
Proceedings of the
Workshop on the

XProlog

Programming Language

31 July - 1 August 1992
University of Pennsylvania

Philadelphia, PA, USA

Sponsored by the
Institute for Research in
Cognitive Science, UPenn

Edited by Dale Miller
MS-CIS-92-86

Call for Papers and Participation

Workshop on the XProlog Programming Language

31 July - 1 August 1992 (Friday/Saturday)
University of Pennsylvania

Philadelphia, PA, USA

The expressiveness of logic programs can be greatly increased over first-order Horn
clauses through a stronger emphasis on logical connectives and by admitting various forms
of higher-order quantification. The logic of hereditary Harrop formulas and the notion
of uniform proof have been developed to provide a foundation for more expressive logic
programming languages. The lambda Prolog language is actively being developed on
top of these foundational considerations. The rich logical foundations of lambda Prolog
provides it with declarative approaches to modular programming, hypothetical reasoning,
higher-order programming, polymorphic typing, and meta-programming. These aspects of
lambda Prolog have made it valuable as a higher-level language for the specification and
implementation of programs in numerous areas, including natural language, automated
reasoning, program transformation, and databases.

This two day workshop will cover all aspects of the lambda Prolog language, including
the following broad areas:
(1) Applications and programming techniques,
(2) Language design and definition,
(3) Implementations of interpreters and compilers, and
(4) Analysis of and extensions to the logical foundation.

Demonstrations of language implementation and applications are planned. A con-
ference record containing submitted abstracts and papers will be made available at the
workshop.
Deadlines: 30 April 1992 Submission deadline

22 May 1992 Notification of acceptance
Contributions: Submissions can be either abstracts of a minimum of 3 pages or full

length papers. Persons interested in presenting system demonstrations or applications
should send a two page description of their demo. Submissions will be judged by the
organizing committee. If you are interested in attending this workshop but do not wish to
submit a paper, please register your interest with the workshop chair.
Organizing Committee:

Elsa Gunter, AT&T Bell Labs
Dale Miller (chair), University of Pennsylvania
Gopalan Nadathur, Duke University
Frank Pfenning, Carnegie Mellon University

Sponsored by the Institute for Research in Cognitive Science, UPenn.

PREFACE

The first workshop on the XProlog language was held 31 July - 1 August 1992. Interest
in XProlog has grown a great deal in the past several years. There is now active work
in all areas of its theory, application, design, and implementation, including such topics
as hypothetic reasoning, modular programming, proof theory, program transformation,
natural language parsing and understanding, theorem proving, rewriting, generalization,
compilation, and abstract machines. This workshop brought many of the people working
on various aspects of XProlog together to discuss common problems and perspectives. This
two day workshop attracted more than 30 attendees.

Robert Harper (Carnegie Mellon University) and Fernando Pereira (AT&T Bell Labs)
kindly accepted to give invited talks. Harper spoke on "Modules for Elf" and Pereira spoke
on "Semantic Interpretation as Higher-Order Deduction." Two computer systems were also
demonstrated: the Prolog/Mali implement ation of XProlog was demonst rated by Olivier
Ridoux and the linear refinement of XProlog, Lolli, was demonstrated by Joshua Hodas.
There were also 16 contributed papers, which are contained in these proceedings.

There is an electronic mailing list for discussions and announcements pertaining to
XProlog and related topics. The current list contains more than 250 addresses. To be
added to this list, send e-mail to lprolog-requestacis .upenn . edu.

I would like to thank the organizing and program committee - Elsa Gunter (AT&T
Bell Labs), Gopalan Nadathur (Duke University), and Frank Pfenning (Carnegie Mellon
University) - for their helped in designing the format of this workshop and for reading
and reviewing all submitted papers. I would also like to thank Billie Holland for her help
in local arrangements and with putting together this proceedings. Finally, I would like to
thanks the Institute for Research in Cognitive Science at the University of Pennsylvania
for providing the funds and facilities for holding this workshop.

Dale Miller
University of Pennsylvania

Philadelphia, PA, USA
December 1992

Coiltributed Papers

Model Theoretical Semantics for Higher-Order Horn Clause Programming
. by Mino Bai, Syracuse University, NY, USA 1

T h e Architecture of a n Implementation of XProlog: Prolog/Mali
by Pascal Brisset and Olivier Ridoux, IRISA/INRIA, France.. 41

Higher- Order Substitutions
by Dominic Duggan, University of TVa.terloo, ONT, Canada. 65

Defining object-level parsers in XProlog
by Amy Felty, A T k T Bell Labs, NJ, USA . 87

A Deductive Database V iew of Embedded Implications
by Burkhard Freita.g, Technica,l University of Munich, Germa,ny.. 101

From Context-Free to Definite-Cla,l~se Grammars
by Juergen Haas and Bharat Jayaraman, UniT-ersity of Buffula, NY, USA 113

Generalization at Higher Types
by Robert Hasker and Uday Reddy, University of Illinois, IL, USA. 123

Implementing Higher- Order Algebraic Specifications
by Jan Heering, CMTI, Amst,erda.m, The Netherlands . 141

Lolli: An Extension to XProlog with Linear Logic Context Management
by Joshua Hoda.s, University of Pennsylvania., P-4, USA . 159

S o m e Kind of Magic for (a Restriction o f) Lranzbcla
by Alain Hui Boil Hoa,, INRI.4 Rocquencourt, France . 169

An Instruction Set for Higher- Order Hereditary Harrop Formulas
by Keehang Iiwoil and Gopalan Na.da.thur, Duke University, NC, USA 195

Implementing the Module C o n s t ~ u c t in XProlog
by Iieehang Iiwon, Gopalan Na.da.thur, aad Debra Sue Wilson,

Duke University, NC, USA . 201

XProlog Implementat ion Of Ripple-Re,writting
by Chuck Liang, University of Pennsylvania. P-4, LTS.4.. 235

Searching for Inductive Proofs in Second- Order Intz~it ionist ic Logic
by L. Thorne McCarty, Rutgers University, N J , US.4 . 243

An Empirical S tudy of the Runt ime Behavior of Higher-Order Logic Programs
by Spiro Micha.ylov and Frank Pfenning, Carilegie h.Iellon Univ., PA, USA ... 257

A Proposal for Modules in XProlog
by Dale Miller, University of Pennsylvania. PA, US-4. 273

The cover art work was painted by Shun-Wall h4a. Hong Icong.

LISTING OF ATTENDEES

Mino Bai
Syracuse University
School of Computer & Information Science
Center for Science and Technology
Syracuse, NY 13244-4100
mbai@top.cis.syr.edu

Michael Bukatin
Biosym Technologies, Inc.
23 W. Dewey Avenue
Wharton, NJ 07885
micheal@biocl.~iosym.com

Wilfred Chen
Cornell University
Department of Computer Science
4141 Upson Hall
Ithaca, NY 14853
chen@cs.cornell.edu

Iliano Cervesato
University of Houston
Department of Computer Science
4800 Calhoun Road
Houston,TX 77204-3475
iliano@cs.uh.edu

Amy Felty
AT&T Bell Laboratories - 2A-425
600 Mountain Ave.
Murray Hill, NJ 07974
feltyOresearch.att .corn

Stacy Finkelstein
University of Pennsylania
Mathematics Department
Philadelphia, PA 19104-6389 USA
stacy@saul.cis.upenn.edu

Dr. Burkhard Freitag
Iilstutut fuer Informatik
Technische Universitaet Muenchen
Orleansstr. 34
D-8000 Muenchen 80
Germany
freitagQinformatilr. tu-muencI1e11.de

Vijay Gehlot
University of Glasgow
17 Lilybank Gardens
Glasgow G12 8QQ, Scotland (UIi)
vijay@dcs.glasgow.ac.uk

Kannan Govindarajan
SUNY - Buffalo
Department of Computer Science
226 Bell Hall
Buffalo, NY 14260
govin-k@cs.buffalo.edu

Elsa L. Gunter
AT&T Bell Laboratories - 2A-432
600 Mountain Ave,
Murray Hill, NJ
eIsa@research.att .corn

Robert Harper
Carnegie Mellon University
School of Computer Science
Pittsburgh, PA 15213
r~vh+@proof.ergo.cs.cmu.edu

Robert W. Hasker
University of Illinois
Department of Computer Science
1304 W. Springfield
Urbana, IL 61801
haskerQcs.uiuc.edu

Juergen Haas
SUN)' - Buffalo
Department of Computer Science
226 Bell Hall
Buffalo, NY 14260
haas@cs.buffalo.edu

Jan Heering
C\VI
Iiruislaan 413
1008 SJ Amsterdam
The Netherlands
jan[@cwi.nl

Joshua S. Hodas
University of Pennsylvania
Department of Computer & Information Science
200 South 33rd Street
Phila PA 19104
hodasOsaul.cis.upenn.edu

Jonathan Hodgson
Saint Joseph's University
Department of Math/CSC
5600, City Avenue
Philadelphia. PA 19131
jliodgso~i@sj u.edu

Alain Bon Hoa Hui
University of Pennsylvania
Department of Computer & Information Science
200 South 33rd Street
Philadelphia, PA 19104-6389
alain@saul.cis.upenn.edu

Bharat Jayaraman
SUNY - Buffalo
Department of Computer Science
226 Bell Hall
Buffalo, NY 14260
bharat@cs.buffalo.edu

Keehang Kwon
Duke University
Department of CPS
Durham, NC 27706
kwon@duke.cs.duke.edu

Chuck Liang
University of Pennsylvania
Department of Computer & Information Science
200 South 33rd Street
Philadelphia, PA 19101
liang@saul.cis.upenn.edu

L. Thorne McCarty
Rutgers University
Department of Computer Science
New Brunswick, NJ 08903
mccarty@cs.rutgers.edu

Raymond McDowell
Univ. of Pennsylvania
Computer & Information Science
200 South 33rd Street - Moore 370
mcdowell@saul.cis.upenn.edu

Spiro bfichaylov
The Ohio State University
Department of Computer Sc Information Science
228 Bolz Hall
2036 Neil Avenue Mall
Columbus, OH 43210-127'7
spiro@cs.cmu.edu

Gopalan Nadathur
Duke University
Department of Computer Science ,
Durham, NC 27706
gopalan@cs.duke.edu

Fernando Pereira
AT&T Bell Labs - 2D-447
600 Mountain Ave.
Murray Hill, NJ 07974-0636
pereira@resear ch.att.com

Olivier Ridoux
IRISA/INRIA
Campus Universitaire de Beaulieu
35042 RENNES Cedex FRANCE
ridoux@irisa.fr

Leon Sliklyar
Rutgers University
Department of Computer Science
Bellcore, PYA lE132
6 Corporate Place
Piscataway, fiJ 06854
sl~klyarQcs.rutgers.edu

Debra iVilson
901 Chalk Level Rd.- Apt CCr7
Durham KC 27704
ds~v~Pcs.duke.edu

Dale Miller
University of Pennsylvania
Department of Computer & Information Science
Philadelphia, PA 19104-6389 USA
dale@cis.upenn.edu

General Model Theoretic Semantics and Negation as Failure in
Higher-Order Logic Programming

h'lino Bai
School of Colnputer and Information Science

Syracuse University
Syracuse, New J'ork 13244-4100, USA

mbaiQtop.cis.syr.edu

1 Abstract

We introduce model-theoretic selnal~tics [Ij] for Higher-Order Horn logic prograinming language.
We define general prograins irllere the 1,oclic.s of program clauses may contain negation symbol.
We also define an interpreter for general progiams. To derive a llegative goal we need a negation
as failure rule. For this, SLDNF-resolution wit11 eciuality theory is also developed. M'e prove the
soundness theorein analogous t o Clark's fuildamental theorem in [lo].

2 Introduction

Ma.ny extended versions of I'rolog are dc\.elopetl \vhich incorpora.te higher-order features in logic
programmingla.nguages to ma.ke programs more versa.tile a.nd expressive [2S, S, 11. In this paper, we
build a model-theoretic semailtics for a. higher-order logic programming language which is suitable
for describing declarati\7ely opera,tioils of sucli programming language.

Church [9] introduced a simple theory of t,ypes a.s a. systein of higher-order logic. This system
incorporated A-notation in its particularly siml)le syl1ta.x wliich actually be viewed as a version of
simply typed A-calculus. Henkin first ga.ve a. selnantics for C:liurcli's system based on general models.
Domain members of a, general nlodcl are t,rutll values. i~~tlividuals, and functions. Church's system
was proved t o be complete wit11 respect to IIenkin's semantics [IS]. Artdrews studied general models
further in [3, 4, 51, and built a. non-extensional lnodcl which is suitable under settings of resolution
theorel11 proving [2]. The proof theory for this syst,enl is sho\vn to ha.ve a close resemblance to that
of first-order logic: there is: for esainple. a genera.lization to Herljrand theorem that holds for a
variall t of this systein [22, 231 .

AProlog [28] was the first, language to sho~v that Iiigher-order logic could be used a.s the basis of
a practical prograrnrning la,nguage. XProlog is basecl on typetl A-calculi ~vllich have' their ultimate
origin in Russel's nlethod of stratifying sets to avoid the set theoretic paradoxes. One advantage
of logic programs over coventio~lal non-logic prograllls 1la.s been that they have simple declarative
model-theoretjc serna,ntics. Tha t is, in logic programs the least, fixpoint is equal to least model,
therefore it is associated t o logical consequences and has a meailinful declarative interpretation. In

' ~ d d r e s s correspondence to the anthor, School of (:olnp~~t.er ant1 I ~ ~ f o r ~ n a t ~ i o l ~ Science, Center for Science and
Tecl~nology/Fourt.l~ Floor, Syracuse Ulliversit.y, Syracuse, New l'orl; 13241-4100, USA. Telephone number of the
author. 315-443-2466

2 Proceedings of the 1992 XProlog Workshop

higher-order logic on which XProlog is based, compared to first-order case, it is extremely difficult
to build an effective model-theoretic semantics. One of these difficulties is that the definition of
satisfaction of formulas is mutually recursive with the process of evaluation of terms (see [15, 2, 3,
4, 51). In first-order case, the model-theory is two level [19]. First we define a domain of individuals,
and then define satisfaction wrt this domain. As a result of this in higher-order logic i t is difficult to
define T p operator for a logic program F: In a definition of Tp operator for a logic program P , we
consider a set of atomic propositions as an interpretation, and need a fixed domain without regard
t o interpretations. The second reason is that since higher-order logic programming languages are
usually formulated in non-extensional form, we need a non-extensional model to describe properly
such languages.

Henkin's general model semantics is estensional: i.e., i f two objects in a model have the
same extension, then they must be equal. Extensional models are very difficult to deal with,
and unsuitable t o describe a higher-order logic programn~ing language like XProlog which con-
tain a propositional type in its prinlitive set of types. For example, we can define a program
PI = { p (a) t T , q (a) c T , r (p (n)) - T) in XProlog. Given program Pl , the goal r (p (a)) will
succeed in XProlog, but the goal r (q (a)) will fail, since the unification of r (q (a)) and r (p (a)) will
simply fail. For any extensional model M for PI, M will assign the value T for p(a) and q(a) .
So p(a) = q(a) is a logical consequence of PI. JW will also assign the value T to r (p (a)) , so the
extension of the predicate which M will assign to I. contains T. Therefore r (q (a)) is a logical
consequence of the program PI . Note that for this program the valuation of terms is mutually
recursive with the satisfaction of formulas, since a formula can occur as an argument of predicate
or functional symbols.

As shown above extensional models are difficult to define and unsuitable for higher-order logic
programming. In this paper, we develop a. non-extensional model where domain is independent from
interpretations and build a fixed point semantics, and we prove the completeness of the interpreter
in [26].

3 Higher-Order Horn Logic Programming Language

In this section we describe a higher-order logic programming language for which we build models
in the later sections. For the expositioil of our logic programming language C we will follow closely
those in [28, 271.

The set 7 of types contains a collection ?;, of primitive types and is closed under the formation
of functional types: i.e., if cr,P E 7 , the11 (a - +) E 7 . The type constructor + associates to the
right. The type (a -- P) is that of a function from objects of type o to objects of type P .

We introduce a very convenient notation from [B]. For each type symbol a, and each set S
containing objects or expressions, we write S , to denote the set of things in S which are of type a.
We sometimes write {S,), to denote S. We can also define a type assignment mapping T on the
set S such that r : S -+ 7 and for all s E S . ~ (5) = CI if 5 E S,.

Let S,T,Tl,T2 be sets. Given a mapping f : .S - T. (1 E S , and 6 E T, let f [b /a] be that
mapping f ' : S -+ T such that for f'n = 6 and f'c = f c for all c # u. Let b be an element in
TI x T2, then 6' and b2 are the first and second components of b , so b = (b', b2) . If f is a mapping

Min o B ai 3

whose values are in TI x T2, let f1 and f 2 be ina.ppings with the same domain as f defined so that
for any argument t, f i t = (ft)"or i = 1,2. Thus f t = (f l t , f2t) . I f f : S + T is a mapping, then
we say that f is type consistent if for all s E S, r (f (s)) = r (s) . If f : S + TI x Tz, then we say
that f is type consistent if f1 and f 2 are type consistent. For each integer n E w , we write [n] for
the set (1,. , n).

We assume that there are denumerably many variables and constants of each type. Let the set
of variables and constants be A and C, respectively. Simply typed A-terms are built up in the usual
fashion from these typed constants and variables via abstraction and application. Our well formed
terms (wfts) are simply typed A-terms. We, as usual, can define the set T(C) of all wfts by giving
the definition of the set T (C) , of wfts of type n by induction.

It is assumed that the reader is familiar with most of basic notions and definitions such as
bound, free variables, closed terms (c-terms), substitution and A-conversion for this language; only
a few are reviewed here. Letters f,, s,. t,. - ... will be used as syntactical variables of wfts of type a.
Type subscript symbols may be omitted wlleil contest indicates what they should be or irrelevant
t o discussion. By Church-Rosser theorem [TI, a A-normal ivfts of a wft is unique upto a renaming
of variables. For most part we shall be satisfied \vith any of these normal forms corresponding to
a wft t, and we shall write Aiaorm(t) to denote such a form. I11 certain situations we shall need to
talk about a unique normal form and, in sucll cases. we shall use p(t) to designate what we shall
call the principal normal or p-nornznl form of t ; i.e. p is a mapping from wfts t o A-normal terms.
There are several schemes that may be used to pick a representative of the a-equivalence classes of
A-normal terms and the one implicitly assumed here is that of [2].

So far we have introduced A-term structures and opera,tions on A-terms. We can introduce logic
into A-term structures by including o, a. type for propositions, amongst the set of primitive types
'ZO, and requiring that the collection C of consta.nts contaill the following logical constants: A and
V of type o +- o --i o; T of type o; a.nd for every type a, 3, of type (a + o) + o. The constants
in C other than A, V, 3 and T are called as nail-logictrl constants. A type will be called a predicate
type if i t is a type of the form a1 - - - -a, - o, or a non-predicate type otherwise. We let II C C
be the set of predicate constnnts. Expression of tlie form 3(An:G) will be a.bbrevia.ted by 3xG.

Terms of type o are referred to a.s goal formvla. The A-normal form of a goal formula consists,
a t the outermost level, of a sequence of applica.tions. and the leftmost symbol in this sequence is
called its top level symbol. We shall have use for the structure of A-normal fornlulas that is described
below. A goal formula is said t o be a.n cltom ((itontic) if its leftmost symbol that is not a bracket
is either a predicate variable or constant. A A-normal goal formula G, then, has the following
inductive characterization: (a) it is T, (1)) it is an a.ton1, (c) it is GI A G2 or G I V G2 , where G1
and G2 are A-normal goal formulas, or (d) it is 3xG, where G is a A-normal goal formula.

Now we identify the formu1a.s that we call higher-order definite clauses, goal formula, and
equations. Let be the collection of all A-normal goal formulas. An atom is a n atomic goal
formula A. A rigid atom is an atom -4, t11a.t 11a.s a predica.te constant as its head. An atom is thus
a formula of the form ptl - . . t, where 7 = t u l , . , a, - o, 1) is a predicate constant, or variable,,
and, for each i E [n], ti is a A-normal term,,. it is a. rigid a. to~n just in case p is a constant.
Sometimes we write p(t l , . . , t,) or p (i) for the a.bove atom. Let G be an arbitrary goal formula
and A, be any rigid atom. Let a formula C' be of the for111 A, - G. Then C is a (higher-order)

4 Proceedings of the 1992 XProlog Workshop

definite clause. Let s,,t, E T(C). Then, as usual, an equation e is of the form s, = t,, and an
extensional equation is of the form s, = t,. Let Def be the set of all definite clauses. Then given
the collection C of constants, our logic programming language C = L(C) is completely determined
as the triple (T(C) ,G, Def). A formula F in a language L is a goal formula, or a definite clause,
or an equation. We refer a set P of formulas from Def as a higher-order definite logic program.
As usual, variables in definite clauses are implicitly universally quantified. Note that in the above
definition all wfts in T(C) do not contain such symbols as =, r, +, hence a goal formula G and s,
and t, in an equation s, = t, do not contain those symbols.

We say that a predicate symbol p occurs extensionally in a goal formula G if (a) G is p(q , or
(b) G is G I A Gz or GI V G p , or and p occurs extensionally in G1 or G2, or (c) G is 3xG1, and p
occurs extensionally in GI . In following sections, we will define semantics for XProlog. We will take
advantage of the following situation: Since logic progranis compute extensions of predicates, and
relations between arguments of predicate symbols ~ons t i tu t~e extensions of predicates, we don't need
extensions of terms until we meet esteusional occurrences of predicate symbols in the definition of
satisfaction of formulas.

