned a. type yl - . . . - yp -+ c,, 
for i = 1,. . .,1. 

While only one imitation substitution is possible, for projection substitutions, there is nondeter- 
minism in the choice of wi a.s well as the choice of number of arguments, 1. The latter arises because 
the type y; of w; may not be completely kno1~11. 

'If e l  has fewer prefix variables than e z ,  we assunLe ( 1  is g-espantletl so 1.11at. they have the same number ol prefix 
variables. If i t  has  more prefix variables than of c.2 ,  t.lre11 t11el.t. is no unifying subst.itutioll. 
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Procedure DECOMP(E) 

E is a set of equations (or disagreement pairs). This procedure is similar to  Huet's SIMPL (Huet 
1975), except tha t  the types of function variables are determined as the structure of the terms is 
recursively traversed. We omit presenting the details of this type propagation in this paper, since 
the needed procedure is similar to  that  used in XProlog. Note that  the right-hand sides of all 
equations will be closed terms, with known (simple) types, hence this procedure plays a crucial role 
in propagating type information. 

3 Discussion of the Synthesis Technique 

We clarify several facets of the synthesis procedure just described 

1. Compositionality: The compositionality principle is espressed in step 2 of procedure S Y N T H  
by assuming that ,  in a CFG rule a - -> b1 . . .6k, the meaning of the nonterminal a is some 
function F of the meanings of the nonterlninals bl . . . b k ,  where F is expressible in the typed 
A-calculus. When terminal symbols are present along with one or more nonterminals on the 
rhs of a rule, our methodology assumes that  the meaning is independent of these terminal 
symbols; if the semantics of any such terminal [t]  is to  be taken into account, it should be 
replaced by a new nonterminal 7 1 ,  and a new rule 71 --> [ t ]  added to the CFG. 

2. Tgpes: One of the crucial issues in this synthesis is the determination of types for the free 
function variables. The lack of complete kiiowledge of these types in advance marks an 
important point of departure from Huet's procedure. While the unification procedure of 
XProlog must also work with polylnorphic types, a crucial difference in our work is that  there 
is an  additional source of nondeterlninism in procedure S U B S T  in enumerating projection 
substitutions. In practice, the needed types tend not to be very complex, and therefore the 
additional nondeterminism may not be a practical problem. Furthermore, since large DCGs 
would be synthesized in a modular fashion, the number of unknown variables processed could 
be kept reasonably small. It seenls very reasonable to  restrict the user-supplied semantic 
representations to closed A-terms, in \vhich case we only need a rnatchirtg procedure, rather 
than a unification procedure. When it is known that  terms are of second-order type, we have 
the pleasant property that  there is a finite matching algorithm (Huet and Lang 78). Recently, 
even third-order matching was also shown to  be decidable (Dowek 92), although this decision 
procedure cannot be directly used to generate matching substitions. 

2. Termination: In step 3 of S Y N T H ,  we increinentally generate a set of equations, where each 
equation relates the user's chosen semantic representation for a sentence and the semantic 
representation that  would be derived from the higher-order DCG for this sentence. There are 
three possible outcomes in solving these equations: failure, success, and nonterrnination. In 
case of failure, there is no higher-order DC'C; satisfying the given semantic representations. 
In case of successful unification and if tlie C(FG generates a finite language, then successful 
termination is achieved when all senterlces have been enumerated. Since the unification 
procedure is only recursively enumerable. tlie search m a  sometimes proceed indefinitely 
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when there is no solution. If we restricted a.ttention to matching, our problem would reduce 
t o  general higher-order matching (beyond order 3) ,  whose decidability is still unknown. 

3 .  Multiple Solutions: Since the unification of typed A-terms could result in multiple maximally 
general unifiers (i.e., most general unifiers do not always exist), multiple DCG solutions are 
possible a t  any stage. We are currently examining criteria that  the sample sentences must 
satisfy so that  a unique solution is produced, in the sense that  the DCGs corresponding t o  
all other solutions exhibit the sa,me input/output behavior. 

4 Example 

We illustrate the synthesis by "stepping through" procedure SYNTH for a very simple example. 
For readability, we indicate the types only select,ively in this derivation. 

(Step 1.) Assume the CFG is as follows: 

s --> pn, iv. 
pn --> [shrdlu] . 
pn --> [eliza] . 
iv --> [runs]. 
iv --> [halts] . 

(Step 2.) The DCG resulting from step 2 would be a.s follows: 

s((F1 A B)) --> pn(A), i v ( B )  . 
pn(F2) --> [shrdlu] . 
pn(F3) --> [elizal. 
iv(F4) --> [runs]. 
iv(F5) --> [halts]. 

(Step 3a.) Using the CFG from step 1, the system genera.tes the following sample sentences: 
[shrdlu,runs], [eliza,runsl, a.nd [shrdlu, halts], for which the user provides the correspond- 
ing semantic representations: (run shrdlu). (run eliza), and (halt shrdlu), where  run) 
= i -+ o, r(ha1t) = i i o, ~(shrdlu) = i, and ~(eliza) = i .  
(Step 3b.) Executing ea.ch of these sentences on the enhanced CFG (step 2 ) ,  the following terms 
are obtained: (F1 F2 F4), (F1 F3 F4), and (F1 F2 F5). 
(Step 3c.) We obtain the following set of higher-order equations: 

((Fl F2 F4) = (run shrdlu), 
(F1 F3 F4) = (run eliza), 
(F1 F2 F5) = (halt shrdlu)) 

(Step 3d.) The a.bove equation-set is pa.ssed on to procedure SOLVE, which in turn calls SUBST 
to  obtain a substitution for F1, since F 1  is a.t the I1ea.d position of the first equation-assumed to  
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be the chosen equation. There is only one applica.ble imitation substitution, K\L\  ( run (HI K L) ) , 
since F i  has two arguments and run has one argument. However, this substitution fails t o  satisfy 
the third equation. Hence, a projection substitution must be chosen. Since the type of Fi  is 
a1 --t a2 + o, the projection substitution must take two arguments. The simplest projection 
substitutions in this case would be K\L \L  or K\L\K, both of which would eventually lead to  failure. 
The substitution that  eventually succeeds is: 

F1 <- K\L\ (L (Hi K L)) 

Replacing all occurrences of F1 in the above equa.tions with its substitution and simplifying 
those terms using the A-conversion rules leads t,o the following set of equations: 

( ( ~ 4  (Hi F2 F4) = (run s h r d l u ) ,  
(F4 (HI F3 F4)) = (run e l i z a )  , 
(F5 (HI F2 F5)) = ( h a l t  shrdlu)} 

DECOMP has no effect in this case since the 1lea.d~ of all left-hand side terms are flexible. However, 
as a result of the type const,radilts t,llat. come wit.11 t,lle slibst,it~ution term for F1, the type of F4, 
namely, 0 2 ,  is unified with a.3 - o, which in turn insta.ntiates the type of F1 to  crl - (03 -+ o) --t o. 

Now F4 is the  head of the first ecluation and SUBST is called t o  provide a substitution for i t .  
Since the type of F4 is as -- o, the following imita,tion substitution is applicable: 

F4 <- K\  (run (H2 K)) 

The type constraints that  come with this substitution term imply that  the type of the argument 
(H2 K) of run is the same as tlze type of the corresponding argument of run in the right-hand side 
terms, namely i. 

Replacing all occurrences of F4 by its substitution aad reducing all terms to their normal form 
results in the following set of equations: 

((run (H2 (Hi F2 K\(run (H2 K))) 1) = (run s h r d l u ) ,  
(run (H2 (Hi F3 K\(run (H2 K))) 1) = (run e l i z a )  , 
(F5 (Hi F2 F5)) = ( h a l t  shrd lu) )  

Applying DECOMP to the above equation set we get: 

((H2 (Hi F2 K\(run (H2 K))))  = sh rd lu ,  
(H2 (Hi F3 K\(run (H2 K))))  = e l i z a ,  
(F5 (HI F2 F5)) = ( h a l t  shrd lu) )  

Next, SUBST may choose projection substitution K \ K  for H2 which transforms the e q u a t i o ~ ~ s  
to: 

((HI F2 run)  = sh rd lu ,  
(HI F3 run) = e l i z a ,  
(F5 (Hi F2 F5)) = ( h a l t  sh rd lu ) )  
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Again, DECOMP has no effect and we proceed to the nest iteration of SOLVE. The next sub- 
stitution chosen by SUBST should be the projection substitution K \ L \ K  for HI, which would 
yield: 

CF2 = sh rd lu ,  
F3 = e l i z a ,  
(F5 F2) = ( h a l t  shrd lu) )  

This implies tha t  both F2 and F3  are of type i, which implies H 1  is of type i + ( i  -, o) + i. This in 
turn instantiates the type of H2 to  i + i, and the type of F4 t o  i -, o. Therefore, F1 will have 
type i + ( i  -+ o) -. o. The obvious choice for F2 ant1 F3 now is shrdlu and e l i z a ,  respectively, 
which leaves only one equation: 

C(F5 shrd lu)  = ( h a l t  shrd lu) )  

The type of F5 is easily inferred to be i - o. F5 will be replaced by K \  ( h a l t  (H3 K)) : 

C(H3 shrd lu)  = ( shrd lu) )  

The projection substitution K \ K  for H3 completes the deriva.tion. The final substitutions with 
their types are: 

F1: ( i  + ( i  + o) + o) = K\L\(L K) 
F4: ( i  + o) = run 
H2: ( i  + i )  = K \ K  
H I :  ( i  --+ (i + o) i i )  = K \ L \ K  
F2: i = shrd lu  
F3: i = e l i z a  
F5: ( i  4 o) = h a l t  
H 3 :  ( i  + o) = K \ K  

(Step 4.) Substituting these in the grammar from step 2 yields the following higher-order DCG: 

s((K\L\(L K) A B)) - ->  pn(A), iv (B) .  
pn(shrd1u) --> [shrdlul . 
pn(e1iza) --> Celizal . 
iv(run1 - -> [runs]. 
iv (ha1t )  --> [ha l t s ]  . 

5 Status and Further Work 

An implementation of our sy~lthesis procedure ha.s been completed. Using this implementation, we 
have successfully synthesized larger DCGs tllan the one shown in this paper, and we are examining 
the synthc ..is of a DCG for the 11atural query 1angua.ge of C:ha.t-80 (Warren and Pereira 1982). There 
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are several interesting theoretical and practical issues that we have not addressed here: enumeration 
order for sample sentences and their effect on the synthesis; methodology for writing grammars and 
semantic representations so that  solutions can be efficiently found; constraints from different types 
of grammars and semantic representations; efficient implementation of higher-order matching and 
search control; and partial execution of the higher-order DCG, to  convert i t  into a first-order DCG 
for more efficient execution-we have explored this topic to  some extent in (Haas 93). 

The techniques needed t o  develop our proposed system can also lead to  a new approach to  
machine learning as well as program synthesis from examples, by combining higher-order unification 
with learning from examples. The recent work of Hagiya (Hagiya 90, Hagiya 91) represents an 
interesting step in this direction. Finally, we note that  i t  appears possible t o  augment the input 
CFG with parameters t11a.t specify contest sensitive fea.tures such a.s llumber and gender agreement, 
without affecting the scheme described in this paper. The restriction to unambiguous CFGs is 
also not an absolute requirement, a.nd it a.ppears possible to extend our approach to ambiguous 
grammars, which is crucial for general na.tural 1angua.ge a.pplications. 
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1 Abstract 

Finding the most specific generalization of first-order terins is well understood, but the generaliza- 
tion of higher-order terms remains unsolved. We provide a framework for the second-order case 
by using a categorical structure for terms and identifying a class of useful generalizations called 
relevant generalizations. We show that con~plete sets of masimally specific generalizations exist 
and are computable. Such generalizations have an important application for proof modification in 
automated proof systems. 

2 Introduction 

Automated proof development systems, including program verification systems, program construc- 
tion systems, and program transformation systems [4, 10, 2, 151 face the problem of how to incor- 
porate modifications. Having constructed a proof for a theorem (or, a program for a specification) 
as a combination of manual and automated effort, we would certainly not wish to  redo the entire 
effort when the theorem is slightly modified. There is no great damage in redoing the automated 
part of the proof, but redoing the manual part of the proof manually could be too cumbersome. 
An ideal automated system should be able to compare the old and new theorems, keep track of the 
differences, and apply the steps of the old proof to the new theorem as long as they are applicable. 
We call such a system a replay system. 

A fundamental problem in building replay systems is drawing analogies between the old and 
new theorems. The problem can be restated in terms of anti-unification [14, 161. Given two terms 
t and u,  find the most specific generalization g of the two terms together with the attendant 
substitutions 6 : g --t t and a : g - u. The triple (g,B,o), called the anti-unifier of t and u, 
contains the information necessary to relate the subterms o f t  and u. 

If t and u are first-order terms, their first-order anti-unifier can be computed using well-known 
techniques [14, 16, 81. However. in modern proof systems the formulas and terms involved are 
higher-order [7, 11, 10, 41. Secondly, even if the terms are first-order, the first-order anti-unifier 
does not contain enough infornlation to  relate all corresponding subterms. For instance, if a formula 
A is replaced by a conjunction A A B, the first-order anti-unifier gives the trivial generalization x ,  
loosing the information that A appears in both the formulas. Another common modification often 
made is to  add parameters to functions and predicates. However, the first-order anti-unifier of f(t) 

'The work by Hasker was supported in part h!~ a grant from Motorola Gorp 
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and g( t ,  u )  is again trivial. Thus, higher-order generalization is necessary t o  compute analogies in 
a replay system. 

Surprisingly, even though the first-order anti-unification algorithms has been known since [14, 
161, its higher-order counterpart does not seem t o  have received attention. Recently, [12] gave 
an algorithm for anti-unifiers for a special class of terms called patterns (terms restricted so that 
only abstraction variables can appea.r as arguments of a free variable), but the general case is yet 
unsolved. The pattern restriction precludes using such anti-unifiers in replay systems because it 
generates nearly the same anti-unifier as in the first-order case. In fact, the difficulties in generalizing 
higher-order terms while allowing for common subterms are considerable. While first-order terms 
form a complete lattice with unifiers a.s infs a.nd a.nti-unifiers as sups, higher-order terms do not 
even posses infs. Huet's [8] "algorithm" computes a, complete set of minimal unifiers, but the set 
can be infinite. For the opposite direction of upper bounds, we show that  complete sets do not 
exist, in general. In fact, we believe that  the na:ive notion of "more general than" used in the 
first-order case is not meaningful for higher-order terms. 

In this paper, we consider the problem of generalization restricted to second-order terms. We 
define the notion of generality using a categorical fra.mework with substitutions as morphisms be- 
tween terms. Complete sets of generaliza.tions do not exist even in this setting, but we note that this 
is due to  certain trivial generalizations. By restricting a.ttention to nontrivial generalizations (called 
relevant generalizations), we find that  conlplete sets exist and have interesting properties. We also 
show that  the complete sets are conlputable and give a semi- practical algorithm for computing 
them. 

3 Notation 

We will generalize simply-typed A-terms [3]. If C = U,C, is the set of constants and 11 = M,V, the 
variables, then a term is well-typed if it is consistent with the rules 

We use the convention that  constants are set in t y p e  and va,riables in italics. We assume all terms 
are well-typed. 

The order of a type T is defined as 

The order of a term is just the order of its type. I11 this paper, we assume all terms are first or 
second-order, so all constailts are in CSeD ,,,,,, D,, and all variables in \ID, ,,,,, D ~ ,  for n ,  nz 2 1. 

1% assume the usual a, 0, and 11 conversion rules. All equivalences between A-terms and 
substitutions over A-terms are assunled to  be modulo A-conversion. Application associates to the 
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left and -t t o  the right; parentheses are often dropped when they are not needed. By the Church- 
Rosser and strong normalization properties of typed A-calculus (see, e.g, [5]), every term of type 
Dl + . . . 4 D, + D,+l can be written in the form2 

where each x; is distinct, h E C, U If,, and each ui is in norinal form. We call h the head and T i  

the arguments. Following [8], we say that  a term is flexible if its head is a free variable and rigid 
otherwise ( i . e ,  if it is a constant or a bound variable). We will abbreviate terms in normal form 
as Ax1 . . x,.h(ul,. . . , u,) or even as A G . h ( G )  where denotes the sequence X I , .  . . , x,. If n is 
0, then x, is the empty sequence, and if IL is arbitra.ry (but finite) we denote the sequence as just 
T. The identity function Ax.x is a.bbreviated as T and the general projection function A z . x k  as 
x;. The set of free variables in the term t is 3 V ( f ) ,  and the set of bound variables is BV(t). The 
context of u in t is denoted t[u] or alterna.tively a.s t[a. - u] if its position is relevant. 

A substitution 8 is a finite map from varia.bles to  type-equivalent terms with the domain de- 
noted as dom(8) and free variables in the range a.s rarz(8). Oid  denotes the identity substitution. 
Application of 0 onto term t is variously denoted by 8(t) and 8 : t - u (where u = O(t)). The 
composition of two substitutions is defined as 0 o o = At.O(a(t)). To make substitutions easier to  
read, we will often leave the variables being bound implicit: if the substitution 0 is being applied 
to  term U, we may write i t  as [O(xl), . . . , 8 ( ~ , ) ]  where (x l ,  . . . , x,) are the free variables listed in 
the order they occur when reading u, from left to  right. 

4 The  category of generalizations 

First-order generalizations can be compared using the preorder ,u 5 u 30.0 : v + u. This 
ordering is adequate because the substitution is unique. but in the higher-order case it often is not. 
Category theory provides a framework which supports distinguishing between substitutions. 

In this section we examine the category of terms show that  it is inadequate. This leads to  the 
category of generalizations and a discussioll of its ina,decluacies. 

Definition 4.1 Given a type T, the category T, has as objects terms of type T.  The arrows of 
T, are given by substitutions 8 : t - n sl~ch tha.t do177.(8) = FV( t ) ,  ran(8) = 3V(u) ,  and O(t) = u. 
The composition is substitution composition a.nd the identity arrows are identity substitutions. 

We often leave the type subscript T implicit. %'hen 6 : 1 - u we say that t is more genernl than u 
(or conversely, u is more specific than t ) .  But, 8 iildica,tes in what way t is more general than u. 
For first-order terms, T is a preorder; i .e,  there is a t  most one substitution between any two terms. 
For second-order terms, this is not the case: for example, 

[Xx.g(x, a ) ]  and [Xx.g(x, x)]  : f a  - g(a ,  a )  

Tha t  is, for the second order case, a term ma,y genera,lize another in multiple ways. This is the 
motivation for considering categories instea,d of preordess. 

'Note that such forms are in normal form with respect to /j, but not 7.  
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Definition 4.2 
substitutions 8 : 
a substitution p 

If a E T is a term, the category G(a)-of generalizations of a-has as its objects 
t -+ a for t E T. A (generalization) morphisrn p : ($1 : tl  -, a )  + ($2 : t2 -+ a )  is 
: t l  i t2 such that  the following tria.ngle commutes: 

(G(a)  is often called the "slice category" T , / ~ L . ) ~  

This definition can be extended to  generalizations of multiple terms. We show the binary case: 

Definition 4.3 If a l ,a2  E T ,  the category G ( n l . n z )  has as its objects pairs of substitutions 
(el : t + a l ,  82 : t - a 2 )  A morphisrn 

is a substitution p : t + u that  is a genera1iza.tion morpllislll in both G ( u l )  and G(a2) .  That  is, 
the following diagram commutes: 

As an aside, note that  G ( a l , a 2 )  is the pullba.cli G(cil) X T  G ( a 2 )  in Cat. That  is, if src is the 
forgetful functor, the dia,gram 

commutes. 

3Note that  T, can itself be treated as a slice category T y p e / r  where T y p e  is the category of types [9, 61 
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Examples 4.4 The following examples illustrate that  generalizations which include common sub- 
terms are more specific: 

Dc - h c  [El - EC 

Z 

These generalizations are not isomorphic because the only substitution from hc t o  x ,  {h H Xy.x), 
is not a generalization morphism. In comparison, [12] disallows the more specific of the two gener- 
alizations because hc is not a valid pa,ttern. The only generaliza.tion meeting the pattern restriction 
is ([Dc] : x H Dc, [Ec] : x H EC), thus patterns do not capture common subterms. 

These are not isomorphic because there is no substitution from Ax. f(~(x), ~ ( x ) )  to  Xx.g(~(x),  x). 

>.p(xl v Q(x)  Xx.P(x) r\ Q 2) An:. f(P(n:). P(nb)) 
1 

Examples 4.5 I t  is also instructive to  esa.mine generalizations which are unrelated by morphisms. 
The first illustrates that  for two generaliza.tions to  be related, subterms must be used consistently: 

[ X Y - ' . ~  A Q(z)] 

[Xx.D(x,b)] : f a  - D(a. b )  and [ X X . D ( ~ , ; ~ ) ]  : yb - D(a,b) 

[Ayz.f(y, Q ( z )  
[A?/,-.$ V Q(z)] 

These are unrelated because any genera.liza.tion morphism would have to eliminate the a (from 
f a )  or b (from gb). The second example illustra.tes that  different substitutions give rise to  unique 
generalizations: 

[Xxy.E(z,x,y)] : A Z . ~ ( Z ,  2) - XZ.E(Z, 2, Z) 

[Xxy.E(y,x,x)] : At.y(z, z )  - Az.E(z,:,r) 

These are unrelated because the substitutiolls project distinct a.rguments. 

Two generalizations yl a.nd g2 a.re is0172or11hic, written gl E gz, if there are p : g, -+ g2 and 
pop : g2 -+ g1 such that  p 0 pop = did = pop o p. We can show that iso~norphisms are renarnings. 

Definition 4.6 ([12]) 8 is a rennmii2g i f f  for all f E (lonl(8), B( f )  = X ~ . h ( 7 )  where h is a variable 
and 7 is a permutation of T .  

Lemma 4.7 gl 2 g2 by p : gl - g2 and p,, : gz - g1 i f f  p aad p,p are rena.mings. 

This follows from the observa.t~ion t,ha.t whenever H ( a ( f ) )  = f  and  a( f )  = k . t ,  1 must be flexible 
and all xi E T occur in t .  
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Observation 4.8 ([a] : f i a) is initial in G ( n ) .  

This is because there is only one substitution between AT. f(T) and any term. Since Bid is a left 
identity, 

Observation 4.9 did : a + a is terminal in G(a). 

However, the morphisms of G ( a )  are not a1wa.y~ unique: 

Example 4.10 

Another difficulty is that  G is not well-behaved with respect to maximal objects. Ideally, the 
maximally specific generalizations of ally two terms c1 and b would be the maximal objects of G ( a ,  b ) .  
However, the maximal objects are often undefined. The following examples show that  the sources 
of maximal objects have unbounded depth and width. We also show that  the arbitrarily large terms 
are not isomorphic to  smaller terms, thus defining lnasinlal objects up to an isomorphism would 
not be sufficient. 

Example 4.11 Consider G(Da,Eb), where (1 aad 6 are arbitrary terms: 

~ ( c L ,  I ) )  

Note that  the two generalizations are not isomorphic because there is no generalization morphism 
in the opposite direction. If p was such a. morpllism. then h e a d ( p ( f ) )  = h or p( f) = K ,  but neither 
choice allows both sides t o  conlmute simultaneously. Similarly? g can be mapped to  f' o g' and so 
on. A generalization morphism in the opposite direction call be found after a few repetitions of the 
pattern, but the generalizations remain nonisomorphic. 

Example 4.12 G ( c ,  d) contains 

1 

[Xxyz. f(s .  y)] [/\xy.g(~.g:e)] 

1 
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Again, these are not isomorphic. This example can also be generalized to  an arbitrary number of 
subterms in place of e. A similar situation occurs when bound variables are repeated arbitrarily 
often: 

Example 4.13 G(Xx.Dx, Xx.Ex) contains 

5 Relevant generalizations 

These examples show that  while G may be more a suitable category in which to find maximal 
generalizations than T, it is not ideal. We can improve on G by restricting attention to  only those 
generalizations which are relevant, where relevance means that  each subterm is useful in forming 
the generalization. In particular, the following definitions permit variables only when they are 
necessary and permit rigid subterms only when they are actually used. 

Example 4.11 suggests disallowing nested flexible subterms. We use the following definitions: 

Definition 5.1 A generalization 9 : t -+ a is said t o  be redundant if t has a subterm of the form 
f (. . . , g ( .  . .), . . .) and O( f )  # f or % ( g )  # g.  Mre say t11a.t a gesieralization is condensed if it is not 
redundant. 

A variable in a condensed generaliza.tion must occur either a,t the outermost position or as an 
argument of a consta.nt. This bounds the depth of t,erms. 

Examples 4.12 and 4.13 illustrate that  we must limit the number of tiines subterms can appear. 
The solution is t o  disallow most substitutions which elimina.te subterms. 

Definition 5.2 A substitution 9 : t [ f ( ? i ) ]  - n is said to elinzi~znte uk if %( f )  = XT.M and xk does 
not occur in M. 

Tha t  is, a subterm of f ( ~ )  is eliminated if #( f )  is illdependent of the corresponding abstraction. 
This is a generalization of the definition of elilninabion introduced in [13]. 

Definition 5.3 A subterm ,uk of t [ W ( z ) ]  is rr~~el ir~t irrrrble  if  

ii. uk E B V ( t )  and uk = ,up for k' # k .  

Definition 5.4 A generalization 19 : t - (L in G ( a )  is cluttered if  for solrle f E cloni(%), %( f )  
eliminates an  uneliminable subterm. 
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By disallowing cluttered generalizations, we bound the width of terms. However, some general- 
izations which eliminate bound variables are allowed so that Xxy.x and Xxy.y can be generalized 

(using X X Y . ~  (3,  Y)). 

Definition 5.5 A generalization g E G ( u )  is said t o  be relevcinl if i t  is condensed and not cluttered. 
Let R ( a )  be the full subcategory of G(a) consisting of relevant generalizations. Similarly, let R ( a ,  6) 
be the full subcategory of G(a ,  b) consisting of pairs of relevant generalizations. 

Examples 5.6 The following generalizations are irrelevcint: 

This is redundant because of the 

Xz. f ( y ( s ) )  

append(x, 1) cons(x. 1) 

\ ,L This is cluttered because the sub- 

[Xz.append(x, l ) ]  term cons(x,  1 )  is not eliminable. 

Xx.zerop(x) Az.z = .u 

This is cluttered because x is not 
elimina.ble. 

Ax. f ( x ,  z )  

If we ignore renamings, 

Lemma 5.7 R ( a )  is finite. 

This is because the number of consta.nts is limited by the size of CL, which limits the number of free 
variables (since each must be separa.ted by a consta.nt), and the suill of the two limits the number 
of bound variables. Since R ( a ,  b) conta.ins only pairs of object,s from both R(a) and R(6) ,  

Corollary 5.8 R ( a ,  b )  is finite. 

Since the most specific generalization ma.y not be unique, we define the set of maximally specific 
generalizations: 

Definition 5.9  MSG(a, b)  is the 1ea.st set of genera1iza.tions in R(n, b )  such that  Vg E R(a, b), 39' E 
MSG(a, b) such that  g -- y' (up  to  an isoniorphism). 
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Note that  the least set exists because if g -+ g i  a.nd g - gi where g{ * gi ,  then 9; and 9; are 

isomorphic by Lemma 4.7. 

Examples 5.10 Some maximal (relevant) generalizations: 

[nodes] \ [ f r inge]  / 
Xx.len( f (x)) 

This is maximally specific 
because l e n  is the only 
common constant. 

sqr( s q r (  2 1) 
/ This illustrates how mul- 

tiple maximal objects can 
a.rise when there are dif- 
ferent possible pairings. 

XX.X f x f C(2)  
As.x - C(2) * r - C(2) Different ways of instan- 

tiating can also lead to  
multiple generalizations. 

[Xabc.a + b \ + c] / [ X U ~ C . R - c * b - C ( 2 ) ]  or Note that  there are more 
.~ '=b-C]  genera.lizations as well. 

5.1 Properties of R 

G is not a preorder because its morpllisins are not always unique. In this section, we show that 
R is a preorder. This property is interesting in itself and also helps in showing the correctness of 
our algorithm to  compute the co~nplete set of rrlost specific generalizations. All the results of this 
section extend t o  the binary case (and multiple term cases) because the morphisms of R ( a ,  6 )  are 
a subset of the morphisms of R(a) and R(b). 

I.,emma 5-11 Whenever g l ,  g2 E R(cL) and p : yl - ya. p : s r c ( g l )  - s r c ( g 2 )  is relevant. 

Proof Let gl be 81 : t l  - a and yz be 02 : t a  - a.  If p : t1 - t 2  is not relevant, p eliminates a 
subterm w of t l .  But then O2 o p eliminates ,w; this contradicts O2 o p = O1. 

Theorem 5.12 R(a) is a preorder. 
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We need t o  show that  there is a t  most one morphism between any two general i~at ions .~  Consider 
the commutative diagram 

u 
u - a 

t [ f  
in R(a) and let f ( m )  be the outermost subtern1 o f t  such that  f  is a free variable and p l (  f )  # p2( f ) .  
Observe that  since pl : t i u and p2 : t - u a.re relevant, there is at  least one occurrence of pl(  f (F)) 
and pa( f ( ~ ) )  in u. Also observe that this occurrence nlust be the same for both pl and p2 since 
f  is the outermost variable for which pl a.nd p2 differ. Call this occurrence u'. The key lemma for 
showing that  f  does not exist is 

Lemma 5.13 If p l ( f )  = n l ,  then p2( f )  = T:. 

Proof Since pl : t + u is relevant, ea.ch 7Ti other thail ,w; rrlust be elixnina.ble, so they are all 
projections different from each other and different from w,. Tlzere are three cases: 

1. h e a d ( w ; )  is a constant: w; is uneliminable, so p2( f )  = T:. 

2. h e a d ( w i )  is  a free variable: this case is iillpossible because pl : t + a is condensed. 

3. w ;  E B V ( t ) :  u' = w ; ,  so since there is no other .to, = w;,  pz( f )  = T:. 

This along with the existence of a u' = pl (  f ( E ) )  gives us 

Lemma 5.14 h e a d ( p l (  f  ) )  = h e a d ( p 2 (  f  ) ) .  

Proof of 5.12 We show pl (  f )  = p2( f  ). Suppose pl(  f )  = X Z . I < ( ~ )  for some constant K. Then 
p 2 ( f )  is X f . l i ( 7 )  by Lemma 5.14, and we use induction on the depth of substitutions (using a 
multiset ordering) to  show = by constructing the conlnlutative diagram 

'Note that renamings are not allowed 
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in R(a) such that  pl = pi o 4 and pa = p; o d. The followi~lg function is used to  ensure Or : v -+ a 
is relevant: 

Definition 5.15 

projected(K, t )  = 
the (xj,, . .. ,xjA) such t11a.t each xj, E {K), all jk < jk+l, and xj, occurs in t 

Then let 

e ( f )  = X5,.li-(B) 

v; = pr~.jecterl(:c,,~ ill; ) U pro.jectecl(:c,, N ; )  

4 = {f + X%.Ii( l~l(l / l )  . . . . ,  h7,z(l/rlz))} 

= P I \  f U { h l + X ~ . A d l  . . . . , h m ~ X ~ m . M m }  

pi = pz \ f U {hl +- Xul.Kl,.  .. , h,, Xv,.N,} 

8' = O \  ~ U { I Z ~ + X I / ~ . P ~ ,  . . . , h m m X ~ m . P m )  

(where each h, is a free va.riable occurring nowhere else). Note tlla,t projected(%, Pi) must be a 
subsequence of v; since a cannot introduce a.bstractions. Furthermore, if N ;  eliminates xj in v;, 
then wj is eliminable. This is because if z j  does not appear in N ; ,  it must be eliminated by a from 
Mi, so i t  must be in the scope of a free variable f r '  in Mi. Since a : u i a is uncluttered and wj is 
eliminated by a (  f"), w j  must be eliininable. Thus Of : a - a is relevant and we can use induction 

to  show p i ( f  ) = p:(f 1. 
A similar argument is used when the hea.d of both pl( f )  and p2( f )  is a free variable, g, except 

that  the details must be modified to  ensure Or : v - (L is condensed. Observe that  the arguments t o g  
must be rigid terms (unless p l ( f )  = f a.nd p l (g )  = y, in which case p2( f )  = f and p2(g) = g because - 
p2 : v -, t~ is relevant). Thus p l ( f )  = XK.y(~l1,) and p2( f )  = X2n.y(%) where Mi = G,(=) 
and N ;  = Ha(=). We first show t11a.t for ea.ch k, H k  = Gk. Since a o p1 = 6 = a o p2, 
o(g o (. . . , Gk, . . .)) = o ( g  o (. . . , HI,.  . . .))  and so ~ ( G ' I , )  = a( H k ) .  Thus Gk = Hk since both are 
rigid. 

We use induction t o  show t1la.t the rest of p l (  f )  aad p2( f )  are the same. Assuming O( f )  is 
%.g(Hl(r;,l,. . ., r;,p,), . . ., H r n ( ~ & , ~ ,  - - . * r ;  L,T>,,, 11, let 

v; j = projected(%, r , , )  U projected(%, st,, ) 

(b = {f ~ T L . ~ ( H l ( ~ ~ l . l ( ~ ~ l . l ) , .  . a  , ~ ~ ~ l , p l ( ~ l , ~ l  1 ) )  - . * ,  

IFJm(flnz.1(1/m.l 1 . .  . .  . hm,pm(~m,p,)))} 

P: = PI \ f U { l ~ l , l  +- X ~ / l . l . ~ ~ l . l . .  . . . l~nL,p", + Xl/,,pm.l.m,p,} 
= ~2 \ f U (f~1.1 +- Xl/l.l.*l,13 . . . . hnz,p,, + Xvmrprn .sm,pm I 

v = + ( t )  
Or = 8 \ f U { h l , ~  + X1/1.1.~~,,,,-. . . : hm.p,,, +- X ~ m , p , , . ~ ~ , p , )  

Again pi  = p; by induction, heilce pl = p2. 
Since morphisms are unique a.nd # id  is a morpliisnl from any generalization to itself, 
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Corollary 5.16 R ( a )  is a partial order. 

This allows us t o  introduce the following notation: 

Definition 5.17 Whenever gl + g2 is in R(a ) ,  we say gl is less specific (or, equivalently, more 
general) than g2. This is written as yl 5 g2 .  Furthermore, we write gl < g2 if g2 4 gl  is not in 

R ( a ) -  

6 Computing MSG 

R(a ,  b) is finite, so since second-order ma.tching is decida.ble a.nd A-terms are recursively enumerable, 
we can compute MSG(a, 6) by generating R ( a ,  6) and comparing all its objects against each other. 
Thus, MSG(a, b) is computable, albeit inefficiently. A illore practical algorithm is suggested by the 
observation tha t  when the substitutions contain a. common subterm, then they can be made more 
specific by factoring out the common term. 

The steps for specializing generalizatioils of (L a.nd b are given by the following rewrite relation 
-. The algorithm is restricted to  generalizing ground terms; non-ground terms can be handled 
by L'freezing" the variables; that  is, repla.cing tlle~ri by unique constants. The - steps maintain 
the invariants 

C I 1  : t 7 C1 

d 2 : t - b  
(61 : t - a ,  9 2  : t -- 6) is relevant 
if gl - 92, 91 < 92 

To compute MSG(a, b), we start with the initial object of R ( a ,  b) and continue specializing the 
generalization until no - step is applicable. To simplify the notation, we represent each general- 
ization (dl : t + a ,  6'2 : t 7 b) by the triple ( t ,  01, & ) .  

Delete-variable Variables with the same binding in both substitutions can be removed: 

Merge Likewise, variables with the sa.me bindings within each substitution can be merged: 

Delete-abstraction Subterrns which a.re not project,ed by either substitution can be eliminated: 

where z does not occur in either M or A'. 
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Factor-constant Constants that  appear in both substitutions can be factored. This step is 
complicated because i t  must introduce new function varia,bles for generalizing the subterms and i t  
must not create cluttered terms. 

( {  f .H A z . f l ( I L ( h ~ ( ~ l ) ,  . - -, h n ( v n ) ) , ~ o ) } ( t ) ,  

( t ,  dl  u { f' - Xzvo.MIVa E & , a  + z ] ,  
0, U{f H X Z . A ~ [ K ( E ) ] ) ,  - hl H A v ~ . u ~ ,  . . . , hn I+ Xvn.un), 

e, u {f X T . N [ K ( B ) I ) )  O2 u { f l  ++ A z v o . N [ ~ P  E b , ~  + z ] ,  
hl  - A h  .vl,  . . . , h,, ++ Xun.v,)) 

where 

I is a constant, 
n is the arity of I i ,  
h ,  occurs no where else (for 1 5 i 5 10, 
Li is a nonernpty subset of the positions at  wllicli I<(E) occurs in M ,  

p is a nonempty subset of the positions a t  which I<(B) occurs in N ,  

vo = projected(Z, A4[Va E ti, a - ,TI ) U projectedjz. A'[VP E ,8, P + 21) 

(see Definition 5.1.5 for projected). and 

uk = projected(Z, u k )  U projected(Z, u k ) .  

If the new or d2 of some hk (or f l )  would elimina.te an uneliminable subterm, then this step is 
not applicable (with the chosen ti and j) beca.use i t  would form a, cluttered generalization. 

Factor-abstraction Repeated bound variables can be factored in much the same way as con- 
stants except that  there is no need to introduce new free variables: 

( t ,  ( {  f + AT. f l ( . ~ ' , T ) } ( t ) ,  
O1 U { f H XT.M[xi]) ,  - el u { f '  A Z T . ~ / I [ V ~  E & , a  + z ] } ,  
O2 u { f I+ A z . N [ z ; ] ) )  B2 u { f' +- Xzz.N[VP E , 8 , ~  - 21)) 

where 2; is in I, z, occurs in a t  least one other position in both Ad a.nd N ,  and Li and are proper, 
nonempty subsets of the positions a.t which n:i  occurs. (ci and 6 must be proper subsets so that  the 
new generalization is not cluttered.) 

Using --., the set MSG call be computed by yen defined as 

gen((l,b) = { g  I ( f ,  [ a ] .  [b ] )  -* y ,  and $y'.g - g'} 
where -* is the transitive closure of -. 

This algorithm is expensive because it requires exponential time and recomputes the same 
generalizations in different ways. Furthermore, some pairs of terms have an exponential number of 
generalizations, so there is no polynomial-time algorithm based on the size of the input. It is not 
yet clear if a polynomial-time algorithm exists based on the nunlber of generalizations. 

The proof this algorithm's correctness depends upon sho\ving: that  the set of - rules completely 
specifies when one generalization is strictly less instantia.ted than another. First we give some 
lemmas: 
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Lemma 6.1 If gl  E R(a ,  6) and gl - g2, then g2 E R(u ,  b). 

Lemma 6.2 Whenever gl , g2 E R(u, 6) and gl - g2, gl < 92. 

Proof Observe that  each step is of the form (t, 01, 02) - (p(t), 8:) 8:) where p is a generalization 
morphism. This shows gl 5 g2. Furthermore, p is not a renaming substitution, so by Theorem 5.12 
there is no pop : g2 + gl. 

Finally, we show that  - steps do not reduce the number of possible generalizations. That is, 
given a specific generalization, the set of - steps completely covers all maximal generalizations 
which are more instantiated than the given one. 

Lemma 6.3 Whenever gh E MSG((1, b), gt E R ( a .  b). aad gt < gh, there is a g, E R ( a ,  6) and a 
g, 2 gh such that  gt - g, a.nd g, 5 9,. 

Proof Assume 

Then the following diagram illustra.tes this lemma.: 

Choose an f E domp, such that  p,( f )  is not a renaming substitution unless all substitutions are 
renamings. Let 

Furthermore, assume that if XT.H(E) is a renaming substitution, then H E domp, and p,(H) = H.  
Observe that  such an f exists because gt < y,,. \Ye \vill show t11a.t for any Xz.H(m), there is a -- 

step which generates an appropriate y,,. In most cases. we only identify which step is applicable; 
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refer to  the algorithm for tlie details of constructing g, and p,. Note that  if there is a step to  create 
g,, then g, E R(a ,  b) by Lemma 6.1. 

There are three cases based on the form of H. 

1. H is zi in I: Bl(f) = 41(p,( f ) )  = T ;  = &(p,(f)) = 02(f) ,  SO Delete-variable is applicable. 

2. H is a constant K: head(O1) = head(q51(p,(f))) = Ii = head(#2(pU(f))) = head(@?), so 
Factor-constant is a.pplicable. 

3.  H is a free variable (say g ) :  Since we are ollly interested in finding an isomorphism of g:, we 
can reorder the arguinents to g as g ( x l , .  . . . . ~ k .  1 ~ ' k + ~ ,  . . . , w, )  (with correspondiilg reorderings 
to  q51(g) and &(g)) such that  A' is the siilallest integer for which wk+l # xk+l. 

If k = n ,  then 01( f )  = 4l(p,( f)) = p ~ ( g )  and by assumption &(g)  = 41(p,(g)) = h ( g ) .  
Thus Bl ( f )  = O1(g). Likewise. 02( f) = $2 (g  ). Hence the Merge step is applicable. 

If k < n,  then there are four ca.ses tlepending upon the form of U'k+l :  

(a)  W ~ + I  is flexible: this would make g, redundant, a. contradiction. 

(b) wk+l = xi for i < k: yi occurs illore tllail once in both A4 and N and so a Factor- 
abstraction step is applicable. Pick ti a.nd suclz tl1a.t the occurrences of yi in a l (  f') 
and oz( f') match those in &(y) and &(g) .  

(c) wk+l = z; for i > k + 1: y k + ~  does not occur i.n either A4 or N and so a Delete- 
abstraction step is applicable. 

(d)  wk+, = I<(a) where Xi is a constant: beca.use g, is not cluttered, I< must occur in both 
M and N ,  thus a Factor-constant step is applicable. Again, pick 6 and p such that 
the occurrences of Ii in a l (  f ' )  and 02( f ' )  matcl~ those in #q(g) and +?(g). 

Theorem 6.4 (Soundness) If g E ge~z(n,  b), then y E h/lSG(c~, b). 

Proof By Lemmas 6.1 and 6.2, if g E gerz(n,b) then g E R(u, 6).  g is maximal by Leinma 6.3. 

Theorem 6.5 (Completeness) If g is in h lSG(n .  6). then there is a generalization g' in yen(a ,  b) 
which is isomorphic to  g. 