4 General Model Theoretic Semantics

In this Section we build model-theoretic senlantics for the language L. As introduced in Section 1
we need a non-extensional model to prove that a resolution system in type theory is complete. The
model in [2] is in a sense non-extensional. But it doesn't provide an adequate notion of "general"
non-extensional model for our purpose: Domain is defined by indexing extension of the element in
it by wfts. The indexed entity like (t , p) is called a 1,'-complexe where I/ is a truth value evaluation
of formulas. So only one kind of domain is used in [2], since the set of all wfts is predetermined
given a language C. In [2], in order to define the domain of interpretation we need a semivaluation
function V , as above, which evaluates proposional formulas to T or F. The definition of domain
or the evaluation of terms is mutually recursive with the definition of evaluation of formulas.

Now we generalize Andrews model t o a model where we index the extension by an element from
a general domain which we call frame. from this model we build a model where the definition of
domain is independent from the definition of satisfaction. These two models will be shown to be
isomorphic and elementarily equivalent in the sense that the sets of valid sentences in each semantics
are same. Since our language L is based on X-calculus and application is a basic operation of the
A-calculus, any model of L should be an applicative structure \vhich is a X-model.
Definition Let A be a set and . a binary operation over A such that for all a , /3 E 7, for all
a E A,,p, b E A,, a - b is an eleluent in AB. Then A = (.A, .) is said to be an applicative structure.
An assignment into a set A is a type consistent mapping p : 4 - A. A X-model is a triple
(A, -, 11 . 11) such that (A, 0) is an applicative structure and 1 1 . I (a binary function such that for each
assignment 9 into A and term t,, J(t,ll, E A,, and for all terms f E T(C),,B and t E T(C),,
11 ftllrp = 1 1 f l l r p Iltll,+,, and for all term t and rr E .-I,,. l/Xnc7tllv . (1 = Iltllv[alr,~. We call the function
11 - 11 a valuation function in A.

A frume is a nonempty set D of objects each of wl~irlr is assigned a type symbol from the set 7
in such a way that every object in D,,J is a functioi~ from D, to Do for all type symbols a and

Mino Bai 5

p. A pre-interpretation 3 of the language L is a pair (D , J) where D is a frame, and J is a type
consistent mapping in C -+ D . An assignment into a pre-interpretation is an assignment into the
frame of the pre-interpretation. Note that D,,p is some collection of functions mapping D, into
Do, i.e. D,,o D, + Dp. A pre-interpretation 3 = (D, J) is said t o be general iff there is a
binary function v3 = V such that for each assignment y and term t,, V,t, E D,, and the following
conditions are satisfied for each assignment 9 and all terms: (a) if x E A, then V,x = 9s. (b) if
c E C, then V,c = Jc . (c) V,(ft) = (V, f)V,t (the value of the function V, f a t the argument
V,t). (d) V,(Az,tp) = Ad E D, - V,[dlzltp i.e. that function from D, into Dp whose value for
each argument d E D, is V,[dlzltP.

If a pre-interpretation .F is general, the functioll v3 is uniquely determined. We can prove this
by induction on the definition of terms. FIie call the unique function v3 the intentional valuation
function of terms in the pre-interpretation 3. ~ z t is called the intention of t in 3 wrt y. We
sometimes write V% as V,, as v3, or as V, wlien pre-interpretation or assignment is clear from
context, or irrelevant. It is clear that if i is a c-term, then v3t may be considered meaningful
without regard to any assignment. I11 this case, v3t is called the intention of t in 3 and written as
t'. Obviously for a general frame D , (D , ., V) where . is interpreted as a functional application is a
A-model, but in a pre-interpretation logic synlbols such as logical operators and predicate constants
are not fully interpreted. So we call it a pre-interpretation.

Now we will give interpretations to logical symhols, after discussing a few constructions of
posets. Any non-empty set A can be considered a poset under the identity relation where x cA y
iff x = y. We call this type of poset discrete. Let PI and P2 be disjoint posets. PI U P2 is a poset
P = P l U P 2 such that for all x, y E P, x C p y i f x Cpl y or s Cp2 y. PI x P2 is aposet P = PI x P2
where for all x, y E P, x G p y if x1 Cp, y1 and x2 Cp, y2. Let S be a set, and P a poset. S -+ P
is a poset F such that for all f , g E F, f C F g if for ail .s; E S , f (s) c p g (s) . Let B be the set of
boolean values T and F where F (Ip T. We shall write V and A for U a and fla, respectively. Let
A be a set. We can consider A a discrete poset. A predicate P over A of type cwl, - - . , a , + o is a
mapping in A,, x . x A,, + B, or equivalently a subset of A,, x - x A,,. And we consider
truth values T and F as null-ary predicates over of type () + o such that T () = T and F () - F,
respectively. More generally, we define predicates ~2~ ,.. ,,, for each list al , . . . , a, of types where
n 2 0 as A,, x . . - x A,,. I r e write @ (A) for the sci of 011 predicates over A. Given two predicates
P, Q E @(A), i t is obvious that P C Q if P and Q are of same type and P is a subset of Q.
Definition Let D be a frame. A senzivcrl~~c~fzorz of D is a function I/ with domain Do and range the
set B of truth values such that the following properties hold: for all c,, d,, f,,, E D, (a) V(T ') = T.
(b) V (~ ' c ~ d o) = V(c,)VV(d,). (c) k'(~'c,d,,) = I'(c,,)Al'(d,). (d) V (3 ; f,,,) = T iff there is some
e E D, such that V(f,,,e) = T. Given a frame D and a semivaluation V of D , we define the set
2) of V-complexes based on D as follows: For each type 3 we define the set 27, of V-complexes, and
one-one onto mapping K, : D, - D, as follows by induction on y : (a) Do = {(d, Vd) : d E Do}. For
d E Do, nod = (d,Vd). (b) When a E '& - {o}. Po = {(d,d) : d E D,}. For d E D,, r;,d = (d,d).
(c) V,,p = {(f , K,' 0 f 0 6,) : f E Do,,). For f E Dodo, ti,+a f = (f , K,' o f o K ~) . We say that
27 is the set of V-complexes bnsed on D . \Ye can also introduce one-one onto mapping K : D + 2)
such that for a E 7, d E D,, rcd = ti,cl. and function v whose domain is D such that for d E D,,
v(d) = (~ d) ~ . 0

6 P1-oceedillgs of the 1992 AProlog Workshop

Now it is easy to see that (a) if f E Do+, then v (f) : V, + Do, (b) for a E D,, v (f)a =
(fa l ,v(fal)) , and (c) V = {(d,v(d)) : d E D). And for any a E V, r;al = a , and for any mapping
x whose values are in V, x1 o K = X . Let V be a set of V-complexes. Then we define the applicative
operation * of type (a -, P), a -, P: For a E V,,p and b E V,, a * b is defined to be a2b. The
operation * is left associative. Let a E V,l,...,,n,p a.nd b; E Vai for i E [n]. Then by definition of
D it is easy t o see that a * bl *. . * b, E Vp. Moreover, (D, *) is an applicative structure and for
all f E D,,p, d E D,, (~ f) * (4 = ~ (f d) .
Definition Let D be a set of V-compleses. We can define a binary mapping V such that for all
assignment cp into V, V, : T(C) + V, and for all t E T (C) , it = V,lt.

Let q~ be an assignment into D. Then for all term t , K V , ~ = V,,,t. If p is an assignment into
V, then for a E V,, V,(Xx,t) * a = V,[,/,a~i. If D be a general frame and V a set of V-complexes,
then there is the unique V satisfying that for all 1 , E T (Y) and assignment 9 into V, V,t, E V,,
since the function V is unique. Therefore (V, *. V) is a A-model.

Now we want to define a. notion of extension of a 1,'-complex in the usual mathematical sense:
e.g., if a E D ,,,...,,,, ,, then we want the exte~lsioli of (1. t,o be a, predicate over D.
Definition Given a frame D, we define a priuzitivc ezfensio~zc~i do17zuin E, for a E To: (a) E, = 8.
(b) E, = D, for a f lo - (0). C4iven an (I E D ,,,...,,,,,, 3 where n 2 0 and p E lo, we define a
mapping a@ in D,, + . . - -, D,,, - Ef3 by induction 011 72: (a) When n = 0, a@ = a2. (b j When
n > 0, a@ = Adl E D,, . (a * rcd l)@.

We call a1 the intention of a, a.nd a@ the ezte~zsion of a .
Let a E V ,,,...,,,, p where n > 0 a.nd p E To. Tlieli (a,) for all (1; E D,, , i E [n], aadl . .d, =

(a* r;dl * .. - ~ d ,) ~ , (b) If p E - {o), tllen a@ = (1'. We can show this by induction on n.
Definition Let 3 = (D, J) be a general pre-interpretation and V a semivaluation of D. An
C-structure A is a pair (D, J) such that D is a, set of 11-complexes based on D. We say that A
is based on 3 or on D. An assignment p 272to A is a.n a.ssignment into V. When F is a formula
in L, we write AbF[p] to say that A satisfies F wrt p. (a) When s,,t, f T(C), Abs, = t,[p]
iff V,s, = V,t,, Aks, - t,[y] iff (V,s,)@ = (V,t,)@. (b j When G is a goal formula, AkG[p] iff
v:G = T. (c) When A t G is a definite clause. AbA - G[v] iff AbA[y] whenever AbG[y]. We
write A b F to say that a formula F is valid in A if A b F [p] for all assignments p into A. Given a
set of definite clause P , we say that A is a nxoclel or D- nzodel for P , and write A b P , if each definite
clause in P is valid in A. Given a closed goal formula. G'. we say that G is a logical consequence of
P , and write P b G if G is valid in all illodels of T'.
Definition Let D be a general fra.me and .S' a, sul~set of Do. Then S is upward saturated if a)
T' E S, b) c E S implies v'ctl, vldc E 5' for d E Do, c) c. (1 E .5' implies ~ ' c d E S , and d) f,,,d, f S
implies 3: f,,, E S.

Let S C Do. Then there is a sillallest upward satura.ted set extending S. Let C be the collection
of upward saturated set estending 5'. C is not empty. since Do E C. So nC exists. It is easy to
check that it is upward saturated. It fulfills the other considerations, by definition. T1:e smallest
upward saturated set extending .S is called the upti~~r(i s(1turc~tec1 closure of S, and is denoted as
S" .

'Note that in this definition t.he symbol for sat,isfaction i t , A is the small k. The normal size + is used for another
definition of satisfaction which is defined lat,er it1 this paper.

Min o B ai 7

If S s Do we can always find by the above method an extension of S which is saturated. The
above definition is certainly simple, but i t is unsa.tisfactory on several grounds. For example, i t does
not make explicit how the elements of the closure of S are generated from the elements of S. iFrom
this reason we give a more constructive definition, involving restricted set-theoretic methods.
Definition Let S Do. An elementary S-derivation is a sequence cl, - . - , em, m 2 1, of elements
from Do, where for each i E [m], at least one of the following conditions is satisfied: (a) c' = T'.
(b) c' E S. (c) There is a j < i such tl1a.t ci is either ~ ' c l d or ~ ' d c 3 for some d E Do. (d) There
are j, k < i such that ci = l\'cjck. (e) There are j < i and f E D,,, such that c j = f d for some
d E D, and c' = 3Lf.

Note that if c l , . - . , cm and d l , . . , dn are two elementary S-derivations, then the concatenation
e l , - . . , em, dl , . . . , dn is also an elementa.ry S-derimtion. Furthermore, a nonempty initial segment
of an elementary S-derivation is again an elementa.ry ,S'-derivation. .4n element d E Do is elementary
S-derivable if there is an elementary S-derivation c'. . - a , cn\where cm = d. This is equivalent to
requiring that d be an element (not necessarily the 1a.st) in some elementary S-derivation. The set
of all d E Do that are elementary S-derivable is denoted by E(S). We shall show that E(S) is the
upward closure of S referred t o above.

Theorem 4.1 Let S & Do. Then: (a) S C E(,S'). (b) E(.S') is upward saturated. (c) If S C S' and
Sf is upward saturated, then E(S) Sf. (d) .SU = E(,S).
Proof The proofs of (a) and (b) are obvious. (c) Let S C S' and St be upward saturated. We
prove by induction on m that whenever c l , . .. : cm is a.n elementary S-derivation then ci E St for
i E [m]. When m = 1. it is clear. If the property is true for nz, and c' , - . - , ern, cm+l is an elmentary
S-derivation, then by IH we have t11a.t ci E Sf for i E [nz]. Furthermore cm+' is T', or a c E S Sf,
or i t is obtained by one of the defining rules from the elements in St . In all cases it is easy to see,
by IH and definition of upward saturatedness, t11a.t cnLS1 E S'.

Definition Let (D, J) be a general pre-interpreta.tiol1. Then we write II(D) for the D-base which
is defined t o be the set {p(al, . . , a n) : p E II,, ,...,,,,, , and a; E D,, for all i E [n]).

A subset E of II(D) induces a unique mapping IK in II -+ @ (D) as follows: for all a E D ,
(2) E Ir(p) iff p(;i) E E. Let L1 & IC2 5 I I (D) , then it is easy to see that IKl Gn,a(o) Ih2.
Sometimes given E & II(D), we write simply K to meall the mapping IK.

Given I C II(D), we can introduce set SI such that SI = {p'z : p2 E I) . We define a function
VI : D, -+ B as follows: for each d E D,, Vic l = T if cl E Si r , F otherwise. And VI is obviously a
semivaluation of D. And for all d E D,, d E .SILT only if there is a.n SI-derivation for d. This follows
from Theorem 4.1.

Theorem 4.2 Let I C II(D). d E SY only if there is n finite I' C I such that d E s;.
Proof Assume d E SY. Then by the fact t11a.t a deriva.tion sequence is finite, it is clear that there
is a finite I' C I such that there is a. finite elenlentary Sit-derivation sequence.

Definition Let I II(D). Then I induces t.lie set 27' of I/[-complexes based on D and that one-one
onto function n1 : D --, 7Jz given by the definition of Iff-complexes, and the following functions
whose domain is D: the function v1 such that for each cl E D. vI (d) = (~ l d) ~ , and the function el
such that for d E D , e r d = (rcld)@. Let d E D,,,I. The11 for all dl E D,, el(d)dl = el(ddl).

8 Proceedillgs of the 1992 XProlog Workshop

Lemma 4.3 Let Il C I2 II(D). Then (a) VI, C TII,. (b) VI, C vz,. (c) el, & el,. 0

Definition Let (D, J) be a general pre-interpretation. An interpretation M is a pair (D, I) where
I is a type consistent mapping in II - @(Dl. We call M a D-interpretation. An assignment
p into M is a type consistent mapping y : A - D. When F is a formula in L, we write
M i= F[v] to say that M satisfies F wrt y. For all goal formulas G, GI, G2, for each rigid
atom A, (a) When s,,t, E T(C) , , M s, = t0[v] iff V,s, = V,t,, M + s, t,[v] iff
ei(V,s,) = ex(V,t,). (b) M b T[v]. (c) M I= ti,. - a , t ,) [~] iff (V,tl, - . . , Vqtn) E IP if P is a
constant, or (V,t l , . . , V,tn) E 9 o ez(y) if p is a variable. (d) M /= GI V G2[v] iff M GI [p] or
M + G2[v]. (e) M + GI A G2[q] iff M G I [~] and M G2[q]. (f) M + 3xaG iff there is a
d E D, such that M + G[y[d/xo]]. (g) M + A - G[v] iff M A[v] if M + G[v].
We write M + F to say that a for~ilula F is valid in .bl if M b F[p] for all assignments y into
M. Given a definite program P , we say that ibl is a nod el or D-model for P , and write M + P ,
if each definite clause in P is valid in M . Given a closed goal for~llula G, we say that G is a logical
consequence of P , and write P G if G is valid in all models of P.
Definition Let 3 = (D, J) be a general pre-interpretation, 1/ a semivaluation of D , and 'D be the
set of V-complexes based on D. Given an C-strucure A = (V, J) based on 3 , the D-interpretation
A@ induced by A is defined to be (D, I) where I = J o K o (.)@ f II. Conversely, given a D-
interpretation M = (D, I) based on 3, we can get t l ~ e set D@ of T~I-complexes based on D. Then
M e is an L-structure (D@, J) induced by M. 13

Using the above facts and since assignments int,o D and 2) have one-one correspondence between
them, we can show that the two semantics a.re elemetarily equivalent in the following sense.

Theorem 4.4 (a) For all formula F in L, b F ifl b F . (b) If P be a definite program and G a
closed goal, then P G iff P b G .

Theorem 4.5 The extensionality is not valirl.
Proof Take an extensionality formula p, z g, - 11, = q,. It is obvious that v;y0 = Vzgo does not
imply that V,p, = V,qo. For the extensionalit?. formula (Vn., . f x = gz) + f = g, we take a E '&
and ,B = o and D-interpretation I such that l f = I!, = T:. Then f = y but not always f = g.

Let M = (D, I) be an interpretation ba.setl on 3 = (D, J) , we can identify M with the subset I
of l I (D) . And every subset I of n (D) is a D-interl>reta.t.ion. Obviously the set of all D-interpretation
is a complete lattice with the usual set inclusion ordering between D-interpretations.

Theorem 4.6 Let Il C I2 c I I (D) . If I1 I= G[p], ihciz I2 /= G[y].
Proof By induction on G. When C; is T. it is obvious. When G is a rigid atom p(tl, - - - , t,),
since I lp 12p, I2 /= G[y]. When G is p(i l . - - - . t , ,) where p is a variable. Since e ~ , el,,
Iz /= p(tl , . ..,t,)[v]. When G is GI A G 2 . 11 + G'l[p] and I 1 'F Gz[v]. By IH I 2 b Gl[y] and

I2 G 2 [~] . SO I2 + G[y]. When C; is G1 V G'> Assultre. wlog, I* Gl[y]. By IH I 2 Gl[y].
When G is 3x,G1. There exists a d E D, such t h a t Il Gl[p[d/z,]]. By IH I 2 b Gl[y[d/x,]].
So I 2 + G[y].

Let 3 = (D , J) be a general pre-interpretation. We can define a mapping T g from the lattice
of D-interpretations t o itself. Let 3 be a pre-interpretation (D , J) of a definite program P and I
a D-interpretation. Then T ~ (I) = {p(d l , - . - , d,) E n (D) : there exist an assignment 9 into D and
a clause p(t l , e m , t,) + G E P such that d; = V,ti for each i E [n] and I + G [y])

Lemma 4.7 T g is monotonic, i.e. ginen Il C I2 C I I (D) , T ~ (I ~) C T : (I ~) .
Proof Assume p(d1, - .. , d,) E T ; (I I) for p(d1,. . , d,,) E I I (D). Then there are a n assignment 9
into Il and a clause p(t l , .. ,t,) + G E P such that V,t; = d; for all i E [n] and Il G [9] . By
Theorem 4.6, I2)= G [p] .

So T c is a monotonic transforma.tion on the set of all D-interpretations.

Lemma 4.8 Let I C I I (D). Then 1 + P iSf T ~ (I) I .
Proof e-) Assume p(dl , . a * , cl,) E T F (I) for sollle p(dl . . - -. d,) E II(D). Then there are an
assignment 9 into D and a clause p(t l , I , ,) - C; E P such that V,t, = d, for all i E [n] and
I b G [y] . Then since I P , I /= p(t l , . . . , t , ,) [q] . Therefore p(d l , . - - , d,) E I .
e) Similarly.

Lemma 4.9 Let Il and I2 be D-nzodels of P . Then Il n I2 is also D-model of P.
Proof Since T p (I l) C Il and T p (I z) C 12, by 11101iotol1icity of TT operator, T p (I 1 n12) C T P (I 1) &
Il and T p (I l n 12) C T p (I z) 1 2 . SO T p (I l n I,) Il n 1 2 .

But the set of all D-models is not closed under join operation, i.e. Il U I2 is not necessarily a D-
model, whenever Il and Iz are D-models. Take for esample the definite program P2 = { p t q , r) .
Then II(D) = {p,q, r) . { q) and { r) are D-models for P2, but {q , r) is not a D-model.

Lemma 4.10 Let (In)nEw be w-chalrz of D-intt ~prefntions. Then for each goal G and assignment
9 into D , UnEwIn /= G [p] only if thcrc i.s a n 11 E .<uclt !hat I,, /= G [y] .
Proof Let I = UnEwIn. Then I G [y] only i f I>(V,G) = T. So there is a finite I' C Isuch that
VI,(V,G) = T. Therefore there is an 12 E J such that I' E I,,. By rnonotonicity I, + G [p] .

Lemma 4.11 T; is continuous.
Proof Let (I n) n f w be a w-chain of D-interpretations. We need to show: T p (~ n E w I n) = UnEwTp(In) .
The monotonicity of T p implies that UnEwTF(In) C TP(UnEwIn) . NOW we need t o show that
Tp(UncwIn) E UnEwTP(In) . Let (11,. . . , rl,, E D , and ~ ((1 ~ ~ . (in) E II(D). Assume p (d l , - . . , d,) E
TP(UnEwIn), t o show p(d1, - . ., d,) E U n E w T p (I n) . There are p(t1,. .. , t,) +- G E P and an assign-
ment 9 into H such that pt, = d, for all i E [I T] and UnEwIn /= G [y] . So there is n E w such that

In G [y] . Therefore there is 17 E w sucli that p (d l . .. , O n) E T p (I n) . 13

So we can show that every definite program has the least. D-model as follows:

Theorem 4.12 (T g) W (4) is tlte least fixpoint of T g .

Theorem 4.13 Let M$? = n { I I I (D) : I P) . the12 M; is the least D-model of P and
M g = T",$).
Proof By Lemmas 4.8,4.9,4.7 and Theorem -1 . l2.

10 Proceedings of the 1992 XProlog Workshop

5 Herbrand Models

In order t o determine validity or logical consequences, we need to consider all interpretations of the
language L. In this section we shall show that we can restrict our attention to Herbrand models.
That is, we show that if A is true in all Herbrand (that is symbolic) models i t follows that A is
true in all models and a fortiori in the model intended by the person who wrote the program.
Definition The Herbrand frame H is a set such that (a) N is the set of all p-normal c-terms. (b)
Let f E Ha+, then for all t E H,, f (t) = p(f t) .

It is obvious that the Herbrand frame H is countable.
Definition The Herbrand pre-interpretation 'HF is a pre-interpretation (H , J) such that H is the
Herbrand frame and J satisfies the following: (a) If c, is a constant such that a is a primitive type,
then Jc , = c,. (b) If d,,p is a constant of type a - 13. then for all t , E H,, (Jd, , i))(t ,) =
da-pta -

Lemma 5.1 The Herbrand pre-interljretcriio~z is yc~>er(ll.

Definition An Herbrand interpretation M is an int,erpreta.tion (H, I) ba.sed on the Herbrand pre-
interpretation. The Herbrand base 'HB is the set I I (I I) .

Let I C H (H) be an Herbrand interpretation and p an assignment into I. Then we can consider
9 as the generalized substitution a such that for each term t E T (C) , at = (p t F V (t)) t . It is easy
to see that for every term t , pt is a c-term and V,t = pt , for each goal formula G, y G a closed goal
formula, and for each definite clause C, 9C a closed definite clause.

Let I be a D-interpretation based on 3. The Herbrand interpretation I* induced b y I is an
Herbrand interpretation such that for every -4 E I I (H) , A E I* iff I I= A. Let 9 and # be
assignments into H and Dl respectively. Then we say that y' is induced by 9 if 9' = 9 o v3. The
mapping v3 : H -, D is a honzomorhisna front I* into I. since for p E Il,,,...,,,,,, ht E Ha, , i E [n],
if (h l , . . ., h,) E I*p, then (vFhl , . . -,VFh,) E I],. Let h E H ,,,...,,,,,. Then for all h, E Ha,, i E
[n], (h l , . . . , h,) E e r * (h) implies (v3hl, - . . , ~ ~ l z , ,) E e r (v F h) .

Lemma 5.2 Let I , I*, p', y be as oboae. Thetr ((1) If t is a term. then ~ $ (~ t) = ~ $ 1 , (4) If A is
a rigid atom then I* + A[y] i f f I b A[pt], (c) If G' is (1, goal formula such that I* b G [y] , then
I + G[y '] , (d) If C is a definite clazrse such that I I= C[p'], then I* C [9] , (e) Then if I b P ,
then I* P .

Let 3 be a general pre-interpretaiion. Then /=F denotes logical implication in the context
of fixed domains and functional assignment. Specifically kHF denotes logical implication in the
context of Herbrand frame and functioilal assignment.

Let G be a goal formula. We writ,e 3 (G) to denote the esistential closure of free variables in G.

Theorem 5.3 Let P be a definite program crizd G cr. goal formula. Then P 3(G) i#P kBF 3 (G) .
Proof e) Let an Herbrand interpreta.tion induced by the given interpretation I be I*. Assume
I P . Then I* + P , so I* 3(G). Then there is an assignment y into I* such that I* + G[y] .
Let the assignment 9' into I be induced I,? c;. T1re11 I)= G[p l] by Lemnla 5.2 (c). So I b 3(G) .U

Mino Bai 11

If y is a substitution, then y-,, is that substitutioil a such that a = y f (A - {x,)).

Lemma 5.4 Let I & II(H). Then for (111 closed sr~,bstitr~tion a , assignment y into H , and goul
formula G, I t= aG[y] ijjf I yaG.
Proof We prove by induction on G. When G is T or a rigid atom, it is obvious. When G is
p(t l , - - . , tn) where p E A. I aG[y] iff (ya t l , . - - ,vat,) E er (yap) iff (y 'yatl , . . . ,y 'yatn) E
er(q'[yap/p]p) for all assignment y' into H iff I + yaG[vr] for all assignment y' into H iff I b yuG.

When G is 3xaG1. I b aG[y] iff I 3x,a-,,G1[y] iff there is an h E H, such that I b
0-,,Gl[y[h/x,]] iff there is an h E H, such that I y[h/x,]a-,,GI by I H iff for all assignment y'
into H, I + y'y[h/x,]a-,, G I , since y[h/x,]a-,,GI is a closed goal. iff I + (ql[h/x,])q-,,a-,, G1
iff I + y~ , ,a~ , ,Gl[~ ' [h /x ,]] iff I b 3x, 9-,,a_,, Gl [p'] iff I I= yaG.

Corollary 5.5 For all assignn2ent 9 into H. gor1.1 fornavln G', I b G[v] iff I b yG.

Theorem 5.6 For all closed substitution a a i d gotll fornznla G such that a3x,G is closed, I
a3x,G ifl there is an h E H, such that I + a[h/x,]G.
Proof Let y be an assignment into H. I I= a3x,G'[p] iff I I= 3x,o-,,G[y] iff there is an h E Ha
such that I a-,,G[y[h/x,]] iff there is an h E H, such that I I= y[h/x,]a-,,G by Corollary 5.5
iff I o[h/z,]G[y] by Corollary 5.5. since p [h / x ,] ~ - ~ ~ = pa[h/x,].

Corollary 5.7 Let M g = n { I I I (H) : I b P). TItert MF P .
Proof Follows from Theorem 4.13.

Theorem 5.8 (~ $) ~ (4) is the least fixed point of T$ ancl M; = (~ ;)~ (4) .
Proof Follows from Lemma. 4.11.

Theorem 5.9 Let A E II(H). Then P A i f l ~ g 1 A.
Proof P 1 A iff P b.uF A iff for all H-iilterpretation I such that I I= P , A E I iff A E M:.

For the definite program PI introduced in section 1, it is easy to see that

So r(p(a)) is a logical consequence of PI, while r(q(c1)) is not.
The program PI is non-extensional in the sense that extensional identity of arguments of the

predicate r does not imply extensional identity of proposition T (.) . In [30] Wadge defined a fragment
of higher-order logic programming language (i n fact it's a pure subset of HiLog [8]) where every
program behaves extensionally.
Example We can define the following higher-order logic program P3 in the language of [30]: Let
MAP be predicate constailt of type (int - o),lisl - o and . be an infix functional constant of
type int,list + list and p and q predicate coilstailts of type inl - o and P3 include the following
definite clauses.
MAP(z, x - 1) + zx A AfAP(2. I) .
MAP(z , nil) + T .

Proceedings of the 1992 XProlog Workshop

Assume that the above clauses are the only clauses that defines the predicate MAP. Let I be
a fixpoint of Tp,. We shall show t11a.t 11 = q -+ MAPp 5 A4APq is valid under I. Let p = q valid
under I. Then for all a E Hint, pa E I iff qa E I. Moreover the set Hrist has the following inductive
characteriztion. (a) nil E Hrist. (b) For a E Hint, n.1 E Hlist if 1 E HliSt. To prove MAPp = MAPq
is valid in I, it's enough to show that for all 1 E Hlist, MAP(p, 1) E I iff MAP(q, 1) E I. We prove
this by induction on 1. Obviously hlAP(y,nil) ,MAP(q, nil) E I . Let a 1 E Hlist. Assume
MAP(p, a I) E I to show MAP(q, a .1) E I. Then pa, AdAP(p, 1) E I. So by IH, MAP(q, I) E I.
Therefore MA P(q, a - I) E I.

6 Completeness

In this section we prove completeness of interpreter in [Xi]. Our actual interpreter is that of [26]
plus backchaining when atomic goa.ls need to be solved. The definition of this non-deterministic
interpreter can be given by describing hotv a theorem prover for programs and goals should function.
This interpreter, given the pair (P , G) in its initia.1 state, should either succeed or fail. We shall use
the notation P I- G to indicate the meta proposition t1ia.t the interpreter succeeds if started in the
state ('P, G). The search related semantics which we want to attribute to the logical constants can
be specified as follows: (a) P I- T. (b) P t GI V G2 only if P I- G1 or P i- G2. (c) P I- G1 /\G2 only
if 'P k GI and 'P I- G2. (d) P I- 3x,G1 only if there is some term t E T(C) , such that 'P I- [t/x,]G1.
(e) P I- A only if there are a definite cla.use A l - G1 E P and a substitution a such that A = aA1
and PI- aG1.

Let F be a formula of C. Then IF1 denotes the set {pF : g is an assignment into H) . It is easy
to see that if F is a goal formula, IF1 is a. set of closed goal formulas, and if F is a definite clause,
then IF1 is a set of closed definite cla.uses. This not,ation can be extended to set r of formulas of
c: Irl= U { I F I : F E r}.
Definition Let I? be a set of for111ula.s that axe eit,ller closed atoms or definite clauses, and let G
be a closed goal formula. Then a r-derie?cltiorz seqlrcnce for G is a finite sequence G1, G2,. , a , Gn of
closed goal formulas such that Gn is G, and for each i E [n,], (a) if Gi is a closed atom, then i) G' is
T, or ii) G; E r, or iii) there is a definite cla.use G" G j E II'l such that j < i, (b) if Gi is GI VG2,
then for some j < i, Gj is either GI or G2, (c) if Gi is GI A G2, then for some j , k < i , Gj = G1
and G~ = G2, (d) if Gi is 3z,G1, then there is a t E A, and j < i such that [t/x,]G1 = Gj. O

Theorem 6.1 Let I C I I (H) . Tile12 for (111 closet1 goo1 forntula G, I + G iflthere is an I-derivation
sequence for G.
Proof e) Let G1,. .. , Gn be an I-derivation sequence. We prove by induction on i: for all i E [n],
I + G ~ . When i = 1, then it is obvious. ?lT1lell i > 1. If G' = G1 AGz, then by IH, I b G1 and
I + G2. So I + GI A G2. If Gz = 3x,G1. then by IH, there is a t E H, such that I [t/x,]G1.
So I b 3x,G1 by Theorem 5.6.
a) Follows from Theorem 4.1, since for a Herbrand interpretation I, we can identify I with S1. 0

Lemma 6.2 Let G he a closed yon1 forn?rrla. Then P t G' i f l thew is u P-derivation for G.
Proof See [28].

Mino Bai

Theorem 6.3 Let G be a closed goal formula. Titen P I- G iff P G.
Proof By Theorems 5.9',5.8, P + G iff T$($) + G. Let In = T$(4) for n E w . Now we need to
prove that there is a P-derivation GI,. . . , G' for G iff there is an n E w such that In G.
+) By induction on 1 . When G is T, lo + T. When G is G1 A G2, then there are P-derivations for
GI and G2 whose lengths are less t11a.n 1. So by IH, there are nl , nz E w such that I,, 1 G1 and
I,, + G2. Assume, wlog, nl < n2. Then In, + G2, SO In2 + G1 A G2. When G is 3x,G1. Then
there are a term t E Ha and a P-derivation for [t/x,]G1 whose length is less than I . So by IH,
there is an n E w such that In + [t/x,]G1. Therefore I, 1 3x,G1 by Theorem 5.6. When G is a
rigid atom A. Then there are a number j < 1 and a definite clause A t G j E JPl. By IH, I, ~ j .

Therefore In+1 + A.
(5) We prove the claim by induction on n. First a.ssuiiie the claiin true if In G. To prove the claim
for n + 1 assume In+1 + G. Then there is an In+l-derivation G', . . . , GnL for G by Theorem 6.1.
Now we prove, by induction on i, t11a.t there is a. P-deriva.tioi1 for G;, for each i E [m]. If G; is T , it
is immediate. If Gi is a rigid atom A, then since ..I E In+l , there is a definite clause A + G1 E [PI
such that In + GI. Then by our first a.ssumption. there is a. P-derivation for GI. We now get a P
derivation for A by appending A to this sequence. When Gi is G1 A G2. Then by our second IH,
there are P-derivations for G1 and G2. Now we get a. P-derivation for G~ by appending G~ to the
end of concatenation these sequences. Mihen Gi is 3x,G1. By second IH, there is a term t E Ha
such that there is a P-derivation for [t/z,]G1, to \vhich we attach Gi to get P-derivation for Gi.

7 Equality and DIE-Interpretations

Much of the research in logic programming concentrates on extensions of Prolog. An important
issue is the integration of the essential concepts of functional and logic programming. Another issue
is the use of equations to define data types. JVorks along these lines can be found in [ll, 181.

In this section we will develop seiilantics for higher-order logic programs augmented with an
equality theory I . We will establish the existence of the least iilodel and least fixpoint semantics.

Let D be a frame and R an equivalent relation on D. For each type cr E 7, we write R, for the
restriction of R to D,. Then

R = U R,.
aE7

Let d be an element of D,. Then [dlR is the equivalent class containing d. We also say that R is a
congruence relation on D if R is an equivalent relation on D and for all a , ,O E T , for all d E Da,i),
for d l c E D,, [dIR[clR = [dcIR. bjle sometillles write [dlR as [dl when the congruence relation is
clear from the context.

Since = is a binary predicate symbol, any interpretation of it should be a binary relation R
over a frame D . And R should be an equivalence relation and congruence relation, because R must
satisfy the following axioms of equality.

Proceedings of the 1992 XProlog Workshop

Given a frame D and a congruence rela.tion R on D , we define a quotient frame D / R as a frame

{Da/Ro)cy-
If 3 = (D , J) is a pre-interpreta.tion, 3 / R is defined to be a pre-interpretation

(D I R , J') such that for each constant c, J'c = [J C] ~ .

Lemma 7.1 Let R be a congruence relatiorz on D. If a pre-interpretation 3 = (D , J) is geneml,
then F I R is also general.
Proof Let V be a valuation function in 3, and 3 / R = (D I R , J') and 9 an assignment into F I R .
Then there is an assignment 9' into 3 such tha,t 9 = 9' o [' I R . Define a binary function V' such
that for each term t , Vb t = [Vwlt]R. We show V' is a valuation function in 3 / R by showing that
for each term t , , V b t , E D,/R, by induction on I , .

When t , is a variable x,, Vl,z , = [V,tx,] = [p ' x ,] = px,. Whell t , is a constant c,, VLc, =
[V,+,,C,] = [Jc,] = J'c, When t , is f,3-as,3,

V6(fp-,sp) = [vvj(f o - ~ ~ a)I
= [(V,tfo-o) (VU~SP)I
= [V,t f , j ~ ~] [V , ~ s ~] by definition of R
= (Vl, fp,,)(V>,co) by induction hypothesis

When t , is Xxgs,, let
dl = V ~ , (X X , ~ . ~ ~) = [V,;,Xxas,]

= [Ah E Dl3 . V , l [b / ~ ~] ~ r l

For b E Dp,
dl[b] = [V,1Xx,~s,][6]

= [(V,~Ax,~s,)b] by definitioi~ of R
= [V ~ ' [b l r c l l 1
-
- ":i[bll~sls' by induction hypothesis

Corollary 7.2 Let X 3 be the Herbrond pre-ir~ter~);(,r~ttrtio,2, tlzen X F / R is general.

In the remaining of this section we a,ssunle tl1a.t. every pre-interpretation we mention is general.
Since a congruence rela.tion R over a. pre-int,er.pret,a.t,ion 3 ca.n be taken a.s a.n interpretation of the
equality symbol =, we have

Proposition 7.3 Let P be a progrcrnz, I an eyt~cllity theory and A be a closed atom. Then

P, I + A e P , I kFIR A for all pre-interpretation 3
(1 1 7 d C O I ~ ~ I - I ; (, ~ O) C C relation R ouer .F

We want the existence of a ca.noilica1 nod el for tlre equality theory, i.e. we wish the existence
of a congruence Ro over 'If3 such that,

Mino Bai 15

Proposition 7.4 & s , = t , i f l [saIRo = [t,lRo tohere s, and t , are closed terms.

But this can be achieved only if the theory & ha.s a. finest congruence relation Ro. This motivates
our choice of using Horn equality clauses in our framework presented below.

A definite clause logic program P is defined t o be a finite set of definite clauses

where A is a rigid atom in Goal, i.e. not an equation, ea,ch e; is an equation and G is a goal formula
in Goal.

A Horn equality clause ta.kes one of t.wo forms

where n > 0 and all the ei's therein are equations. As usual, variables in Horn equality clauses are
implicitly universally quantified. We define a Horn clause equality theory to be a set of equality
clauses. A given consistent Horn clause equa.lity theory C defines a logic programming language
whose programs, called definite logic progrcrms, are the pairs (P , I) where P is a definite clause
logic program.

Lemma 7.5 Let 3 be a pre-interpretntion (D, .I). Tlien there exists a finest congruence over 3
generated by each consistent Horn clalrse equcrlity theory L .
Proof Consider models of & over the fra,me D , and for our purposes here, a model is a set of pairs
from D. Suppose now that I is the intersection of a set of models of C. If I is not a model itself,
then there are a clause C of the form

9 = t - 91 = 1 1 A . . . A J,, = t,,

or of the form
- ~1 = t l A - . . A .s, = t7 ,

and a n assignment into D such that I does not sa.tisfy C' under 9. Let

V q s = C, vq t = '1
V,s; = c; V,t, = d ; , i E [n] .

Then if C is of the first form then (c ; , d ;) E I for all i E [n] , while (c , d) @ I , contradicting the fact
tha t (c , d) is in the models of the set in question. If C is of the second form then (c ; , d;) E I for all
i E [n] , which is clearly impossible. The finest congruel~ce tllen is given by the intersection of all
models of &.

We thus may now write 3 / C to denote this finest congruence. In a situation where both .F
and 3 / & are being discussed. we write V for the evalua.tion function in 3 and write V' for the
evalua.tion function in FIG.

16 Proceedings of the 1992 X Prolog Workshop

Corollary 7.6 Let C be a clause o f f then C is ~~cilicl under 3/&.

As a consequence

Lemma 7.7 Let (P , &) be a definite yrogronz and A a closed atonz. Then

(P , &) A ('P, f) bFIE A for (ill pre-interpretation 3.

Proof Let F = (D, J). Then i t suffices to prove that (P , I) A (P , f) bFIR A for all R.
*) Let Ro be the finest congruence relation. For sonle R , let I be any DIR-interpretation

such that I (P ,E) , but I A. Construct the followillg DIE-model I' by defining that
It + p([dlIRo, . . , [dnjRo) iff I + l ~ ([d ~] ~ . - - . , [d l ,]R) for all predicate constant p. This is well
defined because Ro is finer than R. It is now ea.sy to see that I' I= (P , f) but I' A.

Lemma 7.8 Let (P , E) be a definite progr(inz cuzd .A (1 clo.scd atona. Then

(P , &) A P b7/f rl for (111 pre-iizterljretation 3

Proof This lemma follows from Lenlma 7.7 and C:orolla,ry 7.6.

Theorem 7.9 Let (P , E) be a clefinite 1)rogrcrnz crnd ..I a closed crtom. Then

Proof This theorem follows from Lemma. 7.8 a.ntl the fact that P is in clausal form.

We now give definitions with resl~ect. t,o a. given logic program (P , f) .
We consider the fispoint formalization of a.n intuitive semantics of our logic programs. Let 3

be a pre-interpretation (D , J). Then T(.r,E) maps fro111 ancl into DIf-interpretations and is defined
as follows: for Dlf-interpretation I ,

T (p , e) (I) = { p (a l , a,) E II(D / r) : there are a clause
y (l l , t , ,) -- el A . . . A e , A G i n P
and an assignment into D I E such that
VC,ti = a; , for i E [I ? ,] and
I 1 E I A . . . A t,, A G[p]).

Lemma 7.10 T (p F) is moi~otonic.
Proof Let Il Iz I I (D/ f) . Assunle p(a1,. - - , a,) E T (. F , E) (I l) . Then there are a clause
p(t l , . a * , t,) c el A - . A em A G E F' and an assigllliient 9 into D l & such that Vbt , = a, for i E [n]
and Il + el A A em A G [q] . So Il b G[p] and for all j E [nz], Il e,[y] . Since satisfaction
of equations does not depend on interpretations. I2 e,,[p]. for all j E [m] . And by Theorem 4.6

Iz 'F G[y] . Therefore I2 + el A . . A el,, A G'[q]. 0

We can prove following lemnla sinii1al.l as L e l ~ ~ n ~ a 4.S.

Mino Bai

Lemma 7.11 Let I & I I (D/&) . Then

Using above lemma and monotonicity of T (p 7 ~) we 11a.ve the intersection properties of models.

Lemma 7.12 Let Il and I z be DIE-nzodels of (P , E) .
Then Il n I2 also a DIE-nzodel of (P , I).

We can now establish the existence of the least, model.

Theorem 7.13 There is the least DIE-motlel of (P.2:).
Proof By above lemma the intersection of all Dl::-nlodels of (T', C) is itself a Dl&-model of (P , &),
which is obviously the least DIE-model.

Lemma 7.14 T(P ,E) is coi~tinuous.
Proof Let (I k) k be an w-chain of DIE-interpreta.t,iolls and I , = UkIk . We now need to show that

By monotonicity of T(P,c) we ha.ve

In order to establish

T (P , f) (I w) c UA-T(F,:)(IA-),

assume p(al , .-,a,) E T (P , E) (I w) . Then there are a clause l) (t l , . . . , t,) +- el A . . A em A G in P
and an assignment 9 into D l & such t11a.t Vkt i = (1; for i E [n] and I, el A . . . A em A G[p]. Then
I , + G [p] , so there is a I; E w such t11a.t Ik G[p]. And as before Ik + e j [p] for j E [m]. So
Ik el A . - A e, A G [9] . Therefore there is a. k E w such that p(a l , . ; 0 , a,) E T (p , E) (I k) .

By continuity of T (P , ~) , and Lenlma 7.11. we now have

Theorem 7.15 T b , E) (0) is the lec~,sI fix1joi1ll of T (F , f) o11(1 tht least DIE-model of (P , &).

We are now in a position to give the declara.tive sema.ntics of higher-order logic program with
equality as a natural extension of the declarative semantics of the traditional first-order logic
programs.

Theorem 7.16 There is a least HI&-naoclel M (P , ~) of (T'.::): and for all A E n (H) ,

Proceedings of the 1992 AProlog Workshop

8 General Programs

In this and following sections, we study various aspects of negation. Since only positive information
can be a logical consequence of a definite program, special rules are needed to deduce negative
information. The most important of these rules are the closed world assumption and the negation
as failure rule. Next section introduces general programs, which are programs for which the body
of a program clause can contain nega.tion symbol. The major results of this paper are soundness
theorems for the negation as failure rule and SLDNF-resolution for general programs.