Proof By Observation 4.8, we know tl1a.t yo is less specific than ally generalization of a and 6 ,  so 
by Lemina 6.3 we know that  for any y there is a sequence of - steps from go to some g' isomorphic 
t o  g. This sequence is finite bemuse < is well-founded and gl - g2 implies gl < g2. 
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7 Conclusion 

We provide a framework for unsolved problem of generalizing second-order terms. Our solution is 
based on viewing the structure of terms as a category rather than a partial order. The categorical 
view allows us t o  capture how one term generalizes a.nother, which is not possible in the conventional 
structure of complete lattices [14, 161. 

Second-order generalization seems eminently useful for generalizing first-order terms in a useful 
fashion. For instance, A and A A B have the maximal generalization 

([TI : f ( A )  + A, [Xx.x A B] : f ( A )  -+ A  A B) 

showing that  A is replaced by a coiljunction in going to  A A B. This information is lost in the 
corresponding first-order most specific generalization. Similarly, going t o  third and higher orders 
would improve the quality of generalization. More importantly, base terms of higher orders also 
necessitate going to  higher orders. We intel~tl to pursue this in fut,ure work. 
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Abstract 

Writing algebraic specifications that  are to  be esecuted a.s rewrite systems is similar to  functional 
programming. There are some differences, however. Algebraic specification languages allow left- 
hand sides of equations t o  be complex first-order patterns that would not be allowed in functional 
languages. Functional langua.ges, on the other ha.nd, ha.ve powerful higher-order features not of- 
fered by algebraic specifica.tion languages. Some functional languages combine higher-order func- 
tions with linear first-order patterns illvolving free da,ta, type constructors, thus offering a limited 
(but highly expressive) mixture of functional programming and algebraic specification. A more 
ambitious integration of the two is obtained by allowing both signatures and equations in algebraic 
specifications t o  be higher-order. Operational experiments with such higher-order algebraic specifi- 
cations can be performed by translating them to  XProlog, an estension of Prolog t o  polymorphically 
typed A-terms based on higher-order unifica.tion. 

1 Introduction 

1.1 Higher-order algebraic specificatio~ls 

Conventional algebraic data  type specifica.tions consist of a first-order signature and a set of equa- 
tions. Equations may contain first-order variables, which are implicitly or explicitly universally 
quantified. The signature defines the a.bstra.ct syntas of a, 1angua.ge of terms whose semantics is 
given by the equations. Such specifications are usually implemented by interpreting them as (first- 
order) term rewriting systems (see the survey by Iilop [13]). Each equation is interpreted as a 
left-to-right rewrite rule and the resulting rewrite system is used t o  evaluate terms by reducing 
them t o  normal form (if any). The annoying fa.ct that  this asymmetric interpretation of inherently 
symmetric equations may 1ea.d to rewrit,e systems t11a.t a.re incomplete with respect to equational 
deduction from the original specification does not concern us here. 

Writing algebraic specifications t11a.t are to be esecuted as rewrite systems is similar to  functional 
programming. There are some differences, however. Algebraic specification languages allow left- 

'supported in part by the European Comrni~nities untlrr  ESPRIT project 2177 (Generation of Interactive Pro- 
gramming Environments 11-GIPE 11). 
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hand sides of equations to  be complex first-order patterns that would not be allowed in functional 
languages. Functional languages, on the other hand, have powerful higher-order features not offered 
by algebraic specification languages. 

Some functional languages (e.g., Hope [I ,  21) combine higher-order functions with linear first- 
order patterns involving free data type constructors, thus offering a limited (but highly expressive) 
mixture of functional programming and algebraic specification. A more ambitious integration of the 
two is obtained by allowing both signatures and equations in algebraic specifications t o  be higher- 
order. The higher-order signature defines the abstract syntax of a language of typed A-terms whose 
semantics is given by the equations. Parsaye-Ghomi has been one of the first to  study this approach 

[211. 
More recently, Jouannaud and Okada [12] ha.ve a.dvoca.ted the development and implementation 

of higher-order algebraic specification languages a,nd, 11a.ving frequently felt the need for higher- 
order equations in algebraic specifications ourselves, we thought it would be interesting to be 
able t o  perform operational experiinents with thein. Higher-order term rewriting requires, first 
of all, higher-order matching, which is the special ca.se of higher-order unification in which one of 
the terms involved does not contain free va.riables. Two rea.dily available systems incorporating 
higher-order unification are XProlog [20], an esbensioll of Prolog to typed A-terms, and the generic 
theorem prover Isabelle [22]. Since we had sonle experience with schemes for translating first-order 
algebraic specifications to  Prolog (see the surveys by Drosten [7] and Bouma and Walters [4]), we 
chose XProlog as our target system. 

It would be nice if the notion of initial algebra specification, which has unequivocal meaning 
in the first-order case [lG], had an equally unequivocal higher-order analogue. This does not seem 
t o  be the case, however, since it depends on the precise notion of higher-order model one prefers. 
Meinke and Moller, for instance, assume l~lodels to  be extensional higher-order algebras [15, 181, and 
Meinke shows that  in this setting higher-order initia.1 algebra specification is strictly more powerful 
than its first-order counterpart [14]. Poigne, on the other hand, considers both extensional and 
intensional models [23]. Although these questions a.re beyond our present scope, the precise notion 
of initial algebra semantics adopted affects the degree of illcoillpleteness of our implementation 
scheme. 

1.2 Higher-order term rewriting 

Higher-order term rewriting, the mechanisll~ me use to  execute higher-order algebraic specifications, 
is more powerful, but also less manageable than its first-order counterpart. The following examples 
illustrate some of its possibilities and problems. 

I. Consider the signature 

sorts s, bool 
functions 

a : s  
f , g : s - + s  
i f :  b o o l x s  x  s -- s  
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variables 
X , Y  : s 
F : s + s (second-order variable) 
B, B' : boo1 

and the second-order equation 

if (B,  F ( S ) ,  F(1' ) )  = F ( i f  ( B ,  X ,  Y)). 

The left-hand side of (1) matches 

in three different ways, namely, for 

F = XT/.g(f(l,,')) -3- = n J'  = f ( a )  B = B' 
F = XV.g(V) X = f ( ( 1 )  I' = f (  f ( a ) )  B = B' 
F = X V.  I/' - X = y ( f ( u ) )  I F = y ( f ( f ( a ) ) )  B = B '  

Thus, whereas a first-order match has at most a single solution, a higher-order match may 
have many. It may even have solutions that  leave some of the variables in the left-hand side of 
the rewrite rule uninstantiated, something that  callnot happen in the first-order case either. 
For instance, the left-hand side of ( 1 ) lnatclles 

if (B'. C L ,  (1 ) 

for 

The first solution leaves /Ti and 1.' uninsta.ntiated. If ( 1 ) is interpreted as a. left-to-right rewrite 
rule, this is no problem since both variables are eliminated by P-reduction after substitution 
of the solution in the right-hand side: 

(1  (17) ,if( B', (1. [ L )  - (Al, . . (~)(i  f ( B', -Ae, 1 ' ) )  - a. 

A solution instantiating F to  AV.1; exists for a.ny i f - term and is, a t  least in this case, alge- 
braically harmless. The danger of non-termination it entails can be averted by adopting a 
parallel reduction strategy treating all solutions 011 a,n equal basis, or by a simple loop check. 
For reasons of efficiency we have chosen the 1a.tter alternative. 

11. Consider the second-order equa,tions 

nzc~p( F. n i l )  = nrl (2) 

nznp(F, c o n s ( S ,  L )  ) = co~zs( F ( X  ), nznp(F, L ) )  (3)  

mc111(XT ..I< L )  = L (4) 

nzap(F,n-tup(G'.L)) = mcip(Xl ' .F(G(V) ) .L )  (5) 

with the signature from example ( I )  plus the additional declarations 
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sort 1st 
functions 

nil : 1st 
cons : s x 1st + 1st 
map  : ( s  -t s )  x 1st + 1st 

variables 
x ,v :  s 
L : Ist 
F, G : s + s (second-order variables). 

Equations (2) and (3)  define the naup-function for the basic list constructor cases. They 
could have been written in virtually the same way in Hope [l, Chapter 61. Equations (4)  and 
(5) are plausible identities for the 17aap-functioi~. These would not be allowed in Hope since 
their left-hand sides involve argumellts Alf.l,. aiid mciy(G, L )  which are not constructor terms. 
From the viewpoint of higher-order illatching these are harmless, however. 

111. Although i t  did not happen in example ( I ) ,  va.riables in the left-hand side of a higher-order 
rewrite rule that  are left uainstantia.ted a.fter ma.tching may enter the reduct. We borrow the 
following example from Nipkow's paper on higher-order critical pairs [19]. The rewrite rule 

can be applied to  the term f (g(a,  a ) )  in two ways, one of which instantiates F to XV.a and 
leaves X uninstantiated, thus yielding the result f (X) .  
To get rid of this problem and to eliminate ambiguous rules such as ( I ) ,  Nipkow (following 
Miller [17]) restricts left-hand sides of rules to so-called higher-order patterns (HOPs). A 
HOP is a term in P-normal form such that each free variable occurring in it is applied only 
t o  (zero or  more) terms that  are q-equivalent to distinct bound variables. The left-hand sides 
of equations (2)-(5) are HOPs, but the left-hand side of (1) is not since it contains a free 
variable F whose argument _X is not a bound variable. Jouannaud and Okada's notion of 
general schema [12, Section 4.41 does not include equation (1) either. 
To leave as much room for experiment as possible. we do not impose any a priori restriction, 
but equations that  may cause uniilstantiated variables to enter the reduct are not necessarily 
treated correctly by our XProlog code and should be avoided. 

IV. Whereas first-order term rewriting requires subterm matching, higher-order rewriting can do 
without explicit subterm lookup if each equa.tion t 1  = t 2  is estended to H ( t l )  = H ( t 2 )  with H 
a polymorphic higher-order varia.ble not free in l1 01. t z .  In this case, higher-order matching of 
the extended left-hand side with the full input term perforins the subterm lookup implicitly. 
Like before, useless instantiations of EI to X.Y.s. where s does not contain X ,  can be rejected 
by a simple loop check. The rnatcl~ing st,rat.egy used does not matter as long as the rewrite 
system is confluent and terminating (a.pa.rt fro111 the trivial loops caught by the loop check). 
This approach is used in Section 2.1. Tact,ics for liigher-order rewriting are discussed by Felty 

PI. 
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1.3 XProlog 

XProlog is a n  extension of Prolog t o  typed X-terms 1201. Basically, the functions declared in a 
XProlog program generate a domain of polymorphically typed X-terms, and polymorphic higher- 
order unification takes the place of first-order unification in the proof procedure. 

Since X-terms may be subject to cr-, p-, and 7-reduction, the term domain underlying a XProlog 
program is not purely synta.ctic. Furthermore, unlike first-order unification, higher-order unification 
is neither decidable nor unitary. As a consequence, in XProlog backtracking t o  an alternative unifier 
of the same pair of terms may occur and the search for a, higher-order unifier may go on forever. 

Higher-order matching, the special case of higher-order unification we need, was conjectured to  
be decidable in the simply typed ca.se (no polymorphism) by Huet [ll], but this is still an open 
problem. The third-order case was recently shown to  be decidable by Dowek 151. On the other 
hand, Dowek also showed that  strongly polymorphic higher-order matching is undecidable [6]. 
XProlog supports ML-style polyn~orpl~ism. so we included it in our notioil of higher-order algebraic 
specification as  well, in accordance with Parsaye-Ghomi's original proposal [21]. As far as we know, 
the "intermediate" case of higher-order matchillg in combillation with ML-style polymorphism has 
not yet been settled, so it may still turn out to be de~ida~ble.  In the version of XProlog we used2 
the implementation of polymorphic higher-order ullification was incomplete and this caused some 
problems. These will be explained in due course. Esamples of higher-order matches with multiple 
solutions, none of them subsumed by any of the other ones, were given in Section 1.2. In our 
XProlog code, backtracking to  an alternative solutioll ma.y occur as a result of loop checking. 

This rudimentary knowledge of XProlog in combina.tion with a basic understanding of Prolog 
(see, for instance, Bratko's book [3]) suffices to uilderstand the nest section. 

2 Translating higher-order algebraic specifications to XProlog 

2.1 A very simple sche~lle 

Consider the following higher-order algebraic specifica.tion: 

module N 
sorts nut, boo!, lst(A) 
functions 

zero : nut 
succ : nut + nat 
add : nat x nut - nat 
t ,  f : boo1 
if :boo1 x A x A  i A 
nil : l s t ( A )  
cons : A x Est(A) - l s t (A)  
compose: ( B +  C) x ( A  - B )  - i l  - C 
m a p  : ( A  + B )  x l s t (A)  - l s f ( B )  

2Versiol~ 2.7 (October 1988). I t  was obt.ailled by anonynlous ftp from dlrke.cs.duke.edu. 
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equations 

add(-X, zero) 

add(X ,  succ(Y) )  

~f ( t ,  x, Y )  

i f ( f , X , 1 7 )  

i f ( &  F ( X ) ,  F ( Y ) )  
compose(F, G )  

malj(F, n i l )  

m a l ~ ( F ,  co~zs( S, L ) ) 

map( XI;'. V ,  L ) 

nzap(F, nzap(G, L ) )  

Proceedings of the 1992 XProlog Workshop 

X 

s t~cc(add(X ,  Y ) )  

A- 

1' 

F(if ( B ,  X ,  Y ) )  
X X . F ( G ( X ) )  

nil 

coizs( F ( S ) ,  7ijup( F, L ) )  

L 

nzal~(compose( F, G ) ,  L )  

Identifiers whose first character is a capital letter are variables. Their type is not declared 
explicitly (although i t  might have been), but is determined by the context in which they occur. For 
instance, X has type nnt in ( G ) ,  but polymorphic type A (with A a type variable) in (8). 

In addition t o  the two carriers corresponding to  sorts izat and 6001, the higher-order initial 
algebra of N has an  infinite number of first-order ca.rriers corresponding to  l s t ( r )  for any monotype 
T. In particular, T may be a functional monotype such a.s nut + nut or another 1st-monotype. 
The higher-order carriers (function spaces) of the initial a,lgebra consist of the appropriately typed 
functions definable in terms of the signature of N.  

Equations (10)  and (12)-(15) are poly11~0rpliic versions of (1) and (2)-(5) respectively. Equation 
(11)  defines functional compositioi~. Equa.tions (10). (14) ,  and (15) merit special attention. These 
are the ones tha t  are allowed in the higher-order algebraic framework, but not in Hope. As was 
pointed out in Section 1.2, the left-hand side of (10) is highly non-deterministic. The left-hand 
sides of (14)  and (15)  are HOPS of a, simple kind, but not constructor cases. 

Using the scheme outlined in example ( I V )  of Section 1.2, we translate N t o  the following 
XProlog module: 

module 1pN. 

kind n a t  type .  
kind bool type .  
kind 1st type -> type.  

type zero  n a t .  
type succ n a t  -> nat. 
type add na t  -> nat -> n a t .  

type t boo1 . 
type f boo1 . 
type i f  boo1 ->  A - >  A ->  A .  
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type nil (1st A). 
type cons A -> (1st A) -> (1st A). 

type map (A ->  B) -> (1st A) -> (1st B). 
type compose (B -> C) -> (A -> B) -> A -> C. 

type reduce A -> A -> o. 
type extrule A -> A -> o. 

extrule (H (add X zero)) 
extrule (H (add X (succ Y))) 
extrule (H (if t X Y) 
extrule (H (if f X Y)) 
extrule (H (if B (F X) (F Y))) 
extrule (H (compose F GI) 
extrule (H (map F nil)) 
extrule (H (map F (cons X L) 1) 
extrule (H (map X \ X L)) 
extrule (H (map F (map G L))) 

(H XI. 
(H (succ (add X Y))). 
(H X I .  
(H Y). 
(H (F (if B X Y))). 
(H (X \ (F (G XI))). 
(H nil). 
(H (cons (F X) (map F L)) 1 . 
(H L). 
(H (map (compose F G) L)) . 

reduce X Y :- extrule X Z, 
not(X = Z), %%% loop check - X,Z ground 
reduce Z Y. 

reduce X X. 

Arguments of predicates are separated by spaces rather than commas in AProlog, and the 
argument list of a predicate is not delimited by brackets. The syntax of A-terms is similar to  that  
of Lisp. Every predicate or function is a t  most unary, so larger arities have to  be reduced to arity 
1 by currying, that  is, by replacing types sl x . . . x s k  - so in the algebraic specification with 
types sl -> - -> sk -> SO in XProlog. .As usual. the type constructor ->  is right-associative. 
Predicates always have type . - - -> o. 

Kind declarakions are used t o  iiltroduce type constructors. The three kind declarations in the 
first lines of IpN iiltroduce the zero-adic type constructors nat and bool, and the monadic type 
constructor 1st. These correspond to the sorts nnt,  Bool, and l s t (A)  of N. Thus, apart  from 
the dtsc'arations of the auxiliary predicates extrule and reduce, the correspondence between the 
signatures of N and IpN is straightforward. The translation of equations is equally straightforward. 
P u t  in the context of a new higher-order variable H. the left- and right-hand side of an equation 
become the first and second argument of the corresponding extrule fact. Note that  AX.. . . in the 
right-hand side of (11) beco~nes (X \ . . . in XProlog. In addition to  the extrule facts correspond- 
ing to  the equations of N, the body of 1pN consists of the clauses (16) and (17) for reduce. These 
are independent of N. 

Tlle normal form of a term t in the term language defined by the signature of N is obtained by 
submitting t o  1pN the question 

?- reduce tt NF 
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where tt is the  corresponding term in the term language of IpN. Since free variables in t (if any) 
should not be instantiated during rewriting, they do not correspond to  XProlog variables in tt, but 
are modelled by generic constants (simulated varia.bles) x, y ,  . . . in the following examples. Thus, 
even if t contains free variables, tt is a, ground term. 

Rewriting proceeds as follows. The reduce predicate attempts to  apply e x t r u l e  and, if suc- 
cessful, calls itself recursively on the reduct after performing the loop check not (X = Z), where not 
is the negation-as-failure predicate a.nd = denotes higher-order unification. The loop check rejects 
algebraically correct but operationally useless ma.tches (cf. Section 1.2, examples (I) and (IV)). 
When it is evaluated, the values of both X and Z are ground terms because (i) the translated input 
term tt is always ground, and (ii) the equa,tions are assumed to  be such that  their interpretation 
as left-to-right rewrite rules does not cause uninstantia.ted va.riables to  enter the reduct (cf. Section 
1.2, example (111)). 

The rewrite strategy of lpN is deterillined prima.rily by the fact that P-reduction is a built- 
in rewrite rule that  is performed iillplicitly by XProlog during unification, and by the order of 
the e x t r u l e  facts. Redeses for rule r,, a.re reduretl before redexes for rule T ,  if m < n. The 
redex selection strategy for each individual rule is det.ermined by XProlog's higher-order unification 
strategy. The latter can be influenced to some extent by the setting of the projf  irst switch of 
the XProlog system. If set to on, the higher-order uilificatioll machi~lery prefers projection over 
imitation. This reduces the amount of backtra.cking caused by imitative solutions that  are rejected 
by the loop check, and promotes the simultaneous reduction of syntactically identical redexes. 

We reproduce a short sample run of the XProlog systenl using 1pN: 

?- use IpN. 

~ P N  
Yes 

?- switch pro j f  irst on. 0 # b  LLL s l i g h t l y  more e f f i c i e n t  i n  t h i s  

Yes 
# # #  L appl ica t ion  than p r o j f i r s t  off  

?- switch tvw o f f .  

Yes 

# # b  ALL no type var iab le  i n s t a n t i a t i o n  warnings 

?- reduce ( i f  y (cons f n i l )  (cons t n i l ) )  NF. 
# # #  ALL y i s  a generic  constant - see  above 

NF = cons ( i f  y f  t) n i l  . 
Yes 

?- reduce ( i f  y (add (succ zero)  (succ zero) )  (succ  (succ ze ro ) ) )  NF. 
b  8 * y is a generic  constant - see  above 

NF = succ (succ zero)  . 
Yes 

?- reduce ( i f  y ( i f  y l  xO x l )  ( i f  y l  x2 x l ) )  NF. 
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0 1 0  NF = i f  y1 ( i f  y xO x2) xi . L L i  see  [9, Section 3.31 

?- reduce ((compose (X \ (add X XI) (X \ (add X X))) (succ ze ro ) )  NF. 

NF = succ (SUCC (succ (succ ze ro ) ) )  , 

Yes 

?- reduce (map (X \ (add X XI) (cons zero (cons (succ zero) n i l ) ) )  NF. 

NF = cons zero  (cons (succ (succ zero) )  n i l )  . 
Yes 

?- reduce (map (X \ (compose succ XI)  (cons succ n i l ) )  NF. 

NF = cons Var1612 \ (succ (succ Var1612)) n i l  . 
Yes 

?- reduce (map (X \ zero) (map succ 1 ) )  NF. 
0 0  0  L/.L 1 i s  a generic  constant  - see  above 

NF = map (Var347 \ zero)  1 . 
Yes 

?- reduce (Y \ (add Y zero) )  NF 

NF = Y \ (add Y zero)  . 0 0 0  LLL  no rewr i t ing  under abs t rac t ion ;  

Yes 
0 0 0  L L L  f i r s t  argument of (6a) does not 
0  0  0  444 match - see  Section 2 . 3  

?- reduce ( i f  y succ succ) NF. 

NF = if y succ succ . 0  1 * ALL NF = succ expected - see  below 

Yes 

The last example is not reduced properly became the implementation of polymorphic higher- 
order unification in the version of XProlog we used was incomplete. When matching i f  y succ 
succ with the left-hand side of (IOa), the polytype A 1  - >  nat  ->  na t  initially inferred for H is 
never instantiated t o  (nat  -> na t )  - >  nat  - >  nat .  The rea.son is that  the system limits A 1  t o  
"primitive" types t o  keep the search space within bounds. It is interesting t o  see how the matching 
behaves in this case: 

?- switch tvw on 

Yes 

0 1 0  L L i  give type var iab le  i n s t a n t i a t i o n  warnings 



Proceedillgs of the 1992 XProlog Workshop 

?- switch p r in t types  on. 8 8 8 ALL p r i n t  types of terms 

Yes 

?- i f  y  succ succ = (H ( i f  B (F X) (F Y)) ) .  
* * I XLL "=" denotes higher-order u n i f i c a t i o n  

Trying t o  p r o j e c t  on an argument with type 
A 1 

Do you want t o  go on? (y/n)y 
Assuming f o r  t h e  moment t h a t  t a r g e t  type i s  pr imi t ive  

H = Var24 : A 1  \ Var25 : nat  \ 
( i f  y  Var26 : nat  \ (succ Var26) Var27 : nat  \ (succ Var27) Var25) 

B = B : bool 
X = X : A l  
F = F : A 1  -> A2 
Y = Y  : A i ;  

The only solution found leaves all va.riables in the left-hand side of (10a) except H uninstantiated 
and is rejected by the loop check. The espected solutioil is found if the more precise type (nat  -> 
na t )  -> n a t  -> na t  is associa,ted with H in an riel hoc fa,shion: 

?- i f  y succ succ = (H : (na t  -> n a t )  -> nat  - >  nat  ( i f  B (F X)  (F Y ) ) )  . 

H = Var26 : n a t  -> na t  \ Var27 : nat  \ (Var26 Var27) 
B = y  
X = X : A l  
F = Var28 : A 1  \ Var29 : nat  \ (succ Var29) 
Y = Y : A l ;  

H = Var54 : n a t  -> na t  \ Var55 : nat  \ 
( i f  y  Var56 : na t  \ (succ Var56) Var57 : nat  \ (succ Var57) Var55) 

B = B : bool 
X = X : A l  
F  = F : A1 -> na t  -> nat  
Y = Y  : A 1 ;  

The first solutio~l yields the espected reduct when substituted in the right-hand side of ( l0a) .  The 
second solution is a more precisely typed version of the useless one found previously. 
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Finally, we give an example showing that  1pN is not confluent for terms containing free variables. 
An alternative normal form caa be obtained by backtracking. Note that  1pN does not do this 
automatically. 

?-  reduce ( i f  y (add x z e r o )  (add x (succ  z e r o ) ) )  NF. 
0 0 1 LLL  x and y a r e  g e n e r i c  c o n s t a n t s  

NF = i f  y x (succ  x) ; 
1 1 * ALL f i r s t  normal form 

NF = i f  y x ( succ  (add x z e r o ) )  ; 
* a *  LA,! not  a normal form 

NF = add x ( i f  y z e r o  (succ  z e r o ) )  ; 
rn ,!LA @ a second normal form 

The general translation schenle sllould be clear from 1pN. The auxiliary names reduce,  e x t r u l e  
and H should be chosen carefully to avoid clashes wit11 user-defined names. Similarly, overloading of 
names that  have a predefined meaning in XProlog ( t r u e ,  f a l s e ,  l i s t , .  . .) should be avoided. Apart 
from the above-mentioned incompleteness problern and the possible non-termination of higher-order 
matching (which we have not encountered so far) ,  the scheme is correct for higher-order rewrite 
systems that  do not introduce new variables in tlre retluct, and that  are terminating with the simple 
loop check shown as well as confluent. For rewrite systen~s lacking the latter property, the input 
term may have other norn~al  fornis besides tire o l ~ c  colr~l)utetl. 

2.2 Iillproving efficiency by adding specialized code 

Some efficieilcy can be gained by colllbining tlie above method with one of the first-order schemes 
discussed in [4, 71. To illustrate the genera.1 idea, we take Drosten and Ellrich's first-order scheme. 
In this case the AProlog code genera.ted for A' becomes: 

module lpN2. 

import  1pN. * * 1 L L L  s e e  S e c t i o n  2 .1  

t y p e  reduce2 A -> A ->  o 
t y p e  ana lyze  A -> A ->  o 
t y p e  prenormal ize  A ->  A ->  o 
t y p e  r u l e  A -> A ->  o 
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r u l e  (add X ze ro)  
r u l e  (add X (succ Y)) 
r u l e  ( i f  t X Y) 
r u l e  ( i f  f X Y) 
r u l e  ( i f  B (F X) (F Y)) 
r u l e  (compose F G) 
r u l e  (map F n i l )  
r u l e  (map F (cons X L)) 
r u l e  (map X \ X L) 
r u l e  (map F (map G L)) 

X. 
(succ (add X Y)) . 
X .  
Y .  
(F ( i f  B X Y)).  
(X \ (F (G X))) .  
n i l .  
(cons (F X) (map F L)) . 
L .  
(map (compose F G) L). 

analyze (succ 11) K :- analyze I1 K1, 
prenormalize (succ K1) K .  %%% (18) 

analyze (add I1 12) K :- analyze I1 K1, analyze I 2  K2, 
prenormalize (add K1 K2) K .  %%% (19) 

analyze (if I1 I 2  13) K :- analyze I 1  K1, analyze I 2  K2, analyze I 3  K3, 
prenormalize ( i f  K1 K2 K3) K .  %%% (20) 

analyze (compose I 1  12) K :- analyze I 1  K1, analyze I 2  K2, 
prenormalize (compose K1 K2) K .  %%% (21) 

analyze (cons I1 12) K :- analyze I 1  K1, analyze I 2  K2, 
prenormalize (cons K 1  K2) K. %%% (22) 

analyze (map I 1  12) K :- analyze I 1  K1, analyze I 2  K2, 
prenormalize (map K 1  K2) K .  %%% (23) 

analyze X K :- prenormalize X K .  %%% (24) 

prenormalize X Y :- r u l e  X Z, 
8 8 Q not(X = Z), ALL loop check 

analyze Z Y .  
prenormalize X X .  

:- analyze X Z ,  reduce Z Y .  %%% (27) 
8 0 8 ALL reduce i s  defined i n  1pN 

lpN2 extends 1pN with code t11a.t is very simi1a.1. to the Prolog code that  would be generated by 
Drosten and Ehrich's scheme for N had it been a first-order specification. For each p-ary function 
f in the signature of N ( y  > = 1 ), lpN2 contains a cla.use 

analyze (f  I 1  . . .  Ip)  K :- analyze I1 K1, . . .  , analyze Ip  Kp, 
prenormalize (f K1 . . .  Kp). 

Clause (24) catches everything not matched by the first argument of the preceding analyze cases. 
The facts (6b)-(15b) correspond directly to the equatiolls (6)-(1.5). Clause (27) links the new 
code to the old code imported from 1pN. Tl~e clauses (24)-(27) are independent of N .  
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The normal form of a term t in the term 1angua.ge defined by the signature of N is obtained by 
submitting t o  lpN2 the question 

?- reduce2 tt NF. 

where tt is the corresponding term in the term language of lpN2 (which is the same as that  of 
IpN). Like before, free variables in t have to he replaced by generic constants in tt (see Section 
2.1). 

On the examples we tried, lpN2 was from 1 to  5 times faster than 1pN. It may actually be 
slightly slower if analyze is una,ble to  perform a.ny reductions. Consider, for instance, the term 

(compose succ succ) ze ro .  

The first argument of (21) does not match (it,s type is not even compatible), so the work done by 
analyze is wasted and the reduction to succ (succ zero)  is performed by reduce using ( l l a )  
with 

H = Var : n a t  -> nat  \ (Var zero) 
F = succ 
G = succ . 

On the other hand, the reduction of 

map (X \ (compose succ XI) (cons succ n i l )  

cons Var \ (succ (succ Var)) n i l  

is speeded up by a factor of 5. W11erea.s 1pN spends a large alllount of time on useless matches, 
lpN2 performs the reduction in a highly deterillinistic manner using analyze. 

2.3 Reduction under abstractioil and partial evaluatioil 

Evaluation of programs whose input values are only pa.rtially given is called partial evaluation 
(see the annotated bibliography [24]). In the setting of first-order algebraic specification, partial 
evaluation corresponds t o  reduction of first-order terms containing free variables [9]. In Section 2.1 
we gave several examples of this in the setting of higher-order algebraic specification. In fact, the 
equations 

which played a role in some of the esaml)les, are not needed for ordinary evaluation, but may be 
useful for partial evaluation. Needless to say. inore ecluations of this kind could have been added 
to  the specification N. 
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In the higher-order setting, partial evaluation not only corresponds t o  reduction of open terms, 
however, but also t o  reduction under a.bstra.ction. The two are related by the abstraction rule 

which has no analogue in the first-order case. For instance, according to  the abstraction rule one 
would expect an  implementation of hT to  reduce Xl'.acld(I< zero) to XY: nat.Y, since add(Y, zero) 
reduces t o  Y :  nut by equation (6). The two in1plementa.tions discussed so far do  not do this, 
however: 

?- reduce (add y z e r o )  NF. I *  LLL a y i s  a g e n e r i c  cons tan t  

%%% O K ,  bu t  

?- reduce (Y \ (add Y z e r o ) )  NF. 

NF = Y \ (add Y z e r o )  . 0 I 0  LLL f i r s t  argument of (6a) does n o t  match 

Yes 

?- reduce2 (Y \ (add Y z e r o ) )  NF. 

NF = Y \ (add Y z e r o )  . 0 0 0  ALL t h e  analyze-predicate  of lpN2 does n o t  descend 

Yes 
0 0 0  ALL i n t o  a b s t r a c t i o n s  

We note that  the  fact tha t  1pN and lpN2 do not perform reduction under abstraction is in accordance 
with common functional programnling practice. 

Picking up an abstractioll in the style of 1pN ~vould require higher-order matching with 

but the incomplete instantiation of type va.ria.bles during unification mentioned in Section 2.1 
precludes this approach. Instead, we a,dd a. ca.se to  the tlefiirition of the analyze-predicate in lpN2 
just before (24) : 

ana lyze  (X \ (U XI) (X \ (V XI : - p i  C \ (reduce2 (U C) (V C) . %%% (24-1 

When i t  recognizes an abstraction (X \ (U X) ) . analyze  uses XProlog's built-in pi-predicate to  
convert it t o  a generic installce (U C) in tlre universal goal reduce2 (U C) (V C). (Universal 
goals in XProlog are discussed by Na.datl1ur a.nd Miller in ('20, pp. 817-8181.) After normalization 
by reduce2,  the resulting normal form (V C) i s  t.urned into a.n a.bstra.ction (X \ (V X)). For 
instance, 
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?- reduce2 (L \ (map (X \ (add X z e r o ) )  L)) NF. 
0 0 0  /,LA a p p l i c a t i o n  of (24-1, (231, (6b), and (14b) 
1 0  0 /,LA y i e l d s  t h e  i d e n t i t y  f u n c t i o n  of t y p e  
0 0 0  L h L  1st n a t  -> 1st n a t :  

NF = Var335 : 1st n a t  \ Var335 . 
Ye= 

Like (24)-(27), clause (24-) is independent of N.  
We conclude this section by pointing out that  reduction of polymorphic abstractions is prone 

t o  divergence. For instance, reduction of the identity function ( X  : A \ X) of polymorphic type 
A -> A leads t o  an  infinite loop. Clause (24-1 reil-rains applica.ble after each generic instantiation. 

3 Further work 

From a logical viewpoint, higher-order algebraic specification constitutes a natural integration of 
first-order algebraic specification and higher-order functional programming. We intend to  perform 
further experiments with i t  using the iillplelnentation schemes discussed in this paper and perhaps 
more efficient ones still to be developed (see, for instance, [lo]). Since polymorphic typing has been 
the main source of problems so far, it requires special attention. 
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Introduction 

The announcement for this workshop began with a passage about the utility of higher-order hered- 
itary Harrop formulas for many applications, and the very existence of the workshop is a partial 
correctness proof of the passage. Nevertheless, there are applications for which the intuitionistic 
management of proof contexts (or, concretely, pr0gra.m databases) provided by XProlog has been 
unable t o  provide natural, logical solutions. Ma.ny such problems, such as how to  program the 
Prolog bag-of predicate - which would require a way of augmenting the database such that  the 
changes survive a failure - seem unlikely to yield to  logical analysis in any system related to  
hereditary Harrop formulas. Others, however, can be addressed by relatively simple modifications 
of the logic underlying XProlog. 

In 1990 two problems motivated Dale Miller a.nd me to esamine the possibility of designing a 
logic programming language based on a, fra.gment of Ciirard's linear logic [2] similar to  the hereditary 
Harrop formula fragment of intuitionistic logic. 

The first problem involved representing the notion of mutable object state within logic pro- 
gramming [3]. While it is sinlple to  use representa.tive predicates to store the state of an  object in 
the database (or proof context), it is not possible to model the modification of state, since the only 
c h a n ~ e  to the database allowed in XProlog is t11a.t of stack-like augmentation through the use of 
impi;iatiuns in goals. Thus, if the sta.te of a switch is stored using the predicates ofland on, and 
the program F includes the (slightly) higher-order clauses: 

I .={ QG.[toggle(G) c (or1 A (off > G))] 
QG.[toggle(G) c (off A (on  > G))]  

'The author has been funded by ONR N00014-88-Ii-0633,  N S F  CCR-91-02753, and DARPA N00014-g5-K-0018 
through the University of Pennsylvania. 
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r , B ; A ,  B - C 
identity 

T R  r;0-1 1~ absorb 
r ; A  - A r ; A - T  T , B ; A  - C 

provided that y is not free in the lower sequent. 

Figure 1: A proof system for the connectives toy, 1, Sr, 4, *, !, 8,  $, Q, and 3. 

then the proof of the goal off > toggle(G) might proceed a,s follows: 

r. off, on - G 
r , o f f - ~ f f  r , o f f - - o 1 2 > ~  -OR 

r , o f f -  o f f A ( o n 3 G )  - AR 

r ,  off - toggle(G') 
J L  

r - off 3 toggle(G) 
I R  

So, rather than being toggled, tlie switch 11a.s indetermina.te state during the proof of G. The 
problem is the implicit use, in the appplica.tion of the AR rule, of the contraction rule of intuitionistic 
logic which allows the original state of the switch to  be copied to hot11 sides of the proof tree. 

By considering linear management of proof contests, in  which tlie use of contraction and weak- 
ening is restricted to  formulas ina.rked with the ! operator, this and several other similar problems 
can be properly modeled. For instance. if the 1101.11 cla.uses a.bove a,re replaced with the following 
linear logic formulas: 

r = {  !{VG.[toggle(G') c- ( 0 1 2  I?) ( 0 8  4 G)) ] )  
!{VG.[togglc(G') c- (ofl C, (on  -o G ) ) ] }  
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then the proof of the equivalent goal, off -o toggle(G) proceeds as: 

r, on - G 
o f j e d o f l  I ' -+on-oG -OR 

r, 08 - off @ (on -o G )  
@R 

-'='L r, 08 -+ toggEe(G) 
r - ofS -o toggle(G) -OR 

with the desired result that  the switch is in the toggled position during the proof of G. 
In two recent papers Miller and I have discussed a t  length the design of a logic programming 

language based 011 such formulas [4, 61. Inference rules for the operators of the language are given 
in Figure 1. While these rules are not the standard ones of linear logic, they are equivalent to a 
fragment of linear logic. In this system a proof contest consists of two parts: the intuitionistic part 
(on the left of the semi-colon), in which arbitrary implicit contraction and weakening are allowed, 
and the linear part (on the right of the semi-colon), in which those rules are barred. 

Concrete Syntax and Relationship with XProlog 

An important aspect of the Lolli project was the hope that the language could be designed as 
a modular refinement of XProlog. T11a.t is, any purely XProlog program should run 'unmodified' 
within ~ o l l i ~  and behave in the expected way. 

Since the logical operators of the two 1a.nguages are different, this embedding requires defining 
a mapping of formulas of intuitionistic logic into the new system. Girard gave such a mapping in 
the first paper on linear logic [2]. However, given that  we are working in the restricted setting of 
hereditary Harrop formulas i t  is possible t,o define a, more parsimonious, albeit more complicated, 
one. This translation, was introduced in a previous pa.per [GI,  and is in the form of two mutually 
recursive functions, one applied to formu1a.s in nega.tive positions (ie. program clauses), and the 
other to  formulas in positive positions (ie. queries). 

(A)+ = ( A ) -  = A ,  where A is atomic 
( true)+ = 1 (t rue)-  = T 
(B1 A B2)+ = ( B 1 ) +  @ (B2)+ 
(B1 A B2)- = (B1)- Si: ( B 2 ) -  
(BI 3 B2)' = ( B I ) -  (B2If 
(B1 3 B2)- = (B1)+ -o (B2)- 

(Vx.B)+ = Vs..(B)+ 
(V2.B)- = Vx.(B)- 

(Bi v BPI+ = (BI )+ @ (B2)' 

(3x.B)+ = 3 x . ( B ) +  

2The  current implement.ation of Lolli is an essentially first-order language (ie., while it  allows quantification over 
predicates, formulas, and terms, it  does not ilnplement A-t.er~ns or higher-order unification), so this section should be 
read as referring t o  the similar frag~nent. of AProlog. 
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The intuitionistic sequent (over just these operators) I7 - G is then mapped to  the sequent 
J?-; 0 - G+, which has a proof if and only if the original sequent did. 

Given the XProlog syntax for hereditary Harrop formula programs, this mapping suggests a 
concrete syntax for the operators of the language, which is given in the following table: 

II 1 I + I true II 

1 3x.B I + 1 e x i s t s  x\B8 1 

' 

As with XProlog, terms and a.toins are written in a curried form and the standard quantifier 
assumptions are made. It is straightforward to confirm that existing Prolog and XProlog programs 
are written, and run, as expected. For instance, the XProlog query: 

Parity 

+ 
Operator 

T 

p i  X \  p i  Y \  
(memb X (X::Y)) => 

pi X \  p i  Y\ p i  Z\  
(memb X (Y: : Z) : - neq X Y ,  memb X Z) => 

memb G ( a : : b : : n i l ) .  

Syntax 

erase 

represents the formula,: 

which, when transla.ted into the new systeiu using the ( ) +  transla.tion, becomes: 

3G.[(VS.Vl.'.nlet11b(.J-. X :: 1 ' ) )  + 
(VX.VY.VZ.(nzenzb(-Y, 1' :: 2) o- (~req(.Y, I , . )  iitemb(X, 2) ) ) )  3 

rnen~b(G'. (I ,  :: 6 :: ni l )]  

which has the concrete syntax: 

3The use of f o r a l l  and exists as syntax  for t.lre explicit quantifiers represents a personal preference of this author. 
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f o r a l l  X\ f o r a l l  Y \  
(memb X (X::Y)) => 

f o r a l l  X \  f o r a l l  Y\ f o r a l l  Z\ 
(memb X (Y::Z) :- neq X Y, memb X Z) => 

memb G ( a : : b : : n i l ) .  
b 

And, when run, this query will ha,ve the same execution profile as the original XProlog query. 
In contrast, programs which take advantage of the linear features of the system will of necessity 

make use of the new elements of the syntax. So, for instance, the ill-performing intuitionistic 
formulas defining the toggle predicate would be written (in XProlog and Lolli) as: 

toggle  G :- on, off  => G .  
toggle  G :- o f f ,  on => G .  

while the well-performing linear logic formulas would be written as: 

toggle  G :- on, off  -0 G .  

toggle  G :- o f f ,  on -0 G .  

In order for existing programs to  work properly. it is assllmed that  the clauses in a module 
are loaded into the unbounded (intuitionistic) portion of the proof context. The programmer can 
override this assumption by preceding intlivitlual clauses with the LINEAR declaration. Thus, it is 
possible t o  specify an initial setting for the switcli within the program file, as in: 

LINEAR on.  

Note that  the use of all uppercase for LINEAR, is not optional. Since the system uses curried 
notation, this is the only way (short of ruling out its use in other forms) of recognizing that  it is a 
declaration, and not a predicate name. For consistency, and improved readability, this restriction 
is also applied to the LOCAL and MODULE declara.tions described below. 

Modules 

Lo15 programs are divided into motlules in the same way as XProlog programs. By convention, 
enforced by the interpreter, files carry the es ten~ion '.11', and. by analogy to the XProlog ==> op- 
eratoi, are loaded using the operator '--0' . The co~llrnaild ' load modulename', which is equivalent 
t o  'modulename --o top', is also available. 

A module may begin with a list of local constant declarations, such as: 

LOCAL a B c. 
LOCAL d. 

with multiple consta.nts separated by spaces. or listetl in separa.te declarations. Because Lolli is 
essentially first-order, types and kinds. allti their declaratiol~s. are not needed or supported. A 
future release of Lolli ma.y support L,,,-u~rification [TI .  b u t  ivill likely still be type-free. Note that 
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since constants are untyped, predicate names ma,y be reused at  different arities, as in ordinary 
Prolog. 

The XProlog module system has been extended to allow for parameterized modules. That is, 
the module declaration is of the form: 

MODULE modname param-1 . . .  param-n. 

where modname matches the root of the file name3 and the parameters are variables to be unified 
placewise with the terms in the loading goal. Note t1ia.t while the formal parameters are variables, 
they are generally intended to  be viewed as constants within the module, and as such may begin 
with lowercase characters if the progra,rnmel. so chooses. Thus, if the module is declared: 

.MODULE foo  a B 

and is loaded with 'f oo c d --o top', then the clauses in f 00.11 are loaded with all instances of 
a and B instantiated to c and d respectively. 