The framework of definite clauses presented before allows us to obtain only "positive informa-
tion", i.e. the only goals which are logical consequences are positive. The lack of ability to obtain
"negative information" is a major dra,wback from both the theoretical and practical point of view.
In dealing with models of logic for1nula.s in general. there is duality between both t ru th values. In
practice, this duality can be extremely important, for example in database applications

There are two main approaches to this problem. The first is to extend the language of definite
clauses. For example, one fami1ia.r extension used in Prolog systems is that of clauses containing
a t least one positive literal. Known colloquially a.s "nega.tion in the body", this extends definite
clauses, which are clauses containing exa.ctly one positive literal.

The second approach is to adopt special rules or a.ssumptions wllich tell us, under given circum-
stances, when information is nega.tive. Alnongst tlie lnost pronlinent of these are the closed world
assumption and the negation as failure rule. The first states tha.t all atoms which are not logical
consequences are false. The second is implement,a.t,ioi~ dependent.; it sta.tes tl1a.t an atom is false if
all at tempts t o prove it termina.te unsuccessfully.

Our approach is a combination of both these approa.ches. Based on the concept of completed
databases and the negation as fa.ilure rule of Clark [lo] , our complete logic programs, written
(P*, C*), allow us t o have nega.tive goa,ls as logical consequences, whereas a definite clause program
(P , C) can not. From an opera,tional point of view. we a.dopt a negation as failure rule. We justify
our approach by showing that these declara.tive a,nd opera.tiona1 aspects of negation coincide.

9 Programming with the Completion

In this section, general programs are introduced. These are programs whose program clauses
may contain negation symbols in their body. Tlle completion of a program is also defined. The
completion will play an important part in tlle soundness results for the negation as failure rule and
SLDNF-resolution. The definition of a correct answer is defined for general programs.

A formal definition of coillplete logic programs requires tlie concept of unification completeness
of an equality theory.

We now define generalized unification over an equality theory LC. An I-unifier of two terms s
and t is a substitution 0 such that I + 0,s = 81. Ail important property is that two terms are
E-unifiable iff there is a closed substitution over H of the ternis such that the closed instances are
both in the same class of the finest congruence over I! generated by C .

This does not mean, however, that i f two terms are equal in another algebra modelling & then
they are I-unifiable.

Mino Bai 19

-
Let 3 = sl, - - . , s, and t = t l , . - . , t, be two sequences of terms of length n, and write 3 = 7 for

We already have, by definition, an intimate connection between truth in & and &-unification; two
sequences of terms 3 and 5 are &-unifiable iff I 1 3T(3 = 7). With negation issue a t hand, we need
a dual property; tha t is, we need to establish a rela.tionship between non-existence of &-unifiers and
falsity in I . We thus require that an equality theory dictates that equality holds only if &-unification
is possible. To express this formally, if 0 is the substitutioil

let eqn(8) denote the conjunction of equations

For each pair 8,7 of sequences we require the existence of a set l i (3 , i) , possibly empty, possibly
infinite, of C-unifiers such that if g = yl . . . -, yk are all free variables in 3 and 't then

where 3 denote existential quantifica.tioi1 of those free varia.bles in eqn(0) which are not in 8. We
adopt the convention that an empty disjunctioll is false. Thus the above expression means that
if an assignment of the free variables in terms 3 a.ud f is such that 3 = 5 is true in a model of &,
then a t least for one of the f-unifiers 0, 3eq11(0) is also true in the same model and assignment.
Consequently, whell there is no unifiers of T and i (i.e. l i(x.7) = 0), & 3 # 7.

The essence of unification completeness is t11a.t every possible solution of any given equation can
be represented by an &-unifier of the eclua.tion. Iu pasticula.r, when there are no I-unifiers, there
can be no solution.

Let 3 and 7 be two sequences of terms of equal length, and a and 0 two &-unifiers of 3 and 7.
Then we say that a is a more genenil f-unifier than 0, denoted by a 5 0 iff a is a more general
substitution than 8 is. An I-unifier a is nzazinzt~~l iff there is no &-unifier which is more general
than a.

Next we extend the definition of goa.1 formula. to t,l~a.t of general goal formula to incorporate the
negation symbol.

Definition 9.1 A genercrl goo/ for.~~lulo is tlefit~~cl i utlucti\.ely as follows:

(a) An equation of the forill s, = i,, \vl~cre .\,, . t,, E T (Y) is a general goal formula.

(b) T is a general goal formula.

(c) A11 atomic goal A is a general goal f o r ~ ~ ~ u l a .

(d) If GI and Gz are general goal formulas. tllen so are GI V Gz? G I A Gz, 3xG1 and 7G1.

20 Proceedings of the 1992 XProlog Workshop

Note that atomic goal formulas and terms s,, t , in equation s, = t , do not contain symbols = and
1.

We shall use the following abbrevia.tions:

1. VxG for 1 3 x l G

2. G I > G2 for (- G I) V G2

3. s # t for l (s = t) .

Definition 9.2 A general progr(i~n C . / (I Z I P ~ is a cla.tise of tlie for111

where A is a rigid atoll1 and G is a general goal formula. We call A the head of clause and G the
body of clause.

In 1191 normaj programs in first-order logic are defined. These are programs whose program
clauses my contain negative "literals" in their body. In higher-order logic, however, normal pro-
grams are meaningless; if atom of a negative literal is flexible then by substituting a term for the
head predicate variable of the atom we have a general negative goal formula which is not literal. For
example, let -Pa be a negative literal where P is a predicate variable. By applying the substitution
[Ax . px V q x / P] t o this literal we obtain a negative goal formula pa V qa) which is not a literal.

Example 9.3 The well-ordered predica,te ,1170 can be defined a.s follows.

wo(X) +- V Z (Z S A nonentl) ly(Z) 3 haslectstelement(Z))
,nonempty(Z) - 3 U (Z (l i))
hasleastele~-rzent(Z) - 31r(Z(1T) A V l , ' (Z (I ') > ZJ 5 V))
-x G I' - V Z (* Y (Z) 3 1 7 (Z))

The increased expressiveness of progra.ms ant1 goa.ls is useful for expert systems, deductive
database systems, and general purpose progra.nzming a.pplications. In expert systems, it allows the
statement of rules in the knowledge ba.sC in a forrr-I closer to a. na.t,ura.l language statement, such as
would be provided by a human expert. This ma.kes i t . ea.sier to u~lders ta~ld the knowledge base. 111
general purpose progra.mming, a,pplicat,ions like t,lle a.bove exa.mple occur often. If this increased
expressiveness is not available it is only possible to express such statement rather obscurely.

Definition 9.4 The definition of a predicate constant p E I1 in general program P is the set of all
program clauses in P which ha.ve p as top level synil)ol of tlieil. heads.

Mino Bai

Every definite program is a general program, but not conversely.
In order t o justify the use of the negation as failure rule, Clark[lO] introduced the idea of

completion of a general program. We next give the definition of the completion.
Let p(t l , . . , t,) c G be a, pr0gra.m cla.use ill a. general pr0gra.m P. The first step is t o transform

the given clause into
p(x1,. . . , 2,) + 21 = i l A . . . A zn = t , A G

where 21,. - a , x, are variables not appea.ring in the cla.use. Then if yl, - , y, are the free variables
of the original clause, we transform this into

Now suppose this transformation is ma.de for each cla.use in the definition of p. Then we obtain
k 2 1 transformed forrnulas of the forin

l j (X l : * . , : C , ,) - Ek

where each Ei has the general form

and is still a general goal formula. The conzpleted (Lefirzition of 11 is then the formula

Note that El V . - . V Ek is also a general goal formula. Some predicate constants in the program
may not appear as top level symbol in the head of any program clause. For each such predicate
constailt q, we explicitly add the clause

This is the definition of such q give11 explicitly by t.lre program. We also call this clause the completed
definition of such q.

Definition 9.5 An augnzented general logic progrnna T" corre.sljoizding to program P is a collection
of completed definitions of predicate constant5 in T'.

In the classical first-order case we form the completion c o m p (P) of a program P by taking
P*, the augmented logic program corresponding to program T', and adding the axioms of Clark's
equatioi~al theory C*. These axioms. asserting that two terms are equal iff they are unifiable, give
a unification complete equality theory. corresl)ontling i n a natural way to the standard equality
theory C consisting of the axioms of identity. Tlius. for equation e we have C* + e iff C e . In
general there is no unique way of estending an c.cluality theory cC to a unification complete one &*

22 Proceedings of the 1992 XProlog Workshop

having this relation to i t so we can no longer speak of the completion of a program P with equality
theory & but must as in [16] consider a pair (P*, C*) where P* is an augmented general program
corresponding t o program P and &* some unificatio~l complete equality theory. (If P is thought of
as having some underlying equality theory C, then we would require &* e iff & e , but since
this does not specify I* completely it is presuma.bly I* which is directly given.) iFrom now on we
always use (P*, &*) in this sense.

Definition 9.6 For a given set C of constants and equality theory I , the &-unification problem in
the language L (C) is t o decide, for arbitrary terms s, t E T (C) , whether the set U(s, t) of &-unifiers
of s and t is non-empty. The nth-order f-unification problem is the &-unification problem for an
arbitrary language of order n. If an equa.tiona1 theory cC does not contain other equational clause
than the axioms of identity then we write C for l and write just unifier or unification for C*-unifier
or C*-unification respectively.

For example, the first-order unification problem is known to be decidable. Unfortunately, this
does not hold for higher-orders or under genera.1 equality theory.

Theorem 9.7 The second-order unifictrtiori ~) ~ . o b l c i i ~ i.s zrizdccidable.

This result was shown by Goldfa.rb[lS] using a. reduction fro111 Hilbert's Tenth problem. This
result shows that there are second-order (a n d therefore a.rbitrarily higher-order) languages where
unification is undecidable.

Besides undecidability of I-unifica.tion, anot,ller problem is that mgu's may no longer exists, a
result first shown in [14].

Example 9.8 The two terms F (n) a.nd (1 have t,he unifiers [XxnlF] and [XxxlF], but there is no
unifier more general than both of these.

This leads us to extend the noti011 of a. mgu to the l-unification case by considering complete
set of &-unifiers.

Definition 9.9 Given two sequences of terms, 3 and 7, a,nd a, finite set W of variables, a set S of
substitutions is a complete set of C-rrnifier.5 o f 7 a1tcl7 cruwy from TV (which we shall abbreviate by
CSU(s,7)[W]) iff

1. For all a E S , Donz(a) C FL7(3,i) and I n t r (a) fl (I-T7 U Donz(a)) = 0.

3. For every 8 E U(S,?), there exists solne o E .I;' such t.11a.t a _< B[FV(S,I)].

When W is not significant, we drop the notation [I I -1 .

Example 9.10 The following set C' of equality theory is corresponding t o the equality theory C
and C* is unificatioil complete. All terms appearing in C' are in 71-espanded form.

Mino Bai

1. A T . l2? # t where the term t is rigid and F E F V (t) .

2. A T . f (3) # AT - g(i) where f and y are two different constants.

3. A T . xi(8) # A T . xj(7) where ?i! is a list of varia.bles of length k and i, j E [k] such that i # j.

4. s; # t; -+ A T . f (~) # AT. f (T) where 3 and 7 are two lists of terms of same length n and i E [n]
and f is a constant.

5. s; # t; -, AT xj(B) # A T xj(7) where S and 7 are two lists of terms of same length n and
i E [n] and Z is alist of variables of length k and j E [k].

As usual the free variables in equality clause are implicitly nniversally quantified. Note that a naive
extensioll of Clark's equality theory to higher-order equa.lity theory does not work. For example
clause 1 corresponds to cla.use 4 of Clark's equality tlleory presented in page 79 of [19]. These
clauses are needed because of occur check in unifica.tion algorithms. But in higher-order case the
two non-convertible terms X and Fat- are unifiable. since there is a unifier [A y . y / F] . Note also
that both of these terms are flexible. If one of the t,wo t.erms is rigid then the occur check will also
work for higher-order unification.

To address the operatioilal seinailtics of complete logic programs, we return to general logic
programs. Corresponding to each (T", I*). we obtain a logic program (P , I) as follows. All that
we require of the desired & is that it shares with I' tlre same finest C-congruence. There can be
many ways of defining such, e.g., f = { E : 6 is a closed equatioil over H and &* + e) .

The general logic program P we obtain fro111 P* is defined as follows. For each predicate
definition of type (1) in F*, obtain k definite clauses where k is the number of disjunctions in the
definition body. Then if

3y1 . - - 3 y , (x 1 = i 1 A A x,, = t, A G) (3)

is one such disjunct, obtain the corresponding general clause

Note that we do not construct ally general clauses from predicate definitions of type (2) in P*.
Thus we defined (P , &) corresponding to (P' . K*).

10 Semantics for general programs

In general progra.ms, we lrave to interpret the l~cgatiol~ syl11l)ol to give the definition of satisfaction.

Def ini t ion 10.1 Let M = (D. I) be an interpretation of L. (3 an assignment into M. When F is
a formula in C, we write M + F [p] to say that .itl satisfies F with respect to 9. For all general
goal formulas G , GI, G2, for each rigid atoin .-l.

1. W h e n s , , t , ~ T (X) , , M + s o = t,[p]iffV,ai, = V q t , ,
M I= s, r t,[(3] iff e1 (Vcs ir) = er(Vql i ,).

24 Proceedings of the 1992 X Prolog Workshop

3. M ,L p(tl, . - , tn)[y] iff (V,tl,. . . , V,t,) E I p if 1, is a. constant
or (V,tl,.-.,V,tn) E 9 o er(p) if p is a variable

4. M i= GI v Gz[v] iff M k G~[c l] or M b G ~ [Y]

5 . M + G1 A G&] iff M i= Gl[y] and M I= Gz[Y]

6. M 32,G iff there is a d E D, such that M G[y[d/z,]]

7. M k lG1 [v] iff M k [ill.

We write M F t o say that a forillula F is 11rrlid in JW if M t= F[p] for all assignments y into
M. Given a general program P , we say that .A4 is a naoclel or D-nzodel for P, and write M b P,
if each general clause in P is valid in ibf. Given a closed goal formula G, we say that G is a logical
consequence of P , and write T' + G' if G' is valid in all illotlels of T'.

Lemma 10.2 Let P be a general program. Then P is (1 logical consequence of P*.
Proof Let (D, J) be a genera.1 pre-interpret,a.tiol~ ant1 I a D-interpretation such that I is a model
for P*. We want t o show that I is also a illode1 for P. Let p(t l , . - . , t,) + G be a general clause in
P whose free variables are yl,. . ., y,, , a.nd p be an assignment into D such that I + G[y] . Assume
V,t; = d; for i E [n]. We need to show that y(r l l , - . + , d , ,) E I .

Consider the completed definitio~l of 11

and suppose E; is

3yl - . .3y,,(:cl = A . . . A X,, = t , A G').

Let the assignment 9' into D be (p[rll/xl] . .[rl,/.z.,,]). Then for each i E [n], V,,ti = d; and
I \ G [y f] , since xj's do not occur in G'. Therefore

I t= ~1 = I 1 A . . . A . I . , , = I , , A G[p']

and p (d l , . . , d,) E I . o

We can define T operator as in Section 7. Kote that T operator for general program is generally
not monotonic. For example, if P is tlre prograni

then T(P,E) is not monotonic. However, if 7' is a tlefii~ite program, then it is monotonic.

Mino Bai 25

Lemma 10.3 Let P be a general program and I be n DIE-interpretation. Then I is a model for

(R E) iff T (P , &) (I) C I .
Proof +) Assume p(dl, - - . , d,) E T (P , ~) (I) for some p(dl, . - , d,) E II(D/&). Then there are an
assignment cp into D l & and a clause p(t1, . - ., t,) -- G E P such that V,t; = d; for all i E [n] and
I G[Y]. Then since I P, I p(tl , . . , tn)[p]. Therefore p(dl, . . . , d,) E I.
e) Similarly.

Since model intersection property is closely rela.ted with monotonicity, model intersection prop-
erty does not hold as following example shows.

Example 10.4 Let P be the prograill

Then {p, q} and {p, r} are models of P. But their intersection { p } is not a model of P .

The next result shows that fixpoints of T(T,:-) give illodels for (P* , I).

Lemma 10.5 Let I be a DIE-interpretcitioiz The12
I is a fixpoint of T(P,E) iff I is a moclel for (P* , E).
Proof Let p E II and recall that there is only one definition of 1) in P * . If it is of the form (I) , i.e.,

then this definition is satisfied by I iff for all a.ssignment p int,o DIE where px; = d;, i E [n],

p(dl,. . . , d,) E I for some E;.

V',t, = (1,: j E [~ r] and I G[p] Y .

Since for each E; there is a definite clause about 1) in F and vice versa, this is the same as

p(d l , . . . ,dn) E I p (d 1 : . . .d , ,) E T(T , r , (I) for all p (d l , . . . , d n) E II(D/E)

If, however, the definition of p is of the forni (2) .

7p(Z) is sa.tisfied by I p (J) # I for all 2 E DIE.

By definition of T(P,E), we have for each such 1, tha t for all DIE-interpretations I and all ;i E Dl&,

l) (a !2 T(F.:-)(J)

Hence (P* , &) is satisfied by I iff T(F.:-)(I) = I.

Proceedings of the 1992 XProlog Workshop

11 (F , 8)-derivat ion

In this and next sections we describe a mechanisn~ t11a.t determines whether the existential closure
of a goal formula is a logical consequence of a set of program clauses. We would like t o describe
a procedure tha t conducts a search for an appropria.te derivation sequence that is directed in a
sense by the given goal formula. We ca,ll this procedure a (P , &)-derivation. (P , &)-derivation may
be looked upon as a generalization to higher-order context of the notion of (P , &)-derivations that
were introduced in [16, 171, and are prevalent in most discussions of first-order logic programs with
equality as the extension of SLD-derivations.

Let the symbols 6 , C and 8, perhaps with subscripts, denote sets of general goal formulas,
general program clauses, and substitutions. respectively. Let us call a finite set of general goal
formulas a goal set. We then define the rela,tion of 1)eing "(P, C)-derived from" between triples of
the form (6 , C, 8) that is basic to the definit,ion of a (F , C)-deriva.tion in the following manner.

Definition 11.1 Let P be a progra.111. We sa.y a triple (G2. C2, 62) is (P , C)-derived from the triple
(GI, C1, 81) if one of the following situations holds:

1. (Goal reduction step) 82 = E and there is a. goa.1 formula G in goal set 61 such that

(a) G is T and G2 = GI - {G'), or

(b) G is G' A G2 and G2 = (GI - {G)) U {GI. G2) , or

(c) G is GI V G2 and, for .i E [2], G2 = (GI - {G)) U {Gi), or

(d) G is 3x,G1 and for new va.riable y, E A, to goal set G1 it is the case that 6 2 =
(61 - {GI) u { [~ a l x a I G * 1.

2. (Backchaining step) Let G' be a rigid atoll1 in goal set such that C2 is a variant A c G' of
a clause in P with no variables in conlmon wit li t l~ose in GI and 82 is an &-unifier of A and
G , and G2 = e2((G1 - {G')) U {GI}).

3. Let G be a n equation e in goal set GI such that there is a.n C-unifier 8 of equation e. Then O2
be an &-unifier equation e \vliich is more genera.1 tl1a.n I I . And G2.= 8z(Gl - {e)).

In each of the above steps the goal formula G is called the selected goal in the goal set GI. 0

Definition 11.2 Let 6 be a goal set. Tllell we say that a (finite or infinite) sequence

is a (P , &)-derivation sequence for. G just in case (7" = 6;. do = E , and for each i, (G;+l, C;+l, is
(P , &)-derived from (G;, Ci, 8;).

We now introduce the concept of a, selection rule. which is used to select goals in a (P , f) -
derivation.

Definition 11.3 A selectioiz rule is a function fro111 a set of goal sets to a set of goals such that
the value of the function for a goal set is a goal. calletl the selected gocll in that goal set. 0

Mino Bai 27

Definition 11.4 A (P , &)-derivation sequence (G;, C;, 0;)0si5n terminates, i.e. is not contained in
a longer sequence, if there is no triple (Gn+l, Cn+l, &+I) which can be (P , &)-derived from. If Gn
is empty, or consists solely of flexible a.toms, we say that i t is a successfully terminated sequence.

Note that if there are any goal formula~s in G,, then they are of the form

where P is a variable whose type is of the form 01, . , a, -. o. Let FP(Gn) be the set of such
predicate variable P in (7,. Note that if Gn is empty then so is FP(6,) and for any substitution 8,
8 f FP(G,) is an identity substitution.

Definition 11.5 A (P,I)-derivation is fil.ir if i t is either terminated, or for every goal G in the
derivation, (some further instantia.ted version of) G' is selected within a finite steps.

Definition 11.6 A selection rule R is f (~ i r . if every (T'. I)-deriva.tion using R is fair.

For each predicate type x we define the wft E,

where x; is a variable of type a.i for i E [n]. And we define a generalized substitution

O = {(y,, E,) : K is a predica.te type and y, E 4,).

Definition 11.7 A (P , &) derivation sequence ($7i,Ci,B.i)oji5,, for G that is a successfully termi-
nated sequence is called a (P , C)-derivation of $7 and

is called its answer substitutio~z. If 5' = {C;) then \jTe also say that the sequence is a (P , I)-derivation
of G.

The following defines the success, finite failure, arid general failure sets, denoted by SS(P, f),
F F (P , &), and G F (P , I) respectively for a given logic program (P , I) .

S S (P , &) = {p(3) E n (H) :there exists a, successful
(P , C)-deriva.tion sequence of p(3))

F F (P , I) = (p(8) E n (H) : for any fa.ir selection rule,
there exists a, number n such that all (P , f)-derivation
sequences of 143) a.re finit,ely failed with length < n)

G F (P , I) = {p(s) E I I (H) : for any fair selection rule,
all (P , E)-deriva.tion sequences of p(3) are finitely failed)

General failure is, in general, different from finite failure because there can be a closed atom
which does not have an infinite derivation sequence a.nd yet there is no number n such that all
derivation sequences of this atom a.re finitely fa,iled ~vi th lengtli 5 n. This possibility arises because
L can be such that there is an infinite set of nlasiilia.lly genera,l L-unifiers for some pair of terms s

and t .

2 8 Proceedings of the 1992 X Prolog Workshop

Example 11.8 Let & = { f (x, f (y, z)) = f (f (x, y). z)) , the theory of an associative function.
Noting that the equation f (y ,a) = f (a , y) has an infinite number of maximally general I-unifiers

the program P

is such that F F (P , I) # GF('P, I) . This is easily verified by considering the initial goal p(a). So

However, if I is such that for all pa.irs of terms .$ and t , there is a finite set of maximally general
unifiers which subsun~es all the C-unifiers of .s and 1 , then FF(T ' ,E) . i s identical to G F (P , I) . In
higher-order case even for the equality tlreory C there are solile pair of terms s and t for which
there is no finite set of maximally genera.] unifiers. So in general F F (P , I) # G F (P , f).

Example 11.9 Let the program (T' , C*) be such tl1a.t 7' consists of the following clauses

The unifiers of the equation F (f (a)) = f (F (c r)) are

[X y - f " y) / ~] , f o r k E w.

12 SLDNF-resolution with Equality

In this section we define an appropriate version of SLDKF-resolution for higher-order general pro-
grams and goals with equality theory and prove. in nest section, for it the analogue of Clark's
fundamental theorem[lO], that if a goal succeetls it is a coilsequence of the completion of the pro-
gram, and if i t fails then its negation is a. consequence. I t is t,o be expected that most of the other
properties of SLDNF-resolution could he]~~.ove<l ill this more general context, but tile results are of

Mino Bai 31

(b) G, is a closed negated goal l G 1 aad there is an SLDNF-refutation of rank < v of {G1},
or

(c) G, is an equation e and e has no &*-unifier.

(d) G, is an inequation s # t where I* /= a = 1.

Note that an SLDNF-refutation (respectively, generally failed SLDNF- tree) of rank v is also an
SLDNF-refutation (respectively, generally failed SLDNF-tree) of rank p , for all p 2 v.

Definition 12.2 Let (P , l *) be a general program and G a general goal formula. An SLDNF-
refutationof(P,&*)~{G)isanSLDNF-refutationfor(P,E*)kl{G)ofrankv,forsomev.

Definition 12.3 Let (P , E *) be a, general 1)rogra.m a.nd G' a general goal formula. A generally
failed SLDNF-tree for (P,cC*) kl {G} is a generally fa.iled SLDNF-tree for (P , E *) kl {G) of rank v,
for some v.

If a goal set contains only flesible atoms and 11ega.ted at.oms which are not closed, then no goal
is available for selection. We now formalize this notion. By conzp~~tation of (P , &*) {G), we mean
an at tempt to construct an SLDNF-derivation of ('P . C *) M {G).

Definition 12.4 Let (P , & *) be a general progralu a.nd cj is a general goal set. We say a com-
putation of (P , &*) kl G flounders if a.t some poilit in the colllputa,tion a goal set is reached which
contains only flexible atoms and nega.ted a.toms which are not closed.

In 2.(a) of the definition of SLDNF-refutation, the transformations for negated formulas have
been presented t o try to overcome the limitations of the negation as failure rule. For example,
without 2.(a).iii), the computation of (P , E*) td { l l G } can flounder if G contains any free variables.
This problem disappears once the goal is transformed to G. Similar problems are overcome by
2.(a).i), and ii).

Now tha t we have given the definition of computed answer, we consider the procedure a logic
programming system might use to compute answers. The basic idea is to use (P,&*)-derivation,
augmented by the negation as failure rule. Lf'lien a non-negative goal is selected, we use essentially
(P,&*)-derivation t o derive a new goal set. However, when closed negative goal is selected, the
goal answering process is entered recursively in order t o try to establish the negative subgoal. We
can regard these negative subgoals as separate I ~ I ~ I ~ (L S . \vllich must be established to compute
the result. Having selected a closed negative goal 4' in some goal set, an at tempt is made to
construct a generally failed SLDNF-tree with root {G) before continuing with the remainder of
the computation. If such a generally failed tree is constlucted, then subgoal set {YG) succeeds.
Otherwise, if an SLDNF-refutation is found for { G) , then the subgoal set { l G } fails. Note that
bindings are only made by successful calls of po5itive rigid atoms. Negative calls never create
bindings; they only succeed or fail. Thus llegatjoll a, failure is purely a test.

Example 12.5 Let P consist of the following cla.uses

:c E y - Vt l (n. (t l) > y((1))

~ ((1) - T

q(c1) - T

q(b) - T

Proceedings of the 1992 XProlog Workshop

which succeeds since the final goal is an abbreviation of closed goal 1 3 u l (l p (u) V q(u)) and we can
build a failed SLDNF-tree for 3 u l (l p (u) V q(u)) .

A failed SLDNF-tree for (F , C *) kJ {q C 1)) is

which is failed, since the final goa.1 is an abbreviation for 1 3 u l (l q (u) V p(u)) and there is an
SLDNF-refutation for (P,C*) U {3u1(lq (z l) V p (u)) }

which succeeds because of the failed tree.

14 1

13 Soundness of SLDNF-derivation with Equality

Let G be a general goal set {GI, a , G,,) which occurs in a place where normally a formula can
do. Then by G we mean the conjunction GI A . - . A C;,,. .And we adopt the convention that empty
conjunction is true.

Theorem 13.1 If T' is a genercrl pr,ogrclnz. t:' (1 1rri~7'Jicrrtio1~ conzplete equality theory and 6 is a
general goal set, then for all ordirzcrl.~ I /

Mino Bai

(a) if (P , &*) kj G has a yeneradly fuiletl SLDATF-tree of rcrzk v then (P*, E*) + 4.

(b) if (P , &*) G has a72 SLDNF-refiitc~tio~z oj rt1,nX: v tllitll answer 0 then (P*, &*))= 06.

Proof We prove these simultaneously by induction on u.

(a) We prove the contrapositive, that if there is a HIE*-model I for (P* , &*) in which 3(G) is true,
then (P , &*) kj {G} cannot have a generally failed tree of rank v.

We do this by showing that if an existential closure of a node goal set G in such a tree is true in
I then so is for some successor node goal set G', which implies the existence of an infinite branch,
contrary to the definitions of generally failed tree. Note that an existential closure of a goal set
{GI, . . -, G,} is true in I means there is some assign~nent 9 into HIE* such that

So there is an assig~lmeltt 9 such t11a.t for ea.clt goal G, in the goal set,

If the selected goal G, in the node goa.1 set I7 is G1 G' then by hypothesis G1 and G2 are
true in I. So there is a unique child goal set G'

all goals of which are true in I.
If tlte selected goal G, in tlte node goal set g; is G1 V G2 then by hypothesis G' is true in I for

some i E [2]. So there is a child goal set L,j'

all goals of which are true in I.
If the selected goal G, is 3yG1, the11 by liypot,hesis G1 is true in I under assignment ~ [d l y] for

some d E HI&*. There is a unique clliltl goal set I;'

where z is a new variable to G . So all of goals in G' a,re true ilt I uitder assignment ~ [d l t] .
If the selected goal G,, i11 the node goa.1 set C; is 1(G1 A G2) then there is a unique child goal

set (7
(G - {+I A G2)}) u {(-GI) v (1 ~ ~))

all of whose goals are true in I under p, since (1G") V (7G2) is implied by y(G1 A G2).
If the selected goal G, is 7(G1 V G2) or l l G 1 , then the proofs are similar to above case.
If the selected goal G, in the node goal set I7 is a negated closed goal 1G1 then by hypothesis

G1 is false in I, so by (b) of induction 11yl)othesis {GI) cannot have refutation of rank < v, so this
cannot be a leaf node. So there is a uniclue child goal set which simply omits 7G1 and is also true
in I.

Proceedings of the 1992 XProlog Workshop

If the selected g o d is an equation s = t then, since this is true in I under assignment cp, and &*
is unification complete, there is some I*-unifier 0 of s and t such that 3xeqn(8) is true under the
assignment where are the variables in 0 not in s or 2 . Clearly these variables may be chosen - -
different from Z so that eqn(0) is true in I under assignment cp[d/h] for some 2 E H / E * . Now
eqn(8) implies

z = O x , for each vaxiahle z ,

hence
F * OF, for ea.c11 formula F.

So all the goals in
H (< ; - { .5 = 1))

are true in I under pv/E]. The given notie has a cl~iltl goal set. G'

1 7 @ (i t - {a = t))

for some 8' more general than 0 , i.e. sue11 tha t there is a, substitution a satisfying

Now if a F is t rue for some assignnlent $! then F is true for some variable assignment (viz. the
assignment a o VL). So all of goals in O'(G - {,< = t)) are true in I under some variable assignment.

If the selected goal is an inequa.tion s # f then since this is true in I under variable assignment
cp the node cannot be a leaf node, since that requires C* + s = i. So it has a unique child goal set
G '

r; - {s # 2)

all of goals of which are also true in I under va.ria.ble a.ssignment p.
The last and main case is where the selected goal G,, is a rigid atom ~ (3) . The completed

definition of the predicate 11 in P* is of t,he form

where each Ei is of the form
37(s = i A G)

correspondillg t o a program clause
1 ~ (7) - (;

where 7 are new variables not occurring in a.ny sucli clause, a.nd 5 are the free variables of the
clause. It is easily seen that the same completed definition of p is obtained whatever variants of
the program clauses are used, so we nlay a.ssume that the same variants are used as are chosen
in verifying the definition of generally failed SLDNF-tree at this node so that the variables 7 are
distinct from the variables T. Since y(X) is true i l l I under p one of the formulas

Mino Bai

must be true, i.e. since the variables 7 are distinct from the variables z,

is true in I under a variable assignment '3[;i/y] for some 2 E H I C * . Since &* is unification complete,
3 = 7 implies the existence of some $*-unifier 8 of s and t , As above this implies

is true in I under a variable a.ssignment p[;i/jj][~/%] where % are new variables of 6 (chosen distinct
from z ,~) . Now by the definition of generally fa.iled tree? since 0 unifies p(3) and p(7) there must
be an &*-unifier 8' of p(S) and p(T) ant1 a sul~stit~ut~ion a such t11a.t f* /= 8 = 8' o a and a child goal
set

of ((< ; - {],(7)}) u {GI).

As in the last case, all these goals are true in I for some varia.ble a.ssignrnent.
(b) This is proved by induction on the lengt,Il 1 of the refuta.tion.
I is zero. Then G is empty or consists only of flesible a.torns. If G is empty, i.e. true, then

(P*, E*) + G. If G consists only of flexible atoms. then HG is of the form T A . . A T. So obviously
(P*, E *) + 6G.

For the inductive step suppose 1 > 0 and C;,, is the first selected goal in the node goal set
Go = G.

If G, is of the form G1 A G2, then H I is the identity substitution E and the unique child goal
set GI is

(Go - {G1 A G2}) u {GI. G2}.

By induction hypothesis on 1

Since 61 {GI, G2) implies Q1{G1 A G*}? SO

If G, is of the form G" V G2, then 0 , is the itlentit. substitution E and next goal set GI is

for some i E [2]. By induction hypot,hesis on I

Since O1 {Gi} implies 81 {G1 v G'}, so

36 Proceedings of the 1992 XProlog Workshop

If G, is of the form 3yG1, then dl is the identity substitution E and the unique child goal set
GI is

(Go - {3yG1)) u {[zly1G1)

where z is a new variable t o Go. By induction hypothesis on 1

Since 81 { [z / y]G1} implies dl (3 yG1), so

(P*, I*) I= (81 0 - 0 01 0 (O 1 FP(Gl)))Go.

If G, is a rigid atom then there is a variant .4 - G of a program clause and &*-unifier el of
G, and A, and the next goal set GI is

By induction hypothesis on 1

But
P* I= (01 o . - . o H / o (O [F P (G l))) (A - G)

and
En 1 0, GYIL - 0] -4,

as required.
If G, is an equation s = t then the nest, goal set (T1 is

where is a n C*-unifier of s and t . By induction hypotliesis on 1

Since f* I= Bls = Bit, it follows t11a.t

(P*. E*) I= (H I 0 . . . o H I 0 (O I FP(G/)))Go

as required.
If G, is an inequa.tion s # 2 . then the liest goal set is

Mino Bai

where Bls and Bit are not £*-unifiable, i.e.

E* B1s # Olt

since I* is unification complete. So

(P*, f*) (81 0 . , .O 01 0 (0 T FP(G1)))Go

as required.
If G, is of the form 7(G1 A G2), then O1 is the identity substitution E and the unique child goal

set G1 is
(Go - { l (G" A G ') }) U ((1~ ') V (1~')).

By induction hypothesis on 1

Since 81 ((-GI) V (l G 2)) inlplies 01(7(G1 A G 2)) , so

(F * , E *) (6, 0 . . - 0 Hi 0 (O 1 FP(Gi)))GO.

If G, is i (G 1 V G2) or 14'' t.hen the proofs a r c similar to the above case.
If G, is a. closed negated goal 7G1 t,llen t.l~ere is a generally hiled SLDNF-tree of rank < v for

(P, C*) ttl {GI} and the nest goal set GI is

So by (a) of induction hypothesis on z/

(P = . f W) + l G 1 .

By illduction hypothesis on 1

Since B1 is the identity substitution E we obtain

a.s required.

14 Conclusion

We have built model theoretic semant,ics for higher-order logic programming languages and estab-
lished the least model and least fixpoint sen~ilnt,ics for such languages. T w o major relevant aspects
of classical first-order logic ha.ve been il~otlel rhe01.y il .11~1 proof theory; model theory corresponds to

38 Proceedings of tlie 1992 XProlog Workshop

specification and declarative notions, proof theory corresponds to operational semantics and imple-
mentations. A proof theoretic characterization of higher-order logic programming is well developed
in [26, 24, 281; this characterization is based on the principle that the meaning of a logic program,
provided by provability in a logical system, should coincide with its operational meaning, pro-
vided by interpreting logical connectives as simple and fixed search instructions. The operational
semantics is formalized by the identifica.tion of a. c1a.s~ of cut-free proofs called uniform proofs.

Even though Miller[25] worried about "unquestioned" use of model theory, we believe that model
theoretic development for higher-order logic programming is essential; the existence of a declarative
definition provides an important yardstick a.gainst \vl~icll the correctness of an implementation can
be measured, for example, without i t , we would not be able t o even state the soundness and
completeness theorems. This situation is even more amplified when the soundness of negation as
failure is needed t o be justified; in order to assess the proof theoretic power of completions, in
contrast t o the case of models of definite progra.ms. it is not sufficient to restrict here attention to
Herbrand models. I t is necessary to consider arbitrary models.

There is a well-known philosopl~ical problem [12]; a knowledge and belief operator such as
knows creates an opaque contest and disallows sul~stitut,ion of equals by equals in an opaque
contest. Our logic programming 1a.nguagt.s a.lso crea.te a simi1a.r problein; i.e. since they include the
propositional type in its primitive set of types, they allow such opaque contexts. This situation can
be paraphrased, in our own terms, as: estensiona.1 itlent,ity of arguments does not imply extensional
identity of applications of such a.rguments t,o a.n opaque opera.t.or. To solve this problem the
researchers in Artificial Intelligence proposetl t,o view a concepts as an object of discourse in logic
[21]. In this paper we also take the sirni1a.r position: we a.rgue that intentions rather than extensions
should be main objects of domain of discourse in higher-order logic programming.

We showed that higher-order logic progra.mrning possesses the unique semantic properties of
first-order logic programming such as the lea.st, model a,nd lea,st fixpoint semantics, finite failure
and negation as failure.

The work of this paper has, thus. a.chieved a la.rge part of its original objective, namely that
of developing a model tlzeoretic sema.ntics for l~igher-order logic progranlming languages that has
been proved t o be so successful for first-order logic progra.~liming.

15 Acknowledgements

We wish t o thank Prof. Sancllis for pointing out a serious error in the previous version of this paper.
We also would like t o thank Prof. Dale Miller for t,he encoura.gements and helpful suggestions.

References

[I] James H . Andrews. Predicates as parameters in logic programming: A set-theoretic basis. In
P. Schroeder-Heister, editor. Exlr 12nior1.k (,I Logic Proyr.crmrnirzg, pages 31-47, 1989.

[2] Peter B. Andrews. Resolutioli in type theory. Thc .Jo~rr~~ic~l of Synzbolic Logic, 36(3):414-432,
1971.

Mino Bai 3 9

[3] Peter B. Andrews. General nlodels a,nd extensionality. The Journal of Symbolic Logic,
37(2):395-397, 1972.

[4] Peter B. Andrews. General models, descriptions. and choice in type theory. The Journal of
Symbolic Logic, 37(2):385-394, 1972.

[5] Peter B. Andrews. An Introcluctio7z to hf(lthenzatica1 Logic and Type Theory: To Truth through
Proof. Academic Press, 1986.

[6] Mino Bai. General model theoretic sema.ntics for higher-order horn logic programming. In
Andrei Voronkov, editor, Logic Prog~nxr7zing (IIZCI Automated Reasoning: Proceedings of Inter-
national Conference LPAR'92, St. Petcr:?bur.g. Rtrs.r;i(~. pa.ges 320-331. Springer-Verlag, July
1992.

[7] H. P. Bare~tdregt. Tht Lnmbcln C'crlccrlu.~. Kort 11-IIolland. 1984.

[8] Weidong Chen, Kichael IGfer, and Davit1 S. IVarren. Hilog: A first-order semantics for higher-
order logic programming constructs. In E\ving L. Lusk and Ross A. Overbeek, editors, Logic
Programming Proceedings of iIiorth ilnicricnn Cbrzfercnce, pages 1090-1114, 1989.

[9] Alonzo Church. A formula.tioil of simple theory of types. The Journal of Symbolic Logic,
5:56-68, 1940.

[lo] I<. L. Clark. Negation as failure. In 11. C;a.lla.ire aad J . Minker, editors, Logic and Databases,
pages 293-322. Plenum Press, 197s.

[l 11 D. DeGroot and G . Lindstrom, editors. Logir P~~ogmnznzirzg: Relations, functions and Equa-
tions. Prentice Hall, 1986.

[12] David R. Dowty, Robert E. CZ1all. and S t a n l ~ y I'eters. Intr~ocluctiort to Montague Semantics.
D. Reidel Publishing Company, 1981.

[I31 W. Goldfarb. The undecida.bility of the secoild-order unification problem. Theoretical Com-
puter Science, 13(2):225-230, 1981.

[14] W.E. Gould. A Matching Procedure for Onzcgtr-Orricr. Logic. PhD thesis, Princeton University,
1966.

[15] Leon IIenkin. Completeness of the t,lleory of types. The Jotrrnal of Symbolic Logic, 15531-91,
1950.

[16] J. Jaffar, J-L. Lassez, and M. J . Maher. A theory of complete logic programs with equality. J .
Logic Programming, pages 211-223, 1984.

[17] J. Jaffar, J-L. Lassez, and M. J . hlaher. Logic p~.ogramming language scheme. In D. DeGroot
and G.Lindstrom, editors. Logzc Pr~ogrnr)~i~tir~g: Rr Icrlioi~.~. firnctions and Equations, pages 441.-
467. 1986.

40 Proceedings o f the 1992 XProlog Workshop

[18] H. Kirchner and W. Wechler, editors. Algebrcric ctnd Logic Programming. Springer-Verlag,
1990.

[19] John W. Lloyd. Foundations of Logic Progrcr~~znzirzg. Springer-Verlag, 1987.

[20] Donald W. Loveland. Automated Theorenz Prozling: A Logical Basis. North-Holland, 1978.

[21] John McCarthy and P. J. Hayes. Some philosophical problems from the viewpoint of artificial
intelligence. Machine Intelligence, 4:463-502, 1969.

[22] Dale A. Miller. Proofs in higher-order logic. PliD thesis, Carnegie-Mellon University, 1983,

[23] Dale A. Miller. A compact reprcsentatiol~ of ~)l.oofs. .S'f~idzo Logica, 46(4):347-370, 1987.

[24] Dale A. Miller. Abstractions in logic progra~n~ning. I11 Peirgiorgio Odifreddi, editor, Logic and
Computer Science, pages 329 - 3.59. Acatleluic Press, 1990.

[25] Dale A. Miller. Proof theory as an alternative to rriodel theory. Newsletter of the Associatiorz
for Logic Progranznzing, 4(3):2-3, 199 1.

[26] Dale A. Miller, Gopalan Na.da.tl~ur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a
founda.tion for logic progra,mming. Technical report, University of Pennsylvania, 1989.

[27] Dale A. Miller, Gopalan Na.da,thur, Frank Pfenning. a.nd Andre Scedrov. Uniform proofs as a
foundation for logic programming. Aizrzals of Pwre and Applied Logic, 51:125-157, 1991.

[28] Gopalan Nadathur. A higher-order logic (1 Ihe 6(1si.~ for logic progra,mming. PhD thesis, Uni-
versity of Pennsylva.nia, 1986.

[29] J . A. Robinson. Mecha,nizing higher-order logic. A.lachi~ze Intelligence, 4:150-170, 1969.

[30] William W. Wadge. Higher-order horn logic programming. In U. Saraswat and K. Ueda,
editors, Proceedings of Internationcrl Logic Progrrr~nnzing ,S'ymposium, pages 289-303, 1991.

The Architecture of an Implement at ion of XProlog:
Prolog/Mali

Pascal Brisset and Olivier Ridoux
IRISA/INRIA

Campus Universitaire d e Beaulieu
35042 RENNES Cedex

FRANCE
(brisset,ridoux)~irisa.fr

1 Abstract

XProlog is a logic programming language accepting a more general clause form than standard Prolog
(namely hereditary Harrop formulas instead of Horn formulas) and using simply typed A-terms as
a term domain instead of first order terms. Despite these extensions, it is still amenable t o goal-
directed proofs and can still be given procedural semantics. However, the execution of XProlog
programs requires several departures from the standard resolution scheme. First, the augmented
clause form causes the program (a set of clauses) and the signature (a set of constants) to be
changeable, but in a very disciplined way. Second, the new term domain has a semi-decidable and
infinitary unification theory, and i t introduces the need for a P-reduction operation a t run-time.