The logical status of the module systenl can he suinmarized as follows, the declaration: 

MODULE mod xl . . . x, . 
LOCAL 31 . . . y, . 

Hl xl . . . X, 311. . . ym zll . . . zg1 . 

LINEAR H;xl . .  . x,yl . . . y,sl, . . . s,, . 

Hp x 1 . . . X , Y ~  . . . ym zl,, . . . zqp . 

associates to  mod the parameters x1 . . .z,, the local consta.iits yl . . . y,, and the clauses H1 . . . H,, 
which may contain free occurrences of tlie variables XI . . . x, and constants yl . . . y,. Each clause 
Hi may also colltaiiz free occurances of the otherwise undecla.red variables 21, . . . z,,. When the 
module is loaded within a goal formula, using the synta,x mod tl . . .t,--0 B, that goal is considered 
only as short-hand for the goal 

f o r a l l  zip\ . . .f o r a l l  z,,\(H,jtl . . .t,yl . . . y,,, :I,, . . . z , , )  => B] .  

Here, we overload the symbols y1, . . . , y,,, to be co~lstants in the LOCAL declaration and bound 
variables in the displayed formula above. In general. this overloading should not cause problems. 
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Also, in this example, it is assumed that  the formula B and the terms t l , .  . . , t ,  do not contain 
occurrences of yl,. . . , y,. Finally, it is a.ssumed t11a.t yl . . . y,, t l  . . . t,, x l  . . .x,, and 21, . . . z,, are 
all pairwise disjoint. 

The implementation of parameterized modules was driven by the need to  be able to handle 
the object-oriented programming exa.mples from an earlier paper [3], where they were used to  pass 
initialization information to  objects. Nevertheless they have proved useful in a number of instances. 
For example, the following module defines the shell of a multiset rewriting system, along the lines 
of the example given in [4, 61. The rewrite rules themselves, however, are in a separate module, 
whose name is passed to  this one as a para.meter when this module is loaded. In order to  ensure 
the soundness of the rewriter, a local predicat'e name is used to  store the multiset in the database. 
That  name is, in turn,  passed to  the rules nlodule ~vllen i t  is loaded. The shell is given by: 

MODULE r e w r i t e  rulemodule.  

LOCAL hyp . 

c o l l e c t  n i l .  
c o l l e c t  (X::L) :- hyp X, c o l l e c t  L .  

unpack n i l  G : - G .  
unpack (X::L) G :- hyp X -0 unpack L G .  

r e w r i t e  L K : - unpack L ((rulemodule hyp) --o ( r e w r i t e  ( c o l l e c t  K))). 

while a rule module might be of the form: 

MODULE r u l e s 1  hyp. 

r e w r i t e  G : -  G .  

r e w r i t e  G : - hyp 4 ,  ((hyp 2 ,  hyp 2) -0 r e w r i t e  G) . 
r e w r i t e  G :- hyp 4 ,  ((hyp 3 ,  hyp 1)  -0 r e w r i t e  G). 
r e w r i t e  G :- hyp 3 ,  ((hyp 2 ,  hyp 1) -0 r e w r i t e  G) . 
r e w r i t e  G :- hyp 2 ,  ((hyp 1 ,  hyp 1) -0 r e w r i t e  G ) .  

and a sample query would be: 

?- r e w r i t e  r u l e s 1  --o r e w r i t e  ( 3 : : n i l )  L .  

?L674 <- ( 3  : :  n i l )  . ;  
?L674 <- (2  : :  1 : :  n i l )  . ;  
?L674 <- ( 1  : :  2 : :  n i l )  . . . .  
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Implement at ion 

Lolli is currently available in two implementations. The first is a simple Prolog meta-interpreter 
given in [4, 61 and reproduced in Figure 2. The code as given implements only the propositional 
fragment of the language (with a few differences from the concrete syntax described above), but 
is useful for experimenting with the core of the underlying logic. The meta-interpreter could be 
trivially extended t o  the first-order language by re-implementing i t  in XProlog. Other than the 
change of syntax, that  system would differ only in the addition of two clauses t o  handle quantifi- 
cation. Unfortunately, the lack of op declarations in XProlog would make the system a little more 
unwieldy. 

The author has also developed a rela.tively rich implementation of Lolli in Standard ML of 
New Jersey (which should port, t.o any ML which can handle MLYACC and MLLEX). That im- 
plementation supports the full 1a.nguage a.s described here, in a.ddition t o  a reasonable selection 
of evaluable predicates and one extra-logical control structure (guard expressions). That imple- 
mentation was inspired by (and built on a. core of code from) Elliott and Pfenning's article on 
implementing XProlog-like languages in a. functional setting [I]. The full implementation of Lolli, 
with documentation, many example programs, and DVI files for several relevant papers, is available 
by anonymous ftp from f t p  . c i s  .upenn. edu ( 1 3 0 . 9 1 . 6 . 8 )  in the directory /pub/Loll i .  If you 
retrieve the system, please send mail to hodas0saul. c i s .  upenn . edu so that  you may be informed 
of updates. 

Conclusion 

The Lolli project is an ongoing one, and the language is by no means frozen. On the other hand, 
the collection of program esanlples is growing [4, 6, 51, and this shows that  the logic fragment 
chosen represents a useful extension of the traditional hereditary Harrop formulas of XProlog. 
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% The logic being interpreted contains the following logical connectives: 
X tne/O a constant (empty tensor, written as 1 in the logic) 
% erase/O a constant (erasure, written as Top in the logic) 
% bang/l the modal, written as I) in the paper. 

:- op(l45,xfy.->) . X linear implication, written as -0 in the paper 
:- op(145 ,xfy,=>). % intuitionistic implication 
:- op(l4O,rfy,x ).  % multiplicative conjunction (tensor) 
:- op(l40,xfy.C 1.  % additive conjunction 
:- op(l50,xfy,::). % non-empty list constructor 

interp(G) :- prove(ni1, nil, G) 

prove(1 ,I, true). 
prove(I,O, erase) :- subcontext(0,I). 
prove(I.0, GI t 62) :- prove(I,O,~l), prove(1 ,O,G2). 
prove(I.0, R -> G) :- prove(R : :  I, del : :  0,G). 
prove(I.0. R => G) :- prove(bang(R) : :  I, bang(R) : :  0.C). 
prove(I,O, GI x 6 2 )  : -  prove(I.H,Gl), prove(H,O,G2). 
prove(I,I, bang(G)) :- prove(I,I,G) . 
prove(I.0, A) :-  isA(A), pickR(I,H,R), bc(H,O,A,R). 

pickR(bang(R)::I, bang(R)::I, R). subcontext(del::O, R ::I) : -  isR(R), subcontext(0,I). 
pickR(R: :I, del::I, R) :-isR(R). subcontext(S: :0, S: :I) :- subcontext(0,I). 
pickR(S: :I, S: :O, R) : - pickR(1 ,O ,R) . subcontext (nil, nil) . 

% The following code provides the hooks into application programs. 
:- op(l50,yfx,<-). % the converse of the linear implication 

% Applications usingthis interpreter are specified using the <-/2 functor (denoting the converse 
% of linear implication). Ye shall assume that clauses so specified are implicitly banged (belong 
% to the unbounded part of the initial context) and that the first argument to -> is atomic. The 
% following clause is the hook to clauses spec-ified using < - .  

% A few input/output non-logicals 

prove(I,I, write(X1) :- write(X). prove(I,I, read(X)) : -  read(X). prove(I.1, nl) :- nl. 

% The following is a flexible specification of isA/1 
notA(write(-)). notA(read(-)). notA(n1). notA(erase). notA(true). notA(de1). 
notA(- L -1. notA(- x -). notA(- -> - ) .  notA(- => - ) .  notA(bang(-)I. 
isA(A) :- \+(notA(A)). 

Figure 2: A Prolog inlplenlentatio~l of Lolli 
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1 Abstract 

Higher-Order Hereditary Harrop (HOHH) formulas have been seriously studied in the latest years 
as a basis for higher-order logic programming languages, resulting in several implementations. Yet, 
no alternative t o  SLD-resolution has been developed for these languages, while for instance some 
Bottom-Up strategy would allow estensions of Prolog applications in such domains as language 
analysis, deductive databases or software engineering. 
We studied a restriction of the higher-order language L,\, which we named l x ,  and for which we 
could define a sound and complete Bottom-Cp resolution strategy. This strategy turns out to be 
very simple, the unification taking care of all the constraints due to quantification over function 
variables. We believe that  this is a first step towards fully esploiting higher-order logic in several 
application fields. As an example, we study the use of the Magic Set method, developed in the 
database community and which, when applied to Horn Clauses, solves the problem occurring in a 
nai've Bottom-Up resolution of con~puting a great deal of useless facts. We present here an extension 
of the Magic Set method t o  our higher-order language I,,. 

2 Introduction 

The perspective of higher-order logic progra.mming la'nguages has been deeply studied lately. Their 
interest as meta-programming 1angua.ges and more perspicuous forma,lisms has been established and 
argued by many authors. It was proved that  Higher-Order Hereditary Harrop (HOHH) formulas 
formed a good basis for such a language, since its higher-order features still accept uniform proofs 
[12] and thus support a proof strategy estending SLD-resolution (used in Prolog). 

As a result, the language A-Prolog was developed [13] implementing HOHH formulas. GQard 
Huet's results on higher-order ullificatioll made it possible to  handle the unification involved in 
the proving procedure. Several implementatiolls of A-Prolog have been given such as Prolog/Mali, 
eLF, . . .The  problems due t o  undecidability and possible la.ck of a most general unifier in higher- 
order unification have been eliminated in L,\, a, restriction of A-Prolog, with an acceptable loss of 
expressive power. Being a logic programming language with A-abstraction, function variables, and 
simple unification [lo], L,, both presents higher-order nice features and is likely to  support efficient 
implementations. 

Yet i t  still suffers from the lack of an alternative to  the estension of SLD-resolution originally 
presented: t o  our knowledge, no real attempt to a Bottom-lip resolution strategy has been con- 

'This work was partially supported by a grant f1o111 a Eulopean Software Factory (ESF) project. 
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sidered. In such domains as language analysis [21], deductive databases [2] or software engineering 
[18], Horn Clauses are efficiently used with some kind of Bottom-Up strategy which is complete and 
more suitable t o  the concerned application. The extension of such a strategy to  LA would allow 
t o  apply its higher-order logic in these fields, resulting in appropriate implementations of meth- 
ods already studied for A-Prolog by Eugene Rollins and Jeannette Wing [20] as well as Franqois 
Rouaix [19] for search in libraries, and Dale Aliller a,nd Gopalan Nadathur in language analysis [ll]. 

As a first step t o  this aim, we have studied a, fra.gment of LA,  which we called lA. We discuss 
the choice of this fragment of HOHH at  the end of the paper. This logic programming language 
supports A-abstraction, function va,riables and quantifica.tio11, but does not authorize implication in 
clause bodies (which LA does). The main reason for this restriction is that  dealing with implication 
in clause bodies requires some process introducing and discharging assumptions, which is quite 
difficult t o  achieve in a Bottom-Up resolution. .4s a restriction of LA,  lA also makes use of its 
simple and decidable unification algorithm . 
We proved that  a sound and complete Bottom-Up st,ra.tegy was possible for LA,  resulting in a simple 
interpreter [7]. While SLD-resolution requires the use of quuntifier prefixes to  encode the different 
constraints over quantified function variables, our interpreter notably presents the advantage not 
t o  need any quantifier prefiz. 

This Bottom-Up interpreter represents a, first step towards offering higher-order logic features 
t o  fields for which SLD is not the most adequate evaluation procedure. For instance, in database 
systems, i t  is for computational reasons advantageous t o  consider set-oriented query-processing 
procedures. But nai've Bottom-Up strategies tend to  do a. great deal of unnecessary work. A nice 
solution developed first in the database community [4] and then extended to  logic programming 
and the Horn Clauses formalism [17] is the method of Ma.gic Sets. This method transforms a logic 
program P and a goal into another progra,m Adayic ( P )  which, when evaluated Bottom-Up, mimics 
the SLD-resolution of F .  This method therefore solves the problem of useless computations in a 
Bottom-Up strategy. We 1la.ve studied a.n estension of the Ma.gic Set method t o  our language lA 
which could present the same advai1ta.ge.s. Unfortunately, the direct extension of Magic Sets to  E x  
is not possible since it leads to  transformed programs which are no more in lA (nor even in LA). We 
propose a sound and complete method relying on the basic principles of the Magic Set method, and 
which, when evaluating the transformed progra.111 Bottom-Up, mimics a SLD-strategy prediction 
and performs a Bottom-Up resolution from the releva.nt axioms. This method computes more facts 
than an  exact SLD-resolution, but significaatly restricts the space search of a nai've Bottom-Up 
evaluation. 

This paper is organized as follows: in section 2. we briefly describe the language l A  and we 
outline the interpreter originally developed for L x  in [lo] and estendi~lg first-order SLD-resolution. 
We then sketch in section 3 how l , ,  can support a simple Bottom-Up interpreter. More details 
on this part may be found in [i]. In section 4 ,  we present the main result of this paper, namely 
some extension of the Magic Set method to our higher-order language lA.  Introducing a partial 
notion of subsumption between prefixed terms. we sho\v how this method rewrites a program into 
another which, when evaluated Bottom-lip. miillics a Top-Down prediction mixed with a Bottom- 
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Up resolution. We prove this method sound and complete. We finally discuss some possible 
extensions t o  our language. 

3 The higher-order logic programming language ZA 

We present here the constraints induced by the higher-order logic nature of the variables, and the 
logic programs used in lA. We sketch the interpreter deduced from Dale Miller's one for LA. The 
reader familiar with LA may skip this section. 

Clauses used in lA are the usual Horn clalises extended with function variables, A-expressions 
and universal quantification. A condition on t.he s y n t a . ~  of terms ensures the decidability and the 
existence of a most general unifier (m.g.u.) in case of success of the unification algorithm. This 
allows t o  apply a proof method which can be conceived as an extension of the SLD-resolution used 
in Prolog (and will sometimes also be referred a.s SLD in the rest of the paper). Complete details 
may be found in [lo]. 

3.1 Extended Horn Clauses 

In LA,  terms are simply-typed A-terms. .4s it is of no great incidence in our purpose and for the 
sake of simplicity, we will consider here untyped A-terms. We deal in lA with Horn Clauses extended 
in three ways: 

A-expressions, which means we can use A-a.bstra.ction to  represent functions and that  the 
interpreter is able to  synthesize A-functions. 

function variables, which means we ca,n use free varia.bles to represent functions, and have 
them instantiated either by functions origillally defined in the program or by synthesized 
A-functions. 

r universal quantifications, which lmve different interpretations according to where in the clauses 
they are used: 

Consider for instance the following logic program: 

Query - Vn: P ( f ( 2 ) )  

VY (P (Y)  - Q ( Y ) )  

In this example, the quantified va.riable 2 is placed on the right of +. It is then 
said t o  be esse?ztially uiziversal: the goa.1 requires we prove P( f (x)) for all x. The 
usual treatment of this case is to  repla.ce n: by an eigen-variable, i.e. a new constant. 
This essentially universal variable therefore cannot be instantiated. For this reason, 
variables bound by a. A-a.bst,ra.ction, wllicll cannot be insta,ntiated either, will also 
be said essentially universa.1. 
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The quantified variable y situated on the left of +- is said to  be essentially existen- 
tiak on the contrary of x, it may be instantiated in order t o  prove a goal, in this 
case by f (x). 

The authorized definite clauses therefore have the following form: 

where 

- Z represent a set of essentially existential variables which may appear in any term of the 
quantified formulae A,  B1, . . . 

- XI are also essentially existential va.ria.bles, hut which appear only in A. 

- the are essentia,lly universal va.ria.bles wllicl~ nlay appea.r in ea.ch of the formulae quantified 
by V G .  

Moreover a condition denoted by ( # )  is set on the form of the terms: in any application 
( x t l t z . .  . t,) where x is an essentially esistential variable, the ti's are required to  be distinct essen- 
tially universal variables, quantified on the right (in the scope) of x. This guarantees the decidability 
of the unification and the existence of a (in some sense) unique n1.g.u. [lo]. 

The following example using these estensions gives an idea of the problems they raise: 

Example 1 Consider the following progruna: 

VxVlVbVm (append (cons .z. I )  k (cons  R: 7 7 1 )  - append 1 k m)  
V k  (al)pend nil  k k )  

and the goal formula Query - V y  ( a p p e n d  (cons (I 7,il) y 2). 
Notice that the unknown Z is implicitly quci~ztified by  3 2  V y ,  ulltich means 2 cannot depend on y. 

Then an SLD-like resolution wou~lcl rovyhly proceed this way: 

W e  replace the essentially unirrerscll vrrriable y by an eigen-variable ij and prove the goal 

([~ppend ( c o n s  0 wil) ij 2 )  

We unify this formula. with the hea.d of tlre Jir:r;t clntrse, obtci,ining the substitution 

and the new goal: (alq~end nil jj ( c o n s  r~ m ) ) .  
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Unifying this new goal with the head of the second clause, we get the final substitution 

This would lead to  a solution for the initial goal (contrary to the intuition), if we hadn't first 
specified that Z could not be instantiated by a term containing y.  Therefore the resolution 
leads to no  solution, which was the correct and expected answer. 

If we had considered instead the goal for~nvln Qtrery - Vy (append (cons a n i l )  y ( H y ) ) ,  
where H is a function variable, the same resolution u!oulrl have lead to two solutions: 

Again, the condition on H eliminates the first solrrtio~i a.nd u~t .  get the expected higher-order answer: 

This example shows that  a, correct resolution o i  our programs needs to  retain 

- which variables are essentially existential and which are essentially universal. 

- their order of appearance during the resolution, so that  we can define for each essentially 
existential variable the appropria.te essentia.11~ universal variables its substitution terms may 
contain. 

This will be done in the SLD interpreter by quantifier prefixes, and in the following, we will 
underline these prefixes of quantifiers indicating whether a variable is essentially existential or 
universal, t o  tell them from the syntactic syinbols ill the formu1a.e. 

3.2 An SLD interpreter 

We formalize here the method used in the previous example. The interpreter is a restriction of 
Dale Miller's one for LA: the strategy extends SLD-resolution, the constraints over the variables 
are encoded in quantifier prefixes. The unification algorithin is sketched on an example. 

To present the interpreter, we introduce a simple meta-logic containing the logical constants 
A ,  T (true), I (false), y, and 3. The atoinic propositions of this meta-logic are then either the 
constants T or I, or a sequent judgement T' 3 G. or an equality judgement t = s. The sequent 
judgement intuitively correspoiids to the notion of goal to  prove and the equality judgement to  that  
of unification. 
The interpreter deals with closed quantified forillulas of the meta-logic, the constraints over the 
variables being encoded by these ineta-level quantifications: 
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for instance, Q = 3x1Vx2Vx33z4 retains that  x1 and 2 4  are essentially existential vari- 
ables while x l a n d  23 are essentially universal ones; moreover 2 4  is in the scope of x2 
and x3 (i.e. its substitution terms may contain 2 2  and x3) while xl is not. 

The resolution is initialized with Qo ( P  G) where Qo contains the constants of the program 
?' followed by the  unknown variable& G, the initial gGl .  It ends when there is only a logical 
constant left, T meaning a. success aad I a. fa.ilure. 

The interpreter then appears as rules over this meta-logic: 

AND A sequent of the form T' + G I  A G2 is repla.ced with the conjunction of sequents 

GENERIC A sequent of the form ( P  + Qn: G )  is repla.cet1 with the sequent 

vn: ( P  3 [:r + .?IG') - 

where 5 is a new symbol. 

BACKCHAIN A sequent of tlie form P + A is replaced with the sequent 

3Z3ZB ( ( A  = B )  A ( 'P + D)) 
if the program contains a clause VZ(VSB B  - D )  

If no such clause exists, then we ha.ve a fa.ilure in the sea.rc1i branch, which we represent by replacing 
the above sequent by the constant i. 

Quantified equality judgelnents a.re trea.ted by unification. Provided the correctness of the 
unification algorithm, this interpreter can be proved sound and complete [lo]. 
In the following we will keep the same nota.tion x, even when it should be replaced by the eigen- 
variable 5. 

3.3 Unification in l x  

Though general higher-order unification was proved undecidable [6], in the case of L A  and thus 
of l A ,  the condition (#) required on the terllls leads to  a correct and decidable algorithm [9], 
which provides us with a m.g.u. in case of success of the unification. For some reasons which 
will become clearer in section 4, and because tliis restores a symmetry in the presentation, we 
prefer t o  view this unification as one between two prefixed terins Q A  A and 3 x 5  B, while it is - 
originally and usually presented as an unificatiol~ of tlie two terms  and B under the mixed prefix 
QA3zB. Thus UNIfi'(Q,4 A? - 35% B)  will be comput,ecl using the traditional algorithm denoted by 
U72i f y(QA3ZB, A = BT 
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This view also presents the advantage to sepa.ra.te clea,rly the resolution part from the unification 
one: the algorithm then does not consist in a,ppeliding the quantifiers of a head of a clause - 3ZB 
to  that  of a goal Q A ,  but t o  encode the scope const.raints of each variable, thus t o  reveal the 
dependencies between the most "flexible" ones - 3ds a.nd the essentially universal ones in - QA. 
We sketch this algorithm on an example: 

Example 2 Consider the problem UhTIFl'(Vnx3xVyVtVuj f ( z y ) z  ,3913~ f (Aa u ) v ) .  The algorithm 
proceeds this way: 

we first write it under the form 

as the functional symbols are es.se~tticrlly uniz*er.wrl clrzrl identical, we compare their arguments 

A- abstraction is treated by using the ezteizsiorarriity property A4 = Ax A4x 
I 

xya = u 
Vm3xVyQzVw3u3vVa v = z  

we then reveal the dependencies o f &  over essentially universal variables by raising it up to x 
xya = IL'IJZUI 

Vm3x3utVyVzVw3vVa 11 + ~ u ' y t ~ u  v = z  

the irrelevant argument variabl~s orr tllrli .<uljpr.e.ssed by pruning over : and w 

we finally get the substitution o : 
u + u"y 

Vm3u"VyVzVwVa x k Ayc~ . zl'ly 

V H Z  

This solution is a m.g.u. in the seizse thrrt n~zy  closecl unifier is an instance of a 
respecting the constraints encoded by V7n 3 ul'VyVzVu?Va 

We have so far obtained a higher-order progra.mming language with an interpreter using an 
SLD-resolution similar to  that used in  PROLOG. The constraints between variables are captured 
by quantifier prefixes which melllorize which variables a.re essentially existential and which are 
essentially universal, and order then1 so tha t  a val.iable is contained in the scope of the variables 
on its left in the prefix. 
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4 A Bottom-Up interpreter for Z A  

4.1 Motivations and intuitions 

A first motivation for a Bottom-Up interpreter is theoretical: the good properties of the HOHH 
with respects t o  uniform proofs allowed the design of a goal directed strategy for proofs, resulting 
in the SLD method. I t  is thus interesting to draw the parallel between the languages that  stemmed 
from HOHH and Horn Clauses as far a.s possible, notably concerning the availability of alternative 
resolution strategies. 

Moreover a Bottom-Up interpreter can be useful in a variety of domains, as can be seen with 
Horn Clauses applications: in natural language pa.rsing, whose formalism was proved very close 
to  that  of logic programming [15], people usually sta.rt from the token chain t o  be analyzed and 
deduce its structure (Bottom-Up approach) ra.ther tha.n conlpute a possible structure and try it 
on the chain (Top-Down approa.cl1). In deductive d a t a h s e s ,  a Bottom-Up strategy, close to the 
least fixed point semantics, makes use of set-oriented query-a.nswering procedures, which are more 
efficient ways of processing queries in this field [l ,  '21. hiloreover it presents the important property 
of being operationally complete. 

We have therefore been interested in  studying a Bottom-Up interpreter for 1 ~ .  Although the 
principle is quite simple, relying on the modus ponelis rule 

its application t o  our higher-order laaguage is a, little tricky for two main reasons: 

1. The modus ponens schema.ta a.pplies to  a. c~njunct~ion of atotns (i.e. , of particular formulas 
we are able to unify). l A  bodies of cla.uses cont.aiil nested qua.ntifications and conjunctions, so 
we may have t o  deal with conjunctions of arbitrarily complex formulas. 

2. The quantification of functional varia,hles involves possible constraints over them: this prob- 
lem is addressed by quantifier prefixes in SLD, but ha.s to  be considered specifically in a 
Bottom-Up strategy. 

We designed a Bottom-Up interpret.er [ i ] ,  which turns out to be a.s simple as the one for Horn 
Clauses. The way we solved the problems described above relies on an analogy between lA quantified 
atoms and Horn Clause atoms. We exploit this analogy to  extend the Bottom-Up resolution for 
Horn Clauses t o  I , , .  An intuition of this est,ensioll is given here; more precisions will be given in 
the rest of the chapter, and a complete justificatioil may be found in [?I: 

Universal quantifiers may be distributed over c,onjunctions in bodies of clauses, and we 
obtain logica.11~ equivalent formulas. a.ccording t,o t,he ta.utology: 
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By applying inductively this transformation, we obtain programs of clauses whose bodies 
are conjunctions of quantified atoms. We may then formally apply the modus ponens 
schemata, using higher-order unification of prefixed terms (as we presented i t  in 2.3). 
The prefix for a quantified atomic goal may be easily computed by appending the list 
of the universally quantified varia.bles to  the list of its (essentially) existential variables 
(remember this prefix is only a.n encoding of the va.riables present in the term). This 
schemata may be represented by the following rule: 

where if' contains the (essentially existential) variables in a(A) 

This formal mechanism will be proved correct and looks very simple. In particular, one may 
notice that  no quantifier prefix needs to  be kept during the resolution; it is synthesized a t  each 
unification step. The reason is that ,  in a Top-Down resolution, constraints over variables have to  
be dynamically accumulated and propagated along the search tree, as bindings are. In a Bottom- 
up strategy, on the other hand, we reason from facts and derive other facts which we may then 
re-use without knowing their origins. As axioms and heads of clauses only contain essentially ex- 
istential variables, no constrail~t is set on them and thus no constraint need be propagated during 
the computation. Quantifier prefixes are only needed in the unification step, t o  specify the scope 
constraints on the variables in the terms to unify. As these constraints are local, they may be 
statically computed. 

The following example gives an intuitioil of the Bottom-Up procedure applied to  the same 
program as  in example 1: 

Example 3 Let 'P be the program 

VxVlVkVnz (a l~pend (cons n: I )  k  (colts 2 nz)  - append 1 k nz) 
Vk  (apl~end nil k  k )  

and G the goal Query  - V y  (append ( cons  (1 n i l )  y ( H  y ) ) .  

A Bottonz- Up resolution woulrl proceerl this 1ucr.y: 

Starting from the axionz, we chain it uiith the other clause, obtaining the new axiom: 
VxVk (nljpencl (cons .T izil) k (cons x k ) )  

W e  chain the new axiom with the (l~.si~.eil goal by the unification: 
UNIFY ( 3 H V y  append (cons a n i l )  y ( H y )  = 3 s 3 k  append (cons x n i l )  k (cons x k ) )  

which identifies s to (I and k  to y (u:/~ich is correct ns to the scope constraint) and gives: 
N + /\,ti . toll..; (1 u 
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4.2 The Bottom-Up interpreter 

The simplicity of this interpreter relies on this remark: 
Consider the particular case of a clause of the following form, where A and B are atomic: 

where 

i represent a set of essentially existential variables appearing either in B or in both A 
and B. 
iA are also essentially existential va.riables, but which appear only in A. 
y' are essentially universal varia,bles appea.ring only in B. 

Now if we consider a. cha.iining st,ep wit,h t,he a.xiom 2 C'. we have to  realize the unification 

17n-In.' ( 3?3Zd4Vij B = 317 C ) 

which is computed by 

The following remarks hold: 

the ZA are left unchanged since they do not a.ppea.r in the terms to  unify. In fact they may 
even be completely removed from the uuifica~tion. which we will do hereafter. 

the Z are not in the scope of the essentially universal y'. Therefore they cannot be substituted 
by terms containing variables in the scope of the y'. The only essentially existential variables 
appearing in those substitution terms a.re then some R: or some u' which was raised from a u 

(and therefore not in the scope of an essentially universal y).  

a variable from ii may be substituted by terms co~itaiiling some of the essentially universal y', 
but then i t  cannot appear in any substitution term of one of the 5. 

The resulting substitution a then does not a.ffect the Z A  and can instantiate the 5 only with terms 
containing no essentially u~liversal variables f o r  a.ny va.ria,ble under the scope of a y. As a conse- 
quence, a ( A )  does only contain essentially esist,ent,ial varia.bles, under the scope of no y. 

Omitting the  quantifiers correspondiiig to essentia.lly esiste~lt~ial variables, as is usually done in 
X-Prolog, we thus obtain the folloiving rule presented a.s a. sequent: 

We therefore obtain a calculus principle very near to t11a.t of the first order case, except that 
the unification is higher-order. 
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This result can easily be generalized to  all kinds of clauses of lA,  including nested use of quan- 
tification and conjunction, on the ba.sis of the following logic equivalences: 

( ( B  A C )  3 A) r ( C  3 ( B  3 A)) 
((VX ( B  A C ) )  3 A )  ((VX B A VX C) 3 A) 

More details may be found in [7 ] ,  justifying the following forwaad chaining procedure: 

Clauses of the general form 

are first transformed into the equivalent ones 

V 5  (VZZ4 A - Vy'dyi Dl  A VyTy'2 D 2 )  

to which we apply the following rule: 

(A +- Vyj& Dl A Vyjf2 D 2 )  B 
if I f n i . f y  (3ZD2vy'df2 D2 = 3cB B )  = (Q, a) 

a ( A )  + Vfli71 'l(D1) - 

This Bottom-Up procedure can be easily proved souiid and complete using the deduction rules. 

We thus obtain a very simple Bottom-Up interpreter which is very close t o  the one defined for 
first order Horn Clauses. Miraculously, all the higher-order features are handled by the higher-order 
unification which, in the case of l , , ,  presents no problem of termination or uniqueness of the m.g.u. 

As the rest of the paper is devoted to  an applica.tion of the Bottom-Up strategy, we will hereafter 
assume that  the clauses of the l A  programs a.re written in their expanded form (i.e. bodies of the 
clauses are conjunctioll of universally quantified a.tomic goals). 

5 An application: Higher-Order Magic Sets 

5.1 First-order Magic Sets 

In some fields like deductive databases, comput~a.tiona1 reasons make it more advantageous to  con- 
sider forward chaining strategies. Unfortuna.tely, a straightforward Bottom-Up resolution tends t o  
compute many facts useless for the goal t,o prove. \.Ve show t,l~is on a n  example where, unlike usual 
database conventions, we do not separate intensional and extensional parts. 

Example 4 Consider the follou~ing Horn C'IN u.sc.s ~)r.ogrclin: 
yath(X, Y)  + edge(A-. 1;) 
pa th (X,Y)  +- edge(X,Z) ,  p n l h ( Z ,  1')  
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edge(a, b ) .  
edge(b, c ) .  
edge(d, e ) .  

edge(e, f 1. 
and let the query be 

Query c pa th (a ,Y) .  
The Bottom-Up processing of this query upill conzpvte the complete edge relation and then select 
the appropriate instances, i.e. all the paths which may be related will be computed, while only those 
starta'ng from a were required. 

On the other hand, SLD re~olut~ion presents the atlvantage of reducing the space of search since 
the procedure is goal-directed. 
To solve this problem, a nice solution was supplied first for databases [4] and then for general Horn 
clauses [17] by C. Beeri and R. Ramakrishnan, consisting in rewriting a program P and a query G 
into a program which, when conlputed Bottom-Up, mimics a Top-Down evaluation. The rewriting 
is performed as indicated below: 

First- Order Magic Set transformation: 
Let P be a I x  logic program, G be a. goal. 
Then M a g i c ( P )  is the program obtained by: 

if ( D  t G I . .  .G,) E F ,  then ( D  - nzagic-D, G I . .  .G,) E h4agic(P)  

if ( D  t GI . . . G,) E P, tlleil (n~ag ic -G,  - nrngic-D, G1 . . . G;-1) E M a g i c ( P )  for each 
l _ < i _ < n  

An intuition of the isomorphism between a.pplying a.n SLD-resolution and evaluating the Magic 
program Bottom-Up may be found i11 [14]. 

Example 5 This Magic Set tra~zsfornzatioiz produces the following program from the one above, 
introducing the new predicates n?agic-put h (112d n?cq I c-edy e :  

pa th (X ,  Y )  c n2ugic-puth(Xl I - ) ,  edge( .I-, 1.) 
pa th (X ,  Y )  c m a g i ~ - p a t h ( ~ ~ ,  I,), ~ d y c ( S ,  Z), pcith( 2, I' ) 
edye(a,  b) t magic-edge(a, 6 )  
edge(b, c )  c magic-edge(l, c )  
edye(d,e)  t may  ic-edge(d, e )  
edge(e, f )  c magic-edge(e, f) 
rnagi~,edge(~Y, Y )  +- magic-path(S ,  1') 
magic,edge(X, 2 )  + m a g i ~ _ p a f h ( ~ X - ,  1') 
magic-path(Z, Y) + inngic-edge( 1.1'). c d g r ( S .  Z )  
magic-path(a, 2). 

where the prefix magic coulcl bc i7itllltzt~I!j I .~ ( I ( /  (I \  . .((I//". 
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The computed facts are then the following ones, where the solutions are framed: 
magic-edge(a, Z )  magic-edge(a, 1') 

- 
This tzme, the zrrelevant paths concerning the points e ,  f crnd g are not computed. 

Thus this transformation solves the prol,len~ of l.estricting the set of facts computed during a 
Bottom-Up resolution. 

We study here an  estension of this methot1 t,o our 1a.nguage I,,, using the Bottom-Up resolution 
presented in the precedent section. 

5.2 I m p o s s i b i l i t y  o f  a direct ex te i l s io i l  

A first natural at tempt co~lsists in a direct estension of the first-order Magic Set method to 1 ~ .  
This leads to  a failure, beca.use qua.ntification prevents from rewriting into correct lA clauses. 

Example 6 Consider the siinple yrogrcrnz: 

B ( a ,  Y ) .  
A ( Z )  t Vx B ( Z , p ( z ) ) .  

Then a direct application of the Ilfagic ,Set rezilritirzg ulovld give the following program, with the new 
predicates magic-A and magic-B: 

B ( a ,  Y )  c magic-B(a,  1') 
A ( Z )  c magic -A(Z) ,  Vx B ( Z , p ( n : ) )  
. . . c magic -A(Z)  

The trouble with the second cla.use is t,ha.t we do not know how to  transform a quantified goal: 
knowing that  the desired term in the 1lea.d of the cla,use should intuitively mean "try to prove 
B ( Z ,  p ( x ) )  for all x", we have to  cope with the following problems: 

- On one hand, the universal quantificatioll callnot be put out of the magic tern1 (something 
like Vx m a g i c _ B ( Z , p ( z ) ) ) ,  since such a quantification in a head of a clause would mean that  
x is essentially existential, while we want it to be essentially universal. 

- On the other hand, t o  encode that we have to  consider the goal Vz B ( Z ,  p ( z ) )  in its whole (with 
x being essentially universal), we can try to  rewrite it into the magic term m a g i c - B ( Z , p ( i ) ) ,  
where 2 is an  eigen-variable standing for the essentially universal z .  But we then have to  
encode that  Z is not under the scope of 5, which would require means out of our setting. 

- Some magic~foraEE_B(Xx~Z.  An:oB(n:)) does ca.t,ch the scope constraint, but cannot be later 
unified with magic-B(a,  I " )  in the clause B(u.  1.') - n~c~g ic -B(a ,  1.') derived from the axiom. 
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In short, since no scope constraints can be expressed over variables in the head of our lA clauses 
(in particular, heads of clauses may only contain free essentially existential variables), the Magic 
Set method cannot be directly ext,ended to  lA.  

5.3 Some kind of Magic for lA 

The obvious solution to  the problem of having esse~ltially universal variables in heads of the clauses 
in the rewritten program is t o  rewrite without essentially uiliversal variables. Transforming terms 
containing essentially universal variables into terms containillg only essentially existential variables, 
in a way we will define below, implies a loss of information. Therefore the whole procedure leads to 
the simulatioll of a resolutio~l mixing two steps: a n  approximative SLD resolution which achieves a 
prediction, and a Bottom-Up evaluation fro111 the restricted set of axioms delimited by the predic- 
tion. This procedure was inspired by Franqois BartlGlemy's works on mixed resolution strategies 
[3]. The proof of this result will he given at the cntl of the section. 

Example 7 Let's consider the following progrttnl: 
p (X,Y)  +- Vu q(Z,Y, u), r(-x, 2 )  

with the axioms 
q(e1, f X ,  1'). 
q(e1, fX,  e2). 
r(a,  el). 

and r(b, el) '  r(b, ez), . . . ,r(b, en). 
and the query Query - Vx p(n, H n.). 

Then a Bottom-Up evaluation proz~ing fro111 right to left would compute all the facts derived 
from the r(b, e;), which may be nunzerotrs c1.71d art of no use to prove Vx p(a,  Hx) .  

To solve this problem, we propose to cerc~lunte thc jollo~i~irzg derived program: 
0) nzagic-p(a, H*)  (seed) 
1) Success(Vx p(n, H z ) )  - V r  p(o.  Ha. ) (added clause) 
2) p ( X ,  Y) + m a g i c q ( X ,  1'), Vtr q ( Z ,  1'. u ) ,  r(-3-. 2 )  
3) magic-q(Z, Y, U*) - may rc-p(S. J ' ) ,  r(.Y, Z )  1 (derived from the first clause) 
4) magic-r(X, 2 )  - magic-p(S. 1') 
5) q(el, fX,Y) - n ~ c ~ g i c - q ( t ~ .  fS. 1.) 
6) q(el, fX, ea) + nzngic-q(el, f S .  e l )  
7) r (a ,  el) + magic-r(u, e l )  
8) r(b,el) +- magic-r(6. e l )  i (derived from the axioms) 
9) r(b, e2) + nzayic-r(6, t z )  

. . . 
. . . r(b, en) t magic-r(b, en)  

where Success is the predicate giving tht fi1zt1.l result. 
and H* and U*ure "l~reclictive" esselzticrlly ezistenticll variables introduced to stand respectively 

for H x  and u which colztnin e.f;serzticrlly rrrzi~~cr.sal z,aric~,bles. 
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The computed facts are: 
i )  magic-p(a, H * )  
ii) m a g i c - ~ ( a ,  2) 
iii) ~ ( a ,  e l )  
i v )  magic-q(e1, H *, U') 
v )  q(e1, f X ,  U * )  
v i )  q(e1, f X, e2) 

v i i )  p(a, f X )  
v i i i )  Success(Vx ])(a, f x ) ) 

(the seed 0) 
(from i and 4 )  
(from ii and 7) 
(fronz i, iii and 3) 
(from i, iv and 5 )  
(froin i, iv and 6 )  
(from 1 and v) 
(110111 rzi ( 1 1 1 d  0) 

Notice that. 

a the proofs starting fronz the r(B, e , )  crnd u~hich (ire irrelevant for this goal have been ignored in 
the Bottom-Up evaluation of this Magic Set tr.crrzsforr,zec/ program. 

a however some unnecessary facts, like y (e l ,  f .I-, e2) udtose third argument cannot be later uni- 
fied with an essentially universal x ,  moy be computed clue to the ina.ccuracy introduced by the 
predictive essentially existential vcrrinble IT' .  

a the computation in its whole is sotirzd and con2plete. 

We now formalize the method used t o  transform our program: lA  clauses are assumed t o  be 
written under their expanded form ( cf section 3)  D - G I  . . . G,, where the G;'s are universally 
quantified atomic formulas. 

We introduce a mapping p on a term with a quantifier prefix, which we will sometimes also 
consider as a substitution on a prefixed term, the following way: 

p is defined by /'(Ad) = v{}(114):  \vl~ere I,{.') is defined as follows: 

H i f p = O  
~ v { ' } ( t l ) .  . . r/{')(tl)) if H is a coilstant or H E 5 
H'Z if not. H* being a new essentially existential variable 

It is important to notice that 11 is not a substitution in the usual sense (respecting a 
quantifier prefix), since it also transforills essentially universal variables. This mapping 
p is likely t o  perforill the "predictive transformation" on terms so that  the resulting 
program may be correctly computed Bottom-Up. Thus no essentially universal variable 
must remain escept those that  can be encodeti directly in the terms (i.e. the constants 
and the variables bound by a A-abstraction). Therefore the resulting terms only contain 
free essentially existential variables. The basic idea of this mapping is to  transform 
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any essentially universal varia.ble into a. new esseiltially existential one. To respect 
the condition (#) set on I x  terms, essentially existential terms will be eliminated and 
replaced roughly by a new essentia.lly existential variable. In fact, t o  preserve the 
correctness of the rewriting procedure, (5) keeps a trace of all the variables bound by a 
A-abstraction up t o  the current step of decomposition of the term, and these arguments 
are kept, so that  H'S may actually "represent" H t l  . . . t ,  (this notion will be formalized 
later). 

We then have the following result: 

Theorem 1 (Higher-Order Magic Sets) Let T' be a I,, logic program and G be a goal, 
and let M a g i c ( P )  be the program obtc~inecl by: 

a if ( D  + G1 ...G,) E P ,  then ( D  - I I Z ( L ~ I C - D ,  G I .  ..G,) E M a g i c ( P )  

a if ( D  c GI . . .G,) f P, then ( /~(n.agic-C;;)  - nt,ngic-D, G I . .  .G;-I) E Magic(?) for 
each 1 < i 5 n 

Then a Bottom-Up evaluation of AIagic(T') is .sol~rztl (11zd contplele, and mimics a Bottom-Up 
evaluation from SLD-predicted azionls of 7'. 

Some remarks may be done: 

a This theorem is similar in its forinulation to the one for first-order Horn Clauses, up to  the 
introduction of the predictive substitution 11. Besides, when applied to  Horn clauses terms, p 
behaves like the identity substitution. and our theorem restricts to  the usual first order Magic 
Sets method. 

a Prediction might also be considered for first-order terms, but is made necessary here because 
of the impossibility of describiiig scopil~g: constraints in liea,ds of clause. 

a p is a particular case of predictive substitution. Obviously, replacing each p(magic-G;) by an 
essentially existential variable a.lso leads to a. sound and complete procedure, the difference 
being that  the prediction is even less a.ccura.te. Thus a, general notion of predictive mapping 
may be defined, resulting in a more general formulation of the Magic Set method. 