MALI is an abstract menlory that is suitable for storing the search-state of depth-first search
processes. Its main feature is its efficient memory management.

We have used an original XProlog-to-C translation: predicates are transformed into functions
operating on several continuations. The compilation scheme is sometimes an adaptation of the
standard Prolog scheme, but a t other times it has to 11a.ndle new features such as types, P-reduction
and delayed unification.

Two keywords of this implementation are sharing and folding of representations. Sharing
amounts to recognising tha t some represelltation already esists and reusing it. Folding amounts to
recognising that two different representations represe~lt the same thing and replacing one by the
other.

We assume a basic knowledge of Prolog and AProlog.

Introduction

The logic programming language XProlog [28,27,29, 14,12,26,13,30] improves greatly on standard
Prolog because it features very powerful operations on terms and programs while still giving them a
logical semantics. A keyword commori to all these features is scoping. A-terms introduce scoping at
the term level, esplicit quantifica.tions (universal a11d esistential) introduce scoping a t the formula
level, and the deduction rules for esplicit quantification and implication introduce scoping in proofs,

421 Proceedings of the 1992 XProlog Workshop

i.e. a t a dynamic level. Deduction rules for XProlog are usually given in the framework of sequent
proofs.

XProlog requires some implementation effort for being able t o compete with Prolog in efficiency
(and then in popularity). Another condition for popularity is to overcome the idea that it is a
"difficult" language, but this is another story. The initial implementation of XProlog by Miller and
Nadathur, and the second one, eLP, by the Ergo Project a t Carnegie-Mellon University, were far
from being able to compete with Prolog. Since then, a few teams have worked on the implemen-
tation of XProlog. As far as we know', current teams are Nadathur, Kwon and Wilson at Duke
University [20, 19, 341, Jayaraman a t the University of Buffalo (formerly with Nadathur), Elliott
and Pfenning a t CMU [l l] , Felty and Gunter a t Bell Labs, and the authors a t Inria.

Other works are done in a similar framework for integrating linear logic and logic program-
ming (Pareschi and Andreoli [4], Hodas and Miller [17]), or higher-order type systems and logic
programming (Elliot [lo], Pfenning [36, 371).

We present in this paper the broad lines of our iinplementation of XProlog: Prolog/Mali. We
have implemented XProlog for its own merits, and a5 a delnonstration that memory management
issues are a good guide for implementing logic programming systems. Speed was always our second
concern.

We assume a knowledge of Prolog and XProlog, their semantics, and their basic algorithms:
logical variable, search-stack, unification, A-unification [IS], deduction rules, and uniform proofs [32,
301. We adopt an architectural presentation: in section 3, we present the kernel subsystem that
is in charge of the elementary representation problems. in section 4, we present a software layer
which is both a specialisation artd an extension of the kernel, finally, in section 5, we present the
compilation scheme. We conclude in section 6.

3 MALI

MALI [6, 381 (Mbmoire Adaptbe a u s Langa,ges Ind6terministes - memory for non-deterministic
languages) can be specified as the abstract da.ta type stack of mutable first-order terms. This
abstract data type encompasses the representa.tion of the sta.te of every logic programming language
that performs a depth-first sea.rch in a. search-t.ree.

MALI is the name of a general principle tl1a.t 11a.s several implementations. The name of the
implementation we used in Prolog/Mali is A4ALIt106.

We present what MALI brings to the overall system, and, to avoid any ambiguity, what it leaves
undone.

3.1 What MALI brings to Prolog/MALI

3.1.1 A data-structure

MALI brings an abstract data-type which we call MALI'S term. MALI'S terms may be described
more concretely as gra.phs with nodes tl1a.t can be reversibly substituted. MALI'S terms are organ-

'We thank the committee member who updated our knowledge-base

P. Brisset and 0. Ridoux 43

ised in a term-stack which is itself a term. A collection of node constructors is offered, among them
atoms (i,e. leaves), compound nodes (i.e. cons or tuples), and levels (i.e. term-stack constructors).
Some of the compound node constructors are called mutable constructors, and the terms constructed
with them are called muterms. Mutable nodes can be subject t o reversible substitutions, according
to a discipline that is close to the substitution of logical varia.bles in Prolog. According to the disci-
pline, muterms, substitutions, and the term-stack are in the same relationship as logical variables,
substitutions, and the search-stack of Prolog. For every kind of node constructor, commands and
operations exist for creating and reading them, and for accessing their subnodes (if any). Com-
mands also exist for substituting terms for muterms, and for manipulating the term-stack (pushing,
popping, and pruning the term-stack).

Every node constructor can be given an elementary typing via the use of sorts. This makes it
possible t o "decompile" the representation of an application term. For instance, Prolog's integers
and constants can be both represented by MALI's atoms, which must be discriminated by their
sorts.

In the sequel, we note2 (l e S R N) a term-stack3 of sort S, top value4 R and substack N,
(at s V) an atom of sort S and value V, ([ml cO S) a [mutable] nullary compound term of sort S,
(Cmlc2 S TI T2) a [mutable] binary conlpound tern1 of sort S and subterms TI and T2, and
(Cmltu S N T i . . . Tn) a [muta.ble] conlpound term of sort S and N subterms Ti to Tn. We use a
labelled notation, labelaterm and labe l , to note different occurrences of the same term. A term
may have several labels through substitution, labell@label2(Dterrn. Terms with labels in common
share the same representation; they must be compa.tible up to a substitution. Terms with different
labels (or no label) are different even if they have the same notation; to apply a substitution to one
has effect on the others only through occurrences of shared subterms.

It should be clear from this short description that one of the intended usages of muterms and
the term-stack is the implelneiltation of logical variables and of a search-stack. However, this is the
only commitment with logic programming, and other usages a.re possible. MALI knows nothing
about the basic mechanisms of Prolog (resolution, unification), or about XProlog's deduction rules
and A-terms.

3.1.2 A memory management

MALI's terms need memory for their representation. This memory is automatically managed
in a way that is optimal with respect to the level of knowledge that is available to MALI. The
restriction means that application-dependent accessibility properties are not taken into account by
MALI. They can be taken into a.ccount indirectly by a. proper mapping of the application structures
onto MALI's terms.

We call usefulness logic the rela.tion that describes which run-time data-structures are useful in
a given programming 1angua.ge independently from ally pa.rt.icu1a.r a.pplica.tion. The usefulness logic
of the core of logic programming is that

'The notation is only a convenience for comlnenting on MALI's t.erm; i t is not part of the programming interface.

3A level, in MALIvOG's jargon
4 A root, in MALIvOG's jargon.

Proceedi~~gs of the 1992 X Prolog Workshop

Every useful term is accessible from some secl.rch-node under the binding environment
of the same search-node.

To compare, the usefulness logic of the core of functional programming says that

Every useful term is accessible from some root;

binding environments are not mentioned. So, if one uses a functional programming system for
implementing a logic programmi,ng system and nothing special is done for memory management,
the usefulness logic that is actually implemented cannot be more precise than

Every useful term is accessible from some search-node under some binding environment.

It is usually worse and considers the union of all the binding environments.
The two important features of MALI'S memory management are early reset and muterm shunt-

ing. Early reset causes substitutions to be undone5 by the memory manager seeing that some
muterm is never accessible when substituted. Muterm shunting means that substitutions, which
are created reversible, may be made definitiveG seeing that some substituted muterm is never ac-
cessible when not substituted. These two features are described at great length in the MALIvO6
tutorial [38].

Commands exist for controlling nleinory mana.gement: supplying MALI with new memory
resources, taking useless resources from MALI, or sta.rting a garbage collection.

3.1.3 Debugging tools

MALI offers debugging tools for assisting a user in the development of an application. Debugging
tools allow to check preconditiolls of commands. to display compoilents of MALI'S state, and to
trace commands.

It is important that at every level of an architecture (software or hardware) debugging tools are
available. It makes the complexity of coinposing layers tractable. We will not dwell too long on
this subject in other sections; it is enough to know that the specialised intermediate machine (see
section 4) also has debugging tools for checking a fair use of everything it defines. The Prolog/Mali
system also has debugging tools, but the ultinlate level is the level of the XProlog applications
which should also come wit11 their debugging tools. This is up to the discipline of XProlog users.

3.2 What MALI leaves uildoile

3.2.1 A memory policy

We distinguish the management of memory inside an a.pplication, which aims a t improving the use
of some memory supplies, and the maaagemellt of memory a t the interface with a host system,
which aims a t configuring the supplies. We call naenzory policy the set of decisions related to
memory supplies. The decisions range from t,he a.mount of memory supplied to MALI, the way this

'Without waiting for backtracking to undo these substitutions. Hence the name "Early reset".
'Roughly, the effect is to collapse chains of substitut.ions. Hence the name "hluterm shunting".

P. Brisset and 0. Rjdoux 45

memory amount evolves, t o the amount of computing power dedicated to memory management
(z the frequence of the calls t o the garbage collector).

A memory policy can be very sophisticated because i t deals with many interrelated parameters.
For instance, it is likely that , in order t o diminish the computing power dedicated t o memory
management, the total meinory allocated t o MALI must be increased. However, supplying more
memory t o MALI may dec, ase the availability of the host system.

Elementary commands for designing a sophisticated memory policy are available in MALI, but
no policy is specified.

3.2.2 Appl ica t ion level t e r m s a n d execu t ion s c h e m e (unification, resolut ion, ...)

The only commitment of MALI with logic programming is the term-stack and the mute rh sub-
stitution. Everything remains to be done as for the representation of the data-structures of an
application. The implementor must find a ma.pping from its application terms onto MALI's terms.
In XProlog for instance, the representa.tion of sii11~1y typed A-terms, their unification and nor-
malisation must be mapped on MALI's terms, and on procedures using MALI's commands and
operations.

The only hint for mapping appli~a~tion terms a.nd their opera,tions is that it is clearly intended
that muterms and the term-stack ca.n be used for representing logical variables and a search-stack.

MALI offers an efficient memory mana.gement but brings no solution t o the time efficiency. The
packaging of MALIvO6 is designed to hinder as little as possible any effort t o yield speed efficiency.

3.2.3 P r o g r a m represen ta t ion

MALI has no notion of program. It is not even intended that an application level program should
be represented in MALI. This is a totally iildepeildeilt issue.

4 A specialised intermediate machine

We have designed a specialised intermedia.te ma.chine (SIhl17), of the level of the WAM [39, 31, for
filling parts of the gap between MALI aad XProlog.

The SIM is a specialisation of MALI because it forces some interpretation on MALI's terms.
It is also an extension of MALI because it defines new notiolls that have no equivalent in MALI
(e.g. unification, continuations). As a specia.lisa.tion of MALI, the SIM defines specialised node
constructors, and commands and operations for crea.ting, reading, and traversing them. As an
extension, i t defines commailds for implementing the new notions for every specialised node con-
structors they apply to.

The SIM still says nothing of what will be a progra.m, and what decisions have to be made for
ensuring an efficient usage of the machine. This is up to the compilation scheme.

We review what the SIM brings to the overall system.

'SIM is not a brand name for this specialised intermediate machine; it only designates this layer in a software
architecture using MALI.

46 Proceedings of' the 1992 X Prolog Workshop

4.1 XProlog terms

To choose a representation for terms in the context of XProlog is a new problem because the
requirements of logic programming (Prolog technology), of simply typed X-calculus, and of uniform
proofs of hereditary Harrop formulas must be met a t the same time.

Prolog technology requires the representatioll of logical variables and substitutions. It also
requires that substitutions be reversible because the search for a proof is done by a depth-first
traversal of a search-tree.

Simply typed X-calculus requires the representation of abstraction and application, the rep-
resentation of types, and the capability to compute at least long head-normal forms because the
unification procedure needs them. To meet the first requirements, long head-normalisation should
be reversible too.

Proving hereditary Harrop sequents is required to represent universally quantified variables and
to check the correction of signatures. It also requires the handling of implied clauses but this has
little to do with our representation of terms.

We only describe our implement.a.tion dec.isions. The rea.sons for the decisions are discussed in
a technical report by the same a.uthors [8] , and in the thesis of the first author [7].

4.1.1 Types

One of the differences between Prolog and XProlog is that the terms of XProlog must be typed for
X-unification to be well defined. Huet's procedure clea.1~ with simply typed X-terms, but XProlog
extends simple types with type variables (type schemes). This results in generic polymorphism.

Follows a sample declaration for polymorphic hoillogeneous lists and a polymorphic ternary
relation on them.

kind l i s t type -> t y p e .
type [I (l i s t A).
type ' . ' A -> (l i s t A) -> (l i s t A).
type append (l i s t A) -> (l i s t A) -> (l i s t A) -> o

The list Ci ,21 can be represented in MALIvOG like

(c2 S-LIST (a t S-INT 1) (c2 S-LIST (a t S-INT 2) (cO S-NIL))) .
The type A -> (l i s t A) -> (l i s t A) can be represented in MALIvOG like

(c 2 S-ARROW
AO(mc0 S-UNK-T)
(c 2 S-ARROW l i s t A Q (t u S-APPL-T 2 (a t S-SYMB-T l i s t) A) l i s t A)) .

Type unknown A is represented as a, mut,able nulla.ry compound because it must be reversibly
substitutable, and it has no other informa.tion a.ssocia.ted to it. Note the sharing of (l i s t A)
indicated by the use of label l i s t A .

The idea of generic polymorphism in (X)Prolog is t11a.t.

Types of diflerent occurrences of u. con.staizt art indepe~zdent instances of its type scheme.

Types of diflerent occurrences of (any bind of) (1. vnriable are equal.

P. Brisset and 0. Ridoux 47

In (A)Prolog, one must also choose whether a cla.use of the program can be selected on grounds
of the type of its predicate syn~bol or not. We 11a.ve chosen to forbid selecting a clause on these
grounds. It means we follow the dejizitionnl genericity principle [23]:

Types of different body occurreizces of u predicate coizsta,izt are independent instances of
its type scheme, whereas types of different head occurrences are renamings of the type
scheme.

With this principle, type inference leads to a non-uniform semi-unification problem which has been
shown t o be undecidable by Kfoury, Tiuryn and Urzyczyn [21]. In our implementation, types of
constants (predicative or not) are only checked, and types of (any kind of) variables are inferred.

The reason for sticking to definitional genericity is t11a.t it is the most natural when predicates
are seen as definitions and type schemes as abstractions of the definitions. It is also required for
allowing a simple but sound modular analysis of programs. We want to be able to type-check a
module using the type schemes of the modules it imports but not the modules themselves.

In AProlog, it is necessary to represent types at run-time for controlling unification, and some
conditions are missing for having a senzoiztic soz~izdness result of the kind "Well typed programs
cannot go wrong"'.

The problem wi semantics soundness is tl1a.t nothing restricts XProlog constants to have the
type preserving property [15]:

Every type variable in a type schenze shoulrl nppear in the result type (the type to the
right of the right-nzost ->).

The advantage of having the type preserving property is that the types of the subterms of a term
built with a type preserving constant can be inferred from the type of the term. The disadvantage
is that it is not flexible enough for representing dynamic types [I].

Types for "not going wrong" We call forgotten type variables the type variables that do not
occur in the result type of a non-preserving type scheme. We call forgotten types the instances of
the forgotten type variables. Only forgotten types need to be represented at run-time for avoiding
"going wrong". They must be attached as supplementary arguments to the term constructors
that are not type preserving. These pseudo-arguments rnust always be unified before the regular
arguments. This makes A-unification problems a.lways well-typed.

In fact, what is implemented is the representaiion and unification of terms of a polymorphic
type system [5] . It is as if a symbol defined a.s

kind dummy type .
type forget - -> dummy.

were defined as

type forget - ' P I ' A \ (A -> dummy).

'111 this context, "going wrong" means "trying to solve ill-typed unification

48 Proceedings of the 1992 XProlog Workshop

where 'PI' is the product type quantifier, and a term like (forget 1) were (forget- int 1) . The
term (forget- in t I) can be represented in hiALIvOG like

(tu S-APPL 3 (at S-SYHB forget-) (at S-SYMB-T int) (at S-INT I))

Note that , unlike Typed Prolog [31, 231, there is no special syntax in XProlog for declaring
predicate constants. They are only distinguishable by their result type, o. So, every predicate
constant forgets every type variable in its type because its result type contains no type variable. It
can be shown that if the predicates obey the definitional genericity principle, unification of these
forgotten types will always succeed; type unification of types forgotten by predicate constants is only
required for conveying types along the computation. In a system that does not need tha t conveying
(say, standard Prolog), the forgotten types of predicate constants need not be represented [31, 151.
In XProlog, conveying the types is required for controlling unification.

T y p e s f o r control l ing p ro jec t ion in unification Let us first recall the core of Huet's X-
unification procedure [IS].

For a pair < AT - (F q), AZ . (@ <) >, where F is a logical variable (a flexible head) and @ is
not a logical variable (a rigid head), at most p+l substitutions are produced by two rules.

1. If @ is a constant, the imita,tiorz rule produces F - Xu. (@ c).
2. For each 0 < i 5 p such that T (s ;) = T I - . . . T,,, - T ((F q)), the projection rule produces

F + XE - (u; E,).

Every Ek in stands for (Hk E) , where HI; is a new logical variable with the appropriate type.
The projection rule is controlled by a type condition (2 . above). For the condition being testable

a t run-time i t is enough that logical variables are equipped with their types.
Note that the types of logical variables themselves need never be unified because when a unifi-

cation problem is t o be solved then it is well-typed (i.e. the two terms of the problem have identical
types). This is a side-effect of unifying first the forgotten types in the pseudo-arguments and then
the regular arguments.

In AProlog, nothing prevents having a. type with a, variable result type. This makes the checking
of the type condition unsafe: there caa be no a.rgnment sa.tisfying the condition in some binding
environment while projection is possible in a, more precise binding environment. The only safe
solution is t o suspend unification until the result type get known. However, the traditional solution
is to commit the result type to be a consta.nt [35]. l i e believe that nothing satisfactory will be
done before these flexible types are.better understood.

Types f o r new logical var iables It is easy to attach a. type to logical variables coming from the
program: it is an outcome of the type inference/checking. But the imitation and projection rules
of A-unification introduce new logical variables tl1a.t col.respond to nothing in the source program
(the Hk's). They must be atta.ched a. type a.nyway. They all have types zq + . . . 4 up + ?? where
the vi's are the types of the arguments of t,he flexible 1lea.d: a.nd ?? depends on the rule.

P. Brisset and 0. Ridoux 49

In case of projection, the ?? of every new logical variable H j is rj (see above in the condition
controlling projection). In case of imitation, the ?? is the type of the corresponding argument of
the rigid head. So, it remains to be able to infer the types of rigid heads in unification probkems.

There are three kinds of rigid heads: A-varia.bles (but they cannot be imitated), function con-
stants, and universal variables (they are introduced for solving universally quantified goals). First,
we attach their type to every universal variable. Second, we observe that the type scheme of a
constant, plus the forgotten types attached t o i t , plus the result typeg, give enough information
for reconstructing the full type of the constant. A type reconstructing function is generated a t
compile-time from every type scheme declaration. It gets the forgotten types from the constant
head and the result type from the flexible hea.d, a.nd it returns the type of the constant head.

4.1.2 XProlog terms

Terms are represented using the full copy technique (as opposed to structure-sharing or a mix of
structure-sharing and copy) for memory inanagelnent reasons: this gives the most precise alloca-
tion/deallocation operations for any type of control. and XProlog needs to depart from the standard
control.

A novelty of XProlog is that terms need normalisation. In Prolog/Mali, normalisation alters
the representation of term for sharing reduction effort, and also for memory management. A-terms
are represented by graphs, and normalisatioil is iml>lemented as graph-reduction.

Abstractions and applications We will see that logical va.riables a.re not the only application
level structures that can be represented by AlALI's muterms.

Abstractions and applications are represented by reversibly mutable graphs, so that it is possible
t o physically replace a redes by its reduced form in the graph. This provides sharing of the reduction
effort. Reversibly means that mutations (reductions) can be undone when backtracking. This is
the result of inserting graph reduction in a. Prolog contest.

Substituting new representations for older ones in a reversible way forces to store all the history
of every term representation. However, MALI'S inenlory ma.nagement, especially muterm shunt-
ing, will remove every useless old representa.tion. hiIuternl sliuntiilg shortens the history of term
representations.

Terms are represented as much as possible in their long head-normal form. So, abstractions
and applications are in fa.ct tuples of nested eleillentary abstractions and applications. The term
Xnsz . (s (n s 2)) can be represented in MALIvOG like

(mtu S - A B S T 4
nQ(c0 S-VAR) sO(c0 S - V A R) zQ(c0 S - V A R)
(mtu S-REDEX 2 s (mtu S-REDEX 3 n s 2)))

The applications are potential redexes? hence the sort S-REDEX.

'In the context of unification, it can be fottnd in tile flexible head

50 Proceedings of tile 1992 XProlog Workshop

First-order terms We call inforlllally first-order ter~izs the rigid terms whose head is a constant.
They are distinguished as much as possible because they are definitely in long head-normal form
and they can be unified by a chea.per procedure.

Universal variables and logical variables In the following, we say that a logical variable
captures a term if i t is bound t o a value that conta.ins the term. So, a logical variable is able t o
capture terms of any type provided they are properly wrapped in a binding value.

Universal variables are among the new constructs of XProlog that enforce checking scoping
conditions. A universal variable can be ca.ptured by every logical variable of its scope, whereas
i t cannot be captured outside its scope. 1.e. in context . . .Vx . . .3U . . .Vy . . ., universal variable x
can be captured by logical variable U, but y cannot. A-variables are essentially universal, they
are always bound in the rightmost part of the context. So, they can never be captured by logical
variables. Constants are also essentially universal, but they are always bound in the leftmost part
of the context. So, they can always be ca.ptured by logical variables.