To this aim, we introduce here a partial definitio~t of subsurn~~tion between prefixed terms: 

Definition 1 3g B is said to be subs~rnzzrag iht pr-~fiztd term QA A if there exists a substitution o - 
on the variableTii of B such that 

a ( 3 c B )  - = - (2,4 --I 

which stands for the equcrllty trrl(lr r rr qurrr~t~jir 1. pi-(-fix: 

Q 4 3  ( d B )  = -4) 

where the f are the variables of ij , 1 0 1  i~zbtc~r~/i(rt~d by u .  
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R e m a r k :  As for first order terms, if 3 y ' B  subsumes Q A  A , the o may be obtained by 
their unification (which writes ~ n i  f y a A 3 2  , B = ~ F w h e n  we choose only variables 
in y t o  be the ones to  be instantia.ted. 

Def ini t ion 2 A mapping of (essentially existential and universal) variables @ will be called a pre- 
dictive mapping for a set of prefixed tenns if 9 ( M )  only contains essentially existential free variables 
and subsumes M for each term M of the set. 

Of course, mapping on variables canonically extends to  ma.pping on terms, which was implicitly 
done in the above definition. 

The mapping p defined a.bove is a predict.ive mapping for t,he terms of the program P considered. 
Its corresponding a may be defined as follows: 

for each H* obtained from a tern1 H t l  . . . t ,  by a /L{'), a ( H * )  = Xy'.(Htl.. . t , )[5 c y'l. 
This substitution a actually fits the conditions since it suppresses a.ny essentially universal variable 
not bound by a A-a.bstraction, and respect a(lrA4) = A f .  

Extending the previous theorem to  general predictive mapping, we obtain the following result: 

T h e o r e m  2 ( G e n e r a l  H i g h e r - O r d e r  M a g i c  S e t s )  Let P be a 1,\ logic program, G be a goal, 
and @ a predictive mapping for the ternas of 'P.  
and let M a g i c ( P )  be the program obtained by: 

if ( D  + G I . .  .G,) E P ,  then ( D  - magic-D, GI . . .  G,) E M a g i c ( P )  

i f  ( D  t GI . . .G,) E P ,  then (@(nangic-G;) - .inagic-D, GI . . .Gi-I) E M a g i c ( P )  for 
each 1 5 i 5 n 

Then a Bottom-Up evaluation of Alci.gic(P) i.s sorrtzd and contplete: and mimics a Bottom-Up 
evaluation fronz SLD-predicted axionas of P .  

5.4 Correctiless of the general Higher-Order Magic Set method 

Magic Sets often look mysterious. A good understanding of this higher-order Magic Set method (as 
well as first-order Magic Sets) may be obtained using a, very general formalism based on Dynamic 
Programming evaluation of Logical Push-Do\vn .411tomata developed by Bernard Lang for Horn 
Clauses[8]. In this setting, it appears clea.rly that t,lie Ma.gic program is nothing but the encoding 
of the evaluation of the initial pr0gra.m using a specific sound and complete strategy (namely, SLD- 
evaluating an approximated pr0gra.m ant1 performing exact. Bottom-Up resolution on the focused 
set of axioms). 

We sketch here the proof for the theorenl concerning the general Higher-Order Magic Set 
method, derived from this analysis. Tlle result niainly relies on a sound and complete proving 
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procedure M i ,  mixing Top-Down prediction and Bottom-Up evaluation. As a first intuitive ap- 
proach, we show the soundness and completeness of a. rather similar proving procedure M,  where 
Bottom-Up evaluation follou~s Top-Down prediction. We begin with some simple results: 

Lemma 1 If 3y' B subsumes Q A  A tllen every QA-closed instance of A (i.e. an instantiation of 
the essentia~l~Txistentin1 variables in A respecting the scoping constraints in Q A )  is a - 3y'-closed 
instance of B. 

Proof :  This lemma is trivially derived from the definition 1 of subsumption. 

Lemma 2 If 3y' B subsunles - Q A  A tlterz errcry proof ( in  the sense of Sequent Calculus) from a lA 
logic program p o f  a QA-closed iizstnnce of Q A  ..I i.s 0 proof of a closed instance of 3y' B. - 7 - 

Proof: This is straightforward from lemma 1. 

This lemma of course applies to  a, pr0gra.m T' with a predictive mapping i9. To simplify the 
writing, we extend canonically such a. @ applyi~ig on qua.ntified terms (or atomic formulas) to  a 
mapping over general formulas: 

The previous lemma then yields the following one: 

Lemma 3 Having a complete proving procedure (ilzd (1 predictive nzupping iP for a program P ,  
proving @(Q - G )  from P is complete for yrovirlg - Q C: fronl P .  

Proof :  From lemma 2, we deduce that  the set of answers of a program P for the query Q G (i.e. 
of provable Q-closed instances of G) is col~tained in the set of answers for the query 9 ( Q  c). Thus - 
answering t o 9 ( ~  - G) provides us with a complete set of answers for the query - Q G. 

As a consequence, since SLD-resolution is a souud and conlplete proving procedure, the SLD- 
evaluation of i9(Q G) from the program T' is complete for proving - Q G. This corresponds to a first 
step of  redi re diction P.r.cdo (i.e. a complete b u t  not necessarily sound resolution) on the goal. 
This prediction may be extended if we apply this mctl~otl to  each subgoal called by Predo, which 
leads to: 

Lemma 4 Considering a progranz P .  (1. gocll G' nntl (I  predictive mapping i9 for P ,  the method Pred 
consisting in SLD-proving @(G)  fro112 the trc~izsjornztd progmna @ ( P ) ,  where all the formulas in the 
bodies of clause have been traizsfornzec/ by i9. 2.5 (1 conzplete proce(1tlre for proving G from the program 
P .  
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This transformed program @ ( P )  implenlelits prediction a t  each step of an SLD-resolution. The 
proof may be obtained by induction on the size of the proof tree for an SLD-answer to  a given goal. 
We may then deduce the following result: 

T h e o r e m  3 (A s o u n d  a n d  c o m p l e t e  s t r a t e g y )  W e  obtain a sound and complete proving pro- 
cedure M for a program P and a goal G by cipplying the prediction method Pred followed by a 
Bottom-Up computation from the axioms involved in the prediction. 

Proof :  By lemma 4, the prediction M is complete for proving G and thus guarantees that  there 
is no Bottom-Up proof for G using an axiom not involved in M.  This gives the completeness of 
the method M'. Soundness is obtained by applying the usual Bottom-Up proving procedure to  the 
program P, starting only from the releva.nt axioms. 

This proving procedure may be refined by ~llixing the prediction and the Bottom-Up resolution, 
instead of applying them successively: ea.cli time a. predictive subgoal @(G)  is proved, a Bottom-Up 
step is computed trying to  unify the predicted fa.ct with G. In case of success, the substitution thus 
obtained is transmitted to  the rema.ining predictive sul)goals. thus restricting even more the search 
space. This strategy may be viewed a.s an extension of Earley Deduction [5]. 
The sets of subgoals and facts may be defined by tthe following nlutually recursive formulas, derived 
from Nilsson's simplified expression of C:a.nlegie Mellish's work [Id]: 

Call = I n i t  U u { O + ( G ' , )  I Bo E c'ull, B1 , .  . . , Bi-1 E Succ and 

SUCC = U { e (  Ao) I BO E Cull ,  B1,. . . , B, E SUCC and 
Ao+G1 ,..., G,EP 17t,g21( -40 . . . Gn, Bo . . . B,) = 0 # 1) 

In i t  contains the initial goals, and Succ is initialized with the axioms of P 

T h e o r e m  4 ( A n o t h e r  s o u n d  a n d  c o m p l e t e  s t r a t e g y )  W e  obtain a sound and complete prov- 
ing procedure M' for a program P and a yocrl G by al)plyiizg the prediction method Pred mixed with 
a Bottom- Up computntion as described ahooe. 

Before we attack the proof of this theorem. we need the following lemma: 

L e m m a  5 If 3y' B subsunzes 3'1Wv' A ,  theri for. errch 313:-substitution r whose substitution terms 
does not con ta~essen t ia l l y  unitx=r,sally r!orioble.~ qtrrrntijerl in o l)ref;s:, ~ ( 3 f  - B )  subsvmes ~ ( 3 1 i l l ;  A).  

This property concerns interestilig particular cases of subsumption, since the quantified terms 
3uVZ A are those representing quantified atoniic goals ill I,,. Tlle r concerned are the restrictions 
t o  the variables of A of the unifiers obtailletl by chaining .A with a clause head. 
Proof since the substitution terms only contain essentially existential variables, r(3y' B )  appears - 
under the form 3% B', so i t  is correct to consider our (partial) subsumption. 
The proof of t h i s e m m a  relies on an induction on the structure of the term B: we modify a such 
that  a(3y' B )  = 3235 A to  obtain a' such that a1r(3i j  B )  = ~ ( 3 1 3 :  A )  - - 
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if B is a (necessarily essentially existential) va.riable, 

- either B occurs in A, then necessa.rily A = B ,  so r (A)  = r ( B ) ,  and no a' is needed. 

- or B does not occur in A, then B is not insta,ntia.ted by 7,  and we choose a l (B)  = r ( M )  
if a(B)  = M. 

if B is a functional term 

- if B is essentially universal, then its head symbol must be a constant or a variable X- 
abstracted before. In both cases, A must also be a functional term with the same head 
symbol. We may then apply the induction I~ypothesis to  the arguments. 

- if B is essentially esistential, then the condition (# )  states that the arguments in B are 
essentially universal variables quantified in the scope of the head of B: B = uy, . . . y,. 
In this case, the y; are necessarily previously A-abstracted variables. The discussion is 
then similar to the case where B is a variable: i f  11 occurs in A then u is not modified by 
a and thus we nlust have A = B. If it doeh not. then we choose a1(u)  = Axl . . .x, . r (A) .  

a if B is a A-abstraction Xz . B', then so must I)e A,  say A = Ay A'. 
We apply the induction hypothesis to  B' and A'[y c X I ,  where x is considered as an  essentially 
universal variable quantified in the scopes of the previous variables. 

Proof of theorem 4: The soundness of the procedure is obvious since facts are proved by 
genuine Bottom-Up computations (the method M' only leads these computations). We prove the 
completeness of M' the following way: collsidering a, pr0gra.m P,  a predictive mapping @, we note 
@ ( P )  the program obtained by applying @ to  the clause bodies, and we reason by induction on the 
size S of an SLD-proof tree for an a.nswer p to a goal G: 

If S = 1, then p(G) is an instance of a.n axiom .A of 7'. This axiom is also in @ ( P ) ,  since 
only bodies of clause are modified. So, by lenirna 3, we deduce p(G) as an  answer for 
the predictive goal @(Q D). As p(G) also unifies with - Q G in the Bottom-Up step, it 
appears a s  a MI-answer for Q G. - 
Induction hypothesis: we assunie the result to  be true up to S: for each goal with an 
answer whose SLD-proof tree has a size inferior or equal to  S ,  applying the method M' 
with a predictive mapping @ is complete. 
We consider now a goal G for which an answer p exists, whose SLD-proof tree has the 
size S + 1. We separate the cases a.ccortling to  llle la.st rule used in the proofs. Since I A  
(as a restriction of L A )  supports uniform proofs [12], this la.st rule is a right-introduction 
rule until we deal with an a.tornic goal. For I x .  t , l l is  restricts to  the following cases: 

- if we use a right-A-Introduction (corresponding to the AND case of the SLD inter- 
preter), then Q G is of the forill (Q1 - A ((22 - G 2 ) ,  and P provides us with proofs 
for p(G1) andT(G2).  
Using MI, we first try t.o prove Q1 (;I, and we consider the predictive goal 
@(a GI) .  Applying the i l l d ~ ~ c t i o ~ ~ ~ ~ ) o f l i e s i s .  11.. deduce the completeness of 
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the procedure for this goal, and thus that  some answer T is computed by MI, such 
that  p(G1) is a QI-instance of r(G1). p(G1) is thus a MI-answer for Q1 GI. 
The procedure then considers the predictive goal p@(Q2 G2). ~ y l e m m a  5, 
p@(Qa G2) subsumes p(Q2 G2). We may then apply the induction hypothesis to  
thegoal  Q2 p(G2), with t h e  predictive mapping @ :: [p(G2) I+ p@(G2)]. The com- 
pletenessobtained guarantees that  p(G2) also constitutes a MI-answer for - Q 2  G2. 
Thus T(G) is also a MI answer to  G. 

- since we assume that  the quantifiers have been distributed t o  atomic goals, as was 
suggested in 3.2, right-V-introductions (corresponding t o  the AUGMENT rule of 
the SLD-interpreter) are always followed by left-=+-introduction (corresponding to  
the BACKCHAIN rule of the SLD-interpreter). One unique proof may encompass 
this case and that  of only using the BACKCHAIN rule, because it may be con- 
sidered as a BACIiCHAINing over quantified formulae (using the unification over 
quantified terms presented in 2.3).  This proof stands as follows: 
In the SLD-proof, Q G is first unified with some head A of a clause A + GI. Using 
MI, we consider the predictive goal @ ( Q  - G ) .  By lemma 3, considering @(Q G)  
is complete for proving - Q G.  So - Q G also unifies with A via a ,  and p ( ~ l ) %  an 
SLD-answer to a(G1).  
Besides, by lemma 5, a@(G1)  subsunles a ( G 1 ) .  Therefore, we may apply the in- 
duction hypothesis to  a ( G t )  with the predictive mapping @ :: [a(G1) I+ u@(G1)], 
and deduce the completeness of proving q(G1).  AS a consequence, p(G1) is also a 
MI-answer t o  a(G1). 
So p(G) appears as a n  anslver for the predictive goal @(Q G) .  A last Bottom-Up 
step is then computed by M I ,  unifying the facts obtainezwith Q G. This step of 
course preserves the completeness of proving Q G, and p(G1) m a y b e  chained back 
t o  - Q G ,  giving p(G)  as a .MI-answer to  Q G -  - 

The General Higher-Order Ma.gic Sets theorem may be deduced by showing that  the Magic 
Set method is actually a Bottom-Up implementation of this resolutioll procedure MI: the call of 
subgoals in the Top-Down predictive phase is ellcoded into the predicates m a y i c X .  The proof is 
straightforward. 

A better and more general proof may be obta,ined, as we said, using the formalism of LPDA: 
compiling P with the logic Mi and a. Bottom-Up control yields the general higher-order Magic Set 
method. This view is unfortunately too long t.o present here. 

6 Conclusions 

In the purpose of extending the possible use of L,, to  sollie application fields, we have studied 
a restriction Z A  which allows function va.ria11les a,nd universal qua.ntification. We showed that  a 
Bottom-Up strategy is available for this language. This strategy is sound and complete, and very 
simple, since the unification takes care of all the higher-order features. 
Bottom-Up approaches present the adva.ntages of heing complete, a.nd suitable for parallel execu- 
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tion. They are also sometimes more adapted t o  the kind of reasoning used in the concerned domain. 
For instance, this restriction lA suffices to  implement semantic interpretation [16], the treatment of 
(linear) implication being explicitly described in the program. This example is typically a case of 
a program containing a left-recursive clause, and for which Bottom-Up is more efficient: an SLD- 
resolution will arbitrarily often apply the rule for discharging assumptions, even though there may 
be not enough assumption introductions in the tree below. Conversely, in a Bottom-Up resolution, 
assumptions will be introduced before they are discharged. 

As an application, we have studied the possibility of extending the Magic Set method developed 
for first-order Horn Cla.uses [17] to  tlle higher-order language lA.  This method solves the problem of 
Bottom-Up approaches of computing ma.ny unnecessary fa.cts by sinlulating an SLD-resolution by a 
Bottom-Up evaluation of a transforined pr0gra.m. We showed tl1a.t direct extension was not possible. 
But, provided some loss of information in an SLD-prediction, we may propose an adaptation of 
the method t o  lA, which restricts the spa.ce of search a.ll the more significantly as the prediction 
ma.y be accurate. This higher-order hllagic Set metliod also relies on the Bottom-Up computation 
of a program which may be deduced from the origina.1 one by a, simple transformation. It may be 
applied with different predictive ma.ppings. Yet, there is no way to  obtain an exact prediction since 
scoping constraints cannot be espressed in heads of cla.use. This therefore represents an obligatory 
inaccuracy which notably occurs in t,he follo\ving cases: 

an essentially universal varia.ble is repla.ced by an essentially existential one, which may then 
be instantiated during the prediction. 

an  essentially existential variable appearing both in the head and the body of a clause may be 
replaced by another one in the body (for instance if we had (Xy) ,  with y universally quantified 
in the body). The direct correlatioll between t.he two mriables is lost in the prediction. 

The problem of optimizing this predictioll ~.eniains open to disclissions and refinements, and we 
may ask just how much this Higher-Order klagic Set method may be really interesting. A first the- 
oretical answer is that ,  although the prediction phase c a , ~ ~ n o t  be ma,de exact, this method actually 
leads t o  a reduction of tlle facts computed. Implenlentation a.nd tests are needed for a complete 
answer. 
Anyway we believe that  a t  least this theoretical set.ting may represent a first step towards devel- 
oping LA to  extend first-order Horn Cla.uses a.pplications. 

7 Extensions 

The presentation we made here both of Bottom-Up evalua.tion and of some Magic Set transformation 
concerns the 1angua.ge 1 ~ .  We consider now the possibility of estending these results to  larger sets 
of terms and formu1a.s: 

Extending the terms: the unification involved in I,, makes use of a restricted form of P- 
conversion, namely Po-conversion [lo]. This is the rea.son for its good properties. Now full 
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pq-unification may in fact be considered since the Bottom-Up procedure only relies on the 
property of essentially existential va.riables in a clause, whether in the head or in the body, 
t o  be out of the scopes of the essentially universal ones. Bottom-Up resolution could then 
also apply t o  the same set of formulas, where the condition (#) on the essentially existential 
terms is removed. It even makes the predictive mapping in the Magic Set method easier to  
be found, since essentially universal variables nlay be directly transformed into essentially 
existential ones (lemma 5 would yet have to  be proved again with this extension, if we want 
t o  guarantee the completeness of the Higher-Order Magic Set method). 
On the other hand, full ,@unification is only semi-decidable, and the completeness gained 
with a Bottom-Up resolution ma.y be lost in such a unification. 

Extending the logic: t o  rea.ch the whole logic in HOHH, we first need t o  allow embedded mixed 
quantifications in the clause bodies. The esistential quantification (pi) is not authorized in L A  
since it may introduce terms offending the condition (#) .  If we extend our terms as described 
above, we may add this predicate pr provided we (statically) skolemize all the clause bodies. If 
not, we would have essentially existential variables under the scope of an essentially universal 
one, and for example, it would be hartler to treat a goal such as Vz3y ( P ( z ,  y) A Q ( x ,  y)). 

The main difficulty is then to  include enlbedtled implications. Such a feature is problematic 
since i t  requires introducing and discharging assumptions, and thus retaining some "history" 
for each fact computed. Some solution may perhaps be obtained by extending the Magic Sets 
prediction t o  ellcompass i ~ n p l i c a t i o ~ ~  and guide the Bottom-Up search. The transformation 
would then need to be applied dynamically. We must admit we have not explored this 
perspective yet. 
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We have been investigating methods for efficient implementation of the logic of hereditary 
Harrop formulas. There are several similarities in the structure of this logic and the logic of Horn 
clauses that  have convinced us of the wisdom of using a WAM-like model as the basis for our work. 
However, the logic of interest extends Horn clause logic in several significant respects and methods 
for dealing with these have t o  be developed. In pa.rt,icular, four facets of the logic can be identified 
for which new implementation techniques have to be devised: 

(1) the presence of the two new primitives. GEYERIC and A U G M E N T ,  for controlling the pat- 
tern of search. 

(2) the presence of lambda terms and the need to perform lambda conversion on these terms, 

(3) the embedding of higher-order unification with its branching characteristic within the normal 
Prolog computation regime, and 

(4) the use of polymorphic typing that .  within logic programming, lead to a need for processing 
types a t  run-time. 

We have developed a sequence of schemes for dealing with these new features that ,  in our opinion, 
fit gracefully into the general structure of the WAM [4, 9, 10, 121. In each of these efforts, we have 
focused on one specific aspect and described the mechanisms, usually in addition t o  those already 
present in the WAM, for implementing that  aspect. The purpose of the paper being described is t o  
consolidate these various discussions into one abstract machine that  implements the entire logic of 
hereditary Harrop formulas; as such, it serves as a blueprint for an implementation that  is currently 
being carried out. In this extended abstract we outline only the problems and the broad method 
of treatment. The full paper will contain a detailed description of the components of this machine 
and i ts  complete instruction set. 

The search primitive GENERIC arises from tlie inclusion of universal quantifiers in goals. The 
operational semantics of this logical syn~bol iiivolves introducing a new constant and then solving 
the goal resulting from instantiating the quantifier wit11 this constant. This interpretation cannot 
be implemented exactly as described because of the presence of existential quantifiers. The latter 
involves guessing an appropriate instance. and the only reasonable implementation is t o  postpone 

'Work on this paper has been supported by the NSF grant CCR-89-05825 
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the guessing till i t  can be determined through unification. The problem then is that  when a guess 
is made, i t  might violate the newness constraint on tlle constant used for universal quantifiers. 
As a concrete example, i t  should not be possible to  solve the goal 3xVyp(x, y) from the program 
{Vxp(x, x)). The technique generally used to deal with this problem is to  skolemize the universal 
quantifiers before attempting to  solve the goal. However, a static skolemization will not work in 
the context of hereditary Harrop formulas. As an example, the goal ((Vzp(x) 2 q) > 3y(p(y) 2 q)) 
must not succeed, but would succeed under the usual understanding of the static skolemization 
process. A dynamic form of skolemization can be used and several related methods for solving this 
problem have been outlined in [7]. However, these methods do not blend easily into the design 
of an abstract machine and a compila,tion scheme. Fort.unately, there is a method that  is readily 
implementable. This method (discussed in [l] and [3] and proved correct in [8]) involves thinking of 
a hierarchy of "Herbrand universes" and ta.gging varia.bles and constants based 011 the universe they 
belong to. The tag  on a variable indicates that it ca.n be instantiated only by a term belonging to 
the universe a t  that  level. The tags thus constrain unification and conspire to ensure the correctness 
of bindings. From the perspective of our ma.clline, tags a.re ea.sily representable as an extra field 
with variables and constants. Universal and existential quantifiers compile into simple instructions 
that  set tags for variables a.nd possibly increment a. universal tag index. The checking of tags 
blends readily into the compiled code generated for unification - the instructions (for the first- 
order case) remain the same but possibly involve a simple additional operation. The interpretive 
phase of unification (embodied in the unify-value instruction in the WAM) involves a check for 
tag compatibility when a variable is ultima.tely bound. However this can be incorporated into the 
"occurs-check" that  the WAM must do to ensure correctness. (Just  a.s in the WAM, situations can 
be described where this check may be elided). 

The AUGMENT primitive arises from permitting implications in goals. The operational seman- 
tics of this symbol is as follows: to solve t.he goal D > G', we a.dd D to the program (the syntax of D 
is restricted for this t o  be possible) and then a.ttempt to solve G. From the perspective of providing 
a reasonable implementation of this opention,  there are three issues to  be dealt with. First, we 
have t o  deal with changing sets of pr0gra.m clauses. For example, solving (Dl  > G1) A (D2  3 G2) 
from a program P involves using progra.ms 'F, 'F U { D l )  and P U {D2).  A reasonable means for 
managing these different program contexts - such as crea.ting ea.ch one by adding and removing 
parts of code - is necessary. Second, we would like to compile (and share compiled code for) pro- 
gram clauses tha t  appear on the left of implications. This requirement is complicated by the fact 
tha t  slightly different versions of a program clause may be needed a.t different points. For example, 
consider using the program clause V X ( ( ( D ( . ~ )  > G )  A p ( x ) )  > p( f(x))) for solving 3yp(f( f(y))), 
assuming p is a predicate na.me, f is a function symbol, D is some program clause and G is a 
goal. (We assume that  a program cla.use is provided for p for tlle base case of the recursion). Now 
two clauses will need to be added to  the program: D( f ( y ) )  and D(y)  in the course of solving the 
query. There is nevertheless a, considera.ble amount of structure that is cornillon between these two 
clauses and we would like our implernenta.tion t-o permit this to  be shared: this is essential if we 
are to  compile the code for D in any sense. Tlle final problern deals with backtracking. Consider 
solving a goal such as 32((D1 > G 1 ( x ) )  /\ G Z ( x ) ) .  .Assume t11a.t we have succeeded in solving the 
goal (Dl  > Gl(x)) .  However, the instaatiation determined for 3: is such that  the attempt to solve 
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G z ( x )  fails. We then have t o  backtrack to  trying to find another solution t o  D l  > Gl(x) .  Within 
the WAM framework, this involves returning to some subgoal of Gl(x).  Notice, however, that  the 
program in existence a t  tha t  point has t o  be reconstructed. Some simple and efficient means for 
doing this is needed. 

Our machine embodies a solution to all these problems posed by AUGMENT. The problem with 
slightly different versions of program clauses is solved by using the idea of a closure: a program 
clause is represented by code and bindings for variables. The bindings are determined by some 
specified environment record in the sense of the FVAM. The compiled code for the clause contains 
initialization instructions that  work relative to  this environment record. Mechanisms are included 
for making the appropriate environlnent record available when the code is t o  be executed. The 
changing program contexts a.re realized by using a. sta.ck based representatioll of available program 
clauses. The compiled code for an implica.tion gives rise to an implication point record on the 
local stack. The implication point record a.dds clauses essentially by defining a new access function 
to  clauses available a t  the point of its creation. Some work 11a.s to be done in order to set up 
this record a t  run-time, but a considerable a.mount of the task can be compiled. The action with 
regard to  backtracking is simply to resurrect a.n ea.rlier a,ccess function. The usual WAM devices 
serve t o  determine whether or not a.n acc.ess function will be required subsequent to  a successful 
computation, preserving the scheme for reclaiming parts of the local stack. (The overall scheme 
combines ideas in [3] and [5] and is described completely in [9]). 

Given tha t  lambda terms are a. central pa.rt, of the logic of higher-order hereditary Harrop 
formulas, an  efficient implementation requires a good representation t o  be devised for these terms. 
In determining what is a good representa.tion, a distinction must be made between a situation 
where these terms are used as a means for computing a,s in  functional programming languages 
and where they are used as data  structures. In the la.t,ter case the representation must make the 
structures of terms rea,dily apparent. Further, the ability to determine equality or  unifiability 
modulo lambda conversion should be supported. In particular, it should be easy to  ascertain 
whether two terms are identical except for a. difference in bound variable names and the operation 
of 0-reduction on terms should also receive an efficient implementation. In our context, the latter 
aspect dictates a representation that allows substitutions to be performed lazily. Thus, consider 
the task of determining whether the terms (XxXyXz((x y )  s)) (Xww) and (XxXyXz((x 2) t)) (Xww) 
are equal, assuming that  s and t are conlples terms. It may be concluded that  they are not, by 
observing tha t  these terms reduce to (XyXz( y s t ) )  a.nd (XyXz(2 it)), where s' and t' result from s 
and t by appropriate substitutions. Notice that it is not really necessary to  determine the exact 
form of s' and t' before reaching this conclusion, and a. means for performing substitutions lazily 
can save a potentially costly operation. In implementing this idea., the notion of environments from 
functional programming can be used. However, t l ~ e  details of such a scheme are considerably more 
intricate here because, as is c1ea.r from the example considered, reductions may have t o  be done 
embedded within abstra.ctions and substitutions must also be percolated into such contexts. A 
scheme has been worked out that  ta.kes these fa,ctors into account and also makes the checking of 
a-convertibility easy by being based on de Bruijn's nameless representation for lambda terms [12]. 
Our machine embodies a. version of this represent,a.tion. 

The notion of unification t11a.t is pertinent to higher-order hereditary Harrop formulas is based 



198 Proceedings of the 1992 XProlog Workshop 

on equality modulo A-conversion. The resulting conlputation is quite different from that  in Prolog, 
particularly in that  most general unifiers do not exist anymore. A procedure for finding unifiers 
has been described by Huet [2]. This procedure has two phases that  are applied repeatedly. One of 
these phases simplifies the structure of the terms to  be unified, eventually either determining that  
no unifiers can exist or producing a set of pairs of terms whose unifiers are identical to  the unifiers of 
the initial pair. In the latter case, the set produced is one for which a unifier can be readily provided, 
i.e. i t  is a solved set, or one of a finite nuinber of possibilities may be tried t o  progress the search 
towards finding a unifier. From an implementation prespective, the structure of this procedure 
dictates that  sets of pairs of terms that  have to be unified, the so-called disagreement sets, have t o  
be represented explicitly. The representation must sa,tisfy certain characteristics t o  yield an  efficient 
implementation. One requirement arises from the fa.ct that  disagreement sets change incrementally 
as unification proceeds, with large pa,rts being preserved between sets. Thus a representation that  
exhibits a large amount of sharing between sets is desirable. Another requirement is that ,  in light 
of backtracking, i t  should be possible to  reinsta.te previous sets rapidly. Our machine embodies a 
scheme for maintaining disagreement sets tl1a.t appears to  meet these criteria. In essence the scheme 
maintains a stack of disagreement pa.irs and a linked list through the stack indicates the "current" 
disagreement set. Reinstatelllent of a previous set upon backtra.cking is facilitated by making the 
list doubly linked and using a trailing mechanism that  is in several respects similar to that used 
in Prolog implementations for resetting state. Another requirement that  Huet's procedure imposes 
is the ability t o  handle branching within unification. This is catered t o  within our machine by 
conducting a depth-first search, using a brarzch point record to encode the alternatives that  are as 
yet unexplored in i ts  state. These new records are akin to the choice point record of the WAM and 
similarly enable a rapid return to  an earlier state followed by the choice of an alternative search 
path. Finally, although branching in unifica.tion ma,! eventually be necessary, experimental evidence 
suggests that  i t  might often be avoided by some simple processing steps [6]. Our implementation is 
sensitive t o  this fact a t  several levels. First, the processing structure permits the easy application of 
such steps. Second, the creation of branch point records and the explicit encoding of disagreement 
sets is delayed until after these steps 11a.ve been a.pplied. Third, specific operations are considered 
towards eliminating branching. With rega,rd to  the last aspect, our implementation permits a 
treatment of first-order like unification problems through the usual mechanisms of the WAM and 
can deal with these problenls alillost entirely through compiled code. 

The last issue pertains to  typing. It nlay a.t first, seem sonlewhat intriguing that  types should 
play a role in determining the run-time support of a. 1a.ngua.ge. The reason for this, as discussed in 
[ll], is twofold: the behavior and outcoille of the unifica.tion process is influenced by the types of 
various expressions and,  beca.use of a polymorphism t1la.t is permitted in the language, the actual 
types involved are only known in the course of execution. Now, it is desirable to  reduce the runtime 
processing of types t o  the greatest possible extent in a good implementation. A look a t  the typing 
regimen used in conjunction with hereditary Harrop formulas shows that  a clever representation 
of types and a careful use of informa.tion present during compilation can considerably reduce the 
time and space required for type analysis. The essential idea is that by virtue of type declarations 
a "skeleton" is known for the type of every primitive symbol a t  runtime and this skeleton can be 
shared across several incarna,tions of the sgn1l)ol. Further. it is actually possible to  compile the type 
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analysis that  is required due t o  the refinement to  "leaves" in this skeleton in parts of the program. 
This type analysis is in fact a form of first order unification that  the WAM machinery is adept 
a t  carrying out. A proper meshing of the unifica.tion instructions for types with that  for terms is 
required (involving answering questions such as when type comparison must be initiated and when 
types have t o  be written as opposed to  checked for compatibility). These details have been worked 
out and are embodied in our machine. At a level of detail, this requires the addition of a heap, 
called a type heap, for the processing of types in our machine. These can be merged into the usual 
heap. However their separation adds a desirable flexibility to  the processing scheme. 
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1 Abstract 

Issues concerning the implementation of a notion of n~odules in the higher-order logic programming 
language XProlog are examined. A progranl in this language is a composite of type declarations 
and procedure definitions. The module construct that is considered permits large collections of 
such declarations and definitions to  be decomposed into smaller units. Mechanisms are provided 
for controlling the interaction of these units and for restricting the visibility of names used within 
any unit. The typical interaction between modules has both a static and a dynamic nature. T$e 
parsing of expressions in a module might require declarations in a module that  it interacts with, 
and this information must be available during compilation. Procedure definitions within a module 
might utilize procedures presented in other nlodules and support must be provided for making the 
appropriate invocation during execution. Our concerll here is largely with the dynamic aspects 
of module interaction. We describe a method for compiling each module into an independent 
fragment of code. Static interactions prevent the compilation of interacting modules from being 
completely decoupled. However, using the idea of an interface definition presented here, a fair 
degree of independence can be achieved even a t  this level. The dynamic semantics of the module 
construct involve enhancing existing program contests with the procedures defined in particular 
modules. A method is presented for achieving this effect through a linking process applied to  the 
compiled code generated for each module. -4 direct implementation of the dynamic semantics leads 
t o  considerable redundancy in search. We present a way in which this redundancy can be controlled, 
prove the correctness of our approach and describe run-time structures for incorporating this idea 
into the overall implementation. 

2 Introduction 

This paper concerns the implementation of a notion of modules in the logic programming language 
XProlog. Logic programming ha.s traditiona.11~~ 1a.cked devices for structuring the space of names and 
procedure definitions: within this paradigm. progralus a,re generally viewed as monolithic collections 
of procedure definitions, with the names of constants and data, constructors being implicitly defined 
and visible everywhere in the pr0gra.m. ,L\lthough the a.bsence of such facilities is not seriously felt 

'Work on this paper has been supported by the NSF grant. CCR-89-05825. 
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in the development of small programs, structuring mechanisms become essential for programming- 
in-the-large. This fact has spurred investigations into mechanisms for constructing programs in 
a modular fashion (e.g., see [11, 14 ,  19, 201) and has also resulted in structuring devices being 
included in some implementations of a Prolog-like language on an ad hoc basis. Most proposals put 
forth have, a t  the lowest level, been based on the use of the logic of Horn clauses. This logic does 
not directly support the realization of structuring devices, and consequently these have had to be 
built in a t  an  extra-logical level. The logic of hereditary Harrop formulas, a recently discovered 
extension t o  Horn clause logic [13], is interesting in this respect because i t  contains logical primitives 
for controlling the visibility of names and the availability of predicate definitions. The language 
XProlog is based on this extended logic and thus provides logical support for several interesting 
scoping constructs [ lo,  111. The notion of nlodules whose impleinentatio~~ we describe in this paper 
is in fact based on these new mechanisms. 

The language XProlog is in reality a typed language. One manifestation of this fact is that 
programs in this language consist of two components: a set of type declarations and a set of 
procedure definitions. The module concept that we consider is relevant to  a structuring of programs 
with respect to  both componei~ts. In a simplistic sense, a nlodule corresponds to  a named collection 
of type declarations and procedure definitions. This view of modules reveals that  the use of this 
structuring notion has both static and dynamic effects. The typical use that might be expected 
of any module is that  of making it contellts available in some fashion within a program context 
such as another module. The main impact of making the declarations in a module visible must 
clearly be a static one: to  take one example, the type associated with some constant by the module 
in question may be needed for parsing expressions in the new context. The effect with regard to  
predicate definitions is, on the other hand, largely dynamic. Thus, procedure definitions in the new 
context might contain invocations to  procedures defined in the "imported" module. The important 
question t o  be resolved, then, is that of how a reference to code is to be resolved in a situation 
where the available code is changing dynamically. 

From the perspective of implemeilting the module notion, the main concern is really with the 
dynamic aspects. In particular, our interest is largely in a method for compiling the definitions 
appearing in modules and in the run-time structures needed for implementing the prescribed se- 
mantics for this construct. We examine these questions in detail in this paper and suggest solutions 
t o  them. Now, XProlog has several new features in coinparisoil with a language such as Prolog and 
a complete treatment of compilation requires methods to be presented for handling these features 
as well. We have studied the implementation issues arising out the other extensions in recent work 
and have detailed solutions t o  them [ i ,  16. 171. We outline the nature of these solutions here but do 
not present them in detail. In a broad sense, our solutions to the other problems can be embedded 
in a machine like the Warren Abstract Machine (CI'AM) [21]. We start with this machine and 
describe further enhancemei~ts to  it that serve to  implement the dynamic aspects of the module 
notion. There are several interesting characteristics to the schellle we ultimately suggest for this 
purpose, and these include the follo\ving: 

(i) A notion of separate compila.tioii for niodules is support.ed. As we explained above, there is a 
potential for static interaction l~etweelt niodules t11a.t makes completely independent compila- 
tion impossible. However, this situatioll is no different from that in any other programming 
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language. We propose the idea of an interface definition t o  overcome this problem. Relative 
t o  such definitions, we show that the separate compilation goal can actually be achieved. 

(ii) A notion of linking is described and implemented. The dynamic use of modules effectively 
reduces t o  solving goals of the form h,l ==> G where M is a module name. The expected 
action is t o  enhance an  existing program context with the definitions in M before solving G. 
The symbol ==> can, in a certain sense be viewed as a primitive for linking the compiled code 
generated for a module into a pr0gra.m context. Using ideas from [8] and [16] we show how 
this primitive can be implemented. 

(iii) A method for controlling redundancy in search is described. The dynamic semantics presented 
for modules in [ll] can lead to  the definitions in a nlodule being added several times to  a 
program context, leading t o  considera.ble redundancy in solving goals. We present a sense in 
which this redundancy can be elimimted, prove the correctness of our approach and show how 
this idea can be incorporated into the overall implementation. The general idea in avoiding 
redundancy has been used in earlier implementa.tions of XProlog [2, 91. However, ours is, to  
our knowledge, the first proof of its correctness a.nd the embedding of the idea within our 
compilation model is interesting in its own right. 

The remainder of this paper is structured a.s follows. We describe the language of XProlog 
without the module feature in the next section. focussing eventually on the general structure of 
an  implementation for this "core". In Section 4, we present the module notion that  is the subject 
of this paper and outline the main issues in its implementation. In Section 5, we present our 
first implementation scheme. This scheme permits separate compilation and contains the run-time 
devices needed for linking. However, it 11a.s the dra.wba.ck that i t  is may add several copies of a 
module t o  a program context leading to  the mentioned redundancy in search. We discuss this issue 
in detail in Section 6 and show a wa,y in which redundancy can be controlled. In Section 7 we use 
this idea in describing mechanisms tha,t can be incorpora.ted into the basic scheme of Section 5 to  
ensure that  only one copy of a module is available in a program context a t  any time. Section 8 
concludes the paper. 

3 The Core Language 

We describe in this section the part of the XProlog language that can be thought of as its core. 
Our presentation will be a t  two levels: we shall describe the logical underpinnings of the language 
and also attempt t o  describe i t  a t  the level of a usable programming language. Both aspects are 
required in later sections. The exposition a t  a logical level are needed to  understand the semantics 
of the modules notion and to  justify opti~nizations in its implelnentation. The presentation of the 
programming language is necessary to underst ancl t h e  value of niodules as a pragmatic structuring 
construct. 
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1.1 Syntax 

The logical language that  underlies XProlog is ultimately derived from Church's simple theory of 
types [I]. This language is typed in the sense that  every well-formed expression in i t  has a type 
associated with i t .  The language of types that  is actually used permits a form of polymorphism. 
The type expressions are obtained from a set of sorts, a set of type variables and a set of type 
constructors, each of which is specified with a unique arity. The rules for constructing types are 
the following: (i) each sort and type variable is a type, (ii) if c is an  n-ary type constructor and 
t l , .  . . , t ,  are types, then (c tl  . . . t,) is a type, and (iii) if a and /3 are types then so is a -, P. 
Types formed by using (iii) are called fz611ction types. In writing function types, parentheses can be 
omitted by assuming that  -+ is right associative. Type variables have a largely abbreviatory status 
in the language: they can appear in the types associated with expressions, but a t  a conceptual 
level such expressions can be used in a conlputation only after all the type variables appearing 
in them have been instantiated by closed types. A type is closed if it contains no type variables. 
However, these variables permit a succinct presentatioi~ of predicate definitions and, as we mention 
later, their iilstantiatioils a t  run-time can often be delayed. Thus, type variables provide a sense of 
polymorphism in AProlog. 

At the level of concrete syntax, type variables are denoted by names that  begin with an upper- 
case letter. The set of sorts initially contains only o, the boo1ea.n type, and iwt, the type of integers, 
and 110 type constructors are assumed. The user can define type constructors by using declarations 
of the form 

kind c type -+ . . . - type. 

The a.rity of the constructor c that  is thus decla.red is one less than the number of occurrences of type 
in the declaration. Noting that  a. sort might be viewed as a nullary type constructor, a declaration 
of the above kind may also be used to add new sorts. As specific examples, the declarations 

kind i type. 
kind list type -+ type. 

add i to the set of sorts a.nd define list a.s a, una.ry constructor. The latter will be used below as a 
means for constructing types corresponding to lists of objects of a homogeneous type . 

The terms of the language are coilstructed from given sets of constant and variable symbols, 
each of which is assumed t o  be specified with a. type. The constallts are categorized as the logical 
and the nonlogical ones. The 1ogica.l consta.nts consist of t.he following: 

true of type o, denoting the true proposition, 
A of type o --. o - o, representing conjunction. 
V of type o - o - o. representing disjunction, 
3 of type o - o - o. repl.esent.ing implica.tion, 
sigma of type ( A  - 0)  - 0: representing existential quantification, 

pi  of type ( A  - o)  - o, representing universal quantification. 
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The symbols sigma and pi have a polymorphic type associated with them. These symbols really 
correspond to  a family of constants, each indexed by a choice of ground instantiation for r and a 
similar interpretation is intended for other polymorphic symbols. 

In the machine presentation of nonlogical constants and variables, conventions similar to  those 
in Prolog are used: both variables and constants are represented by tokens formed out of sequences 
of alphanumeric characters or sequences of "sign" characters, and those tokens that begin with 
uppercase letters correspond to  variables. The underlying logic requires a type to be associated 
with each of these tokens. Symbols that consist solely of numeric characters are assumed to  have 
the type int. For other symbols, an association is achieved by declarations of the form 

type constant type-exp?.e.bsion. 

Such a declaration identifies the type of consln~~f with the corresponding type expression. As 
examples, the declarations 

type nil (list A). 
type :: A i (list A) - ( l i s f  A ) .  

define the constants nil and :: that function as constructors for homogeneous lists. Types of 
constants and variables may also be indicated by writing them in juxtaposition and separated by 
a colon. Thus the notation X : int corresponds to a variable X of type int. 