Scopes of universal variables are represented by their nesting level. A nesting level is attached to
every logical variable and every universal va.riable, a.nd a register contains the value of the current
nesting level. When a universally qua.ntified goal is executed, the nesting level register is first
incremented, and then a new universal va.riable is created with the new nesting level value. Every
further creation of logical variables within the scope of this goal but out of the scope of any nested
universal quantification will be done with the new nesting level value. We assume that the initial
nesting level is 0.

Given that logical variables and universal va.ria.bles nlust also carry their types, they can be
represented in MALIvOG like

(mc2 S-UNK type (at S-SIG nesting-level))
(c2 S-UVAR type (at S-SIG nesting-level))

When a n at tempt is made to substitute a. term for a logical variable, the scopes of the term and
all i ts subterms are checked using the nesting levels. If the term contains universal variables of a
higher nesting level than the logical variable then the substitution is illegal. If the term contains
logical variables of a higher nesting level than the substituted logical variable then their nesting
levels should be lowered to the nesting level of the substituted logical variable. If a universal
variable or a logical variable with a higher nesting level is in fa.ct in an argument of a flexible term
then the scope-checking must be suspended because the problelllatical universal variable or logical
variable may disappear as a side-effect of another substitution. For instance, X1 c (U' 1 Y2) is
a problematical s u b s t i t ~ t i o n ' ~ , but after substitution U1 - Xzy . (F ' x) is applied, it is no more
problematical.

We have seen that logical varia.bles ca,nnot cagture A-va.riable, and can only capture universal
variables whose scope they belong to. .4 flesible term can be seen as a generalisation of the logical
variable which is explicitly allowed to capture supplementary terms (the arguments). For instance,
the flexible term above is a generalised logical variable tl1a.t is inlplicitly allowed to capture the
universal variable of level 1 and every consta.nt, and is esplicitly allowed t o capture 1, which is only

''The nesting levels are written as superscripts

P. Brisset and 0. Ridoux 5 1

redundant because it wa a.lready implicit, a.nd wllicli is not redundant because of the nesting
level of U l .

One of the effects of substituting a term to a logical variable is to diminish the allowance of
a generalised logical variable (see the same flexible term after substitution U' +- Xxy - (F' x) is
applied). Allowance cannot increase because the binding value of a logical variable must be in its
allowance.

The main consequence is that no decision related to the occurrence of some patterns can be
complete when involving flexible terms. We have esposed it for scope-checking, but i t is also true
for the occurrence-check in unification (S - t is a legal substitutioii only if X # F V (t)) . If some
term has an occurrence in a flexible term, a substitution may take it away.

4.1.3 R e d u c t i o n

Reduction is implemented a.s graph-reduction. Since abstra.ctions and applications are not repre-
sented one a t a time but as tuples, reduction considers simultaaeously several P-redexes. This saves
term traversing and duplication, hence time and menlory.

The basic scheme is to duplicate the left-most pa.rt of a. redes, and to replace A-variables occur-
rences by the arguments. A critical improvenle~it over the basic schellle is to recognise combinators
which are subterms of the left-most pa.rt of redeses; they need not be duplicated. Every logical
variable, every goal argument, and every insta.nce of a term that is a combinator is a combinator.
This shows that many terms are con~bina,tors and that once a. combinator is detected it is safe to tag
it as such. Tagging amounts to having more sorts for representing the terms of the cross-product
(combinator/non-combinator) x (a.bst,ra.ction/application).

This improvement is fundamental and cha.nges the colllplesity of useful XProlog predicates [9].
It is not committed t o our a,rcllitecture; it only has to do with reduction.

The now conventional names for the different procedures of A-unification are SIMPL, MATCH and
TRIV. We add UNIFl and a specialised unificatio~i command of the SIM for every kind of term
constructors. The main idea is to consider the different uiiificatioll procedures as as much sieves.
If a unification problem cannot be handled by a procedure it is passed to the next one.

Special ised unification c o l n i n a n d s A sequence of specialised unification commands is gen-
erated by the compiler for every clause 11ea.d. Specialised unification commands can be seen as
resulting from a partial evaluation of the general unifica.tion procedure. In case there is not enough
information in the head (e.g. a. second occurrence of a. logical variable), the control is passed to
procedure UNIFl. This is much like w11a.t is done in standa.rd Prolog systems. In case the head
term is higher-order, they only build a, representation of the unifica.tion problem and pass it t o
SIMPL.

UNIFl A first-order unification procedure, lJn'IF1. is used as much as possible on the so-called
"first-order tern~s" (terms with sort S-APPL) until a higher-order term is met.

52 P~.oceedi~zgs of the 1992 AProlog Workshop

SIMPL When a higher-order term pops up in UNIF1 or in the specialised unification commands,
one switchs t o procedure SIMPL. The outcollle of SIMPL is a set of flexible-rigid pairs which, if it
is not empty, is passed t o procedure MATCH. If it is empty, a success is reported.

Procedure SIMPL may report a failure if a, clash of constants or A-variables occurs.

MATCH Procedure MATCH is the non-deterministic part of A-unification. It is described as
the core of Huet's procedure in section 4.1.1.

Its non-determinism and the one coming from the proof-search are merged in a single search
process. To do the merging easily, we write the control of MATCH in AProlog. Only the great lines
of MATCH are written in AProlog: the non-deterministic choice between imitation and projections.
The actual imitation and projection rules are implemented as deterministic built-in predicates.

Suspensions Flexible-flexible pairs cannot usually be solved as such because they have too many
arbitrary solutions. They are suspended. We use the versatility of MALI'S muterms for encoding
the suspended flexible-flexible pairs within the flesible hea.ds as a constraint. As soon as one of the
flexible heads becomes bound, its constra.ints a.re checked. This is similar to the attributed variable
technique described by Le Huitouze [24].

TRIV A flexible-rigid pair is not passed directly to procedure MATCH, nor is a flexible-flexible
pair automatically suspended. They are first passed to procedure TRIV, which tries to solve them
in a fast deterministic way. TRIV applies va.rious heuristics; if none works the pair is actually
passed t o MATCH or suspended.

The heuristics aim a t finding pairs of the for111 < .I-, > under various disguises. If such a pair
is discovered and logical variable S does not occur in term t then X t t is the solution to the
unification problem. In a way similar to the scope-checking in section 4.1.2, the occurrence-check is
more complicated than for the first-order case because not all occurrences of X in t are dangerous.
If one is found and it is dangerous then unification fails. If it is not dangerous then TRIV passes
the pair to MATCH.

Some disguises under which a good TRII ' procedure nlust recognise a trivial pair are

1. < Ax.(X x) , t >, which is 11-equivalent to a. trivial pair,

2. and < xi ui+' . . . ui+j, t >, where the superscripts represent the scope nesting, and the uk's
are universal variables; it is equivalent to < 1 > for a new logical variable XI. In this
case, the solution substitution is ,x-' - Axl . . . n - j . [ai+' + x l] . . . [ui+j +- xj]t for taking into
account the disguise.

The second disguise is very frequent beca.use a, lot of AProlog programming is about exchanging
universal variables and A-variables (i.e. essentially universal quantification a t the formula level and
essentially universal quantification a.t the tern1 level). The following predicate is an example of the
exchanging trick:

type l i s t 2 f l i s t (l i s t A) -> ((l i s t A) -> (l i s t A)) -> o
l i s t 2 f l i s t L FL :- p i l i s t \ (c o n c L l i s t (FL l i s t)) .

P. Brisset and 0. Ridoux 53

The predicate relates the standard representa,tion of a list (say C1.2,31), and its functional repre-
sentation (z\ C1 ,2,3 1 zl) [9].

Folding representations The logic of unifica.tion is to find a substitution making two terms
equal. If they are equal then they ca.n share the sa.me representation. We have seen that both
abstractions and non-first-order applications are represented by muterms. So, it is easy t o make
the two terms share the same representation by substituting one for the other. The effect is to fold
the representations because two terms with initially different representations end up to have the
same. This substitution must be reversible (like the others: solution substitution and A-reduction
substitution). Reversibility comes a.s a. consequence of using muterms. Folding saves unification
effort because identity of representation is much ea.sier to check than equality. It also saves memory,
hence garbage collection time.

Terms in unification problems must be in long head-normal form before being compared. After
applying the substitutions invented by inlitation or projection, the flexible term may be no more
in long head-normal form. However. its new long 1iea.d-normal form is easy to deduce from the
term and the substitution without using the P-reducer. So, imitation and projections invent a
substitution value, substitute it for the 11ea.d of the flexible term. coiiipute its new long head-normal
form, and substitute it for the flexible term.

For instance, unification problem < t l , t 2 >, ~vhere tl = Ax . t3, t3 = (U (x S1)), and
t2 = Ax. (x S2) , yields three substitutions aft.er one run of M.4TCH:

1. U c Xy . y (projection substitution),

2. tJ + (x S1) (for direct long hea.d-normalisa.tio~l of f l before passing it to SIMPL), and

3. tl + t z (substituting equal for equal).

Remember that unknowns, abstractions, and potential redeses are all represented by muterms. So,
they are reversibly mutable.

The conclusion is that much more substitutions than the so-called solution substitutions are
done. The supplementary substitutions contribute to sa.ving unification and reduction time, and
to saving memory.

Prolog control The representation of t lle sea.rc1i-stack co~ltrolling the search process uses
MALI'S term-stack. It is considered a.s a failure continucltion. Specialised commands are defined
for manipulating the failure continua~tion. Tlle represelltation of the proof-stack controlling the
development of the proof tree a,lso uses MALI. It is ma.pped on compound terms. It is considered
as a success continuation, and other comniaads are defined for manipulating it.

Since the term-stack and compound-ternis are regular MALI'S terms, we have a uniform repre-
sentation of XProlog terms and control. This ma.kes coutinua.tion capture (of both kinds) trivial. It
appears tha t implementing the Prolog cut merely requires to ca.pture the failure continuation when
entering a clause (a reification) and reinstalling it (a. reflection) when executing the cut predicate.
All this comes for free by using MALI.

Pi,oceedings of the 1992 AProlog Workshop

Given program

in (f a). in (f b).
trans (f XI (g X I .
out X :- ...
:- in I, trans 1 0 , /*I*/ !, out 0

when label /*I*/ is reached, the resolution state can be represented in MALIvO6 like

success~continuation =
cut-goal@(tu S-GOAL 3 (at S-SYMB cut)

eosQ(1e S-CHPT
(c2 S-ROOT (at S-INT 2)

(tu S-GOAL 2 (at S-SYMB end-of-search) (cO S-NIL))
- 1

out-goalQ(tu S-GOAL 3 (at S-SYMB out)
OQgaQ(tu S-APPL 2 (at S-SYMB g) (at S-SYMB a))

eopQ(tu S-GOAL 2 (at S-SYMB end-of -proof) (cO S-NIL))))

failure-continuation =
in2@(le S-CHPT

(c2 S-ROOT (at S-INT 2)
(tu S-GOAL 3 (at S-SYMB in) ItD(rnc2 S-UNK type (at S-SIC 0))
(tu S-GOAL 4 (at S-SYMB trans) I DO(mc2 S-UNK type1 (at S-SIG 0))
cut-goal) 1)

eos)

Label O occurs in success-continuation and failure-continuation accompanied with different
terms. Terms in success-continuation differ by a substitution from terms with same labels
in failure-continuation, but they share the same representation anyway. We leave unspecified
the types type and type1 of unknowns I a,nd 0. Note that the argument of goal ! is a substack of
the search-stack. Binary constructs of sort S-ROOT represent the roots of the choice-points. They
contain a clause number and a success continuation. After goal ! is executed, the state is

success,continuation = out-goal
failure-continuation = eos

In real-life, the first goal of a success continna.tion is dispatched into several registers. This saves
"consing" and "deconsing" the continuation.

Universally quantified goals They are implemented as we have said about universal variables.
The current nesting level is in fact a sig~zclture corztz~zuntio~z. It has the same search-dynamism as
the success continuation. This meails that it is saved (i.e. pushed on MALI'S term-stack) and
restored (i.e. popped from M.4LI's term-stack) with t h e success continuation.

P. Brisset and 0. Ridoux 55

Implication goals Implication is the other new construct of XProlog that enforces checking
scoping conditions. The premise of an implication goal nlust be added t o the program for the
length of the proof of its conclusion.

Every premise is compiled as a clause whose logical va.riables are the proper logical variables
of the premise, plus the logical varia.bles of the nesting clause that occur in the premise. Premises
are activated when their implication goals a.re esecuted. The scope of premises is controlled by a
program continuation [7] that is implemented as MALI'S terms, and has the same search-dynamism
as the success continuation and the signa.ture continuation. The program continuation is made of
closures tha t enrich every active premise with a context corresponding to the logical variables of
the nesting clause that occur in the premise.

Predicates that can be extended by implica.tion are declared dynamic so that not every predicate
pays for implication. When a goal of a dynamic predicate is esecuted, one first searches the program
continuation for matching premises.

This scheme is similar t o what Jayarama,n and Na.dathur propose [19]. The only difference is
that there is only one thing to say a,bout t,lle int.erfereizces with ba.cktracking: it is automatically
done by MALI.

4.1.6 A memory policy

The choice of a memory policy wa.s left undefined a t the level of MALI. It is still too soon t o wire
it a t the level of the SIM because the sa.me 111a.chine will be used in XProlog applications with
totally different memory requirements (any combina.tion of consumption rate and instantaneous
working space). Since generated applica.tions axe portable, the same machine will also be used in
different configurations of host systerns (any combina.tion of CPU speed and sizes of main memory
and secondary memory).

We designed a memory policy which is both parameterisable and adaptative. The supplies
given t o MALI, the part it actually uses, aad other pa.ra.meters are continuously monitored, and
evolution parameters are changed a.utoma.t,ica.lly. However, this may not be flexible enough and
every executable file resulting from the compilation of a Prolog/Mali program accepts conventional
arguments for configuring the memory policy to the users's ivill.

5 A compilation scheme

XProlog programs are translated into C programs which serve as a glue for putting together se-
quences of SIM commands. The use of C is purely incidental, but its availability and portability
are good points. The C program is colnpiled with the regular C compiler/linker, producing an exe-
cutable file for the host system. The genera.ted C progra,m is responsible for realising the standard
interface (call/return conventions, input/output ports) with the host system.

The commands of the specia.liset1 intermedia.te machine are assembled so that when the gen-
erated program is executed, it ha.s the intended proof-search behaviour. Many arrangements are
possible for producing the intended behaviour. Compiling becomes really valuable when special
source patterns exist for determining efficient a.rra.ngements. Efficient arrangements are in fact spe-

56 Proceediligs of the 1992 X Prolog Workshop

cialisations of a general executioil scheme. We list the patterns our compiler currently recognises
and the associated specialisations and sa,vings.

5.1 Special static patterns

5.1.1 F o r g o t t e n t y p e s

We have seen that types must be represented to some esteilt at run-time. A naive solution would
be to represent the types of every term and subterm. The important pattern that improves the
representation of types is the occurrence of forgotten types in type declarations. They indicate
the only places in which types need to be represented for checking the well-typing of unification
problems.

Furthermore, the type checking/inference done a t compile-time indicates which types are iden-
tical and can share representa.tion.

Type declarations are transla.ted into type reconstruction functions (also coded in C).

5.1.2 C o m b i n a t o r s

/?-reduction requires duplicating left members of redeses. It is easy to see that combinators need
not be duplicated and that their representa.tion can be shared.

Since substitution values are a1wa.y~ combina.tors, all instances of combinators of the source
program are combinators. So, it is worth recognising t.hen1 a t compile-time. Our experiments
show that it is a very important pa.tten1, and t l ~ t using it properly changes the complexity of
programs [9].

5.1.3 First-order appl ica t ions a n d c o n s t a n t s

The general unification procedure of XProlog is Huet's procedure augmented with dynamic type
checking. However, first-order terms deserve a, more direct unification procedure. So, these patterns
are compiled rather classically. The representation of first-order applications is chosen to be easily
recognised so that , at run-time, unifica.tion and - reduct ion a.re improved.

Source clauses are Pq-normalised before generation. This provides a macro-like feature which may
iinprove the prograillming style. Furthermore, first-order applications are put in 11-long form. This
makes dynamic long head-normalisation less necessary.

Q-expansion must be done carefully so that it does not create artificially large P-redexes. So,
abstractions tha t are created by q-expansions are tagged, and P-redexes built with them are re-
duced using equality (X,x.(E z) F) =p (E F). New sorts are required for representing the terms of
the cross-product (combinator/non-combinator) x (eta-expanded/on-eta-expanded). Again, it is a
very important pattern that changes the complexity of programs [8].

P. Brlsset and 0. Ridoux 57

5.1.5 A weak substitute for clause indexing

Clause indexing is the exploitation of the clause heads contents for computing more direct clause -

selection procedures. It is not yet implemented in Prolog/Mali.
Usually, when control enters a clause that is not the last clause of a predicate, a choice-point is

created (or an already existing choice-point is updated). It can be a waste of time and memory if
a succession of choice-point creations a.nd choice-point consumptions is used to select a clause in a
predicate. Clause indexing helps selecting more directly the proper clause.

The lack of clause indexing is somewhat compensated by delayed creation of choice-points. -

Delayed creation of choice-points amounts to indicating that a choice-point is t o be created instead
of creating it. The creation must be resumed as soon as a logical variable is substituted, or when
unification succeeds (if no logical variable is substituted). If a failure occurs while the choice-point
creation is still delayed, failure is merely implemented as a jump.

More interestingly, substitutions of a head-normal-form t o a non-normal form do not count
as substitutions of logical variables. So, they do not trigger the choice-point creation. The neat
effect is that a goal argument will be reduced only once for all the attempts a t unifying a clause
head, whereas if the choice-point were created as soon a.s ordered then the goal argument would be
reduced for every unification a.ttempt, alltl unredaced a.t every ba.cktrack. For instance, in

test 0 :- do-something.
test 1 :- do-something-else.
query :- N = s\z\ (s(s(s(s(s(s(s z))))))) , M = 1, test (N x\x M).

redex (s\z\(s(s(s(s(s(s(s 2))))))) x\x 1) is reduced only once instead of twice. Note that the
brute force solution consisting in reducing a goal before unifying

1. kills lazyness,

2. and does not eliminate the need for normalising during unification because substitutions might
build redexes.

So, delayed creation of choice-point gives a partial solutioil to a critical problem that appears every
time normalisation of t q m s or a,wakening of constraints a.re possible.

5.2 The trailslation

AProlog programs are translated into C on a predicate-to-function basis. Every predicate is imple-
mented as a function of the coi~tinuations (success. signature, program, and failure) that returns
new values for the continuations.

The functions never call each other: recursion is taken into account by the success continuation.
Functions are called by, and return to. a noto or, wllich can be considered the last remnant of an
interpreter. Some static patterns. sucli as left-recursion, allow to avoid going through the motor.

As we have seen in section 4.1.1, type schel~les are translated into type reconstruction functions.
Furthermore, every constant (predicate and function constants, and type constructors) is translated
into a C structure containing tlieir external 1.epresentati011, their arity, their predicate function or
type reconstruction function, if needed, and any useful il~formation.

Proceedings of the 1992 XProlog Workshop

6 Conclusions

The PrologJMali compiler is written in XProlog and the run-time libraries are written in XProlog
and in C. The Prolog/Mali system 11a.s been completely bootstrapped. It implements all the core
of XProlog plus various extensions. One of the most notable extensions is the continuation capture
capability. It is used for implementing the cut and a catch/throw escape system.

Prolog/Mali is freely available, and used in several resea.rc11 teams in domains such as automated
theorem proving, automated learning, and meta-programming. Some of the benchmarks used for
comparing Prolog/Mali with other implementations come from these teams.

6.2 Comparisons with other works

ideal linear - -

Figure 1: Comparison of time complexities wlien reversing a. function-list (list-length x run-times
in seconds, log-log scale)

It has not been possible to compare our system with the other most recent attempts for im-
plementing XProlog (Nadathur, Jayaraman, Felty), because of the lack of availability of complete
systems. However, papers and tecl~nical reports by Nadathur and Jayaraman [33, 20, 191 show
that their approach and ours are somewhat different and difficult to compare on the paper. In few
words, they choose to base their design on a \\.Ah1 augmented for handling XProlog's specifics.

P. Brisset and 0. Ridoux 59

Figure 2: Comparison of run-times when executing a tactical theorem prover (Prolog/Mali run-
times in seconds x speed-ratio)

They represent A-terms and reduction in an environment-based fashion. Note that the differences
may be blurred by optimisations that apply techniques from one paradigm for improving the other.

A technical report by Iiwon, Nadathur and \Vilson [22] proposes a handling of types a t run-
time which is similar to ours, except that forgotten types are not the only types represented in
constants. Note that their basic technical choice. and Jayaraman's. is to extend a structure-sharing
implementation of the WAM: it also applies to the representation of types.

The only XProlog system with which we have made extensive comparisons is eLP. It is already
an "old" system. eLP is an interpreted system written in Lisp. The fact tha t it is interpreted
could have explained a constant speed factor between eLP and Prolog/Mali. However, what is
observed is a difference in complexity that interpretation costs cannot explain alone. We compared
Prolog/Mali and eLP in a black-box mode. knowing nothing of the implementation of eLP. The
comparison has been done using special purpose programs for exhibiting qualitative differences,
and also using regular programs from XProlog users.

The memory management improvement over eLP is dramatic for any kind of program. It is
also better than many implementatiol~s of standard Prolog. The Lisp system that supports eLP
has its own memory management, which might be efficient as far as Lisp evaluation is concerned.
But it does not know about logic programnling usefulness logic. and does nothing when early reset
and muterm shunting are in order. It is a definitely bad idea to leave a non logic programming
system in charge of logic programnling memory management. Note that this does not forbid
implementing logic programming in a foleigii language: tile only thing is that logic programming
memory management has to be redone in that language.