The terms in our logical 1angua.ge a.re obta.ined from the constant and variable symbols by 
using the mechanisms of function abstra.ction and application. In particular (i) each constant and 
variable of type T is a term of type r ,  (ii) if z is a variable of type T and t is a term of type T', then 
Xxt is a term of type r + T', and (iii) if t l  is a, term of type (r2 + TI) and t2 is a term of type r2, 
then (tl tz)  is a term of type 71. A term obtained by virtue of (ii) is referred t o  as an abstraction 
whose bound variable is z and whose scope is t. Sinlilarly a term obtained by (iii) is called the 
application of tl to  t2. 

Several conventions are adopted towa.rds enhancing rea.dability. Parentheses are often omitted 
by assuming that application is left associa.tive a.nd that abstraction is right associative. The logical 
constants A,  V and > are written as right a.ssocia.tive infix operators. It is often useful to extend 
this treatment t o  nonlogical consta.nts, and a device is included in XProlog for declaring specific 
constants to  be prefix, infix or postfix opera.tors. For insta,nce. t.he declaration 

infix 150 xfy :: 

achieves the same effect that the declaraiion op(150,x fy. ::) a.chieves in Prolog: it defines :: to be 
a right associative infix operator of precetlence 1.50. 

An important notion is that of a positive term wllich is a. term in which the symbol > does 
not appear. We define an atonzic forinu.1~ or  tom to be a term of type o that has the structure 
(P tl . . . t,) where P, the head of the a.t.om, is either a nonlogicaa constant or a. variable and 
t l ,  . . . , t,, the arguments of the a.ton1, are positive t,erms. Such a, formula is referred to as a rigid 
a t o ~ n  if its head is a nonlogical constant. a.nd a.s a. .flexible atoll1 otherwise. Using the syrrlbol A 
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t o  denote arbitrary atoms and A, to denote rigid a.toms, the classes of G-, D- and E-formulas are 
identified as follows: 

G ::= true I A I (GI A GZ) ( (GI  V Gz) I sigma (XxG) I 
pi (AxG) ( (E > G )  

D ::= A, ( G > A, ( pi (XXD) ( (Dl  A D2) 

A curious aspect of these syntax rules is the use of the symbols pi and sigma. These symbols 
represent universal and existential quant,ifica.tion respectively. The quantifiers tha t  are used in 
conventional presentations of logic p1a.y a dual role: in tlle expression VxP, the quantifier has the 
function of binding the variable x over the expression P in addition to  that of making a predication of 
the result. In the logical language considered here, these roles are separated between the abstraction 
operation and appropriately chosen constants. Thus the expression VxP is represented here by 
(pi (XxP)). The former expression may be thought of a.s an abbreviation for the latter, and we use 
this convention a t  a metalinguistic level below. .4 sinli1a.r observation applies to the symbol sigma 
and existential quantification. 

The G- and D-formulas determine the prqrums and queries of XProlog. A program consists of 
a list of closed D-formulas each element of which is referred to as a program clause, and a query or 
goal is an closed G- fo r rn~ la .~ .  In writing the program cla.uses in a pr0gra.m in XProlog, the universal 
quantifiers appearing a t  the front a.re left iiilplicit. A similar observation applies t o  the existential 
quantifiers a t  the beginning of a query. There are some other conventions used in the machine 
presentation of programs. Abstraction is depicted by \, written as an infix operator. Thus, the 

, expression XX(X  :: nil) is represented by X\(-Y :: nil). The symbols A and V are denoted by , and 
; as in Prolog. Implications appearing a t  the top-level ill program clauses are written backwards 
with :- being used in place of >, and tlle synibol 3 in goal formulas is written as =>. Finally, a 
program is depicted by writing a secluence of progra.111 cla.uses, ea.ch clause being terminated by a 
period. An example of the use of these conventions is provided by the following clauses defining 
the familiar append predicate, assuming t,he types for nil and :: that  were presented earlier. 

(append nil L L). 
(append H :: L1 L2 H :: L3)  :- (c~l)pend L1 L2 L3) .  

Notice that  not all the needed type i~lformation has been presented in these clauses: the types of 
the variables and of append have been omitted. These types could be provided by using the devices 
explained earlier. However, type declarat~ons can he avoided in several situations since the desired 
types can be reconstructed [15]. For example, the type of appeizd in the above program can be 
determined t o  be (list ,4) - ( l i s t  .4) - ( l i s f  -4) - o. The type reconstruction algorithm that  is 
used is sensitive t o  the set of clauses containetl in the program. For example, if the program above 
included the clause 

- 

2 ~ h i s  definition is more general than t,he one usually el~tployed in that existelitial quantification is permitted over 
D formulas appearing to the left of implicat.iol~s i l l  goals. Tl~is feat,ure does not. add anything new a t  a logical level, 
but is pragmatically useful a we see lat.el.. This extentled tiefinit.ion is also used in [4] 
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(append ( 1  :: nil) ( 2  :: ni l )  ( 1  :: 2 :: n i l ) ) .  

as well, then the type determined for append would be ( l ist  i n t )  -+ ( l ist  i n t )  + ( l i s t  i n t )  --+ o 
instead. 

The example above shows the sinlilarity of XProlog syntax to  that  of Prolog. The main difference 
is a curried notation, which is convenient given the higher-order nature of the language. There are 
similarities in the semantics as well as we discuss below. 

1.1 Answering Queries fro111 Progralns 

We present a n  operational semantics for AProlog I)g providing rules for solving a query in the 
context of a given program. The rules depend 011 the top-level logical symbol in the query and have 
the effect of producing a new query and a new program. Thus, tlie operational semantics induces a 
notioil of computational state given by a prograni aild a query. We employ structures of the form 
P - G where P is a listing of closed program clauses and G is a closed G-formula to  represent 
such a state. We refer to  these structures as ,sequer?ts, and tlie idea of solving a query from a set of 
closed program clauses correspoi~ds to  that of colistructilig a derivation for an appropriate sequent. 

Several auxiliary notions are needed in presenting the rules for collstructing derivations. One 
of these is the notion of equality assumed in our language. Two terms are considered equal if 
they can be made identical using the rules of A-conversion. We assume a familiarity on the part 
of the reader with a presentatioll of these rules such as that  found in [5]. We need a substitution 
operation on formulas. Formally, we think of a substitution as a finite set of pairs of the form 
( x , t )  where x is a variable and t is a tern1 whose type is identical to  that  of x; the substitution 
is said t o  be closed if the second component of each pair in it is closed. Given a substitution 
{ ( x , , t , ) ~ l  < i 5 n ) ,  we write F [ t l / x l , .  . . , t , , / x , , ]  to denote tlie application of this substitution to  
F. Such an application must be done carefully to avoid the usual capture problems. The needed 
qualifications can be captured succillctly by using the A-conversion rules: F[ t l  / x l ,  . . . , t,/x,] is 
equal t o  the term ( (Ax l  . . . Xx,F) t l  . . . t ,  ). We also need to  talk about type instances of terms. 
These are obtained by making substitutions for type variables that  appear in the term. Finally, we 
are particularly interested in ternls that  do not have any type variables in them and we call such 
terms type variable free. 

The various notions described above are used in  definiiig the idea of an instance of a program 
clause. 

Definition 1 An  instance of cr clo.scd p~~ogr.rr~~r clo~rsc D i.5 g i ~ ~ r z  (1,s follows: 

(i) I f D  is of the form A,. or G > A,., tltcrl cr11y lypc ~*or.znblt free type i~lstance of D is an instance 
of D.  

(ii) If D is of the form D l  A D2 then on  irzsta~?cr of Dl or of D2 is an instance of D .  

(iii) If D is of the form V Z D ~ , ,  the11 an irz.~i(rncr of Dl[i/.z.] for crray closed positive term t of the 
same type as x is a12 instance of D .  
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The restriction t o  (closed) positive terins forces an instance of a, program clause to  itself be a 
program clause. In fact, instances of program clauses have a very simple structure: they are all of 
the form A, or G > A,. 

In describing the derivation rules, and thus the operational semantics of our language, we restrict 
our attention t o  type variable free queries. We present a more general notion of computation later 
based on this restricted definition of derimtion. 

Definition 2 Let G be a type variable free query and let 'P be a program. Then a derivation is 
constructed for P - G by using one of the following rules: 

SUCCESS B y  noting the G is equal f o  a 1 2  instrrrzce of ( I  progranz clause in P .  

BACKCHAIN B y  picking aiz insturzce of a proyr.ar)z clause i12 P of the form GI 2 G and con- 
structing a derivation for T' - G I .  

A N D  If G is eqrral to G 1  A G2. by  coi~.st~~~~.ctirzg derivations for the sequents P - G I  
and P G'2. 

OR If G is equal to GI v G2, by corzstructirzy a derivatioiz for either P - G1 or 
P - G Z .  

INSTANCE If G is equul to 3xG1!  by constrt~~cting (I derivation for the sequent P - G l  [ t l x ] ,  
where t is a closed positive tern2 of the same type as x .  

GENERIC If G is equal to VxG1, by constructing u derivation for the sequent P - G l [ c / x ] ,  
where c is a nonlogical coizstarzt of the scinze type as z that does not appear in V x G  
or in the fornzulas in  F .  

AUGMENT If G is equal to ( 3 x 1  . . .3z , ,D)  > G ,  by constructing a derivation for the sequent 
D [ c l / x l ,  . . . , c n / z n ] ,  'P - G ,  tdtere, for 1 < i < 1 2 ,  C ,  is a nonlogical constant of 
the same type as xi that does not appear in ( 3 ~ : ~  . . .3x,D) > G or in the formulas 
in P ,  

To understand the operationa.1 sema.~ltics intluced by these rules, let us assume a program given 
by the following clauses 

( r e v  L1 L2) : - 
( ( (rev-uux nil L2), 
( p i  (X\(pi  (Ll\(pi (L2\ 

((rev-auz .)i' :: L1 L 2 )  : -  ( I . F . L ~ - ~ I T ~ X  L l  .Y :: L 2 ) ) ) ) ) ) ) ) )  
=> (rev-aux L1 n i l ) ) .  

and consider solving the query ( r e v  1 :: 2 :: nil 2 :: 1 :: nil).  The first rule that must be used in a 
derivation is BACKCHAIN. Using it reduces the problem to that of solving the query 
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((rev-aux nil 2 :: 1 :: nil), 

(pi ( X \ ( P ~  ( L l \ ( p i  (L2\ 
((rev-aux X :: L 1  L2) :- (rev-aux L l  ,'i' :: L2)) ) ) ) ) ) ) )  

=> (rev-aux 1 :: 2 :: nil ni l)  

from the same program. The AUGMENT rule is now applicable and using it essentially causes the 
program t o  be enhanced with the clauses 

(reu-aux nil 2 :: 1 :: nil).  
(rev-aux X :: L1 L2) :- (rev-auz L1 .k= :: L2). 

. I I )  Using the BACKCHAIN rule twice in prior t o  solving the query (rev-auz 1 :: 2 .. 
conjunction with the last clause produces the goal (rev-aux nil 2 :: 1 :: nil). The derivation 
at tempt now succeeds because the goal is an instance of program clause. 

The above example indicates the programming interpretation given to  logical formulas and sym- 
bols by the operational semantics. Progranl clauses of the form Vxl . . .VxnA, and Vxl . . .Vxn(G > 
A,) function in a sense as procedure definitions: the head of A, represents the name of the proce- 
dure and, in the latter case, the body of the clause, G ,  corresponds to  the body of the procedure. 
From an operational perspective, every prograln clause is equivalent to  a conjunction of clauses in 
this special form, and a program is equivalent to a list of such clauses. Thus both correspond to  
a collection of procedure definitions. C;oal.s correspond to search requests with the logical symbols 
appearing in them functioning as primitives for specifying the search structure. Thus, in searching 
for a derivation, A gives rise to an AND branch, V to an OR branch and s igma to  an  OR branch 
parameterized by a substitution. These symbols are used in a similar fashion in Prolog. The sym- 
bols 3 and pi, on the other hand, do not appear in Prolog goals. The treatment of these symbols 
is interesting from a programming viewpoint. The first symbol has the effect of augmenting an ex- 
isting program for a limited part of the computation. Thus, this symbol corresponds to  a primitive 
for giving program clauses a scope. The sy~nbol pi similarly corresponds to  a primitive for giving 
names a scope; processing this synlbol requires a new name to be introduced for a portion of the 
search. A closer look a t  the operational semantics reveals a similarity between the interpretation of 
pi and the treatment given to existential quantifiers in E-formulas through the AUGMENT rule. 
This is not very surprising since the formulas Vz(D(x)  > G') and (3xD(x)) > G are equivalent 
in most logical contexts, assuming z does not appear free in G. From a pragmatic perspective, 
then, the existential quantifier in E-for~nulas enables a name to  be made local t o  a set of procedure 
definitions, i.e., i t  provides a meails for infornlatioll hiding. 

A computation in XProlog corresponds to constructing a derivation for a query from a given 
program. We are generally interested in extracting a value from a computation. In the present 
context, this call be made clear as follows. 

Definition 3 Let P be a collection of progrcrm clrruses crnd let G be a type variable free query 
of the fornz 3x1 . . . 3xnG1; the varicrblcs 2.1. . . . . x,, crrr c~ssu~ned to be inzplicitly quantified here. 
An answer to G in the coiatexl of F is n rloac(1 .s~rbstifvlior, ( ( 2 : ; .  t , , ) ( l  5 i < - 11.)  such that 
P GI [tl /x l ,  . . . , tn/x,] has deriz:c~tiorr. 
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In general our queries may have type variables in them. The answers to  such a query are given 
by the answers t o  each of its type va.ria,ble free type insta.nces. 

Our ultimate interest is in a procedure for carrying out conlputations of the kind described above 
and for extracting results from these. The rules for constructing derivations provide a structure for 
such a procedure but additional mechanisms are needed. One problem involves instantiations for 
type variables. There is usually insufficient infor~nation for choosing instantiations for these a t  the 
points indicated. This problem ca.n be overconle by allowing type variables into the computation 
and by using unification t o  increillentally determine their instantiations. A similar problem arises 
with existential quantifiers in queries. For example, solving a query of the form 3xG requires 
a closed term t t o  be produced tha.t ma.kes G [ t / x ]  solva.ble. The usual mechanism employed in 
these cases is t o  replace z with a logic va.ria.ble, i . ~ . ,  a, pla.ce-holder, and to  let an appropriate 
instantiation be determined by unifica.tion. However, this ~ilechaaism must be used with care in 
the present situation. First, the unification procedure t11a.t is used must incorporate our enriched 
notion of equality, i. e . ,  higher-order unifica.tion [6] must be used. Second, the treatment of universal 
quantifiers requires unification to  respect certa.in  constraint,^. For example, consider the query 
3xVyp(x, y), where p is a predicate constant. Using the mechanisms outlined, this query will be 
transformed into p(X,  c), where c is a new constant and S is a logic variable. Notice, however, that 
X must not be instantiated with a term t11a.t conta.ins c in it .  A solution to  this problem is to  add 
a numeric tag t o  every constant aad va.riable and t,o use these ta.gs in constraining the unification 
process [3, 181. 

A suitable abstract interpreter call be developed for XProlog based on the above ideas3. In 
actually implementing this interpreter, two additional questions arise. First, there is some nonde- 
terminism involved: in solving an atomic goa.1. a, choice ha.s to be made between program clauses 
and in solving GI V Gz a decision 11a.s to be rna.de bet,ween solving G I  and G2. The usual device 
employed here is t o  use a depth-first search with backtra.cking. The second question concerns the 
implementation of implications in queries. To understand the various problems that  arise here, let 
us consider a query of the form ( D  > Gl)AG2.  This query results in the query D > GI which must 
be solved by adding (the clauses in) D to the progra,nl, solving the clauses in G1 and then removing 
D. The addition of code follows a stack b a e d  discipline and can be implemented as  such. However, 
if a compilation model is used, some effort is involved in spelling out a scheme for achieving the 
addition and deletion of code. Moreover the "progra.m clauses" that are added might now contain 
logic variables in them. Thus, consider solving t.he goal 3L(rev  1 :: 2 :: n,il L )  using the clause for 
rev presented earlier in this section. Tlle pr0gra.m would a t  a certain stage have t o  be augmented 
with the clause (rev-auz nil L) where L is now a logic va.riable. In general, we need now to  think of 
procedures as blocks of code a.nd bindings for some varia.bles. Continuing now with the solution of 
the query ( D  > G I )  A Gz, the goal G2 will be attempted after the first conjunct is solved. A failure 
in solving this goal might require an alterna.tive solution to GI  to  be generated. Notice, however, 
that  an at tempt to  find such a solution must. be n~atle in a cont.ext where the program once again 
contains D .  An implementation of our 1a.nguage must support the needed context switching ability. 

Implementation tecluniques lmve been tlevisetl for solvil~g the various problems mentioned above 

3 ~ c t u a l l y ,  the proper treat,ment of type varial>les i l l  a cor~rp~~tatiorr is still all open issue. However, a discussion of 
this matter is orthogonal to our present purpo>es. 
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[7, 16,171, resulting in an abstract machine and a compilation scheme for the core language described 
in this section. We do not discuss this explicitly here, and will rely on the reader's intuition and 
indulgence when alluding to  these ideas later in the paper. However, the discussion of modules will 
require a closer acquaintance with the scheme used for iillplementillg implications in queries, and 
we then supply some further details. 

Before concluding this section, it is interesting to note the connection between our notion of 
computation and deduction in a logical context. The following proposition describes this connection. 

Proposition 4 Let P be a program and  let P' be the collection of all the type variable free type 
instances of formulas in  P.  Further, let G be a type variable free query. Then there is a derivation 
for P - G if and only if G follot~~s fro/,, 'P' i r i  irltriitiortistic logic. 

Only the only if part of this proposition is non-trivial. For the most part,  this follows from the 
existence of uniform proofs for  sequent,^ of the kind we a.re int,erested in; see, e.g., [13] and [ l a ]  
for details. One additional point to note is the treatment of existential quantifiers in E-formulas. 
However, this causes no problem beca.use the introduction of existential quantifiers in assumptions 
can always be made the last step in intuitionistic proofs. 

4 Modules 

The language described thus far only permits programs that  are a nlonolithic collection of kind, 
type, and operator declarations together with a set of procedure definitions. Modules provide a 
means for structuring the space of declarations and also for tailoring the definitions of procedures 
depending on the contest. The ultimate purpose of this feature is to  allow programs to  be built up 
from logical segments which are in some sense separate. 

At the very lowest level, the module feature allows a name to  be associated with a collection 
of declarations and program clauses. ,411 example of the use of this construct is provided by the 
following sequence of declarations that  in effect attaches the name lzsts with the list constructors 
and some basic list-handling predicates: 

naodule l is ts .  
i n  f i x  150 :: x f  Y. 
kind list type - t y p e .  
type nil ( l i s t  A). 
type :: A - ( l i s t  -4) - ( l i d  -4) 

(append nil  L L ) .  
(append ( H  :: L1) L2 ( H  :: L 3 ) )  :- (append L1 L2 L 3 ) .  

(member  H ( H  :: L ) ) .  
(mernbe~.  X ( H  :: L ) )  : -  (nz.enabei* S L ) .  

(leizgtlt 0 n i l ) .  
( length N ( H  :: L )  : - ( ( l e i ~ g t h  11'1 L ) .  .\- r.c .\- 1 + 1) .  
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One way t o  think of this module declaration is as a declaration of a list "data type". This data  
type can be made available in specific contexts by using the name l ists  in a manner that  we describe 
presently. This discussion will bring out the intended purpose of the modules feature. However, 
there is one use that  can already be noted. Looking a t  the lists module above, we see that  the 
types of the predicates defined in it have not been provided. These types can be reconstructed, but, 
as we noted in Section 3, the types "inferred" depend on the set of available program clauses. The 
module boundary provides a notion of scope that  is relevant to  this reconstruction process: looked 
at differently, the types of all the symbols appearing in the clauses in a module are completely 
determined once the module is parsed. 

The meaning of the module feature is brought out by considering its use in programming. In 
the presence of modules, we enhance our goals to  include a new kind of expression called a module 
inzplicution. These are expressions of the for111 A l  ==> G, where A4 is a module name. Goals of the 
new sort have the intuitive effect of adding A1 to  the program before solving G. In making this 
precise, however, the effect of hf on two different components have to  be made clear: on the type, 
kind and operator declarations and on the procedure definitions. 

The effect on the space of declarations that we assume here is simple. All the associations 
present in M become available on adding .I1 to the contest. This is really a statzc effect in that it 
provides a contest in which to  parse the goal (; in a lalger goal .\I ==> G.  As a concrete example, 
consider the goal 

l is ts  ==> (append 1 :: 2 :: 71,%1 3 :: il,il L ) .  

In parsing this query, there is a need to  determine the types of append and of ::. The semantics 
attributed t o  the modules feature requires the types associated with these tokens in the module 
l is ts  t o  be assumed for this purpose. This a.ppears to  be the most natural course, given that  we 
expect the definition of appe~zd provided in lists to be useful in solving this query. 

From the perspective of procedure definitions, we assume the semantics for modules that  is 
presented in [ll]. Within this framework. the dyna.mic aspects of the n~odule  feature are explained 
by a translation into the core langua,ge. Thus, a. module is tllought of as the conjunction of the 
program clauses appearing in it. For insta.nce. the l i s t s  module corresponds to the conjunction of 
the clauses for append, m e r n b e ~  and length. Under this interpreta.tion, a module corresponds to a 
D-formula as  described in the last section. Now if module A4 corresponds to  the formula D ,  the 
query M ==> G is thought of as the goal D => G. The run-time treatment of module implication 
is then determined by the AUGMENT rule presei~t~ed in the last section. In particular, solving the 
goal M ==> G calls for solving the goa.1 C: a.fter adding the predicate definitions in the module M 
t o  the existing program. 

The analogy between a module and a data. type raises the question of whether some aspects of 
an  implementation might be hidden. Our  lailguage 1)ermit.s constant names to be made local to a 
module, thus allowing for the hiding of a. da1.a strnct,ure. To a.chieve this effect, a declaration of the 
form 

local constant, . . . , coi~s tant .  

can be placed within a module. The names of the coi~stants list.ed then become unavailable outside 
the module. For example, a.dding the declaration 
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local ::. 

t o  the lists module has the effect of hiding the list constructor ::. 
The static effect of the local construct is easy to  understand: only some names are available 

when the module is added t o  a context. From a dynamic perspective, another issue arises. Can 
constants defined t o  be local eventually become visible outside through computed answers? The 
expectation is that  they should not become so visible. This effect can be achieved by thinking 
of local constants really as variables quantified existentially over the scope of the conjunction of 
program clauses in the module. As a.n example, consider the following module 

module store. 
local emp,  stk.  
kind store type i type. 
type e m p  (store A). 
type stk A - (store A )  - (store A ) .  
initialize emp. 
(enter X S ( s tk  X S ) ) .  
(remove X ( s tk  X S )  S ) .  

This module implements a store data. type with initializing, adding and removing operations. At a 
level of detail, the store is implemented a.s a. sta.ck. However, the intention of the local declarations 
is to  hide the actual representa.tion of the store. Now. from the perspective of dynamic effects, the 
module corresponds t o  the formula 

3Emp3Stk (  
( init ialize E m p )  , 
(p i  (X\(pi (S\(eizter 5' (,SIX: S S ) ) ) ) ) ) .  
(pi  (X\(pi (S\(remoue A- ( ,S lk  _y ,S) 5 ' ) ) ) ) ) ) .  

This formula has the structure of an E-formula and in fact every module corresponds in the sense 
explained t o  an  E-formula. Referring to  this formula as EStore,  let us consider solving a goal of 
the form 3 X ( S t o r e  ==> G ( X ) ) .  The semantics of this goal requires solving the goal 3 X ( E S t o r e  
=> G(X)). Under the usual treatment of existential quantifiers, this results in the goal (ES tore  
=> G ( X ) )  where X is now a logic variable. Vsing the AUGMENT rule, this goal is solved by 
instantiating the existential quantifiers at  the front of EStore,  adding the resulting D-formula to  
the program and then solving G ( X ) .  The important point to note now is that  any substitution 
that  is considered for X must not have the constants supplied for Enzp and Stk  appearing in it. 
Thus the semantics attributed to modules and local tleclarations achieves the intended dynamic 
effect. 

While module implication is useful for making modules available a t  the top-level, modules may 
themselves need t o  interact. For instance. a module that  contains sorting predicates might need the 
declarations and procedure definitions in the I ~ s t s  module and a module that  implements graph- 
search might similarly need the store and 1rst.s modules. Tlle needed interaction is obtained in 
XProlog by placing an i m p o ~ t  declaration in the module \vhich needs other ~nodules. The format 
of such a declaration is the folloiving: 
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import M I , .  . . , Mk.  

In a declaration of this sort, M I , .  . . , A l k  must be names of other modules that  are referred t o  as 
the imported modules. A declaratioli of this sort has, once again, a static and a dynamic effect 
on the module in which it is placed, i.e., the importing module. The static effect is to  make all 
the declarations in the imported modules, save those hidden by local declarations, available in 
the importing module. These declarations can be used in parsing the importing module and also 
become part  of the declarations provided by that  module. The intended dynamic effect, on the 
other hand, is t o  make the procedure definitions in the imported modules available for solving the 
goals in the bodies of program clauses that  appear in the importing module. This effect can actually 
be explained by using module implication [ I l l .  Let us assume t11a.t the clause P : - G appears in a 
module that  imports the illodules A4 1. . . . . 111 1;. Tlle tlynanlic semantics i~lvolves interpreting this 
clause as the following one instead: 

Observe that  using this clause involves solving the goal (nil 1 ==> . . . (A4 k ==> G)) that  ultimately 
causes the program to be enhanced with the clauses in Arll,. .. . A l k  before solving G. 

The definition of the module graph-senrch presented in Figure 1 illustrates the usefulness of 
the module interaction facility provided by import. Tlle definitions of the predicates start-state, 
final-state, soln and expand-node have not been presented here, but we anticipate the reader 
can supply these. The important aspect to  note is the use that  is made of the declarations and 
procedure definitions in the modules lists and .sfore. For example, the type 

(list A )  t (store A )  i (list A )  - (store A )  - o 

will be reconstructed for add-states. This type uses type constructors defined in in the modules 
l is ts  and store. Similarly, the procedure ii,c~i,bcr. defined in lis1.s and the procedures initialize, 
enter and remove defined in store are used in the program clauses in the module graph-search. 
A particularly interesting aspect is the intera,ction between the modules graph-search and store. 
Notice that  the "constants" em.p a,nd stk used in store a.re not visible in graph-search and cannot 
be used explicitly in the procedures appearing there. Thus, importing store provides an abstract 
notion of a store without opening up t.he ac1,ua.l iluplement,ation. For example, the current stack- 
based realization of the store can be repla.cet1 by a queue-ba.sed one without any need to  change the 
graph-search module so long a.s the opera.tions itzilic~litt. enter and renzove are still supported. 
This change will have an effect on the behavior of y-search though, changing it t o  a procedure that  
conducts breadth-first search as opposed to the current deptll-first search. 

The pragmatic utility of the module feature a.ntl of the scoping a.bility provided by the new logical 
symbols in our language is an important issue to consider. and detailed discussions of this aspect 
appear in [lo] and [ll]. Our interest in t,llis pa.per is largely on implementation issues, especially 
those arising out of the module notion. From this perspective, it is necessary to understand carefully 
the dynamic interactions that  can arise between modules through the use of the import statement. 
We therefore present an esample tl1a.t illustra.tes some of t,l~ese interactions. Figure 2 contains a 
collection of interacting modules and Figure 3 exhibits the process of solving the query ( m l  ==> 
( p  X ) )  given these definitions. In presenting this solutiol~ at tempt,  we use a linear format based 



Iceehang Icwon, Gopalan Nadathur a11 d Debra. Sue \/lrilson 

module graph-search. 
import l i s ts ,  store. 

( g s e a r c h  So ln)  : - 
((init-open Open).  (expc~izd-grnl~l~ Ope11 i ~ i l  ,90117)). 

(init-open Open)  : - 
((start-state S la te ) ,  (inilicrlizr 01,). (enter , Y l c ~ l t  01) Open) ) .  

(expand-graph Open C'losed Soln ) : - 
(remove State Ope12 ROp).  
((( final-state S ta te ) ,  (soln S t ( ~ t c  ,5'011) ) ) :  
((expand-node State hTStn ies ) ,  
(add-states NSta tes  ROp (S ta te  :: Closed) ATOP), 
(expand-graph hrOp (S ta te  :: Closecl) ,Solit ))). 

(addstates  nil Open Closed Open) .  
(addstates  ( S t  :: R S t s )  Open C'losecl -4TOpel1) : - 

( (member S t  Closed),  (add-sfntes R,9ts Open Clo.~;ed A1Open)). 
(adds ta tes  ( S t  :: R S t s )  Open C'losed N O y e n )  : - 

( (enter  S t  Open A'Op),  (c~dcl-stclf es R S t s  !lTOp Closed N Open) ) .  

Figure 1: ,4 R4odule Implementing C;ra.ph Search 
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module ml. iizodule nz2. module m3. 
import  m2. import 17x3. type r i + o. 

( p  X )  :- ( q  X ) ,  ( t  AT). (11 b ) .  ( r  4. 
( t  b ) .  ( q  X) :- (s Ax-). ( T  4. 
( S  x) : - (7' x). 

Figure 2: A Set of Interacting Modules 

nx1 ?- (]IS) 
1722,1721 ?- ( q  -1-1 

nz3,nx2,1i21 ?-  ( . 5  - Y )  
nz2,1723,nz2,1121 ( I - )  - Y < - ( L  StTC'C 

n22,nll ?-  ( I  ( 1 )  F A I L  
n12,nz3,nz2,ntl ( I - )  - 4 - < - b  SUCC 

m2,1??1 ? - ( t b )  .S I! C'C' 

Figure 3: Solving (nzl ==> (11 -4-1) Given the Modules in Figure 2 

on the notion of derivation presented in Section :3 but a.ugmented with the use of logic variables. 
Further, we use lines of the following form 

where G ( X )  is an  atomic goal and Adl, . . . , A l i z  are module names. Such a line indicates that  G ( X )  
is to  be solved from a program given by the collection of clauses in MI,. . . , M I L .  We refer to this 
list of modules as a program contest. Now, the attempt to  solve this goal proceeds by trying to 
match the goal with the head of some clause. If this attempt is successful, the line is annotated 
by a binding for the logic variables, e.g., by an expression such as X <- a .  In the case that the 
match results in additional goals, the following lines pertain to  the solution of these goals. If no 
match is possible or if the match results directly in  a success. the line is further annotated with the 
word F A I L  or  SUCC. In the former case. the succeeding lines indicate the solution attempt after 
backtracking and in the latter case they indicate a n  attempt to solve the remaining goals. 

Let us consider now the attempt to  solve the liientioned goal, (m2 ==> ( ( p  X ) ) .  The initial 
program context is empty. but dealing with the module implication causes ml to be added to it .  
The goal to  be solved now is (p There is only one clause available for p and this is interpreted 
as if i t  were 

( p  X )  :- (n22 ==> ( ( q  X ) ,  ( t  .I-))) 

since ml imports m2. Module 7122 is therefore a.tl~letl to t l ~ e  program context and the goal to  be 
solved reduces t o  ( q  S), ( I  -4-). Altl~ough not relevant to the solution of the present goal, notice 
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that  module m2 also contains a clause for p. The new program context thus contains an  enhanced 
definition for this predicate and an implernentatiorl must be capable of combining code from different 
sources t o  produce the desired effect. Tracing through the solution at tempt a few more steps, we 
see that  the use of the second clause in module m l  results in an attempt t o  solve (r  X). There are 
two clauses for this predicate in the relevant program context and these are used in order. Note 
that  this interaction could not have been predicted from the static structure of m l  alone: there 
is no compile-time indication that  code in module m3 might be used in solving goals appearing 
in the bodies of clauses in m l .  A compilation scheme must therefore be sensitive t o  the fact that  
the definition of procedures used within modules are determined dynamically. Continuing with the 
solution at tempt,  (r  X) is solved successfully with X being bound t o  the constant a. The task 
now becomes one of solving the goal ( t  a ) .  Xotice tha.t the program contest for this goal includes 
only m l  and m2, i . e . ,  an implellleiitatioit must support this kind of context switching. When this 
goal fails, backtracking now requires an alternative solution to ( 1 .  .Y) to be found. However, this 
solution at tempt must take pla.ce in a resurrected cont,est,, a.s indica.ted in the figure. Once again, 
an  implementation of the module feature must be capable of supporting this kind of reinstatement 
of earlier contexts. 

We consider in the nest section the various irnplementa.t,ion issues pertaining to  the dynamic 
behavior of modules that  are raised by the above esa.niple. ?Ye note that  a desirable feature of an 
implementation scheme is that  it should permit a sepa,ra.te compila.tion of each module; this is in 
some sense indicative of the a.bility of this fea.ture to  split up a program into logically separate parts. 
The scheme that  we present for imple~nenting the dynarnic be11a.vior exhibits this facet - separate 
segments of compiled code are produced for ea.ch nlodule and these are linked together dynamically 
t o  produce a desired program contest. However. the idea. of sepa.rate compilation is somewhat more 
problematic a t  the level of static intera.ct.ion. The nlain issue is t11a.t the parsing of an importing 
module requires the various type, kind and operator declarations in the imported modules, implying 
a dependence in compilation. This kind of beha.vior is, however, not unique to  our context. The 
usual solution to  this problem is to  introduce the idea of an interface between modules. Specialized 
t o  our context, this involves assigning a. set of dec1a.ra.tion.s to a module name. This assignment may 
act in a prescriptive fashion on the actual set of declara.tions appearing in the module in the sense 
that  they may be required t o  conform to the '.interface" requirements. Wi t11 regard to  importation, 
on the other hand, the interface decla.ratio11s could control what is visible. One consequence of this 
view is that  the associa.tion of types with consta.nts might be hidden. Such an occlusion must be 
accompanied with a hiding of the constant itself a.ntl t,hus a.ffects the dynamic behavior. However, 
this behavior can be modelled by the use of ilriplicit local declarations4. A proper use of this 
idea will require predica.te definitions also to I)e hidden. This ability is not supported within the 
current language: the ability to quantify esistentia.lly over predicate names requires an extension 
of the syntax of D-formulas. The est,ension in syntas can be ea.sily accomplished as indicated in 
[4] and [lo]. Although we do not trea.t this matt,er esplicitlp here. the desired extension does not 
cause any semantical problems and. as indicated in [l6]. can also be accommodated within our 

'A related proposal is co~ltaiiled in [I?]. However, tile suggestion there is to  determine the local declarations 
dynamically, depending on tlle goal to be solved. T l ~ i s  appears not to help with the "st.atic" problem discussed here 
and also makes i t  difficult to generate code for a 111odule i ~ ~ t l r l ) e ~ ~ t l e ~ r t  of its use. 
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implementation scheme. 
While the use of an interface a.s a method for prescribing interactions in this manner has several 

interesting aspects, a more conservative view of it is also possible. The interface declarations may be 
viewed simply as a distillate of the compilation of the module in question. Regardless of which view 
is taken, we assume here that ,  when a module is being compiled, all the type, kind and operator 
declarations obtainable from the imported modules are known. The scheme that  we present in 
the next section then generates the code for capturing the dynamic behavior of a module by using 
only these interfaces and parsing the nlodule in cluestion. In this sense, our scheme is capable of 
supporting the idea of separate compila.tion. 

5 Implementing the Dynamic Semantics of Modules 

The crucial issue that  must be dealt with in an impleinentation of the dynamic aspects of modules 
is the treatment of module implication. In particular. we are interested in the compilation of goals 
of the form M ==> G. Withill a model that supports separate compilation, the production of code 
from the predicate definitions appearing in ,\I nlust be performed independently of this goal. The 
compiled effect of this goal must then be to enhance the program contest by adding the code in 
M to  it.  Under this view, the symbol ==> becomes a primitive for linking code. The crucial issues 
within an  implementation thus beconle those of \that structures are needed for realizing this linking 
function and of what must be produced as a result of the compilatioll of a module to facilitate the 
linking process a t  run-time. 

We have developed a scheme elsewhere [16] for implementing goals that  contain implications. 
The dynamic semantics of module implication coupled with some features of the mentioned scheme 
make i t  an apt  one to  adapt to  the present contest. The essence of our scheme is t o  view a program 
as a composite of compiled code and a layered access function to this code. The execution of an 
implication goal causes a new layer to be added to an existing access function. Thus, consider an 
implication goal of the form (C1, .  . . , C',) => C; where, for / 5 1 5 n,  C', is a closed program clause 
of the form Vxl . . . Vx,AT or Vzl . . . Vz,,(G' 3 A,. ) 5 .  Each C', corresponds to  a partial definition of 
a procedure tha t  must be added to  the front of tlle prograin while an at tempt is made t o  solve G. 
These clauses can be treated as an independent progranl segnlent and compiled in a manner similar 
t o  that  employed in the WAM. Let us suppose that the clauses define the predicates p l , .  . . ,p,. 
The compilation process then results in a segment of code with I .  entry points, each indexed with 
the name of a predicate. In our contest, con~pilatioil must also produce a procedure that  we call 
find-code tha t  performs the following function: given a predicate name, this procedure returns the 
appropriate entry point in tlle code segment if the name is one of p l , .  . . ,pT and an indication of 

- - - - 

5 ~ n  the general case, every implication goal call t,e transforn~etl inlo one of the form 

where Q, is 3 or V and C,(zl,. . . , x,,) is a program clause of t l ~ e  sort. irrdicatetl but w11icl1 may depend 0 1 1  the variables 
X I , .  . . , xm. Existential quantifiers may arise in co~~sicleratiorrs of r~ioclule i~nplication o111y if the module notion is 
enriched to allow for parameterization. Universal cluarlt.ifiers [lo arisv intlirectly tl~rough locul declarations whose 
treatment is considered later in this sectior~. 
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failure otherwise. This function can be implemented in several different ways such as through the 
use of a hash-function, but the details will not concern us here. Returning now t o  the implication 
goal, i ts  execution results in a new access function that  behaves as follows. Given a predicate name, 
find-code is invoked with it.  If this function succeeds, then the code location that  i t  produces is the 
desired result. Otherwise the code location is determined by using the access function in existence 
earlier. 

The process of enhancing a context described above is incomplete in one respect: the new clauses 
provided for pl, . . . ,p, may in fact be adding t o  earlier existing definitions for these predicates. To 
deal with this situation, the compilation process must produce code for each of these predicates 
that  does not fail eventually, but instead looks for code for the relevant predicate using the access 
function existing earlier. Rather than carrying out this task each time it is needed, using an idea 
from [8], i t  can be done once a t  the time the nen program contest is set up. The idea used is the 
following. A vector of size r can be associated with the implication goal, with the zth entry in this 
vector corresponding to  the predicate p,. Now, the cornpilation of the body of the implication goal 
creates a procedure called lznk-code whose purpose is to fill in this vector when the implication 
goal is executed. This procedure essentially Uheh the n a ~ n e  of each of the predicates and the earlier 
existing access function to  compute an entry point to available code or, in case the predicate is 
previously undefined, t o  return the address of a failing procedure. To complement the creation of 
this table, the last instruction in tlie code geiieratetl for each of tlie predicates p, must actually 
result in a transfer t o  the location indicated by the appropriate table entry. 

In the framework of a WAM-like implementation, the layered access function described above 
can be realized by using what are called ir~aplzcatioiz poz~zt records. These records are allocated on 
the local stack and correspond essentially to layers in the access function. The components of such 
a record, based on the discussions thus far. are the following: 

(i) the address of the find-code procedure corresponding to  the antecedent of the implication 

goal 1 

(ii) a positive integer r indicating the number of predicates defined by the program clauses in the 
antecedent, 

(iii) a pointer t o  an enclosing implica.tion point record. and thereby to  the previous layer in the 
a.ccess f ~ ~ n c t i o n ,  and 

(iv) a, vector of size r that indica.tes the nest clause t.o t,ry for each of the predicates defined in the 
antecedent of the implica.tion goal. 

The program context existing a t  a particular stage is indicated by a pointer to a relevant implication 
point record which is contailled in a register caller1 I. Now a goal such as ( C 1 , .  . . ,C,) => G' is 
compiled into code of the form 

push-impl-point t 
{ Compiled code for C; } 

pop-imp1 -point 



220 Proceedings of the 1992 AProlog Workshop 

In this code, t is the address of a statically created ta,ble for the antecedent of the goal that  indicates 
the address of i ts  find-code and link-code procedures and the number of predicates defined. The 
push-impl-point instruction causes a. new implica.tion point record t o  be allocated. The first three 
components of this record are set in a straightforwva,rd manner using the table indicated and the 
contents of the I register. Filling in the last component involves running link-code using the access 
function provided by the I register. The final a.ction of the instruction is t o  set the I register to  
point t o  the newly created implication point record. The effect of the pop-impl-point instruction 
is t o  reset the program context. This is achieved simply by setting the I register t o  the address of 
the enclosing implication point record, a value stored in the record the I register currently points 
to. 

There are a few points about the scl~eme t1escril)ed that  are worth mentioning. First, under 
this scheme the compila.tion of an at,omic goal does not yield a a  instruction to  transfer control to  
a particular code address. Rather, the instruction produced must use an existing access function 
(indicated by the I register) and a.n indes generated fro111 the name of the predicate t o  locate the 
relevant code. Notice that  this behavior is to  1)e anticipated, given the dynamic nature of procedure 
definitions. The second observation pertains to the resurrection of a context upon backtracking. 
Under our scheme, the program contest is reduced to the contents of a single register. By sav- 
ing these contents in a WAM-like choice point record a.nd by retaining implication point records 
embedded within choice points, the necessary contest switching can be easily achieved. 

We turn finally to  the implementa.tion of luodule implica.tion. Let us consider first the treatment 
of a module implication of the form A4 ==> G where A4 is a, module with no local declarations 
and no import statements. From the perspective of dyna.mic semantics, M can be reduced to  a 
conjunction of closed D-formulas of the forin V.X~ . . .Vz,A, or Vxl . . .Vx,(G > A,) ,  i .e. ,  of the 
form just considered. Thus the scheme outlined a,bove can beapplied almost without change to  the 
treatment of this kind of nlodule implica.tion. Under this scheme, the compilation of the module M 
must produce code that  implements the relevant f i11.d-code and Zin,l;-code procedures in addition 
t o  the compiled code for the various predica.tes defined. The linking operation corresponding t o  
==> effectively amounts to  setting up an implicat.ion point record. The main task involved in this 
regard is that  of executing the li~zk-code ful~ction wvhich in a sense links the predicate definitions 
in the module t o  those already existing in the pr0gra.m. 

The handling of local decla.rations does not. pose a.lly major complica.tions. The treatment of 
a goal of the form E => G that  is indicated by the operational semantics essentially requires the 
existential quantifiers a t  the front of E to  be repla.ced by new constants and the resulting D-formula 
t o  be added t o  the esisting progra.111. Impleinentilrg this itlea, results in the local constants in E 
being conceived of as constants but wvith a numeric ta.g t11a.t prevents them from appearing in terms 
substituted for logic variables in G. At a level of tletail. these constants can be identified with 
cells in an  implication point record and the p~s.sh-in2ljl-ljoilal instruction has the additional task of 
allocating these cells and of tagging the111 wit11 the appropria.te numeric value. 

The only remaining issue is the treatment of import declara.tions. Let us assume that  a module 
M imports the modules All,J42 a,nd A13. F1.0111 the perspective of dynamic semantics, this impor- 
tation has an  effect largely on the clauses appearing i n  11f. Let P : - G be one of these clauses. 
Based on the semantics of importing. this clause is to be interpreted as the clause 
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This translation actually indicates a stra.ig11tforwa.rd method for implementing the effect of im- 
portation: the  body of the clause ca.n be compiled into the code generated for G nested within a 
sequence of push-impl-poiizt and pop-iiizplpoiizt instructions. Noting tl1a.t module M may contain 
several clauses, an  improvement is possible in t'llis basic scheme. We identify with a module two 
additional functions that  we call load-imports and uizload-imports. In the case of module M, 
executing the first of these corresponds conceytua.lly to esecuting the sequence 

push-impl-point A41 
push-impl-point A42 
push-impl-point A43 

and, similarly, executing the second corresponds to executing a sequence of three pop-impl-point 
instructions. The address of these t\vo functions is includetl in the implication point record created 
when a module is added to  the program c o ~ ~ t e s t .  F~.om the perspective of compilation, the code 
that  is generated for the clause consideretl now take> the f'ollo\ving shape: 

{Code for unifying tlle head of the cla.use ) 
push-import-poiizt A4 

{Compiled code for goal C;)  
pop-importgoint M 

The push-import-point instruction in this sequence has the effect of invoking the load-imports 
function corresponding to  module A! and the pop-Sii7yort-ljoi11t instruction similarly invokes the 
unload-imports function. 

The scheme described above assumes that the a.dtlress of the compiled code .and the various 
functions associated with a module caa be indexed by the name of the module. This information 
is organized illto entries in a global ta,ble wit11 ea.ch entry 11a.ving tlle following components: 

(i) r ,  the number of predicates defined in t,he module, 

(ii) the starting address for the con~piled code seg~iient for the predicates defined in the module; 
f ind-code will return offsets from this a.ddress. 

(iii) the address of the f iiad-code routine for the module. 

(iv) the address of the Eiizk-code routine for the module. 

(v) the address of the load-inaporl.5 r o u t , i ~ ~ e  for t,lle niotlule. and 

(vi) the address of the uizloc~.d-inapo~rts routine for tlit  nlodule. 

In reality not every module is loaded into lliemoy at the beginniilg of a progralii and hence not 
every module has an  entry in the global table. If a module that does not already reside in memory 
is needed, then a loading process brings the various segments of code in and creates an appropriate 
entry in the global table for the  nodule. It shoulcl be clear by this point that  the codes and 
information needed for each module can be ol~tained by a compile-time analysis of that  module 
and the necessary interface definitioils. 
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6 Controlling redundancy in search 

The semantics presented for module implication and for the import statement could result in the 
same module being added several times to  a program contest. This has a potential drawback: it 
may result in redundancy in the search for a solution to  a goal and the same solution may also be 
produced several times. To understaading this possibility, let us consider the following definition 
of a module called sets which imports the module lists presented in Section 4. 

module sets. 
import lists. 
type subset ( l ist  A)  4 ( l ist  -4) - o. 
subset nil L .  
(subset X :: L 1  L2)  : -  ( (member .X* L2),(.521bstf L1 L 2 ) ) .  

Assume now that  a11 attempt is made t,o solve t,he goal 

sets ==> subset 1 :: 2 :: 4 :: nib 1 :: 2 :: 3 :: 1 ~ 1 1  

Using the linear format described in Section 4. part of the effort in solving this goal is represented 
by the following sequence: 

sets ?- ( s ~ ~ b u e t  1 :: 2 :: 4 :: nil 1 :: 2 :: 3 :: nil)  
l ists ,  sets ? -  (membel. 1 1 :: 2 :: 3 :: itl.1) SUCC 
lists ,  sets ?- (.s;~~bsel 2 :: 4 :: 1zil 1 :: 2 :: 3 :: ni l )  

l ists , l ists ,sets  ?- (menzber 2 1 :: 2 :: 3 :: nil) 
Eists,lists,sets ?- (n?,einber 2 2 :: 3 :: 1?.%1) SUCC 
lists ,  lists,sets ? -  (subset 4 :: nil 1 :: 2 :: 3 :: ni l )  

l ists ,  l is ts ,  l is ts ,  sets ?- (111.enzber 4 1 :: 2 :: 3 :: ni l )  

It is easily seen that  the attempt t o  solve the last goal in this sequence in the indicated program 
context will fail. Notice however, that  a consideral~le amount of redundant search will be performed 
before this decision is reached: there are three copies of the i1iodule lists in the program context 
and the clauses for menzber in each of these will be used in turn in the solution attempt. A 
similar redundancy is manifest in the answers that are computed under the semantics provided. 
For instance, the query 

sets ==> subset S 1 :: 2 :: nil 

will result in the substitution 1 :: 2 :: 1ail for .S being generat,ed twice tllrougl~ the use of the clauses 
in two different copies of the nlodule list..;. 

The extra copies of the module lists. while 1ea.ding to  redundancy in search, do not result in 
an  ability t o  derive new goals or t o  find a.tlditiona1 answers. Adding these copies also results in a 
runtime overhead: given the implementation scheme of the previous section, the addition of each 
copy results in the creation of an ilnplication 1)oint record, thereby consuming both space and 
time. A pragmatic question to ask, tliereforc.. is \rl~ethcr the number of copies of any module in 
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a program context can be restricted to just one. In answering this question there is an  important 
principle t o  adhere to. It is desirable that  the logical semantics of our language not be altered. 
In particular, we still want to  be able t o  understal~d our language by using the derivation rules 
presented in Section 3 and t o  understand the dyna.mic serna.ntics of modules through the devices 
discussed in Section 4. This principle is important because, as argued in [12], several interesting 
tools for analyzing the behavior of progra.nls depend on this kind of a logical understanding of 
programming language constructs. In light of this principle, the question raised can be changed 
t o  one of the following sort: is it possible to preserve the important observable aspects of the 
given semantics while perhaps changing the cletadls of the opera.tiona1 semantics so as t o  produce 
a preferred computational behavior. ,411 a.ffirma.tive answer to  this question permits us to  have the 
best of both worlds. The original senmntics ca.11 be used for analyzillg the interesting aspects of the 
behavior of programs while an actua.1 implenle~lt,ation can be based on a nlodified set of derivation 
rules. 

In the context being considered. the iml~ortant  a,spects of program behavior are the set of 
queries that  can be solved and the answers tha.t call be found to any given query. Both aspects 
are completely determined by the set of sequents that have derivations. Thus, based on the above 
discussion, we might contemplate cha.nging the underlying derivation rules for our language so as 
t o  reduce the number of derivations for any sequent while preserving the set of sequents that  have 
derivations. With this in mind, we observe tl1a.t the main source of redundancy in the example 
considered above is the AUGA4EATT rule. -4ssume t11a.t we wa.nt to solve a goal of the form D => 
G. The AUGMENT rule requires D to  be a.dded to the program context before attempting to  
solve G. Notice, however, t l ~ a ~ t  if D is alrea.dy a,va,ila.ble in the progra,m context, this addition is not 
likely t o  make a derivation of G possible where it earlier was not. A more interesting case is when 
the implication goal is of the form ( 3 r 1  . . . 3 x n D )  => G'. In this case the AUGMENT rule requires 
the addition of D[cl /x l , .  . . , c n / x n ]  (for a. suit.a,ble choice of c i s )  to  the program prior to  the attempt 
t o  solve G. However, if the progra.111 a.lready conta.ins a, cla.use of the form D [ c ; / x l , .  .. ,c',/x,], the 
addition is again redundant from the perspective of being a.ble to  solve G. 

In the rest of the section we prove the observations conta.ined in the previous paragraph. To- 
wards this end, we define an alternative to the AVC;A-IENT rule. 

Definition 5 Let G be a type variclble free query artd let P be a program. Then the AUGMENT 
rule is applicable i f  G is of the foniz ( 3 x 1  . . .3n:,,D) => C;' nnd can be used to construct a derivation 
for P -+ G as follows: 

(i) If a fornzula of the form D [ c { / x l , .  .. .c;/x,] c10e.q not appear in  P ,  then by constructing a 
derivation for D [ c l / r l ,  . . . . c,/.r,,], 7' --- G' udierr, for 1 5 i 5 12,  c, is a nonlogical constant 
of the same type as  z, not c~ppcnriizg 2 1 1  the fr,~.ri,rrl[r.c 212 P.G. 

(ii) If a formula of the form D[c; / :c l ,  . . . . c:, /;c,,] appecrrs in P ,  then by constructing a derivation 
for P - GI. 

Let us refer to the derivation rules presented earlier as D S 1  and let DS2 be obtained from D S 1  
by replacing AUGMENT with AUGhllEI'T'. l\;e say that a sequent has a derivation in D S 1  ( D S 2 )  
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if a derivation can be constructed for it by using the rules in D S 1  (respectively, DS2) .  We now 
make the following observation about derivations in DS2.  

Lemma 6 Let G be a type variable free query, let D be a, program clause whose free variables are 
included in XI,. . . , x, and let PI and P2 be programs that between them contain a formula of the 
form D [ c i / x l , .  . . , cL/xn] where, for 1 5 i 5 n ,  c: is a nonlogical constant of the same type as x;. 
Further, for 1 5 i 5 n ,  let c; be a noizlogical constant of the same type as c: that do not appear 
in  D. Finally, let Pf, P i  and G' be obtained from P I ,  P2 and G ,  respectively, by replacing, for 
1 5 i 5 n ,  c; with c:. Now, if P1, D[cl /x l , .  .. , c,/x,],P2 - G has a derivation of length 1 in 
DS2, then there must also be a derir~a,tion in 1352 for P:, Pi - G' that is of length I or less. 

Proof. We prove the lemma by an induction 011 the length of the derivation in DS2 of the first 
sequent. If this derivation is of length 1, it must have been obtained by using the SUCCESS rule. 
Now, if G is equal to  an instance of D [ c l / x l , .  . . . c,,/xn]. tlien G' must be equal to  an instance of 
D [ c ; / x l , .  . . , cL/xn] .  Further, if G is an instance of a clause in PI or in P2 it must be the case that 
G' is an instance of a clause in P; or in 7';. From these observations it follows that  the SUCCESS 
rule is applicable t o  Pi, P; - G' as well and so this sequent also must have a derivation of length 
1. 

Suppose now that  the derivation of PI. D[cl /.[.I . . . . . c,,/n*,,]. F2 - G is of length (1 + 1 ). We 
assume that  the requirements of the lemma are satisfied by all sequents that  have derivations of 
length 1 or less and show this must also be the case for the sequent being considered. The argument 
proceeds by examining the possible cases for the first rule used in the derivation in question. 

Let us assume that  this rule is an AND. In this case G must be of the form GI A G2 and 
there must be derivations of length 1 or less for the sequents P I ,  D [ c l / x l , .  . . , cn/x,], P2 - GI 
and P I ,  D [ c l / x l ,  . . . , c,/z,], P2 - G 2 .  By hypothesis, there are derivations of length 1 or less 
for P:,  Pi - G1 and P i ,  Pi - G2.  Using these derivations together with an A N D  rule, uir 

obtain one of length 1 + 1 or less for P; ,  Pi - G', A G;. Now. G' must be equal t o  the formula 
G', A Gh. Thus the desired coilclusioii is obtained in this case. 

Arguments similar t o  that  for A X D  call be supplied for the cases when OR or INSTANCE is 
the first rule used. In the case that  GENERIC' is used, G must be of the form VyGl and there must 
be a derivation of length 1 for 

for some nonlogical constant n of the same type as ?/ that  does not appear in G, D [ c l / x l , .  . . , c,/x,] 
or in the formulas in IF1 and &. We call allnost use an argument similar to that  employed for 
AND. The only problem is that  n nligllt be identical to soine c: for 1 5 i < n. However, the 
following fact is easily seen: a derivation of lei~gth 1 for a sequent Z call be transformed into one of 
identical length for a sequent obtained from Z by replacing all occurrences of a nonlogical constant 
b with some other (nonlogical) coilstant of the sanle type. Using this together with the "newness" 
condition on a ,  we nlay assume that (I i b  distinct fro111 all t 11e c:s. The argument in this case can 
then be completed without trouble. 

In the case that  the first rule employed is BAC'IiCHAIN, a coinbination of the observations 
used for SUCCESS and .4ND inust I>e e m ~ ~ l o ~ ~ e d .  In particular. let G{ be the result of replacing, for 
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1 2 i 2 n, all occurrences of ci by c{ in GI. Now, if GI 3 G is an  instance of D[cl /x l , .  . . , cn/xn], 
then G', 2 G' must be an instance of D[c',/xl,. . . , c',/xn]. Further, if G1 > G is a n  instance of a 
program clause in P ,  then G', 3 G' must also be an  instance of the same clause. Finally, using the 
hypothesis, if Pl, D[cl /x l , .  . . , cn/zn], P2 - G1 has a derivation of length 1, then P i ,  P; - G', 
has a derivation of length 1 or less. Using these various facts, it is easily seen that  if the first rule 
used in the derivation for P l ,  D[cl/xl ,  . . . , cn/xn], P2 --+ G is BACKCHAIN, then a derivation 
can be provided for Pi, P; - G' in which the last rule is once again a BACKCHAIN and, further, 
this derivation will satisfy the length requirements. 

Suppose now that  the first rule used is AUGMENT' and that  case (i) of this rule is the ap- 
plicable one. Then G must be of the form (3y1 . . .3ymD1) 3 GI and further, no formula of the 
form Dl[a{/yl,.  . . , a',/y,] must, appea.r in T1. D[c l /x l . .  . . , c,/.z.,I7 'P2. By assumption, there is a 
derivation of length 1 for 

where, for 1 5 i 5 m, a, is a constant of appropriate type and meeting the needed requirements of 
newness. By an argument sinlilar to  that  used in the case of BACKCHAIN, we can assume that 
the a,s are distinct from the c,s and the c:s. Then, using the induction hypotl~esis, there must be 
a derivation of length 1 or less for 

where D', and Gi are obtained from Dl a.nd GI  by the repla.cement, for 1 5 i < n,  of c; by c:. Now, 
if a formula of the form Dl[a',/yl:. . . ,ciL,/yn,] did not a,ppea.r in PI or P 2 ,  then one of the form 
Di[a{/yl, . . . , a&/ym] cannot appea.r in Pi 01: P i .  Thus, the derivation of the indicated sequent can 
be used together with an AUGMENT' rule to obtain one for P i ,  Pi -+ (3yl . . . 3ym Di  ) > G{ ; a 
newness condition has t o  be satisfied by ( 1 1 , .  . . . (i7,, for the AUGMENT rule to  be used, but this can 
be seen t o  be the case, using particula,rly the a.ssumption of distinctness from the cis. The derivation 
of the last sequent is obviously of length ( I  + 1)  or less. Observing that  (3y1 . . .3y,Di) > G{ is 
the same formula as Gf ,  the lemma is seen to hold in this case. 

The only situation remaining t o  be cousideretl is t11a.t \vhen the first rule corresponds to  case 
(ii) of AUGMENTf. The argument in this ca.se is similar to that enlployed for case (i) of the same 
rule. The details are left to  the reader. 

Using the above lemma. we now sho\v the equivalence of D.91 a.nd DS2  from the perspective of 
derivability of sequents of the kind we are interested in. 

T h e o r e m  7 Let P be a program and let G be n fype ucr.r.iab1e free query. There is a derivation for 
P - G in D S 1  if and only if there is a (lerivrrfio~~ for the .snnze sequent in 0 5 2 .  

Proof. Consider first the forward direction of the theorem. The only reason why the derivation in 
D S 1  might not already be one in DS2  is because the .4UC;A4ENT rule that  is used is in some cases 
not an  instance of the AUGMENT' rule. Consider the last occurrence of such a rule in the deriva- 
tion. In this case, a derivation is constructetl Tos a S C O U ~ I I ~  OF the fol.111 'P' - (3x1 . . . 3xnD1) > Gf 
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from one for the  sequent Dt[cl/xl,.  . . , cn/xn], P' - G', where the cis are appropriately chosen 
constants. Given that  we are considering the last occurrence of an  errant rule, the derivation for the 
latter sequent must be one in D S 2  as well. Since the application of the AUGMENT rule being con- 
sidered does not conform to  the requirelnents of the AUGMENT' rule, it must be the case that, for 
some choice of constants ci , . . . , ck, D'[ci 1x1, . . . , c',/x,] appears in P'. But then, using Lemma 6 
and the fact tha t  the constants c l ,  . . . , c, must not appear in G' or in the formulas in P ' ,  we see that  
P' -+ G' has a derivation in DS2. Using this derivation together with case (i) of the AUGMENT' 
rule, we obtain a derivation in D S 2  for the original sequent, i.e., for P' - (3x1 . . . 3xnD1) > G'. 
We repeat this form of argument t o  ultimately transform the derivation in D S 1  for P - G into 
one in DS2.  

To show the theorem in the reverse tlirect.ion. we observe t,lie following fa.ct: for any program 
P', type variable free query G1'and pr0gra.m cla,use D', if 'F' - Gt has a derivation in DS1, then 
Dl, P' - G' also has a derivation in DS1. Now, a, deriva.tion in DS2 may not be a derivation in 
D S 1  only because case ( i )  of AUGhIENT' was used in some places. However, this can be corrected 
by using the observation just made. In pa.rticu1a.r. we consider the last occurrence of an errant rule 
in the derivation and convert it into an occurrence of the .I\lTGhlIENT rule by using the above fact. 
A repeated use of this transformati011 yields the theorem. 

An easy consequence of the a.bove theorem is the following: 

Corollary 8 Let P be a. progmnz un(1 let G' be (1. query. TI1.6 set of answers to G in the context of 
P is independent of whether rules iiz DS1 or i~z  DS2 crre used in constructing derivations. 

We have thus shown that ,  froin the perspective of solving queries and computing answers, it is 
immaterial whether the rules in D,S1 or those in D.92 are used to coiistruct derivations. By virtue of 
Proposition 4, we can in fact use the notioil of intuitionistic derivability for the purpose of analyzing 
programs in our language while using the rules in 0.52 to carry out computations. At a pragmatic 
level, there is a definite benefit to  using the ATIGMENT' rule instead of the AUGMENT rule in 
solving queries, since considerable redundancy in search can be eliminated by this choice. We use 
this observation t o  yield a more viable ilnplelnentation of inodule implication and of the import 
statement in the next section. We note that ailother approach to controlling the redundancy arising 
out of the module semantics is suggested in [12]. However. this approach is less general than the 
one considered here in that  it applies oiily to in7l)ort statelnents and not to  module implications. 
Moreover, the correctness of the approach is only co~ljectured in [12]. The observations in this 
section can be used in a straiglitfor\vard fashion to verify this conjecture. 

7 An Improved Implementation of Modules 

We now consider an  implementation of our language that uses the AUGMENT' rule instead 
of the AUGMENT rule whenever possible. Under the new rule, solving an goal of the form 
(3x1 . . .3x, D) > G requires checking if thew i h  already a clause of the forill D[c l /x l , .  . . , cn/xn] 
in the program. Clearly an efficient procet1111.e for performing this test is a key factor in using 
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the changed rule in an actual implementation. It is difficult to  achieve this goal in general. One 
problematic case is when the goal ( 3 . ~ ~  . . .3x,D) > G arises as part of a larger goal and D contains 
variables that  are bound only in this larger context. Illstantiations for these variables may be de- 
termined in the course of execution, thus making it difficult to perform the desired test by a simple 
runtime operation. In fact, the device of delaying illstalltiations might even make i t  impossible to  
determine the outcome of the test a t  tlie time the implication goal is to  be solved because "clauses" 
in the program might contain logic variables. An example of tllis kind was seen in Section 3. The 
attempt t o  solve the goal 3L(rev 1 :: 2 :: n i l  L )  resulted there in the clause (rev-aux n i l  L )  being 
added t o  the program. The precise shape of this clause clearly depends on the instantiation chosen 
for L. A test of the sort needed by .41TC:h4ENT1 cannot I)e performed with regard to  this clause 
prior to  this shape being determined. 

The above discussion demonstrates that the optilnization enlbodied in the AUGMENT1 rule can 
be feasibly implemented only relative to a re5trictcd class of prograln clauses, namely, clauses that  
do not contain logic variables. Of particulal interest fl  oln tllis pel spective is a statically identifiable 
closed E-formula that  has the potential f o ~  appearing repeatedl) in the antecedent of irnplication 
goals. Given such a forniula E, a mark call he asbociated with i t  that records whether or not the 
current goal is dynamically enlbedded witllin the invocation of an irnplication goal of the form E 
=> G'. If i t  is so embedded and if the current goal is itself of the form E => GI, then, in accordance 
with the AUGMENT1 rule, the computation can proceed dilectly to  solving GI without affecting 
additions t o  the program. 

The dynamic semantics of module iml,lication provides a particular case of the kind of formula 
discussed above, namely the (closed) E-for~nula identified with a module. Thus, assume that  we 
are trying t o  solve the goal 11/1 ==> G. If we know that the module A4 has already appeared in the 
antecedent of a module implication goal within wl~ich the current one is dynamically embedded, 
then no enhancements t o  the program need be made. The implementation scheme presented in 5 
provides a setting for incorporating this test in an efficient manner. The essential idea is that  we 
include an extra field called added in the record in the global table corresponding to  each module. 
This field determines whether or not tlie clal~ses in a particular module have been added to  the 
program in the path leading up to the currel~t point in colnputation. When the goal M ==> G is 
t o  be solved, the added field for 44's entry in the global table is checked. If this indicates that  the 
clauses in A4 has not previously bee11 added. therr the addition is performed and the status of the 
field is changed. Otherwise tlie computation proceeds directly to solvillg G'. 

While the idea described above is siniple. soine details have to be paid attention to  in its actual 
implementation. One issue is tlie action t,o be t.aken on tlie completion of a, module implication 
goal. At a conceptual level, the s~~ccessf l~l  sollltiol~ of the goal 44 ==> G must be accompanied 
by a removal of the code for A i l ;  this is a.ccon~plistretl i l l  our earlier scheme by the instruction 
pop-inzpl-point. However, given the c u r r e ~ ~ t  approa.ch, an a.ctual removal must complement only 
an actual addition. To facilitate a, determina.tion of the right action to  be taken, the added field 
is implemented as a counter ra.ther t(1ra.n a.s a hoo1ea.n. This field is initialized to 0. Each time a 
module is conceptually added to the progranl col~test .  its c~t lded  value is incrernented. A conceptual 
removal similarly causes this value to be t l ~ > c r ~ ~ ~ r e n t c d .  . ~ I I  actual removal is performed only wile11 
the counter value rea.ches 0. 
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The second issue that  must be considered is the effect of backtracking. As we have noted, this 
operation might require a return to  a. different pr0gra.m contest. An important characteristic of 
a program context now is the status of the added fields, and backtracking must set these back to  
values that  existed a t  an  earlier computation point. To permit an accomplishment of this resetting 
action, changes made t o  tltis field must be trailed. A naive implementation would trail the old 
value every time a change needs to  be made, i.e., every time a module is added or removed. A 
considerable improvement on this ca.n be obtained by tra.iling a value only if there is a possibility 
t o  return t o  a state in which it is operative. Thus consider a. goal of tlte form 

When the added field for 111 is incremented for the second t,ime. there is a need to  trail the old value 
only if unexplored alterna.tives esist in the a.tbempt to solve G I .  There is a simple way to determine 
this within a WAM-like implernenta.tion. Let us suppose we record the address of the most recent 
choice point a t  the time of processing the outermost (module) implication in the global table entry 
corresponding t o  m. Now, when the embedded implica.tion is processed, we compare the address of 
the current most recent choice point with the recorded value. There is a backtracking point in the 
solution of G1 only if the first is great,er t,llaii the secoild. Simila.r.ly, consider the decrement that 
is made to  the added field when a goa.1 of tlte form 177 ==> C; is completed. The old value needs to 
be trailed only if choice points exist within t.he solution for. C;. A test identical to  that  described 
above suffices t o  determine whether t,liis is the ca.se. 

In order t o  implement the above idea., one more field tnust be a.dded to  the entries in the global 
table for modules, i .e . ,  one tlta,t records t,he most recent choice point. prior to  the latest change 
to  the added field. This field is called mrcp a.iict is initialized to the bottom of the stack. Notice 
that  this field needs to  be updated ea.clt time aclclecl has t,o be trailed, and this change must also 
be trailed. Accordingly, each cell in the tsa.il introduced for ma.naging the added values contains 
three items: the name of a, module. the old value of cr.clcled, and tlte old contents of the mrcp 
field. Pointers to  tltis trail must be ma,iuta.iiled in clloice points and the trail must be unwound 
in the usual fashion upon ba.cktra.cking. Module i~uplication is compiled as before, although the 
interpretation of push-irn.111-poi~al in and pop-iii1.pl-poii2t in changes. In particular, these can be 
understood as though they are invoca.tions to the procedures pushimyl(m)  and popimpl(m) that  
are presented in pseudo-code fashion in Figure 4. In this code we write m.nzrcp and m.added 
to  denote, respectively, the narc11 and aclded fields in the global table entry corresponding to the 
module m. We also recall that  the B register. in the \.\!.4h.I setting indicates the most recent choice 
point. 

There is an  auxiliary benefit to  two fields that has been added under the present scheme to 
the records in the global ta.ble. .4s inentioned in Sect,iolt .5, our iinplementation permits modules 
t o  be 1oa.ded 011 demand, and hence does not require a.ll modules to be available in main memory 
during a computation. A question that  wises is \vhether ntodules ca,n also be unloaded to  reclaim 
code spa.ce. This unloa.ding must be done carefully beca.use a, rnoclule not currently included in the 
program context might still be required l)eca.~lse of tlte 1)ossil>ility of backtracking. A quick check 
of whether a module cam be unloa.detl is obtained by exanlining t,he t,wo new fields in the global 
table entry for a module. If the 1iz7.cp field 1)oints to the I,ot.ton~ of the stack and added is 0, then 
the module is not needed a.nd can hc unloaclecl. 
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p u s h i m p l  ( m )  
beg in  

if m a d d e d  = 0 
t h e n  create  a n  inzplication poi7i.t reco~.d f o r  111: 

if m . m r c p  < B 
then. 
begin 

t r a i l  (m ,  nz.nzrcp, nt.arlded); 
m . m r c p  := B ;  

e n d ;  
m.added : = m.adcled + 1 

e n d ;  

p o p i m p l ( m )  
beg in  

if m . m r c p  < B 
t h e n  
beg in  

t r a i l  ( n z ,  nz.nzrcy. ni.c~drled): 
m . m r c p  := B ;  

e n d ;  
m.added := m.added - 1: 
if m.added = 0 t h e n  

S e t  I t o  m o s t  recent  inzplicniion poi~st 
in record pointed t o  b y  I 

end  

Figure 4: Adding and Removing h~lodules fro111 Program Colltests 
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The implementation of the dynamic effects of intport can, in principle, be left unchanged. 
However, a significant efficiency improvement can be obtained by noting the following: once a 
clause from a module m has been used by virtue of the BACKCHAIN rule, there is no further need 
t o  check if the modules imported by 112 have been a.dded to the program context. To utilize this 
idea, we include two more fields in each in1plica.tion point record: 

(i) A field called backchained tl1a.t records the number of times a. cla.use from the module to  which 
the implication point record corresponds has been backchained upon. 

(ii) A field called mrcp that  records the nlost recent clioice point prior to the last change to  
backchained. 

When the implication point record is created, the bnckchrtcnecl field is initialized to  0 and the mrcp 
field is set t o  point to  the bottom of the stacl;. illhenever a clause from a module corresponding to  
the implication point record is backchained upon. a conceptual addition of the imported nlodules 
must be performed. An actual addition must be contemplated within the present scheme only 
if the backchained field is 0. In any case, this field is incremented before the "body" of the 
clause is invoked. The increment to backchr~zned is complemented by a decrement when the clause 
body has been successfully solved. Finally, an actual removal of the imported modules from the 
program context must be contemplated only when Br~ckchrrir~ed becomes 0 again. For tlle purpose 
of backtracking, it may be necessary to trail an old value of backchained each time this field is 
updated. The mrcp field is useful for this purpose. Essentially, we compare this field with the 
address of the current most recent choice point, obtained in the WAM context from the B register. 
If the latter is greater than the nzrcp field, then the old value of backchained must be trailed. This 
action must also be accompanied by a trailing of the existing mrcp value and the update of this 
field t o  the address of the current most recent choice point. 

The rationale for the various actions described for handling imports is analogous t o  that  in the 
case of module implication, and should be clear from the preceding discussions. At a level of detail, 
another trail is needed for maiiltainiilg the old values of the bnckchnzned and mrcp fields. The 
cells in this trail correspond once again to triples: the address of the relevant implication point 
record and the bacbchained and ii7ibcp values. Poii~ters to this trail must also be maintained in 
choice points and backtracking must cause the trail to be unwound. The compilation of clauses 
in modules is performed as before: the code produced for the body of a clause in module m 
must be embedded within the instructions pusI~-i i i~port- l~oii~f  nj and pop-import-point m. These 
instructions can be understood as though t h e  are invocations to  the procedures pushimport (m)  
and popimport(nz) that  are presented, in pseudo-code fashion, in Figure 5 .  Use is made in these 
procedures of a register called C I  that  points lvithin our implementation to the implication point 
record from which the clause currently being considered is obtained. Further, we write CI.mrcp 
and CI.backchained to  denote tlle n ~ r c p  and backchnrncd fields in the implication point record that 
CI points to. 

It is important t o  note that  once a clause from a nlotlule has been backchained upon, the two 
instructions push-import-point and pop-rinporf-porn1 incul very little overhead with respect to 
clauses in that  module. In particular. at most two tests, a trailing and two updates are necessary 
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pushimport  ( m )  
begin 

i f  CI.backchained = 0 
t h e n  call load-imports for  112 

i f  CI .mrcp < B 
t h e n  
begin 

trai l  (CI ,CI .ozrcp ,CI .bc~ckc~~ci i i~e~~) ;  
CI.mrcp := B ;  

end ;  
CI.backchained := CI.bnckchcii7zr-r1+ 1 

end;  

popimpor t (m)  
begin 

i f  CI.mrcp < B 
t h e n  
begin 

trai l  (CI,CI.mrcp,CI.b~~.ckclrci,ined); 
CI.mrcp := B ;  

end ;  
CI.bacbchained := CI.backclrc~iiz.ec1 - 1: 
i f  CI.backchained = 0 then  

invoke  unload-imports for  nl 
end 

Figure .5: Adding Importetl hlodules t o  a. Program Context 
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for each instruction. This is much less work t lnn  tlie creation of implication point records that  
was necessary under a direct implementa.tion of tlie opera.tiona1 semantics. Further, this overhead 
appears t o  be acceptable even if these iiistructions a.re executed repeatedly. 

We consider an example to illustrate the manner in which redunda,ncy is controlled within the 
changed implementation. Let us a.ssume t,hat t,he modules 1120, ml and m2 are defined as below. 

module mO. 1nod1~1e ml. module m2. 
import ml ,  m2. inaport n22. kind i type. 
type p i o. t y p e  q i - o. type a i. 
( p  X )  : - ( q  X ) ,  ( t  S). ( q  -X) :- ( r  -I7). t y p e  b i. 
( T  ax) :- (s  -y). ( r  a). 

(S 6 ) .  
( t  6). 

The attempt t o  solve the goal mO ==> ( y  .I-) is presented below. We auglnent the linear format of 
Section 4 as follows in this presenta.tion: Each module in tlie program context is presented by a 
pair consisting of its name a.nd the value of the backchailzed field in the implication point recdrd 
created for it .  At the end of ea,cli line? a list of pa.irs is presented that  indicates module names and 
the values of the added field in the global ta,ble entry for each of them. 

(m0,O) ?- ( p  S) [(.lo, l),(ml10),(m2,0)1 
(m2,O),(ml,O),(mO,l) ?- (rl-t-) [ ( M O ,  l ) , ( m l ,  l),(m2,1)1 
(m2,0),(ml,  11,  (?no, 1) 7- (1. S )  Y - 1 ,S'I;CC' [ ( I ~ o ,  l ) , ( m l ,  l) ,(m2,2)] 
(m2,0),(m1,0), (mO, 1 )  ?- ( i  ( 1 )  F . 4 1 ~  [(7n0, l ) , ( m l l  l),(m2,1)1 
(n22,O),(ml, I ) ,  (1720,l) ?- (1. -1-1 [(n20, l ) , ( n z l ,  l),(m2,2)1 
(m2,O),(ml, l ) ,  (m0,2) ?- ( Y )  S <- b .S'17C'C' [ ( 1 1 1 0 , 1 ) , ( 1 1 2 1 ,  l),(n22,2)] 
(m2,O),(ml, 0),  (1n0,l) ?- ( t  6 )  5'l 'C'C' [(nxo, l ) , ( m l l  1 ) 1 ( m 2 1  I ) ]  

An interesting point t o  note in this comput,a.tion is b1ia.t tlie clause ( T  a )  in module m2 is used 
only once in solving the subgoal ( T  X )  even though there are conceptually two copies of m2 in 
the program context when the subgoal is invoked. Simila.rly, aa  attenlpt to find another solution 
t o  the query will fail, even though the same solut.ion ca.11 he found five more times under a naive 
interpretation of the given sema.ntics. 

8 Conclusion 

We have examined a notion of n~odules for the logic progranliiling language XProlog in this pa- 
per. The notion considered provides a means for structuring the two components that  determine 
programs in this language: the type, kind and operator declarations and the procedure definitions. 
Using a module typically involves making itb contents available in some other context. As explained 
in some detail, this operation has static a11t1 dynatnic effects within AProlog. Our focus here has 
been on the implementation of the dynamic ahpectb of rnodules. At a level of detail, we have 
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proposed an implementation methotl tl1a.t is based on a \VA4M-like machine and that  has several 
interesting features: 

(i) It supports the idea of compiling modules separately. In particular, the compilation of a 
module produces WAM-like code based on only the program clauses appearing in the module. 

(ii) Interpreting a logical operation a.s a primitive for linking a module into a given program 
context, i t  uses a compilation process to generate linking code and includes run-time structures 
for accomplishing the linking function. 

(iii) Based on a theoretical ana.lysis of this notion, it includes ~llechanisms for reducing redundancy 
inherent in the given dyna.mic selllantics of t.he module fea.ture. The redundancy check is based 
on a two-level test t11a.t in the usual situation ca.n be ca.rried out with very little overhead. 

There are several significant enrichments to a Prolog-like language that  are embodied in XProlog 
in addition t o  the module feature. A complete implementation of this language must include 
mechanisms for dealing with all these features. -4s mentioned already, a detailed consideration 
has been given t o  the features other than the module notion elsewhere, resulting in an  abstract 
machine for the core language described in Section 3. An actual implementation of this machine 
is currently being undertaken. The mentioned machine is entirely compatible with the ideas for 
handling modules that  are presented in thiq paper anci we plan to  include these ideas within our 
implementation effort in the near future. 
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Introduction 

The wave-rippling theorem proving method was introduced by Alan Bundy et al, to  guide the 
proofs of inductive theorems [I]. In implementing fra,gments of this work in XPrologl, we hope to  
achieve the following: 

1. To demonstrate that  XProlog7s higher ordered logic of hereditary Harrop formulas can provide 
a clear and declarative implementation of the wa.ve-rippling method. 

2. A better understanding of the wave-rippling method through this implementation. 

3. To demonstrate the use of XProlog in specifying a meta, language of tactics and tacticals used 
in controlling theorem proving. 

There are two dimensions to consider in building this theorem prover: how much guidance 
(information concerning the manner and order of rule application) is inherent in the rewrite system 
itself, and how much control should he offered by the meta-level theorem proving mechanism. One 
must take care that  control mechanisms of the theorem prover do not undermine the inherent 
automation of the rules themselves, and yet still provide tlle means to  control different degrees of 
automatic rewrite. 

Augmenting a rewrite system 

Alan Bundy's wave rippling method is an attempt a t  annotating rewrite rules with suggestions 
on how a proof should be carried out [I]. This work was originally intended to  solve inductive 
problems but can be used to  proof other kinds of theorems as well. For example, the following 
rewrite rule for the successor operator in a.rithmetic: s ( x )  + y = S ( X  + y) could be annotated with 
wave fronts and become (to(1,tw s 2 )  + y = (tu(rt)e s ( 2 :  + y)). Here, s is a constructor called the 
wave front and x and (z + y)  are contents of the P L I C L V ~  holes. The aim is to  "ripple" the wave fronts 
outward. If we were t o  prove by induction on n: t,l~a.t (a: + y )  + t = z + ( y  + z ) ,  then the inductive 

'Three problem domains: arithmetics, lists ancl su~n-series are implemented in our system. They are representitive 
of the spectrum of rippling applications. More domains will he adclressed later. 
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conclusion is (s(x) + y) + z = s(x) + (y + 2). We would like to  show that  this inductive conclusion 
follows from the inductive hypothesis. This task is made easier if the conclusion was annotated 
with wave fronts: ((wave s x)  + y) + z = (wave s x)  + (y + z). After three application of the 
wave ripple rule (wave s x)  + y - (wave s (x + y))  (twice on the left, once on the right), we 
obtain (wave s (x + y) + 2)) = (wave s x + (y + z)). Now the wave fronts have been fully rippled, 
and what's inside the wave fronts is exactly the inductive hypothesis. Another ripple rule, using 
the fact tha t  s is injective, eliminates the outer s wave-fronts, and the proof is complete. This 
illustrates how wave front annotations can guide the construction of a proof. Were there no wave 
fronts, the rewrite from the inductive conclusion to  the hypothesis could take any of a number of 
possible routes, i.e., the search space would be too huge to expect efficient proofs t o  result.* 

Representing Rippling in XProlog 

A wave front is represented as a higher-order la.mbda. term. The bound variable represents the 
positions of the wave hole. If t l  is the type of expression in question (integer in the above example), 
then the wave front will have type t l  - t l .  The content of the wa.ve holes is another t l  expression. 
The wave expression constructor "wa.veV have type ( t  1 - t l ) - t 1 -+ t 1. The entire expression 
(wave F r o n t  Hole) is again of type t13. This representation means that the wave hole could have 
several occurrences inside the front since the bound varia.ble could have several occurrences, but 
the content of the hole has to  be the same for each occurrence. We chose not to have wave-fronts of 
form (wave (Xx.Xy.(P x y)) H 1  H 2 )  because of typing problems. Such composite wave forms can 
be broken up into separate instances: (wave (X.X.(P x H 2 ) )  H1) and (wave (Xy.(P HI  y)) H 2 ) ,  
each with i ts  own set of rippling rules. This representation is arguably more desirable because we 
now ha.ve more control over which pa.rt of the wave to ripple. 

The choice of using lambda. terms to represent wa.ve fronts is a natural one. A first order 
representation will have to contend with locating the wave holes inside the wave fronts, and with 
the well-formedness of expressions. Lambda. a.bstraction makes these issues trivial. An expression 
annotated with waves should be recoverable, i.e, we need to be able to know what is the real 
expression being considered (wave-fronts, after all, adds no more expressive power to  a rewrite 
system). A first order representation will require an explicit de-annotation procedure to surgically 
remove wave fronts. The higher order represent,a.t,ion has implelllellted the const,ructor wave a.s a 
kind of delayed function application. Therefore, de-a.nnotation of a wave expression (wave F H )  
is easily accomplished with (F H ). Sometillles it is also desirable to merge two wave fronts : 

into a single wave front: the conlposition of F a.ltd G .  But function composition is expressed 
naturally in our system of lambda terms. The merged wave expression is (wave (X2.(F (G x)))  H ) .  
No such obvious method exists in first order systems t1ia.t would allow this kind of composition. 

'The reader may wish to  see [I] for a more complet,e background on rippling. 
3A generic "wave" is used here for simplicity. In  tlre act.ualy implementation there are different wave constructors 

for each type, i.e, wavei for integers, wave1 for lists. XProlog does not support dependent types (as opposed to Elf), 
which would allow a polylnorpl~ic definition of wave that. st.ill ensures that, the type of a wave is the same as the type 
of terms i t  annotates. 
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The problem of wave annotation also illustrates the natural choice of using a higher-order 
representation. In proving a problem of form (VA) (such as (VXx.(x = x + 0))), we need t o  specify 
the inductive basis, the inductive hypothesis and the inductive conclusion, which is annotated with 
wave fronts. This can be done easily in our representation. Let I be an inductive constructor, 
for example the successor function in the integer case), then the base case goal is simply ( A  0), 
the inductive hypothesis will be ( A  n)  for some arbitrary 1 2 ,  and the inductive conclusion will be 
( A  (wave s n)) or equivalently (A  (wave (Xs.(z + 1)) n ) ) . 4  The lambda term representation of 
wave fronts allows the use of function application to implement substitution, which is a tedious and 
(because of the danger of bound variable capture) potentially unsa.fe task in first order systems. 

Implementing the theorem prover 

Idealy, a rewrite system annotated with wave fronts should need no further support to  construct 
correct and efficient proofs. We should need only initiate the rippling process. However, it will be 
naive t o  assume that  rippling alone can produce efficient proofs. There are several different types 
of rippling rules and the order they are applied is important. Sonletimes it is also preferable to 
perform normal rewriting, such as normalization, rather than applying rippling rules. It is therefore 
still necessary t o  support the wave-aug~nented rewrite system with an underlining theorem prover. 

It has been argued that  effective theorem provers call not be specified in Prolog because of the 
limitations of first-order Horn clause logic. and because the naive. depth-first backtracking method 
of Prolog interpreters prohibits more elaborate proof-search methods. However, Amy Felty, in [4,5] 
have demonstrated that  this criticism of Prolog is invalid. Prolog's internal mechanism may be 
naive, but Prolog can be used to define a meta-level language of tactics, which can provide control 
over the theorem proving process independently of Prolog's internal search mechanisms. Prolog is 
used as the meta-language of the meta-language. hlIucll of limitations of first-order Horn clause 
prolog can also be solved by the more expressive, higher-ordered hereditarily Harrop formulas of 
XProlog . 

Our purpose is t o  implement a rich tactic systenl that would give the user the choice of varying 
degrees of control over the theorem proving process. The system can be specified to  attempt to 
prove something automatically, or be used as an interactive proof-editor. 

Theorem proving rules and methods are implemented by declaring "tactics". Tactics can be 
combined using a language of "tacticals." The follo\ving set of tacticals are defined following 
Felty [4]. 

app ly - tac  i d t a c  A A .  
app ly - tac  ( then  T1 T2) A C : -  app ly - tac  Tl A B ,  apply- tac  T2 B C .  

app ly - t ac  ( o r e l s e  TI T2)  A C : -  app ly - tac  TI A C ;  app ly - t ac  T2 A C .  
app ly - t ac  ( t r y  TI A B : -  app ly - tac  ( o r e l s e  T i d t a c )  A B. 
app ly - tac  ( r e p e a t  T) A B : -  

app ly - tac  ( o r e l s e  ( then  T ( r e p e a t  T) )  i d t a c )  A B .  

41n the inductive proof case the initial wave front is always t.he i~lductive operator (successor for integers, cons for 
lists), but rippling can also be used for non-inductive proof> (see [3]), in wllich case t.he initial annotation of wave 
fronts is much more difficult, and requires careful higl~er-order. manipulations. 
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The purpose of a tactic is to advance the theorem proving process by one or more steps. 
apply-tac is given a tactic name and the current goal or form of the problem, and gives the 
updated goal, or the result of applying the tactic on the current goal. The aim is t o  reduce the 
initial goal ( the theorem t o  be proved) to  t r u e g o a l ,  which represents triviality. i d t a c  is the most 
simple tactic in leaving the problem unchanged. The t r y  tactic prevents failure by returning the 
same goal should the tactic fail. r e p e a t  repeatedly a.pplies a. ta.ctic until i t  fails. t h e n  and o r e l s e  
are self-explanatory. 

These tacticals form the core of the meta-language of tactics. They are used t o  define other, 
more complicated tactics and tacticals. They have a natural declaration in prolog (in fact first-order 
prolog), and yet greatly extends the ability of prolog by providing more flexible control over goal 
search. For example, ( r e p e a t  ( o r e l s e  ( t a c t i c 1  (Then t a c t i c 2  t a c t i c 3 1  1) ) can be used to  
repeatedly transform a goal using either ta.ctic1 or sequences of tactic:! and tactic3. 

Rewrite rules are implemented as ta.ctics. Ea.ch ta.ctic call be viewed as the implementation of 
one or more rewrite rules. They are orga.nized a,s follows: 

Primitive normalization rules. These include rules such as (x  + 0 = x)  for arithmetics and basic 
list equalities such as (append a nil) = a. Ta.ctics are defined to  iinplement these rules. Each tactic 
applies a primitive rule exactly once. We explicitly prevent exhaustive application t o  provide the 
option of precise control of rewriting through the tactics. Ta.ctics can be exhaustively applied using 
the r e p e a t  tactical. 

Special normalization rules. Additional constructors, such a.s user defined functions, need their 
own set of rules and corresponding tactics. For exalnple, the function r e v e r s e  for reversing lists 
will have a set of rewrite rules representing the functional evaluation rules for r e v e r s e .  They are 
kept separate from the other normaliza.tion rules; a.gain, t,o provide precise control over rewriting. 
The indiscriminate application of both primitive and special rules is achieved using the o r e l s e  
tactical. 

Wave rippling rules. These rules/tactic.s a.re annotated with a direction: outward (the standard 
type), sideways or inward. This is the core of the theorenl prover. 

"Proof Plans." A proof-plan is a cla.use t11a.t iml~lements a, series of procedures for carrying out 
proofs for a certain type of theorem. Tliese procedures include tactics, but also other facilities. 
We could implement proof plans as conlposite ta.ctics but choose not to, because, theoretically, 
there could be a meta-language of proof-planning separate from the meta-language of tactics. For 
example, integer induction can be specified as the following proof plan: 

Prove base case using normalizatio~i. 
Annotate inductive conclusion with wa.ve-fronts. 
Exhaustively a.pply ripple outward, 
Apply normalization to  the result, 
Match result with inductive hypothesis. 

Auxiliary ta.ctics. These include, for example. equality, which makes use of normalization. 
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Issues in implementing ripple-rewrite in XProlog 

The use of Higher-order unification must be precisely controlled t o  be effective. In this system, 
unification is only performed with variables on one side of the equation.5 This reduces the otherwise 
unmanageable number of unifiers returned by the unification algorithm. The use of higher-order 
unification is limited to  what was described earlier in systems such as arithmetics, which is not 
inherently higher-ordered. IIowever, in inherently higher-ordered problem domains such as solving 
sum-series, which includes a notion of bound variables, higher-order unification becomes a necessity. 
For example, i t  is used in determining if a sum-series expression is independent of the index variable 
of the series. The implementation demonstrates the safe and effective use of higher-ordered terms 
and unification throughout. 

XProlog's more expressive abilities allow the system to  be defined without any use of extra- 
logical constructs found in first-order Horn clause Prolog systems such as cut, not, assert or call. 
Assert is replaced by the more logical 3 .  For exa:u]>le, say we wanted to  define a predicate to  test 
if a formula is atomic. We could write: 

atomic (and A B) :- ! ,  f a i l  
atomic (or  A B) :- ! ,  f a i l .  
. . . 
atomic Anything. 

Or we can explicitly write ( a s s e r t  (atomic x )  for each new x we wish to  be considered 
atomic. In XProlog, if in solving a goal G we wish to  regard some x (usually introduced by 
the negative universal quantifier p i )  as atomic, we simply write (atomic x => G). Universally 
quantified formulas ( a t  the object level) often require 3 to  place conditions on their bounded 
variables. This method is used in implementing the sum-series problem to  test if an expression is 
free of sums (in which case the proof is complete). 

The tactic system defined in XProlog further ensures that  the system is purely logical. As an 
example, tactics do not recursively descend into a structure and perform rewrite on a subterm 
unless i t  is specifically predicated by the descend tactical. Non tactic-based systems often use cut 
(!) t o  explicitly control recursive descent. The descend tactical eliminates this reliance on extra- 
logical constructs. The use of descend and other search control tacticals also further illustrates 
the power of our tactic system in offering varying degrees of control over rewriting. For example, 
if the tactic a s s o c i a t i v i t y  rewrites terms of the form a + ( 6  + c )  into ( a  + b) + c, then the tactic 
(descend a s s o c i a t i v i t y )  will apply associativity to a subterm if it fails a t  the outermost level; 
(repeat (descend a s s o c i a t i v i t y ) )  nil1 csha~~st ively  rewrite an expression to  eliminate a t  all 
levels terms of the form a + ( b  + c ) .  " 

'In fact, usually with only one occurrence of all unhountl logic variable. Wllen expedient, Po redex of LA are used 
to further ensure smooth unification. 

'Although not all implemented, other tacticals si~r~ilar to descend t.l~at provide precise control over search and rule 
application can be easily defined given the core t.act.ics. For example, alt.11ougl1 ideally, wave-front. expressions should 
only be rewritten by rippling rules, rewrite rules can be ~nade  1.0 clescend into a wave-front with the trans-wave 
tactical. 
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Other Considerat ions 

Although through this implementation we have formalized wave-rippling as a special form of rewrite, 
we have not shown how rippling rules should be selected. Bundy et al. have shown in [2] that  
deriving rippling rules directly from the recursive definition of functions in the style of the Boyer- 
Moore Theorem Prover is often not complete enough to  guarantee the successful proof of a theorem. 
In general, a wave rule can be derived from any valid rewrite rule. Each regular rewrite rule 
can have a number of different wave-annotations, giving i t  several rippling interpretations. If all 
possible annotations are given, then this defeats the purpose of having ripple rules guide induction 
by limiting the number of choices in each rewrite step. The selection of rippling rules is clearly 
dependent on the problem domain. However. it may he possible t o  develop some kinds of standards 
of specifying ripple rules. For example, it is reasonable to hypothesize that only outward ripple 
rules are necessary in solving integer induction problems. We hope to study this problem further. 

During the course of this ii~lpleilleiltatioll. many unclear issues in Bundy's presentation of rip- 
pling, such as the meaning and use of logic variables, are clarified through the declarative speci- 
fication. We wish also to better u~ltlerstand how exactly esistential quantifiers (object level) are 
treated. 

The problem of typing needs to be addressed further. There are two typing issues to consider. 
First,  do we put types a t  the ineta level (using the typing system of XProlog) or do we define 
types a t  the object level (so that  each rule and/or expression must be annotated with a type). The 
current system implements the first approach. Secondly, we wish our system t o  be polymorphic 
a t  least to  some extent. For example, we wish to  define lists of any type, not just, say, lists of 
integers. The first option is to  use XProlog's own polymorphic typing system. But this will lead 
t o  problems in unification. The other option is to put the polymorphism into the tactic structure. 
Different rules of the same tactic are defined to  permit the application of that  tactic to  different 
types. This is what has been adapted in the current system. For example, there are several rules for 
the equality tactic, each for a different type of equality. Neither of these issues has been completely 
resolved; they require further study. 

Finally, a major goal of ours is to prove that our impleillentation is sound and a t  least to some 
extent, complete. Alan Bundy have already proved that rippling terminates if the ripple rules are 
used ~ o r r e c t l y . ~  Thus, we only need to  show that our inaplementation terminates. We also need 
t o  show that  if a rippling rule succeeds then the unannotated version of the rule is valid. Again, 
it is hoped that  our higher-ordered, tactic-directed implementation will facilitate in such proofs. 
As mentioned earlier, the ease of de-annotating wave fronts from an expression to  recover the real 
formula will be a n  important tool in our proofs. The simplicity, flexibility and expressiveness of 
our tactic system should aid in the proof of some kind  of completeness. 

 o or example, if we know t,hat only outward rippling is usetl. ternlination is relatively trivial. The other forms of 
rippling obviously comp1icat.e~ the problem great.1~. 
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1 Introduction 

Several researchers have studied the problem of inductive reasoning about PROLOG programs, 
beginning with an early paper by Clark and Tarnlund [2]. The pioneering work of Kanamori and 
Seki [ll] proposed an extended model of PROLOG execution and showed how this extended model 
could be used for program verification. A companion paper by Kanamori and Fujita [lo] analyzed 
several techniques for the formulation of induction schemata and showed how two or more such 
schemata could be merged into one. These ideas have been extended and refbed in a series of 
papers by F'ribourg [4, 5, 61. Other contributions include the work of Hsiang and Srivas [9] and 
Elkan and McAllester [3] 

The biggest problem in all of this work seems to be: How to conjecture an appropriate induction 
schema? In this extended abstract, we will show how to formulate induction schemata in second- 
order intuitionistic logic [27], and how to search for these schemata in a logic programming language 
based on embedded implications [17,18]. This is a report on work in progress, and it relies heavily on 
two concrete examples. One example ("Red and Green Blocks") is a variant of a familiar problem 
in common sense reasoning; the other example ("Naive Reverse") is a standard problem from the 
logic programming literature. We use these examples to illustrate our proposed technique, and to 
suggest that the ideas presented here are worth pursuing further. We will tackle the problem of 
inductive proofs in greater generality in a future paper. 

Section 2 is a brief discussion of the theoretical foundations of our work, abstracted from [20]. 
The two examples are presented in Sections 3 and 4. Section 5 then outlines our current and future 
investigations into inductive reasoning. 

2 Theoretical Background 

The framework for our work is the language of intuitionistic embedded implications presented in 
[17, 181. A similar language is studied in [23] and forms the basis of the XPROLOG program- 
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ming language [25]. Prior work on essentially the same language appears in [8, 71. The class of 
intuitionistic embedded implications is given by: 

Definition 2.1: 

An atomic formula is an embedded implication. 

If A is an atomic formula and dl, . . . , dl, are embedded implications, then A e A I  A . . . A d k  

is an embedded implication. 

a If A(z)  is an embedded implication, then (Qx)A(x) is an embedded implication. 

This definition allows implications to be embedded to an arbitrary depth. However, we can restrict 
this definition to the class of simple embedded implications - in which implications are nested at 
most one deep - without any loss of expressive power, since arbitrary embeddings can be simulated 
by defining new atomic predicates using simple embedded implications exclusively. 

It is easy to see that Definition 2.1 gives us a language which is equivalent, classically, to full fixst- 
order logic. However, interpreted intuitionistically, this language is a proper subset of fist-order 
logic with interesting semantic properties [17]. Most significantly, a set of intuitionistic embedded 
implications R has the disjunctive property and the existential property. A disjunction of formulae, 
AVB, is entailed by R if and only if R A or R + B, and an existentially quantified formula, 
(3x)A(x), is entailed by R if and only if R 1 A(x)O for some ground substitution 8.  Closely related 
is a proof-theoretic property, the existence of linear proofs [18] in which subgoals return definite 
answer substitutions to parent goals. (These are referred to as uniform proofs in [24].) Because of 
these properties, intuitionistic embedded implications provide a natural generalization of the class 
of definite Horn clauses. 

But what if we wanted to represent indefinite information as well? A recent paper [21] suggests 
a novel approach to this question. Imagine a two-person communication situation in which the 
"speaker" applies a set of definite rules to a world of definite facts, and then reports some of these 
definite conclusions. Assume it is our job (as the "hearer") to make inferences about the actual state 
of the world, even though we have not observed it directly. McCarty and van der Meyden suggest 
that the correct way to formalize this problem is to circumscribe [15, 161 the defined predicates 
in the set of definite rules, and then to ask whether a certain implicational goal is entailed by the 
circumscription. In [21], the set of definite rules consists of a set of Horn clauses, but in [22] this 
model is extended to include actions defined by Horn clauses over a linear temporal order, and in 
[19] it is extended to  include intuitionistic embedded implications as well. In all cases, the basic 
idea is to  do indefinite reasoning with definite wles .  

We now outline the machinery needed for this type of reasoning. Since we are working with 
intuitionistic logic, we need to use an intuitionistic version of the circumscription axiom. As in [21], 
we restrict our attention here to the circumscription of Horn clauses. Let R be a finite set of definite 
Horn clauses, and let P = < PI ,  P2, . . . , Pk > be a tuple consisting of the ''defined predicates" that 
appear on the left-hand sides of the sentences in R .  Let R ( P )  denote the conjunction of the 
sentences in R ,  with the predicate symbols in P treated as free parameters, and let R ( X )  be the 
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same as R ( P )  but with the predicate constants < PI, Pz, . . . , Pk > replaced by predicate variables 
<X1,X2 ,..., Xk>. 
Definition 2.2: The circumscription axiom is the following sentence in second-order intu- 

itionistic logic [27]: 

We denote this expression by Circ(R(P);P) ,  and we refer to it as "the circumscription of P in 
R(P) ."  The circumscription axiom has the same intuitive meaning here that it has in classical logic. 
It  states that the extensions of the predicates in P are as small as possible, given the constraint 
that R ( P )  must be true. Since the logic is intuitionistic, however, the axiom minimizes extensions 
at  every state of every Kripke structure that satisfies R .  

Now let T+!J be a Horn clause and let Q be a set of embedded implications. We are interested in 
the following circumscriptive query problem: 

We will discuss concrete instances of this problem in Sections 3 and 4. Since Ci rc(R(P) ;P)  is a 
second-order sentence, however, one might ask: Is it possible to solve the circurnscriptive query 
problem a t  all? The answer is: Yes, in certain special cases. Our analysis makes use of the concept 
of a final Kripke model, which is not discussed in this extended abstract. For more details, see 
[21, 19, 201. 

First, if R is a set of nonrecursive Horn clauses, the solution is the same in intuitionistic logic 
as it is in classical logic [26, 131. Let Comp(R) denote Clark's Predicate Completion [I]. We then 
have the following result: 

Theorem 2.3: Let R be a set of nonrecursive Horn clauses. Then Ci rc(R(P) ;P)  is equiva- 
lent to  Comp(R). 

For recursive Horn clauses, we initially restrict our analysis to a special case: 

Definition 2.4: R is a linear recursive definition of the predicate A if it consists of: 

1. A Horn clause with 'A(x)' on the left-hand side and a conjunction of nonrecursive 
predicates on the right-hand side, and 

2. A Horn clause that is linear recursive in A. 

Let 'A(x)+AO(x)' be the rule obtained from (1) by applying Clark's Predicate Comple- 
tion. We say that 'A(x)+AO(x)' is the prototypical definition of A ( x ) .  

Let 'X(x)+AX(x)'  be the rule obtained from (2) by applying Clark's Predicate Com- 
pletion and then replacing the predicate constant A with the predicate variable X.  We say 
that 'X(x)*AX(x)' is the transformation associated with A(x). 
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Now let @(A) be any Horn clause in which the predicate constant A appears on the right-hand 
side. For example: 

We treat @ ( A )  as a schema that depends on A, so that we are free to substitute AO, A X  and X as 
we wish. 

Definition 2.5: The induction schema for @ ( A )  is the following sentence in second-order 
intuitionistic logic: 

The interesting point about this induction schema is that it takes the form of an embedded im- 
plication with an embedded second-order universal quantifier. Second-order intuitionistic logic has 
no complete proof procedure, of course, but it turns out that a set of second-order sentences in 
this form does have a complete proof procedure. The procedure is similar to the first-order proof 
procedure for universally quantified implications discussed in (181. To prove the second conjunct 
on the right-hand side of Definition 2.5, we replace the predicate variable 'X'  with a new predicate 
constant '!X', we assert @(!X) into the rulebase, and we try to prove +(A!X). If this proof succeeds, 
then we have proven the goal: (VX)[@(AX) e @(X)] .  For a proof that this procedure is complete, 
see [20]. 

We will show how to use this induction schema in Sections 3 and 4. The justification of our 
approach is given in the following two theorems, which are proven in [20] using the concept of a final 
Kripke model. In the statement of these theorems, A is a tuple consisting of the recursively defined 
predicates in R, which is assumed to include only linear recursive definitions, P ( A )  denotes the set 
of prototypical definitions of the predicates in A given by Definition 2.4, and S ( A )  denotes the set of 
all induction schemata for the predicates in A that can be constructed using Definition 2.5. 

Theorem 2.6: Q U Comp(R) U ?(A) j= q5 Q u Czrc(R(P); P) /= $ 

Theorem 2.7: Q U Comp(R) U S ( A )  $ a Q U Czrc(R(P); P) + $ 

These theorems suggest that we search first for a prototypical proof of q5, i.e., a proof that uses just 
the prototypical definitions P ( A ) .  If we fail to find a prototypical proof, we have failed, period. 
But if we succeed, we can analyze the successful prototypical proof in an attempt to construct an 
induction schema in S ( A ) .  We can then search for a proof from this induction schema, using the 
procedure for second-order embedded implications outlined above. 

Intuitively, Theorem 2.6 tells us that prototypical proofs are complete but not necessarily sound, 
while Theorem 2.7 tells us that inductive proofs are sound but not necessarily complete. We will 
see how to combine these two proof procedures in the following two sections of the paper. 
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3 Example: Red and Green Blocks 

The example in this section is taken from [21]. Let R be the following set of rules: 

Intuitively, rules (1)-(2) define the concept of a 'ChristmasBlock', and rules (3)-(5) define the 
concept of a stack of 'ChristmasBlocks'. Suppose we are told that there exists a stack of 'Christ- 
masBlodts' in which block 'a' is above block 'b', and furthermore that 'a' and 'b' are painted green 
and red, respectively. Does it follow that there is something green on something red? 

Intuitively, the answer should be: Yes. Formally, we can pose this question by circumscribing 
the predicates 'ChristmasBlock,' 'OnCB' and 'AboveCB' in rules (1)-(5), adding the following Horn 
clause to Q: 

GreenOnRed + On(x, y) Green(x) Red( y), ( 6 )  

and taking 11, to be the following implication: 

GreenOnRed e AboveCB(a, b) A Green(a) A Red(b). (7) 

We now try to  show that Q U Circ(R(P);P)  1 $. 

A successful proof is shown in Figures 1 and 2. Rules (4)-(5) constitute a linear recursive 
definition of the predicate 'AboveCB', in which 

is the prototypical definition, and 

is the transformation. Using the notation in Definition 2.4, the right-hand side of (8) is written as 
' ~ b o v e ~ ~ O ( x ,  y)', and the right-hand side of (9) is written as 'AX(x, y)'. Since we are trying to 
prove the implication in (7), we construct an initial tableau, lo, with 'AboveCB(a,b)', 'Green(a)' 
and 'Red(b)' in its data base, and with 'GreenOnRed' as its goal, and we try to show that this goal 
succeeds using the prototypical definition in (8). Figure 1 shows a successful proof, which happens 
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GOR 
I1 

A 
O(x Y G(a) R(b) 

0 : { x 2 t  X ,  1 I1 II II 
(YZ+ Y , )  

OCWx 2, y2) O(x2, y2) A CB(x,) A CB(y,) 

o : ( x 3 +  X 2 )  

{ ~ 3 +  hi I/ 
ACB(x3, y 3)  + OCB(x,, y ,) v 

o :  {a e x g )  
{b + Y, 1 I1 

DB: ACB(a,b), G(a), R(b) 

Figure 1: "Red and Green Blocks," prototypical proof. 

to use Comp(R) applied to rule (3).  We have thus found a prototypical proof, as guaranteed by 
Theorem 2.6. 

Our task now is to ('strengthen" the proof from P ( A )  into a proof from S ( A ) ,  if possible. The 
first step is to  generalize the proof in Figure 1 from a proof that works for the constant 'a' to a proof 
that works for the variable 'x'. (See [12] for the analysis of a similar problem in "explanation-based 
generalization".) I t  is easy to see that this generalization is successful. We now have a proof of the 
following universally quantified implication: 

(Vx) [GreenOnRed e OnCB(x , b) A Green( x ) A Red(b)] . (10) 

Let us call this implication @(AboveC~'). Then @(AboveCB) is the following universally quantified 
implication: 

If we can prove ( l l ) ,  we will also have a proof of our original query (7). Therefore, using the 
induction schema in Definition 2.5, we try to prove (VX)[@(AX) e @(X)]. This goal is an 
implication with a second-order universal quantifier, so we create a new tableau, TI,  we add @(!X) 
to the data base, and we try to prove @(A!X) in z. 



TI : succeeds TI : succeeds 

Figure 2: "Red and Green Blocks," inductive proof. 

Let us write out each of these schemata in detail. 9(!X) is the following implication: 

and @(A!X) is equivalent to the following implication: 

(Vx, z)[GreenOnRed -+ OnCB(x, z) A !X(z,  b) A Green(x) r\ Red(b)]. (13) 

To prove (13)' we instantiate 'x' and 'z' to the special constants '!x4' and '!zqY, we add the right- 
hand side of (13) to the data base of TI, and we try to prove the left-hand side of (13). The proof 
is shown in Figure 2. The main point to note is that the proof now uses Comp(R) applied to rules 
(1) and (2)' which generates a disjunctive assertion. It is therefore necessary to use a "disjunctive 
splittingn operation [14] in order to obtain a closed proof. However, Figure 2 shows that the goal 
'GreenOnRed' succeeds initially from the disjunct 'Red(!z4)', and then succeeds again from the 
disjunct 'Green(!z4)' using 9(!X). 

We have thus shown, by Theorem 2 .7 ,  that & u C i r c ( R ( P ) ; P )  $. 

4 Example: Naive Reverse 

The problem in Section 3 is relatively simple, but we have constructed proofs of this sort for more 
complicated problems. In particular, we have applied our techniques to prove various properties of 



250 Proceedings of the 1992 XProlog Workshop 

PROLOG programs [lo, 31. For example, let 'Append(l,m,n)' be defined as usual: 

Let 'Reverse(r,s)' be defined as follows: 

Reverse(ni1, nil) -e (16) 

Reverse([q I r], p) +. Reverse(r, s) A Append(s, [g], p) (17) 

Intuitively, 'Reverse' should be a symmetric relation. We can express this property by taking q!~ to 
be the following universally quantified in~plication: 

(Vx, y)[Reverse(y, x) +. Reverse(x, y)]. (18) 

We now show that (18) is entailed by the circumscription of 'Append' and 'Reverse' in rules (14)- 

(17). 

To : succeeds TI 

Figure 3: "Naive Reverse," partial proof. 

Rev(!yl, !x ,) 

Il !y = nil 
!x =nil 

Rev(ni1,nil) 

Rev(!x,, !y,)  + ~ e v O ( ! x , ,  !y,)  v 

II 

DB: Rev(!x,, !y,)  

The first part of the proof is shown in Figure 3. Applying our first-order proof procedure for 
intuitionistic embedded implications [18], we construct an initial tableau, z, with 'Reverse(!xl, !yl)' 
in its data base and with 'Reverse(!y,, !xl)' as its goal. The prototypical definition of 'Reverse' is 
given by Definition 2.4, as before, but its use in the tableau proof is slightly more complicated here 
than it was in Section 3. Applying Clark's Predicate Completion to rule (16) alone, we have: 

Reverse(x, y) 3 x = nil y = nil. (19) 

I ) )  

Rev(!y2, I!q,l !r21) 

Rev(y3. x 3) 

I 
!R(x3. ~ 3 )  

o : (!r2 e x  3} 
( ! s ,  C Y , ~  I1 

DB: Q),(!R), !R(!r Z ! ~ 2 ) ,  App(!s2.L,[!q 21 , !~2)  
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Thus ' ~ e v e r s e ~ ( ! x ~ ,  !yl)' is the assertion that '!xl = nil' and '!yl = nil', and when these values are 
substituted throughout the tableau lo the goal succeeds immediately, as indicated in Figure 3. We 
thus have a proof of the following universally quantified implication: 

(Vx, ~)[Reverse(y, x) e ~everse'(x, y)]. (20) 

Let us call this implication G1(Reverseo). Then the implication in (18), our ultimate goal, is 
(Reverse). 

The prototypical proof in Figure 3 has suggested an induction schema, and we now compute 
the expression (VR)[+l(AR) e +l(R)] where R is a predicate variable. We can immediately write: 

Gl(R) z (Vx, y)[Reverse(y, x) -+ R(x, y)]. P I )  

Also, by Definition 2.4, the transformation associated with 'Reverse' is: 

and we can therefore write: 

Reverse(y, x) e R(r ,  s )  A Append(s, [q], y) A x = [q I r] 
Tableau 5 in Figure 3 shows our attempt to prove the right-hand side of this induction schema. 
We add al(!R) to  the data base and we try to prove G1(A!R). Notice that the equality 'x = [q ( r]' 
in (23) can be eliminated when we attempt this proof. 

However, as Figure 3 indicates, this proof does not succeed immediately. Instead, we are able 
to reduce the goal in tableau TI to another universally quantified implication: 

We now attempt, in Figure 4, to  prove (24). The strategy here is exactly the same: Find a proof 
using the prototypical definitions P ( A ) ,  and then try to "strengthen" this proof into a proof from 
S ( A ) .  The prototypical definition of 'Append' is: 

Append(x, y ,  z )  * y = z A x = nil. (25) 

Thus, to assert 'Reverseo(!s2, !r2)' and 'AppendD(!s2, [!qz], !y2)' is to assert '!sz = !r2 = nil' and 
'!y2 = [!q2I7. When these values are substituted throughout the tableau 71, as shown in Figure 4, 
the goal succeeds. We thus have a proof of the following universally quantified implication: 

Our task now is to strengthen the proof of (26) into a proof of (24). 
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I DB: Rev(!s2,!r ,), App(!s2,[!q21,!y2) I 

TI : succeeds 

Figure 4: "Naive Reverse," second prototypical proof. 

Rev(!y 2. [!qJ !r21) 

I1 !y2= [!q21 
!r2= nil 

Rev([!q21,[!q21> 

A 
Rev(ni1, s 3) App(nil,[!q21.[!q21) 

a :  (nil c s 3 ]  11 11 App(nil.l!q21,1!q21) 
Rev(ni1,nil) 

Rev(!s2, !r 2) * ~evO(!s , ,  !r2) 
v 

A p p ( ! ~ ~ . [ ! q ~ l , ! ~ ~ )  J A P P O ( ! S ~ , [ ! ~ ~ I . ! Y ~ )  

I I 

Since there are two recursive predicates on the right-hand side of (24), we can expect the 
construction of an induction schema here to be more complicated than it was in our prior examples. 
However, it turns out that we can transform the relations 'Reverse' and 'Append' conjunctively in 
this case. (In other cases, alternative strategies may be necessary.) Suppose we define: 

m+ 

where R and A are predicate variables and 'RAA' is their conjunction. By Definition 2.4, the 
transformation for 'Append' is: 

A ( x ,  Y,z) * (3k, 1,n) (28) 

A(l ,y ,n)  A z =  [k 111 A z = [k I n], 

and combining this with the transformation for 'Reverse', we have: 

R(s, r )  A A(s, [91, Y) * (3k, 1, n,  2) 

R(l,z3 A Append(2, [kl, r )  A A(l , [q l ,  n) A 

s = [k 1 I ]  A y = [k I n]. 

Notice, because of the equality 's = [k  I 11' in (29), that the f i s t  arguments of R and A will always 
be identical under the application of this transformation. This is the key observation that allows us 
to compose the transformations (22) and (28) conjunctively in this case, and it is also the property 
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that allows the "merger" of the induction schemata in [lo]. Finally, substituting the right-hand 
side of (29) into the schema a2, we have: 

@z(ARAA) 5 (VY, q ,  r, k,  1, n,  2) (30) 

Reverse(y, [q I r l) + R(1,z) A Append(z, PI, r )  A 4 1 ,  [ql, n)  A 

Y = [k  l nl. 

Figure 5 now shows that the proof using this induction schema is successful. 

T,. : succeeds 

Figure 5: "Naive Reverse," second inductive proof. 

m m .  

We have thus shown, by Theorem 2.7, that (18) is entailed by the circumscription of 'Append' 
and 'Reverse' in rules (14)-(17). 

- 
Rev([!k,l !n4],[!q41 !r,]) 

I I 
Rev([!k,l !n4],[!q41 !r4]) 

Rev(!n, ,s 3 
A 

App([!q41 !z41.[!k41.[!q41 !r41) 

D :  {[qalrs1 + s,l 11  I I 
App([!q,l !z41~I!k41,[!q41 !r,l) 

Rev(!n, .[q 6( r61) 

A I 
App(!z4,[!k41,!r4) 

!R(s 6,r6) !A(!l,,[q J,!n,) I I 
0 : ( ! l 4 c s d  I I 0 :  ( ! q 4 +  q 6 )  

Ilz4 erg) 11 
DB: Q2(!R, !A), !R(!I4,!z4), App(!z4,[!k41,!r4), !A(!l4,[!q41,!n4) 

5 Current Work 

This work is currently being extended in two directions: 

1. We are analyzing a wider class of recursive definitions. 

2. We are writing a PROLOG interpreter to search for inductive proofs. 

Preliminary results of these investigations will be reported at the workshop. 
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1 Introduction 

Implementation technology for higher-order logic programming languages such as XProlog [17] 
and Elf [21] is still in its infancy. There a.re ma.ny features of these languages that do not oc- 
cur in ordinary Prolog programs, such as types, variable binding constructs for terms, embedded 
implication and universal quantification, or dependent types and explicit construction of proofs. 
Some initial work on compiler design for higher-order logic programming languages can be found 
in [ll, 16, 18, 1912. At the same time, the language design process for such languages is far from 
complete. Extensions [2, 71 as well as restrictions [14] of XProlog have been proposed to  increase 
its expressive power or simplify the language theory or its implementation. 

Obviously, further language design and implementatio~l efforts must be closely linked. It is easy 
to  design unimplementable languages or implement unusable languages. In order to understand and 
evaluate the challenges and available choices, we report the results of an empirical study of existing 
example programs. We chose Elf over XProlog for this study for two reasons: (1) accessibility 
of the large suite of examples, and (2) ease of instrumentation of the Elf interpreter to perform 
measurements. Many of these examples ca.n be trivially transformed into AProlog programs, and 
essentially the same issues arise regarding their ruilti~lle behavior. We will discuss later which 

'This research was sponsored partly by the Avionics Laboratory, Wright Research and Development Center, 
Aeronautical Systems Division (AFSC),  U .  S.  .4ir Force. Wright-Patt.erson AFB, OH 45433-6543 under Contract 
F33615-90-C-1465, ARPA Order No. 7597. The views and conclusions contained in this document are those of the 
author and should not be interpreted as representi~lg the official policies, either expressed or implied, of the U.S. 
Government. 

2See also the paper by I<won and Nadathur in this volume 
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measurements are specific t o  Elf. 
Currently, we have access t o  about 10,000 lines of Elf code, written mostly by the authors and 

students in a course on Computation and Deduction taught in the Spring of 1992. We selected a 
sample of 12 representative examples of about 3500 total lines of code to  conduct this study. The 
examples cover a range of applications from logic and the theory of programming languages. They 
are explained further in Section 3. 

We briefly summarize what we consider to  be some of the central issues and our conclusion. 
Full unification in higher-order languages is clearly impractical, due t o  the non-existence of 

minimal complete sets of most-general unifiers [8]. Therefore, work on XProlog has used Huet's 
algorithm for pre-unification [8], where so-called flex-flex pairs (which are always unifiable) are 
postponed as constraints, in effect turning XProlog into a constraint logic programming language. 
Yet, even pre-unifiability is undecidable, and' sets of ~iiost  general pre-unifiers may be infinite. 
While undecidability has not turned out to  be a severe problem, the lack of unique most general 
unifiers makes i t  difficult to accurately predict the run-time behavior of a XProlog program that 
attempts t o  take advantage of full higher-order pre-unification. It can result in thrashing when 
certain combinations of unification problenls have to  be solved by extensive backtracking. Moreover, 
in a straightforward implementation, common cases of unification incur a high overhead. These 
problems have led t o  a search for natural. decidable subcase of higher-order unification. Miller [14] 
has suggested a syntactic restriction (L \ ) to XProlog, easily extensible to related languages [22], 
where most general unifiers are unique modulo j?ilc\-equivalence. 

Miller's restriction has many attractive features. Unification is deterministic and thrashing 
behavior due t o  unification is avoided. Higher-order unification in its full power can be implemented 
if some additional control constructs (when) are available [15]. 

However, our study suggests that  this solution is unsatisfactory, since i t  has a detrimental effect 
on programming methodology, and potentially introduces a new efficiency problem. Object-level 
variables are typically represented by meta-level variables, which means that  object-level capture- 
avoiding substitution can be implemented via rneta-level 8-reduction. The syntactic restriction 
to  LA prohibits this impleinentation technique, and hence a new substitution predicate must be 
programmed for each object language. Not only does this iilake programs harder to  read and reason 
about, but a substitution predicate will be less efficient than nleta-language substitution. 

This is not t o  diminish the contribution that L,\ has made to  our understanding of higher-order 
logic programming. The operational semantics of Elf. in contrast to XProlog, is based on solving all 
dynamically arising equations that  lie within an appropriate estension of L A  t o  dependent types. 
All other equations (solvable or not) are postponed as constraints. We found that  this addresses 
the problems with higher-order uilification without compromising programming methodology. 

This still leaves open the question whether this constraint satisfaction algorithm can be imple- 
mented efficiently. Part  of our study was aimed at determining the relative frequency of various 
forms of equations, in order to guide future design of efficient i~nplernentations. 

In this paper we study the run-time behavior of a large suite of Elf programs, and demonstrate 
the following: 

a While a large proportion of progra,nis are outside L,\ syntactically, the cases of unification 
that  occur dyna,mically are a.lmost all deterniiiiistic. 



Spiro Michaylov and Frank Pfennillg 259 

All of the programs behave well if nondeterministic cases of unification are delayed until they 
are deterministic. 

While most programs a t  some point use non-trivial cases of higher-order unification, the vast 
majority of unification instances are extremely simple, in fact, essentially Prolog unification. 

This empirical study has been performed by instrumenting an Elf interpreter t o  count: 

the relative frequency of different cases of unification, 

the relative frequency of various instances of substitution, 

the number of times non-deterministic unifica.tion would arise were these cases not delayed. 

This leads us t o  suggest a strategy for efficient implementation of higher-order logic program- 
ming languages, which is essentially the strategy described for Constraint Logic Programming 
languages in [9, 121. That  is: 

The languages should not be restricted synta.ctica1ly. 

The unification instances correspo~~cling to those of L,, should be identified as directly solvable, 
and the remainder as hard. Hard constraints should be delayed until they become directly 
solvable as a, result of further variable instantia.tion. The relevant terminology, concepts and 
implementation methods are described in [lo].  

Da ta  structures and algorithms should be designed to  favor the simple cases of unification. 

' 2 Properties of Programs 

Since our concern in this paper is with efficient irnplementa.tio11tatio (and its interaction with language 
design), the properties of progra.ms t11a.t we n~os t  need to study a.re the dynamic properties: how 
frequently do various phenomena arise when typical queries are executed? This allows us to  tune 
data  structures and algorithms. On the other ha,nd, t.o eva.luate the possibility of syntactic restric- 
tions, we also need to  know wha.t occurs synta.ctically in programs. We begin by discussing these 
syntactic properties and why they are of interest. Then we go on to discuss the dynamic properties. 

2.1 Static Properties 

LA vs. g e n e r a l  va r i ab le  appl ica t ions .  Because of our interest in the syntactic restriction to  LA,  
we need t o  understand how often and ivhy progra.ms do not fall into this subset. A11 important use 
of general variable applications a,ppea.rs in a rule like the following (taken from a natural semantics 
in [13]) 

eval-app-lam : eva l  (app El E2) V 
<- eva l  El ( l a m  El') 
<-  e v a l  E2 V2 
<- eval  (El' V2) V. 
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where we see a n  application of two existential variables ( E l  ' V 2 )  t o  implement substitution in an  
object language by meta-level &reduction. 

Even within the LA subset, we can observe interesting static properties of programs. For 
example, many programs structurally recurse through an object language expression, where the 
object is represented using higher-order abstract syntax. Consider the rule above: the head of this 
rule requires only first order unification, which could be implemented as simple variable binding. 
Type redundancy .  Both in XProlog and Elf there is a potential for much redundant run- 
time .type computation. In XProlog, this is due to  polymorphism (see [I l l) ,  in Elf i t  is due to  
type dependency. Such redundancy can be detected statically. However, the question about the 
dynamic properties of programs remains: how much type ~omputa~t ion remains after all redundant 
ones have been eliminated. 
Level  of index ing .  This is an Elf-specific property of a pr0gra.m. Briefly, a (simple) type is a 
level 0 type family. A type family indexed bq. objects of level 0 type is a level 1 type family. In 
general, a n  type family indexed by object,s whose type involves level n families is a family of level 
n + 1. For example, 

o  : t y p e .  % p r o p o s i t i o n s ,  l e v e l  0. 
pf : o  -> t y p e .  % p r o o f s  of p r o p o s i t i o n s ,  l e v e l  1. 
norm : pf A -> pf A -> t y p e .  % proof t r ans fo rmat ions ,  l e v e l  2 .  
p roper  : norm P 9 -> t y p e .  % proper  proof t r a n s f o r m a t i o n s ,  l e v e l  3. 

This is of interest because the level of indexing deterillines the amount of potentially redundant 
type computation. Empirically, i t  can be observed t11a.t progra.ms a t  level 2 or 3 have in some 
resper:ts different runtime characteristics than progra.ms a t  level 1. We have therefore separated 
out the queries of the higher-level. This also helps to  separate out the part of our analysis which is 
directly relevant to  XProlog, where all computa,tion happens a t  levels 0 and 1 (due t o  the absence 
of dependency). 

2.2 Dynamic Properties 

The major dynamic properties studied in tliis pa.per are substitution, unification and constraint 
solving. 
S u b s t i t u t i o n .  Substitution can be a. significant factor limiting performance. It is thus important 
t o  analyze various forms of substitution tlia.1, a.rise during execution. When measuring these, our 
concern is simple: substitutions with anything other t11a.n parameters (uvars )  result from the frag- 
ment of the language outside L A ,  so these represent substitutions that would have had to  have been 
performed using Elf code if the L,, restriction llad been applied. Moreover, the relative frequency 
of para.meter substitution suggests t1ia.t it is crucia.1 for it t o  be highly efficient, while general sub- 
stitution is somewhat less critical. A proposal rega.rding efficient implementation of terms has been 
made in [18]. For our study we eliminated substitutions which a.rose due to  clause copying and 
during type reconstruction, since these are resic1ua.l~ effects of the interpreter and would most likely 
be eliminated in any reasonable compiler. 
Unif ica t ion a n d  C o n s t r a i n t  Satisfaction.  M'e measure various aspects of unification and con- 
straint satisfaction. Terms involved in equa.t.ions (disagreenlent pairs) are classified as rigid (con- 



Spiro Michaylov and h a n k  Pfenning 26 1 

stant head), uvars (parameters, i.e., temporary constants), evars (simple logic variables), gvars 
(generalized variables, i .e . ,  logic variables applied t o  distinct, dominated parameters [14]), flexible 
(compound terms with a logic variable a t  the head, but not a gvar), abst ( a  term beginning with a 
A-abstraction), or quant ( a  term beginning with a II-quantification, in Elf only). 

One of our goals is t o  determine how close Elf co~nputations come t o  Prolog computations in 
several respects: 

How many pairs, a t  least a t  the top level, require essentially Herbrand unification? These are 
the rigid-rigid and evar-anything ca.ses. 

How many pairs still have unique mgus, t11a.t is, gvar-gvar, or admit a unique strategy for 
constraint simplification, that  is, gvar-rigid, abst-anything, or quant-anything? 

How often do the relllaining cases arise (which are postponed to  avoid branching)? 

How successful is rule indexing (a.s falniliar from Prolog) to avoid calls to  unification? 

In our opinion, while we have not yet completed the required experiments, it is also very important 
t o  determine the following: 

How important is the occurs-check (extended to deal with a dependency check)? 

How much time is spent on type computa.tions a.s coinpared to  object computations? 

a How much time is spent on proof computations. whell it is requested by the user or required 
for further computation? 

3 Study of Programs 

In this section we report our pre1imina.r~ findings. Ll;e currently have detailed statistics on the kinds 
of disagreement pairs that  arise during unifica.tion, and the kind of substitution that  is performed 
during unification and search. 

3.1 The Examples 

Figures 1 and 2 show the data  for basic computation queries and proof manipulation queries 
respectively, for the range of programs. Thus Figure 1 is especially applicable to  the understanding 
of AProlog programs, while Figure 2 measures Elf-specific beha.vior. 

The two tables in each figure give da.tta on five a.rtas of interest, as follows: 

All  Unifications 
The total gives an  indication of conlputational content. while the breakdown indicates the 
usefulness of first-argu~nent illdesillg and the arnount of deep search. 

Unif Total number of subgoal/head pairs to be unified. 
%Ind Percentage of above total unifications avoided by rule indexing. 
%S Percentage of total unifications that succeeded. 
%F Percentage of total unifications that failed. 
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a Dynamic Unifications 
It is also useful t o  have this information for rules assumed through embedded implication, 
since indexing of such rules is more complica.ted, and compilation has a runtime cost. 

Dyn Total number of subgoal/head pairs to be unified, where the head is 
from a rule assumed (dynamically) through embedded implication. 

%Ind, %S, %F 
Percentages of number of uilificatio~ls with heads from dynamic rules, 
as  above. 

a Dynamic/Assunze 
By knowing how many rules a.re assunled dynamically, and on average how often they are 
used, we can see whether it is worthwl~ile to index and compile such rules or whether they 
should be interpreted. 

Ass Number of rules assumed by implication. 
U/Ass Norinalized ratio of total unifications with dyna~llic rules to number 

of rules assumed by implication. 
AU/Ass As above, but using only those rules where the unification was not 

avoided through indexing. 

a Disagreement Pairs 
We study the kinds of disagreement pairs t11a.t a.rise to determine which kinds of unification 
dominate. 

Tot Total number of disagreelllellt pa.irs examined throughout the 
computation. 

%E-? Percentage of disagreement pairs t11a.t involved a simple evar. 
%G-? Percentage of disagreement pa.irs that  involved a gvar which is not a 

simple evar. 
%R Percentage of disa.greement pairs between two rigid terms. 
%A Percentage of disagreement pairs bet,ween two abstractions. 

a Substitutions 
Substitutions and abstractions (the inverse of uvar substitutions) are expensive, and the 
efficiency of one can be improved a.t the expense of the other. Furthermore, some kinds of 
substitutions are more costly than others. Tllus it is useful t o  know what kinds of substitutions 
arise, how often both substitution and a.bstra.ction arise, and their relative frequency. 

Tot Total number of substitutions for bound variables. 
%Uv Percentage of the a.bove where a. uva.r is substituted. 
Abs Number of abstra.ct,ions over a, uvar. 
Abs/Uv Normalized ratio of such a.bstractions to substitutions of uvars. 

The examples used a.re as  follows: 

a Extraction - Constructive theoreilz yrot:i~tg crrztl progrrrnz extraction [I] 
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Figure 1: Basic Computation 

Program 

Mini-ML 
Canonical 
Prop 
F-O 
Forsythe 
Lam 
Polylam 
Records 
DeBruij 11 
CLS 

Program 

Mini-ML 
Canonical 
Prop 
F - 0  
Forsythe 
Lam 
Polylam 
Records 
DeBruijn 
CLS 

Dynamic Unifications 
Dyn %Ind %S %F 

1532 93 7 0 
8 50 50 0 

41 44 41 1.5 
33 11 82 0 
10 25 -- 1 3  0 
'Zli 80 1.5 5 

389 88 12 1 
274 61 39 0 

.5 40 60 U 
0 - 

All Unifications 
Unif %Ind %S %F 

15333 87 13 0 
177 66 28 6 
677 60 30 10 
359 65 28 - i 

2087 38 23 39 
240 50 40 10 
982 65 34 1 

2459 61 31 8 
45 1 25 39 36 
278 0 32 68 

Dynamic/Assume 
Ass U/Ass AU/Ass 

67 22.87 1.61 
3 2.67 1.33 
9 4.56 2.56 

17 1.94 0.07 
10 1.60 1.20 
4 6.50 1.25 

45 8.64 1.00 
28 9.79 3.79 
5 1.00 0.60 
0 

Disagreement Pairs 
' Tot %E-? %G-? %R %A 

8716 4 7 0 52 0 
427 4 1 8 56 0 

1681 54 0 45 1 
438 4 0 6 58 0 

5812 4 3 0 57 0 
874 4 1 0 59 0 

2085 48 3 50 1 
3880 46 3 53 0 
1554 4 4 1 56 0 
2455 3 6 0 6 0 

Substitutions 
Tot %Uv Abs Abs/Uv 

6411 98 0 0.00 
180 96 36 0.21 
202 100 8 0.04 
108 100 58 0.54 
39 100 0 0.00 

149 86 0 0.00 
7907 89 81 0.01 
1347 100 204 0.15 
688 97 16 0.02 

0 0 
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Figure 2: I'roof Manipula.tion 

Program 

Extraction 
Mini-ML 
CPS 
Prop 
F-O 
Lam 
DeBruijn 
CLS 

Program 

Extraction 
Mini-ML 
C P S  
Prop 
F-O 
Lam 
DeBruijn 
CLS 

Dynamic Unifications 
Dyn %Ind %S %F 

165 82 17 1 
107 87 13 0 
72 57 43 0 

509 71 14 15 
27 0 100 0 
36 75 22 3 
77 51 30 19 
0 - 

All Unifications 
Unif %Ind %S %F 

878 89 11 0 
2415 73 11 16 

162 59 41 0 
4957 67 25 8 
1140 69 27 4 
369 50 44 6 
627 20 44 36 
333 30 42 28 

Dynamic/Assume 
Ass U/Ass AU/Ass 

54 3.05 0.54 
10 10.70 1.40 
48 1.50 0.65 
71 7.17 2.10 
13 2.08 2.08 
12 3.00 0.75 
24 3.21 1.58 
0 

Disagreement Pairs 
Tot %E-? %G-? %R %A 

1580 22 9 66 6 
5872 17 1 76 6 
592 24 34 54 0 

13809 3 5 3 63 1 
6800 2 1 1 74 5 
3464 22 2 74 3 

13441 15 1 71 13 
5227 23 0 7'7 0 

Substitutions 
Tot %Uv Abs Abs/Uv 

9016 96 1124 0.01 
3644 96 55 0.02 
1509 100 1029 0.68 

12040 99 443 0.04 
12716 99 38 0.00 
1825 94 83 0.05 

14632 99 150 0.01 
2 0 
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Dynamic/Assume 
Ass U/Ass AU/Ass 

67 22.87 1.61 
87 10.67 4.30 
87 10.67 4.30 
10 10.70 1.40 
67 9.45 8.06 
67 9.45 8.06 

Program 

Comp 
ExpComp 
ExpIndComp 
Trans 
ExpTrans 
ExpIndTrans 

Dynamic Unifications 
Dyn %Ind %S %F 
1532 92 8 0 
1798 80 8 12 
1798 92 8 0 

107 86 14 0 
633 15 13 72 
63:3 84 13 3 

Program 

Comp 
ExpComp 
ExpIndComp 
Trans 
ExpTrans 
ExpIndTrans 

Program 11 Comput.ation Transformation 

Figure 3: Mini-ML comparison 

All Unifications 
Unif %Ind %S %F 
5562 90 10 0 
7200 70 10 20 
7200 88 10 2 
2159 70 11 19 
5255 29 10 59 
5255 76 11 1:3 

Disagreement Pairs 
Tot %E-? %G-? %R %A 

2424 4 3 0 57 0 
10765 24 4 56 17 
4251 3 2 10 52 8 
5709 17 1 76 7 

27342 2 0 4 61 16 
13482 17 8 65 12 

Implicit 
Explicit 
Explicit.-Indexed 

Substitutions 
Tot. %Uv Abs Abs/Uv 

445 97 0 
22743 100 778 0.03 
15801 100 778 0.05 
3612 96 55 0.02 

280679 97 2522 0.01 
264399 98 2522 0.01 

1.30 2.48 
8.48 155.09 
5.80 145.89 
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This example involves a large number of level 2 judgments. Indexing is particularly effective 
here, and assumed rules are used unusually infrequently. Note that  these examples do not 
include any basic computation. 

An implementation of Mini-ML, including type-checking, evaluation, and the type soundness 
proof. Because of the large number of cases, indexing has a stronger effect than in all other 
examples. 

C P S  - Interpretation of propositional logics and CPS conversions [3, 231 

Various forms of coirversion of simply-typed terins to continuation-passing and exception- 
returning style. Substitutions are all pa.ramet,er substitutions, aad unifica.tion involves an 
unusually large number of gva,r-anyt,hing ca.ses. The redundant type computations are very 
significant in this esamyle-all the esa.mples are level 2 judgments. 

Canonical - Canonical foriizs in the siiial~ly-fypecl I(rrizbcla-ccilculus [21] 

Conversion of lambda.-terms to  canonical form. A snlall number of non-parameter substitu- 
tions arise, but mostly unification is first-order. Here, too, there is much redundant type 
computation. 

Prop - Propositional Theorenr Prozling crirrl Trrrnsjornzcr.tio12 [5]  

This is mostly first-order. In the transforma.t,ions between various proof formats (natural 
deduction and Hilbert calculi), a fairly 1a.rge number of assumptions arise, and are quite 
heavily used. Unification involves a large number of evar-anything cases. 

F-0 - First-order logic theorem provirtg nnd frnizsfornzation 

This includes a logic programming style t,lreorem prover a.nd tra.nsformation of execution trace 
t o  natural deductions. There is ra.ther little a.bstra.ction. 

Forsythe - Forsythe type checking 

Forsythe is a n  Algol-like la.nguage wit,]] intersection types developed by Reynolds [24]. This 
example involves very few substitutions, all of which are parameter substitutions. Thus the 
runtime behavior suggests a.n almost entirely fissl -orcler program, which is not apparent from 
the code. 

Lam - Lambda calculus coizvertibilii~y 

Normalization and equivalence proofs of terlns in a typed A-ca.lculus. A relatively high per- 
centage of the substitutions a,re non-paramet,er substitutions. 

Polylam - Type inference in the polynroryhlc larizbdn calculus [20] 

Type inference for the polymorphic A-calculus involves postponed constraints, but mostly 
parameter substitutions. Unification can be highly 11011-deterministic. This is not directly 
reflected in the given tables. as this is the only one of our esamples where any hard constraints 
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are delayed a t  run time (and in only 10 instances). In fact, one of these hard constraints 
remains all the way t o  the end of the computation. This indicates that  the input was not 
annotated with enough type inforillation (within the polymorphic type discipline, not within 
the framework). 

Records - A lanabda-calculus with records and polynaorphism 

Type checking for a lambda-calculus with records and polymorphism as described in [6 ] .  This 
involves only parameter substitut,ions, and assumptions are heavily used. 

A compiler from untyped A-terms to terins using deBruijn indices, including a call-by-value 
opera.tiona.1 semantics for source ant1 target language. The proof manipulation queries check 
compiler correctness for concrete programs. Indexing \vorks quite poorly, and an unusually 
large number of abst-abst cases arise in unification. 

CLS [4] 

A second compiler from terms in deBruijn representation t o  the CLS abstract machine. Sim- 
ple queries execute the CLS ma~chine on given programs, proof manipulation queries check 
compiler correctness for concrete progra.nls. Tliis is almost colnpletely first-order. 

Overall, the figures suggest quite strongly that  most unification is either simple assignment or 
first-order (Herbrand) unification, around 9.5%, averaged over all examples. Similarly, substitution 
is the substitution of parameters for A-bound variables in about 95% of the cases. The remaining 5% 
are substitution of constants, variables, or compound terms for bound variables. These figures do 
not count the substitution that  may occur \v11e11 clauses are copied, or unifications or substitutions 
that  arise during type reconstruction. 

Finally, we compare the Mini-ML progranl with a version written using explicit substitution, 
t o  evaluate the effects of a syntactic restriction along the lines of L,, . The computation queries had 
t o  be cut down somewhat because of memory restrictions. In Figure 3 we show the same data  as 
above for the computation and transformation queries ~sr i t l~  and without explicit substitution. We 
also show a version with explicit substitution with the substitution code rewritten to  take better 
advantage of indexing. Then we compare the C'PU times (in seconds) for the two sets of queries for 
all three versions of the program, using a slightly modified3 Elf version 0.2 in SML/NJ version 0.80 
on a DEC station 5000/200 with 64XIB of memory and local paging. These results show that  there 
is a clear efficiency disadvantage to the L\ restriction, given present implementation techniques. 
Note that  the disadvantage is greater for the transformation queries, since a longer proof object 
is obtained, resulting in a more complicated proof transformation. Explicit substitution increases 
the size of the relevant code by 3 0 % . ~ u b s t i t u t i o n s  dominate the computation time, basically 
because one meta-level P-reduction has been replaced by illany substitutions. These substitutions 

3 T l ~ e  modification involves building proof 0bject.s o11l.v when ueeded for c0rrect.nes.s. 
'Actually, the meta-theory was not complet.el,v reduced t.o L A .  because type dependencies in the verification code 

would lead t o  a very complex verificatio~l predicate. \ile estimate that the code size would increase an additional 5% 
and the computat io~l  time by much more tI1a11 t.llat. 
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should all be parameter (uvar) substitutions, whiclz suggests that  some (but clearly not all) of the 
performance degradation could be recovered through efficient uvar substitution. See the previous 
footnote on why non-parameter substitutions still arise in tile proof transformation examples. 

3.2 Further Summary Analysis 

A few figures were obtained through simple summary profiling and await further detailed analysis. 
The summary figures suggest that ,  for esamples of average size, omitting the (extended) occurs- 
check in the current implementation can result in speed improvements of between 40% and 60%. 
This is therefore an  upper bound on the speed-up that could be achieved through smart compilation 
t o  avoid the occurs-check. 

The current implementation avoids building proof objects to some extent (applicable to  Elf 
only), which saves about 50% of total computation time. althougl~ tlze savings are not additive 
(some of the occurs-check overhead arises in building proofs). 

4 Conclusions 

We briefly summarize our preliminary conclusions, which are very much in line with the experience 
gained in other constraint logic progralzlming languages 11'21. 
Language Design. Statically prohibiting difficult cases in unification (by a restriction to  L A ,  for 
example) is not a good idea, since it leads to a proliferation of code and significantly complicates 
meta-theory as i t  is typically expressed in Elf. This coincides with experience in other constraint 
logic programming languages such as CLP(72) and Prolog-111. 

Our recommendation is t o  delay hard constraints (including flexible-rigid pairs that  are not 
gvar-rigid pairs) aiid thus avoid branching in unification at  runtime. 
Language Implementation. Indexing ant1 representation of terms in the functor/arg notation 
(rather then the curried notation typical for A-calculi ) are crucial for achieving good performance, 
as  they enable quick classification of disagreement pairs and rigid-rigid decomposition. It is rather 
obvious that  runtime type computation must be avoided whenever possible as suggested in [ll], 
and that  proof building must be avoided whenever the proof object will not be needed. 

We need special efficient mechanisms for direct binding and first-order unification. Furthermore, 
unification as  in LA and substitution of parameters for bound variables are very important special 
cases that  merit special attention. Efficiency of substitution of constants or compound terms for 
bound variables is important in soiile applications. but not nearly as pervasive and deserves only 
secondary consideration. 

5 Future Work 

A study such as this is necessarily restricted aiid biased by the currently available implementation 
technology. The most important figures tlia,t a.rc curl.ently missing: 

How much type conlputation ca.n be elilninated. a.nd \vhab would be the effect of eliminating 
redundant type c~mputa t~ ion  oil the remaining fig111.e~. 
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a How often can the occurs-check be avoided. 

In longer term work, one would also like to ana.lyse the effect of other standard compilation 
techniques of logic programming languages in this new setting, but much of this requires an  imple- 
mented compiler as a basis. 
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Abstract 

Higher-order hereditary Ha.rrop formulas, the underlying logical foundation of XProlog [20], are 
more expressive than first-order Horn clauses, the logical foundation of Prolog. In particular, 
various forms of scoping and a.bstra.ction a.re supported by the logic of higher-order hereditary 
Harrop formulas while they are not supported by first-order Horn clauses. Various papers have 
argued that  the scoping a.nd abstraction a.vailable in this richer logic can be used to  provide for 
modular programming [15], abstract data  types [14], and state encapsulation [7]. None of these 
papers, however, have dealt with the problems of progmnznzirzg-in-the-large, that  is, the essentially 
linguistic problems of putting together various different textual sources of code found, say, in 
different files on a persistent store into one logic program. In this paper, I propose a module 
system for XProlog and shall focus mostly on i t  static semantics. The dynamic aspects are covered 
in various other papers: in particular, see the paper by I<won, Nadathur, and Wilson [lo] in these 
proceedings. 

1 Module syntax should be declarative 

Several modern programming languages are built on declarative, formal languages: for example, 
ML and Scheme are based on the A-calculus and Prolog is based on Horn clauses. Initial work 
on developing such languages wa.s first concerned with programming-in-the-small: problems with 
programming-in-the-large were atta.ched later. At that  point, a second language was often added 
on top of the initial language. For example, parsing and compiler directives, such as use ,  import ,  
inc lude ,  and l o c a l ,  were added. This second 1angua.ge generally had little connection with the 
original declarative foundation of the initial langua,ge: its was born out of the necessity to  build 
large programs and its function was espediency. The meaning of the resulting hybrid language is 
often complex since it loses some of its decla.rative purity. 

Occasionally, programming design is inflicted with what we may call the "recreating the Turing 
machine" syndrome. Turing machines were importa.nt because they were the first formal system 
that  obviously computed and were clearly easy to implement. They have not been considered 
seriously as programming languages for severa.1 rea.sons. including the difficulty of understanding and 
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reasoning about transition tables. Often the development of modular constructions in programming 
languages follows a similar path: it is generally easy to  develop a language for programming-in- 
the-large that  obviously separates a.nd hides details and for which efficient implementations are 
possible. Often, however, it is difficult t o  reason about the meaning of the resulting language. 

In order t o  avoid this syndrome we should ask that any proposal for programming-in-the-large 
have several high-level principles. For example, we should ask for such proposals to  support several 
of the following properties. 

There should be a non-trivial notion of the equivalence of modules that  would guarantee that  
a module can be replaced by a.n equivalent module with little t o  no impact on the behavior 
of a larger program. This property is someti~~les called representation independence (see 
Section 3). 

Constructs for programming-in-the-la,rge sllould not complicate the meaning of the underly- 
ing, declarative 1angua.ge. 

Modules should support transitions from specification to implementation. 

Modular programming should work sn~oothly with higher-order programming. In Prolog, a 
particular challenge is getting the semantics of the c a l l / l  predicate correct. 

Rich forms of abstraction, hiding, aad para.metriza.tion should be possible. 

Modules should allow a rich ca.lculus of transforma.tions. These should include partial evalu- 
ation, fold/unfold, and even compilation. 

Important aspects of a, module's mea.ning should be a.vaila.ble and verified without examining 
the module in detail. Notions of interfa.ces often support this property. 

The additional syntax for programming-in-the-large should also be readable, natural, and 
support separate compilation and re-usa.bility. 

The success of a proposal for modular progra.mming should not be judged simply on its obvi- 
ousness or easy of implementation: it should also be judged on its ability to support a large number 
of properties such as these. 

O n e  approach :  m a p  m o d u l e  s y n t a x  d i rec t ly  to logic There are some logical systems that  
can be used as a basis of logic programmillg and that  contain natural notions of scope for program 
clauses and constants. For esa.mple, the logic of hereditnry Hn.rrop formulas, parts of which were 
developed independently by Gabbay and Reyle [dl, McCa.rty [ l l ,  121, and Miller [13, 15, 161, allows 
for a simple stack-based structuring of the runtime program a,nd set of constants. The modal 
logic of Giordano, Martelli, and R.ossi [5]  provides an interesting variation on the simple "visibility 
rules" effecting logic programs based on the intuit,ionistic theory of hereditary Harrop formulas. A 
recent linear logic refinement of 1leredita.r~ Harrop forlliulas by Hodas and Miller [8] modifies the 
stacked-based discipline of progra.ms by allowing sonle pr0gra.m clauses to  be deleted once they are 
used within a proof. 
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One approach to  developing a principled modular programming language is t o  reduce program- 
ming-in-the-large t o  programming-in-the-small is such a way that modular programming can be 
explained completely in terms on the logical connectives of the underlying language. That is, a 
linked collection of modules would be mapped to a (possibly large) collection of (possibly large) 
formulas. Furthermore, we would like the combinators for building modules to correspond closely 
to  logical connectives. The static semantics of a. collection of modules is specified by describing 
how such modules denote a collection of constants and program clauses. The dynamic semantics 
of a collection of modules is specified by describing the collection of goal formulas that can be 
proved from them. Given the richness of hereditary Harrop formulas and their variants, the main 
challenge in specifying the static sema.ntics of modules appears to  be determining the scope and 
types of constants. 

2 A specific module proposal 

We shall now turn to  a specific proposal for modules for XProlog. Since the underlying logic of 
XProlog is that of the intuitionistic (actually minimal) theory of hereditary Harrop formulas, we 
shall consider how modules can be ma.pped into such formu1a.s. It would be interesting to  consider 
a similar mapping into either the modal or linear logic varia.nts of these formulas mentioned above. 
We shall not, however, consider these other varia,tions here. 

2.1 General conlme~lts 

XProlog extends first-order Horn cla.uses in several ways. As it turns out, much of the scoping 
primitives for the module facility proposed here do not come from the higher-order quantification 
available in XProlog. In fact, the propositional logic fragment of XProlog supports the stacked-based 
treatment of progra.mming clauses. Higher-order qua~ntifica.tioi1 is important, however, in providing 
scope for predicate and function syn~bols a.s well as in providing for higher-order programming (an 
important abstraction separate from the module proposal here. 

Both the proof theoretic and model theoretic treatillents of XProlog's foundation treats a pro- 
gram as a pair containing a sig11a.tur.e and set of cla.uses. For example, the proof theoretic treatment 
of XProlog given in [16] uses sequents of the form 5; T' - G. where S is a signature (a  collection of 
typed constants) and P is a set of Z-formulas (closed formulas all of whose non-logical constants are 
contained in C). Similarly, a. canonica.1 model for a large fragment of the logic underlying XProlog 
can be given as a Kripke model where possible worlds a.re pairs (C, F ) ,  where C is a signature and 
P is a set of C-formulas [17]. Thus it will not be surprising that the module proposal presented 
here will make extensive use of signatures. Even if XProlog was not a typed language signatures 
would be important since the set of constants a.vaila.ble t,o a computation changes, and describing 
how that set of constailts change would make use of a notion of signature similar to that used here. 
Gunter [6] also makes use of signatures in developing a module calculus for AProlog. 

Finally, it is important to  say that what follows is just the dra.ft of a proposal. Much of 
what follows has not be debated by those currently using implen~entations of XProlog. Also, most 
experience with XProlog has been wit11 sma.11 progra.ms. Few people have yet had experience with 
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large XProlog programs. This proposal is hopefully another step in determining a viable solution 
to  programming-in-the-large in this logic progra.mming setting. 

2.2 Persistent store 

Interacting with a persistent store, such as the Unix file system, is problematic within our logic 
programming setting: some non-logical predicates are required a t  the core of our module facility. 
In particular, the predicate 

type load s t r i n g  -> o 

predicate performs a side-effect: it is used to reflect some of the persistent store into the space of 
meaningful XProlog objects. As edits are done on files, new calls to  load are needed to  update 
these objects. An attempt to  prove t,lle a.t.om load name takes the string name as a reference to an 
actual file. The resolution of this string into a, file can be done in possibly many ways. The method 
used in LP2.7 [lS] was to  maintain a list of Unix path na.mes and to search in them for a file whose 
name is name augmented with ".modv. If such a. file is found, then it is parsed and type checked. 
Other methods t o  resolve the string name with a file a,re possible. 

2.3 Kinds and types 

In order t o  allow useful types, we adillit type constructors. There is only one of these built into 
XProlog, namely the infix "function space" constructor ->. Other type constructors can be declared 
via the KIND declaration. (Keywords will be ca.pita.lized for readability: in most implementations 
of XProlog, keywords appear in lowercase letters.) For esample, 

KIND boo1 t y p e .  
KIND l ist type  -> type .  
KIND p a i r  t y p e  -> type -> t y p e .  

As this example show, the only kind that can be associa,ted with a type constructor is any "first- 
order kind" involving only type and ->. Qualifying a, type constructor with a non-negative integer 
(0 instead of type,  1 instead of type -> type,  etc.) could also have worked here. 

Types will be used to  qua.lify constants. Types a.re a.ny first-order term structure built from 
type variables and type constructors. The presence of types variables will provide XProlog with 
a degree of polymorphisn~. Type variables are tokens within type expressions that  have an initial 
uppercase letter. The following a.re some type declarations. 

TYPE n i l  l i s t  A. 
TYPE : : A -> l i s t  A ->  l ist  A .  
TYPE append l i s t  A ->  l ist  A -> l ist  A ->  o .  
TYPE memb A -> l i s t  A -> o. 

XProlog has numerous build-in types, including type o,  the type of XProlog formulas. 
The subsumption relation on types is that fa.miliar from first order logic: a type is subsumed 

by another type if the first is a. substitution instance of the second. 
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2.4 Static semantics for types and terms 

I will assume that types are property formed (they respect kind declarations) and that formulas 
and terms are well typed. See [21] for a fuller discussion of this aspect of static semantics. 

2.5 Signatures 

Signatures are lists of tokens assigned kinds and types, and are denoted by the syntactic variable 
C. The same token can be given a type and a kind. Op-decla.rations are also stored as members of 
signatures. The following is an example of a signature. 

OP 150 : : xfy . 
KIND list type -> type. 
TYPE : : A -> list A -> list A. 
TYPE nil list A. 
TYPE memb, member A ->  list A -> o. 
TYPE append, join list A -> list A ->  list A -> o. 

A formula is a C-formula if it is a correctly typed, closed formula all of whose non-logical constants 
are from C. Since modules are collections of  formula.^, we shall use signatures to  qualify (type) 
modules. 

It will be useful to  have signature descriptioizs to represent possibly long lists of constants. For 
this, we shall use the keywords SIGNATURE. TYPE, KIND, OP, ACCUMULATE, LOCAL, and LOCALKIND. 
The keyword SIGNATURE is used to name a. signature and the keywords TYPE, KIND, and OP are used 
simply to enumerate the members of a signature. ACCUMULATE takes a list of signatures: its intended 
meaning is to  merge in the listed signatures. The two keywords LOCAL and LOCALKIND are used to  
limit the scope of types and kinds so that they are a.ctually not part of this signature. The LOCAL 
keyword can take a type declaration as an optional third argument; similarly with LOCALKIND. The 
following are two signature descriptions. 

SIGNATURE lists. 
OP 150 : : xfy. 
KIND list type -> type. 
TYPE : : A ->  list A -> list A. 
TYPE nil list A. 
TYPE memb,member A -> list A -> o. 
TYPE append, join list A -> list A -> list A - >  o. 

SIGNATURE rev. 
ACCUMULATE lists. 
TYPE reverse list A -> list A -> o .  
LOCAL revaux list A ->  list A -> list A -> o .  
LOCAL join. 
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Constants can be given multiple types within the same module or within ACCUMULATEing chains of 
modules. It is a n  error if these types are not compa.ra.ble via subsumption. Otherwise, the type 
assumed is the least general of those types. 

Signature descriptions are elaborated into signatures using the following rules. First, eliminate 
all ACCUMULATE keywords by replacing them with the signatures they name. In doing this, if a 
constant is given two op-declarations, then it is an error if those two declarations are not identical. 
Second, LOCAL can be dropped by deleting it and any constant of the same name in the accumulated 
signature. If LOCALKIND is present, then first check to  see if there are constants in the signature 
that  have a type containing this type constructor. If so, produce an error. Otherwise, simply drop 
this declaration. 

The notion of s i g n a t ~ ~ r e  corztcr.irznaent is given simply as follows: C1 is contained in C2 if 

a for every constant in C1 given a kind, tha,t consta.nt is given the same kind in C2, 

a for every constant in C1 given a type T. that  constant is given a. type in C2 that  subsumes T ,  

and 

a for every constant in E l  given a.n op-decla.ra.tion, that constant is given the identical op- 
declaration in Cz. 

This notion of signature containment will be needed for defining equal signatures and for a certain 
kind of dynamic qualification of modules (see subsectioll 2.10). 

We shall assume that  there is a special system signature that  contains declarations for all logical 
and built-in constants of a given XProlog system. 

2.6 Module syntax 

Modules will be built from kinds, types, aacl pr0gra.m cla.uses using the following keywords: TYPE, 
KIND, OP, LOCAL, LOCALKIND, MODULE, ACCUMULATE, and IMPORT. The meaning of TYPE, KIND, and 
OP are as they were for signa.ture descriptions. The keyword MODULE names a module (similar to  
the keyword SIGNATURE). The keywords LOCAL aad LOCALKIND provide scope to constants within a 
module: the dynamic semantics of LOCAL will be interpreted as an existential quantifier, as described 
in 1141. The keywords ACCUMULATE and IMPORT will be described further below. 

Although only the keyword MODULE must appear a t  the front of a module, for the convenience 
of parsing and reading modules, we assume that it is a.n error if a, declaration of a constant appears 
after the first occurrence of tha.t constant. All declara.t'ions are global in a module. Figure 1 contains 
two examples of modules. 

2.7 Static semailtics f o r  inodules 

The static semantics of modules is used to  determine which signature and formulas are intended by 
the module. Since we are attempting to reduce modules to fornlulas, recursion between modules is 
not allowed: tha t  is, if modl inlports or a.ccumulat,es mod2 then mod2 can not import or accumulate 
modl. 

A s.gnature description is built from a module a.s follows. 
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MODULE l i s t s .  

OP 150 :: xfy. 
KIND l i s t  type -> type.  

TYPE :: A -> l i s t  A -> l i s t  A. 
TYPE n i l  l i s t  A. 
TYPE memb,member A - >  l i s t  A -> o .  
TYPE append, j o in  l i s t  A ->  l i s t  A - >  l i s t  A -> o .  

memb X (X::L). 
memb X (Y::L) :- memb X L .  

member X (X::L) :- ! .  
member X (Y::L) :- member X L 

append n i l  K K .  
append (X::L) K (X::M) :- append L K M 

j o in  n i l  K K .  
j o in  (X::L) K M :- memb X K ,  !, jo in  L K M. 
j o in  (X::L) K (X::M) :- j o in  L K M .  

MODULE r ev .  

ACCUMULATE l i s ts .  
TYPE reverse  l i s t  A -> l i s t  A -> o .  
LOCAL rev  l i s t  A -> l i s t  A -> l i s t  A - >  o .  

reverse  L K :- rev L K n i l .  

r ev  n i l  K K .  
r ev  (X::L) K (X::Acc) :- rev  L K ACC. 

Figure 1: The l ists and rev modules. 
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TYPE and K I N D  declarations stay TYPE and K I N D  declarations. 

All IMPORTed, ACCUMULATEd, and module implication (==>) modules have their signatures 
ACCUMULATEd. 

If the qualified module importing (===> mod s i g l  G is used, then the signature sig is 
ACCUMULATEd (see Section 2.10 for a description of ===>). 

LOCAL and LOCALKIND become LOCAL and LOCALKIND. 

Notice that  i t  is possible for LOCAL and LOCALKIND to  provide scope t o  a constant that  is IMPORTed 
or ACCUMULATEd. If IMPORT or ACCUMULATE is used in a module and there is no corresponding 
module with the correct name, then look for a sigimture with that  name. Thus modules without 
clauses can simply be written as signa.tures. 

The static semalltics of the IMPORT keyword coilstructioii is a bit complicated, although it does 
follow closely the lines described in [15] a.nd implemented in LP2.7 and eLP [3]. If a module modl 
contains the line 

IMPORT mod2 mod3 

then the modules mod2 and mod3 are made availa.ble (via implications) during the search for proofs 
of the body of clauses listed in modl. Thus, if the formu1a.s E2 and E3 are associated with mod2 
and mod3, then a clause G > A listed in modl is ela.borated to the clause ( ( E 2  A E3) 3 G) > A. 

Notice that  a module denotes both a. set of program clauses and a signature. The signature 
that  is inferred from a module can be used as an interface: when parsing and compiling modules, 
i t  should only be necessary for the signa.ture of an a.ccumula.ted or imported module to  be read. 

2.8 Environment support 

The process of parsing a module will also be accoinpa.ni.ed with type checking and type inference. 
In particular, a file containing a module may not a.ttribute a type to  all constants. In this case, the 
programming environment must be able to infer a reasonable type for the undeclared constants. 
Type inference can be done much a.s it is in ML: see [%I] for more discussion on type inference for 
XProlog . 

Signature checking and inference will also need to be done by the environment. Checking 
involves making certain that  when modules a.re a.c.cumula.ted and imported, constants are not given 
incomparable types and decla.ra.bions. 

2.9 Dynamic selnailtics for nlodules 

I shall assume that  the reader is already fanliliar wit11 the operatioilal (dynamic) semantics of 
hereditary Harrop  formula.^, in particular, with the meaning of implications and universal quantifiers 
in goals. 
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The ACCUMULATE keyword. Although the meaning of this keyword is simple, i t  is not 
present in either LP2.7 or eLP. It is similar t o  the use directive of Prolog/Mali. If a module modl 
contains the  line 

ACCUMULATE mod2 mod3. 

then is intended that  the program clauses in mod2 and mod3 are available a t  the end of the list of 
program clauses listed explicitly in modl. 

The IMPORT keyword. Proof search based on clauses obtained by importing a module into 
another module can benefit from some recent work on provability in intuitionistic logic. For exam- 
ple, both Hudelmaier [9] and Dyckhoff [2] have demonstrated that  the implication-left rule can be 
improved (with respect t o  proof sea.rch). For example, the implication-left rule can be split into 
several cases depending of the form of the implica.tion. The following is one of these rules. 

C ; F ,  E , G  > D - C; 2: F, D - G' 
Y;  T', (E > G )  > D - G' 

Consider the case when the formu1a.s D and G' are the same atomic formula A. 

Notice that  the formula ( E  > G) > A could be the result of importing a module E into a module 
listing the clause G > A. Notice tha.t backcha.ining on a. clause in this module provides an opera- 
tional reading of importing: the imported module is added to  the current clauses along with the 
un-elaborated clauses from the initial module. 

A generalization of this inference rule would be the following: 

C; T', E, A;="=,Gi 3 A ; )  -- G j  
S;  F,A:=l((E 3 G';) > A;) --- A 

where Aj is equal t o  A, for some j = I , .  . . . n .  ,411 axgunlent for the completeness for this rule can 
be found in [lo]. 

In the above inference rule, assume tha,t the formula E is of the form 32.D where the list of 
typed, bound variables 3 are not in the signa.ture Y. This inference rule could then be modified to  

C,  2: P; D, A';", ,  (G,  3 A ; )  - G, 
S;P,A:=",,(E > G ; )  > A;)  --+ A' 

Thus, backchaining into a module which imports a module containing local constants essentially 
loads its local constants into the current signature and loads it's code (the formula D) into the 
current program. 

Another important aspect of the dyna.mic semantics of modules is presented in [lo] where the 
AUGMENT search rule is modified to  be the AUGMENT' search rule. This new rule is used only 
for modules and not formulas thus forcing a.n operational (but not declarative) distinction between 
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programming-in-the-large and small. The AUGMENT'  rule essentially says that  if the current 
program space already contains a module, tha.t module should not be assumed again: that  is, there 
should be a t  most one copy of a module in the current program space a t  a time. The goal mod ==> 
mod ==> G is operationally the same as mod ==> G. Such an optimizatioll is unlikely a t  the level 
of formulas because of the following esa.~nple. Consider a goal of the form (p a )  => (p  X) => G, 
where X is a logical variable. If we checked to see if (p X) in the context, it would seem that we 
should allow the unification of X with a. It would be easy to  construct exa.mples where the order of 
instantiating variables would yield two different answers to this computation, an undesirable effect. 

2.10 Questions and additioilal features 

I list below some questions and possible a,clditiona.l fea.tures that could be incorporated in the 
module system sketched a.bove. 

Parametric modules When a module is defined using the MODULE keyword, it might be possible 
t o  also add to  i t  a signa.ture over ivllich that module is parametric. A11 example could be given as 
follows. 

MODULE (qu icksor t  K I N D  Atype t y p e .  
TYPE Order Atype -> Atype -> 01. 

TYPE q s o r t  l ist Atype -> l i s t  Atype -> o .  
LOCAL s p l i t  Atype -> l is t  Atype -> l i s t  Atype ->  l i s t  Atype -> o .  
IMPORT lists.  

q s o r t  nil n i l .  
q s o r t  (X: :L) K : - s p l i t  X L Low High, q s o r t  Low R ,  

q s o r t  High S ,  append R (X::S) K .  

s p l i t  X (Y::L) (Y::K) M :- Order X Y ,  ! ,  s p l i t  X L K M .  
s p l i t  X (Y::L) K (Y::M) :- s p l i t  X L K M .  

The argument signature is described using only the K I N D  a,nd TYPE keywords and the order in which 
items are listed in this signa,ture is importa,nt. Tlle corresponding signature should probably be 
written as 

SIGNATURE {qu icksor t  K I N D  Atype t y p e .  
TYPE Order Atype ->  Atype - >  0).  

TYPE q s o r t  l i s t  Atype ->  l i s t  Atype -> o .  
ACCUMULATE l i s ts .  

A use of such a module call be given a.s 

?- (qu icksor t  i n t  0 ==> q s o r t  ( 2 : : 3 : : 4 : : n i l )  L. 
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Parsing this "module implication" ==> is a bit different from parsing other terms, in particular, the 
subexpression {quicksort  i n t  0 should be trea.ted by the parser as a subterm over the signature 

K I N D  i n t  type .  
TYPE > i n t  -> i n t  -> o .  
TYPE q s o r t  i n t  l i s t  -> i n t  l i s t  -> o.  

plus the signature items in l ists (and the system module, where < is given an op-declaration). 

Using cons tan ts  t o  deno te  nlodules a n d  signatures.  The names for modules and signatures 
should be converted to  constants tl1a.t are given types, say modname and signame, and declarations 
for these names need to be added (destructively) to the system module. In this way, they will be 
available globally. Thus, ==> a.nd ===> (this second arrow is described below) would have the types 

K I N D  modname, signame type .  
TYPE ==> modname -> o -> o. 
TYPE ===> modname -> signame -> o -> o.  

The current convention in LP2.7 and eLP is that there is one module per file and that the file's name 
is built from the module's name. This approa.ch l1a.s the a.dvantage that by mentioning a module 
name in one of these interpreters, it is possible for the system to find the file containing that module. 
It may be an advantage, however, to drop this linkage, in which case, files, possibly containing a 
number of modules and signatures, are loaded by using entire path names. For the purposes of 
compilation and parsing, once a file is parsed and checked, a: second, parallel file containing only 
signatures might be generated from the one that is just parsed. It should only be this second 
file that is needed during pa.rsing and compiling of other modules. The aux files generated by 
Prolog/Mali [I] are essentially signatures that pa.ra1lel modules. 

Quantification over  modu le  names. It may be possible to permit variables to  range over 
modules if we are willing to  admit runtiine signature checking of nlodules. For example, consider 
a goal of the form (===> mod s i g  GI. Here mod is a module whose signature is contained in that 
given by s ig :  this check would be done when this goal is attempted. Thus, in determining the 
static properties of a goal with this syntax. siillply use the signature s i g  instead of attempting to 
determine the one for mod, which may be a variable. Thus, a goal of the form 

would search for a module tl1a.t ca,n be used t,o esta,blish the goa.1 G. If all the modules modl, mod2, 
and mod3 have a signature conta.ined in the signature s i g ,  then no runtime error is generated by 
this goal. The syntax (===> M s i g  G) is essentially the same as (M ==> G) except that M must 
be restricted by the sigimture s ig .  Notice that it will not be possible to quantify over signature 
names. 
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Other declarations. Other declarations besides those for op might also be allowed. For ex- 
ample, certain types could be specified as being open or closed and certain predicates could have 
declarations describing how atomic goah could be suspended if certain argument positions are 
unbound. 

Relationship to  other aspects of an interpreter. The interaction of the module system with 
inputjoutput and with tlle top-level of an interpreter must also be considered carefully. 

3 Formal aspects of this proposal 

The design of XProlog ha,s been motiva.ted in pa.rt by the desire to  make logic play as large a 
role as possible in efforts to estend the expressiveness of logic p~.ogramining. There are many 
reasons for this emphasis on logic: the resulting language remains declarative and programs can be 
given meaning using such deep meta-theoretic properties as cut-elimination and model theoretic 
semantics. Thus, analyzing programnti~zy-in-tlte-s~iz~111 within "pure" XProlog can be attached using 
these deep principles. We call hope that the language for describing modules will also have such 
principles. 

As an example of such principles, consider the problem of representation independence for 
abstract da ta  types. If we follow the line of argument given in 1141 (and above) for coding abstract 
data  types, representation indepeildence follows directly. For example, consider the following two 
existentially quantified formulas, El and E2,  which provide different implementations of queues. ( I  
shall use the syntactic variable E to  range over possibly existentially quantified definite formulas.) 

sigma qu\(sigma f\( 

pi L\ ( empty (qu L L) 1, 
pi X\(pi L\(pi K\( enter X (qu L (f  X K)) (qu L K) ) ) )  
pi X\(pi L\(pi K\( remove X (qu (f X L) K) (qu L K) 1)) 1 ) .  

sigma emp\(sigma g\( 
( empty emp 1, 

pi X\(pi L\ ( enter X L (g X L) 11, 
pi X\ ( remove X (g X emp) emp 1, 
pi X\(pi L\(pi K\( remove X (g Y L) (g Y K) :- remove X L K 1)) 1).  

Let I- be intuitionistic prova,bility and let k+ be a.n enrichment oft- that  is conservative over I- and 
that  also makes i t  possible to  rea.son a.bout da.ta structures ( that  is, iilductioll must be incorporated). 
Then if we show that  El and E2 are equiva.lent in t+, t l n t  is, El t-+ E2 and E2 I - +  El, then the 
following argument is immedia.te: if I?. El t G then I?, El t+ G since tt enriches t-; by cut- 
elimination (assumed also for I-+): r, E2 t-+ G: finally, by conservative extension, r, E2 t- G. Thus, 
if a goal G is provable using El? it is provable using E2 ( the  converse is similar). The fact that  
abstractions are based on logic made this argument particularly direct. 
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Since the  higher-order theory of hereditary Harrop formulas has been worked out in [19], there 
should be little problem getting this module facility t o  work smoothly with higher-order program- 
ming. Numerous other formal aspects of this module proposal must also be explored. 

4 Conclusion 

I have described a possible approa.ch to  programming-in-the-large for XProlog. This proposal is 
designed t o  ensure that  the module constructions are declarative and this was done by making 
certain that  the module syntax can be replaced in a very natural way by logical connectives. 

This proposal is just a dra.ft: many details ha.ve been left out. A subsequent version of this 
proposal will hopefully correct this shortcoming. 
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