Special purpose programs show an arbitrary speed-up of Prolog/Mali over eLP's. The com-

GO Proceediugs of the 1992 XProlog Workshop

plexity of both unification and reduction is higher in eLP. We believe that the systematic sharing
and folding of representations, and the detection of combinators play a critical part in the better
complexity of Prolog/Mali. Delaying the crea.tion of choice-points also improves the complexity of
search. Figure 1 shows the beha.viours of eLP a.nd Prolog/Mali when executing the program that
naively reverses a function list. Times are given in seconds as a function of the length of a list.
Scales are logarithmic on both axes. Continuous lines correspond to the ideal linear or quadratic
case. The slopes of the lines, 1 and 2, indicate a linear complexity for the first and a quadratic
complexity for the second.

Regular programs (mainly a denlonstrator with tacticals, and a demonstrator with a learning
component) show a speed-up between 25 a.nd 250. Interestingly enough, for a given program, the
speed-up grows with the time required for executing a query. This shows that eLP does not scale up
very well. Figure 2 shows the speed-up of Prolog/Mali over eLP for a set of small theorem proving
problems. Every point correspond to a particular problem. Execution times with Prolog/Mali are
on the X-axis and the speed-ups (Prolog/IvIali on eLP) are given on the Y-axis.

Finally, we compared Prolog/Mali with modern (fast) inlplementations of standard Prolog.
When using regular progra.ms (nminly a.n early version of our c.ompiler), Prolog/Mali is less than
10 times slower than Prolog (z 5 on the average). Special purpose programs could show arbitrary
differences (e.g. we have not yet implemented cla.use indexing in Prolog/Mali). This comparison is
a little bit unfair for Prolog/Mali, aad for XProlog in general, because it executes the first-order
Horn clauses fragment of XProlog with a higher-order hereditary Harrop formulas technology. When
what the user requires is exclusive to XProlog, the sta.ndard Prolog programmer has t o implement
it a t the Prolog level; it is certainly less efficient, and less safe too, than what a XProlog system
offers.

6.3 Further work

Although our implementation of XProlog enjoys nice complexity properties, and its performances
are encouraging, it is rather slow when it is compared with the current state of the a r t for standard
Prolog. In i ts present state the control of search is compiled but unification of higher-order terms
is not and there is no clause indexing. Our current implen1enta.tion task is to devise a compilation
scheme for unification and indexing so as to bring the performa,nce level of the standard part closer
t o the current state of the art .

To improve performances, more static analysis ought to be performed. For instance, it is
important t o detect when the full mechanism of Huet's unification is not needed. The LA [25]
fragment of XProlog has a unitary and decida.ble unification theory. Belonging to LA is easy to
test a t run time but it could be lnore efficient to detect that some predicate or some argument will
always be in LA. Note that the L,, property generalises every pattern that the TRIV procedure
currently recognises.

Last observation is that the type system deserves further study. It should be studied for itself
because it is not flexible enough. It should also he studied for its interaction with compilation
(indexing and projection). By flexibility, we do not mean permissivity, but only the ability to deal
with complex situations. The lack of flexibility is in fact nothing special to XProlog, it can already
be observed in trying to type built-in predica.t,es read a.nd name in Typed Prolog [31, 231. It is only

P. Brisset a.nd 0. Ridoux 61

more noticeable in XProlog than in Typed Prolog because types are mandatory whereas they are
only a bonus in Typed Prolog. Predicates read and name can only be simply typed like

type read
- -> 0 .

type name
(l i s t i n t) -> - -> 0 .

These predicates with these typings are not definitionally generic, and the arguments with the
anonymous types cannot be used souildly in ally specific context because their types are related
with nothing. It seems that we need higher-order types such as

type read
'PIJ A\ (A -> 0) .

type name
(l i s t i n t) -> ' P I ' A\ (A -> 0) .

6.4 Remarks on focusing on illenlory i ~ l a n a g e ~ ~ ~ e n t

Our main implementatioil concern has been ~ n e m o v management. We always tried t o have mem-
ory management problems solved before tilne efficiency problems. This is reflected in the software
architecture of Prolog/Mali, in which the kernel (11-4LI) knows allnost everything about memory
management but nothing on the procedures that will he used, the specialised abstract machine
knows less about memory management, and a little bit more about the procedures, and the gen-
erated code knowns about the procedures (it is part of them) but is really naive as far as memory
management is concerned.

However, a reasonable time efficiency has been achieved, and still more can be gained with
further efforts.

This architecture can be used for implementing many other kinds of logic programming systems.
It cannot compete for implementing standard Prolog systems because very efficient and specialised
techniques have already been designed. It is perfectly fit as soon as complex data-structure and
control are in order. An implemel~tatioil redoing a specialised version of Mali's memory management
from scratch could always be faster but will certainly be much more complex.

Acknowledgenlents

We thank Yves Bekkers, Serge Le Huitouze, Barbara. Oliver, and the reviewers from the Lambda
Prolog Workshop committee for their reading and commenting of earlier versions of this paper.

References

[I] M. Abadi, L. Cardelli, B.C. Pierce, and G.D. Plotkin. Dynamic Typing i n a Statically Typed
Language. Technical Report, DEC Systeius Resea.rch Center, 1989.

[2] H. Kt-I<aci. T h e WAM: A (Renl) Tzrtoricil. Technical Report 5, DEC Paris Research Labora-
tory, 1990.

62 Proceedil~gs of the 1992 AProlog Workshop

[3] H. Kit-Kaci. Warren's Abstract Machine: A Ttllorial Reconstruction. MIT Press, 1991. Re-
vised after [2].

[4] J.-M. Andreoli and R. Pareschi. Linea,r objects: logical processes with built-in inheritance.
In D.H.D. Warren and P. Szeredi, editors, 7th 112i. Conf. Logic Programming, MIT Press,
Jerusalem, Israel, 1990.

[5] H. Barendregt. Introduction to generalized type systems. J . Functional Programming,
1(2):125-154, 1991.

[6] Y. Bekkers, B. Canet, 0. Ridoux, and L. Unga.ro. MALI: a memory with a real-time garbage
collector for implementing logic programming languages. In 3rd Symp. Logic Programming,
IEEE, Salt Lake City, UT , USA, 1986.

[7] P. Brisset. Compilation de AProlog. ThPse, Universit4 de Rennes I, 1992.

[8] P. Brisset and 0. Ridous. The C~onzpilntioiz of XProlog and its execution with MALI. Publi-
cation Interne, IRISA, 1992. To appea.r.

[9] P. Brisset and 0. Ridoux. Nai've reverse ca.n be 1inea.r. In I<. Furukawa, editor, 8th Int. Conf.
Logic Programming, pages 557-570, kIIT Press, Paris, Fra.nce, 1991.

[lo] C.M. Elliott. Higher-order unification with dependent function types. In N . Derschowitz,
editor, 3rd Int. Conf. Rewriting Tec1rizique.s a ~ z d ..lpl)licc~tioizs, pages 121-136, Springer-Verlag,
1989. LNCS 355.

[ll] C.M. Elliott and F. Pfenning. A Se~izi-Fzrizctio~zt~l Implenzentation of a Higher-Order Logic
Programming Language. Ergo Report. ERGO-89-080. School of Computer Science, Carnegie
Mellon University, 1989.

[12] A. Felty. Specifying and Inzplenzeizting Theore111 Provers in a Higher-Order Logic Program-
ming Language. PhD Dissertation, Dept. of Computer and Information Science, University of
Pennsylvania, 1989.

[13] A. Felty and D.A. Miller. Encoding (1 Deyenrlent- Type A-Calculus in a Logic Programming
Language. Rapport de Recllerclle 1259, Inria. 1990.

[14] A. Felty and D.A. Miller. Specifying theorem provers in a. higher-order logic programming
language. In E. Lusk and R. Overbeek, editors, C4DE-88, pages 61-80, Springer-Verlag,
Berlin, FRG, 1988. LNCS 310.

[15] M. Hanus. Horn cla.use progra.ms with polymorphic types: sema.ntics and resolution. Theorel-
ical Computer Science, (89):63-106. 1991. Previously in [16].

[16] M. Hanus. Horn clamuse programs with polymorphic types: semantics and resolution. In
TAPSOFT'89, pages 225-240, Springer-Verlag. Barcelona, Spain, 1989. LNCS 352.

P. Brisset arid 0. Ridoux 63

[17] J.S. Hodas and D.A. Miller. Logic programming in a fragment of intuitionistic linear logic.
In G. Kahn, editor, Synzp. Logic in Conzputer Science. pages 32-42, Amsterdam, The Nether-
lands, 1991.

[la] G. Huet. A unification algoritli~n for typed A-calculus. Theoretical Computer Science, (1):27-
57, 1975.

[19] B. Jayaraman and G. Nadatliur. Impleineiitatioil techniques for scoping constructs in logic
programming. In K. Furukawa, editor, 8th Int. Conf. Logic Programming, pages 871-886, MIT
Press, Paris, France, 1991.

[20] B. Jayaraman and G. Nadathur. Implementing AProlog: a progress report. In 2nd NACLP
Workshop on Logic Programming ilrchitectures a ~ z d Implementations, MIT Press, 1990.

[21] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. The Undecidability of the Semi-Unification Problem.
Technical Report BUCS 89-010, Bost,on University, 19S9.

[22] Keehang Kwon, G. Nadatliur, a.nd D.S. Ff7ilson. Inzplenzeitting Logic Programming Languages
with Polymorphic Typing. Technical Report CS-1991-39, Dept. of Co~nputer Science, Duke
University, 1991.

1231 T.K. Lakshman and U.S. Reddy. Typed Prolog: a se~~iail t ic reconstruction of the Mycroft-
O'Keefe type system. In Int. Logic Progrcriixnziizg S'yiiz1).. pa.ges 202-217, 1991.

[24] S. Le Huitouze. A new data structure for implemeiitiiig esteiisions to Prolog. In P. Deransart
and J . Maluszy~iski, editors, Int. Work. Progrc~~iziixii~g La.ngrrages Implementation and Logic
Programming, Springer-Verlag, 1990. LNCS 4.56.

[25] D.A. Miller. A logic programming laaguage with lambda.-abstraction, function variables, and
simple unification. I11 P. Schroeder-Heister, editor, Int. TVorkshop on Extensions of Logic
Programming, Springer-Verlag, New York, Tiibingen, FRG, 1989. LNAI 475.

[26] D.A. Miller. A logical analysis of lllotililes in logic programming. J. Logic Programming,
G(1-2):79-103,1989.

[27] D.A. Miller. A theory of iilodules for logic progra.mming. In Symp. Logic Programming,
pages 106-115, Salt Lake City, UT, USA, 1986.

[28] D.A. Miller and G. Nada.thur. Higher-order logic progra.mining. In E. Shapiro, editor, 3rd Int.
Conf. Logic Progranzming, pages 448-462, Springer-ITerlag, London, UI<, 1986. LNCS 225.

[29] D.A. Miller and G. Nadatliur. A logic progralilniiilg approach to manipulating formulas and
programs. In IEEE Synzp. Logic Progrcrr~ln~i~iy, pages 379-388, Sail Francisco, CA, USA, 1987.

[30] D.A. Miller, G. Nadathur, and A. Scedrov. Hereditary Harrop formulas and uniform proof
systems. In 2nd Synzy. Logzc z r z Conlp~~fcr Sc~cnct , pages 98-105, Ithaca, New York, USA,
1937.

64 P1.oc.twii11g.s of the 1992 XProlog Workshop

[31] A. Mycroft and R.A. O'Keefe. A polymorphic type system for Prolog. Artificial Intelligence,
(23):295-307,1954.

[32] G. Nadathur. A Higher-Order Logic as the Basis for Logic Programming. Ph.D. Thesis,
University of Pennsylvania, 1957.

[33] G. Nadathur and B. Jayaraman. Towards a \ITAM model for AProlog. In E.L. Lusk and
R.A. Overbeek, editors, 1st North Anzericaiz Conf. Logic Programming, pages 1180-1198, MIT
Press, 1989.

[34] G. Nadathur and D.S. Wilson. Representation of lambda terms suitable for operations on
their intensions. In A CM Conf. Lisp and Fulzctional Programming, pages 341-348, ACM
Press, Nice, France, 1990.

[35] T. Nipkow. Higher-Order Unification, Polynzorl~hisnz, and Subsorts. Technical Report 210,
University of Cambridge, Conlputer Laboratory, 1990.

[36] F. Pfenning. Logic programming in the LF logical framework. In G. Huet and G. Plotkin,
editors, Logical Framewor.ks, pa.ges 149-18 1. Cambridge University Press, 1991.

[37] F. Pfenning. Unification and anti-unifica.tion in the calculus of constructions. In Synzp. Logic
in Computer Science, pa.ges 74-85, 1991.

[38] 0. Ridoux. MALIvOG: Ttrtoriul and Reji.rencc :Inilzrtl,l. Publication Interne 61 1, IRISA, 1991.

[39] D.H.D. Warren. An Abstract Prolog Instrttction Set. Technical Note 309, SRI International,
1983.

Higher- Order Substitutions
(Preliminary Results)

D. Duggan '
Department of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3G1, Canada

dduggan@plg.uwaterloo.ca

1 Abstract

Languages such as A-Prolog and Elf advocate an approach to program manipulation based on
higher order abstract syntax, with substitution built in to the language evaluator. Recently sub-
stitution has received fresh attention with concrete versions of the A-calculus where substitutions
are made explicit as terms in the language. In this paper we show how explicit substitutions may
be introduced into a language for manipulating higher order a.bstract syntax. The implementation
of full substitution in the evaluator may be avoided by using a metalanguage which supports a
generalization of Miller's patterns. We briefly comment on the motivation for such an approach to
substitutions.

2 Introduction

"I don't really like deBruijn numbers nzyself." .N. G. deBruijn.

The Aa-calculus [I] has recently been proposed a.s a, formalism for reasoning about implementa-
tions of the A-calculus. This formalism is based on a concrete formulation of the A-calculus where
variables are replaced by deBruijn numbers [5], and where substitutions are made explicit in the
(two-sorted) term language. Applications of this calculus include the derivation of a Krivine-like
abstract machine and a type-checker for the second-order A-calculus. A similar system (ACCL) has
been independently developed by Field [9], who has also developed a labelled version of his system
to reason about optimality. Anotller similar system has been proposed by Nadathur and Wilson as
a foundation for implementations of A-Prolog [l i] . .

In this paper we propose a similar system which incorporates explicit substitutions into the
A-calculus. However in contrast to the first-order a.pproa.ches mentioned above, our system is based
on higher-order abstract syntax [16, 81: rather than representing variables concretely as deBruijn
numbers, we represent them instead as variables in the metalanguage, with variable binding in
the object language A-calculus represented by A-a,bstraction in the metalanguage. We formulate
typing and equality rules for this calculus where applications of "free" function variables employ
an extension of a restriction discovered by Miller [15] (see also [18, 191). Our extension enjoys the
same pleasing properties of decidability and most general unifiers that Miller's patterns ensure (the

'Supported in part by the NSERC grant OGP0105568.

66 Proceedings of the 1992 AProlog Workshop

details are worked out in a compailion paper [7]). We make essential use of our generalization of
patterns t o product types in what follows.

Since our interest is in specifying and implementing type-checkers for languages with higher-
order type systems (e.g. Quest [3], Pebble [2]), we present a type-checker based on explicit higher-
order substitutions. Viewed as a (determinate) logic program, this type-checker can be implemented
directly in a language which supports products, extended patterns and polymorphic (non-uniformly
parameterized) data types.

With the reader's indulgence, we use variations of the same A-calculus for both metalanguage
and object language in this paper. The core A-calculus is Luo's Extended Calculus of Constructions
[14], a system with predicative general products (dependent function types) and general sums (de-
pendent sum types), a cumulative hierarchy of type universes, and impredicative logical quantifiers.
We have designed a n LA-like logic programming language, based on placing syntactic restrictions
on this calculus, which ensure decidable unification and a complete operational semantics relative
to a realizability semantics. The type-checking algorithm provided in Section 6 is implementable
with minor modifications in this metalanguage. The object language is Luo's system restricted to
general products and type universes, where the main issues arise. Thus the type-checker we develop
as a metalanguage program may be considered as a type-checker for the metalanguage.

Regarding the usefulness of this approach, we hope that i t will aid in the development of auto-
mated reasoning and programming environment tools based on higher-order abstract syntax. For
example i t may serve as the basis for providing explicit substitutions as "classes" in a metalanguage
with an appropriate notion of "inheritance." Finally we conjecture that further enrichments of the
metalanguage may strengthen the power of the formalism for reasoning about reduction strategies;
for example the addition of linear connectives may enable us t o reason in the metalanguage about
sharing [13, 101, a deficiency with the Aa-calculus [4, 91.

3 LuoSs Extended Calculus of Constructions

The core A-calculus we will be using for both metalanguage and object language is Luo's Extended
Calculus of Constructions. We will not concern ourselves too much with the structure of the
metalanguage (details a.re provided elsewhere [GI) . The salient features are:

1. a special constant Type representing the "kind" of all types;

2. a dependent function type IIr : A . B, including quantification over types (terms of kind

Type);

3. A-abstraction for representing object language terms with va.ria.ble binding, with Ax : A . M
E H x : A - B ;

4. application Al (AT) for Ai! E IIx : .A . B. A7 E -4; a.nd

5. products (pairs), with product type A x B and left and right projections r l (M) and 7r2(M).

D. Duggan 67

For readability we will adopt the abbreviation M (N l ; . . .; N,) for (. . . (M (N l)) . . . N,) (more tra-
ditionally written as (M N1 . . . N,)). Also [n] will denote the set (1,. . . , n). We will adopt the
traditional abbreviation that A+B denotes the function type IIx : A . B where x $Z FV(B).

To ensure decidable unification, Miller has proposed restricting applications of a "free" function
variable F to have the form F (x l , . . . , x,), where the xi's are A-bound and distinct [15] (see also
[18, 191). With the introduction of product types, this restriction can be generalized to allow
applications of the form

F (P ~ (x I) , - - . pn(xn))

where each p; is a sequence of projections applied to a A-bound variable x, (i.e.
p i (x i) - n;, (. . . (n;,, (xi)) . . .)), and where moreover if xi = z j , i # j, then neither p; nor pj are
prefixes of each other. Note in particular that this allows repeated occurences of a A-bound vari-
able in a pattern. Decida,bility of unifica.t,ion a,nd most general unifiers are maintained with these
generalized patterns [TI. We make essential use of these generalized patterns in composing higher
order substitutions, discussed in the nest section.

The foundations for this metalanguage lie in Luo's Extended Calculus of Constructions [1 4] .
The major difference between ECC and the metalanguage just described is that the former explicitly
stratifies types into a cumulative hierarchy of type universes. For terms of the metalanguage we will
leave this stratification implicit [12]. However we make this stratification explicit when we take (a
subset of) Luo's ECC as the object 1angua.ge. We will provide a slightly non-traditional presentation
of a subsystem of ECC (restricted to dependent function types and type universes) using higher
order abstract syntax. This will serve to demonstrate the use of higher-order substitutions both
for implementing 0-reduction and for type-checking with dependent types2. A representation for
terms of our ECC subset is given by the follo~ving metalanguage signature:

Term : t y p e
t y p e : Nat + Term

p i : Term + (Term - Term) -+ Term
abs : Term + (Term - Term) - Term

apply : Term - Term - Term

Terms in the object language have the form:

type(i) , p i (A; B), abs(A; Al), apply(A4, N)

representing respectively (the name of) a, type universe, the dependent function type, A-abstraction
and application.

Figure 1 in the Appendix gives the typing rules for the object language. To keep the number
of rules t o a minimum we present, the system using equality judgements r D M = N E A, with the
abbreviation:

def ~ D J / ~ E A = ~ D A I = A J E A

' ~ l t h o u ~ h we col~ld have used e.g. t,he secoltd order A-calculus as a possibly more familiar example for type-
checking, our presentation is short.ened using ECC because of the common structure for terms and types.

Proceedings of the 1992 XProlog Workshop

We will use judgements of the following forms:

Environments r ..- . nil (r , x : A
Judgements J ::= r env I r D M = AT E A 1 I? b M 5 N E A

Note that the following rule is derivable from CUM:

We will refer to the system in Figure 1 as AD.
The equality rules, oriented as a. rewrite system, a,re obviously confluent and Church-Rosser3.

Denote the judgement that M rewrites to N by I? D M -a N E A , and let r I-ECC 3 denote
derivability of the judgement I? D 3 using the rules of A,!?. Then Luo has verified the following
properties for ECC:

Proposition 3.1 The following properties are true of ECC [id]:

Church-Rosser If I' D N1 = N:! E A, I' [> N 1 E A and r D N2 E A, then there is some M such
that D N1 -p A4 E A and I? D N2 -p 44 E A.

Subject Reduction If I? D A4 E A and I' D Ad -p N E A, then r D N E A.

Strong Normalization If I? b M E A then A4 is strongly nornzalizable.

Decidable Type-Checking Type checking, corzvertibility and curnulutivity are decidable.

Minimal Types Any well-typed term M of ECC has a iniizimal type A such that (1) I' D M E A
and (2) for any A' szrch that I' D A4 E A', zue h,ave I' t> A 5 A E type(i) for some i E w.

In the next section it will be useful to consider reduction on untyped terms of AP; we will denote
this by M +p N. Note that the Church-Rosser property still holds for untyped reduction due to
the absence of critical pairs.

4 ECC With Substitutions

The formulation of the Ap object language in the previous sectioil relied in several places on the use
of @reduction to implement substitution. In this section we remove this reliance on P-reduction in
the metalanguage by making substitutions explicit in the object language. For brevity we refer to
the resulting system as ABa.

3We have omit ted t h e equality rule:

since confluence fails with a naive equality relation (because of cumu1at.ivit.y).

D. D uggan 6 9

We introduce a new type constructor Subst into the object language for substitutions. In
our system substitutions will be trees of (value,type) pairs (rather than lists as in the Xu-calculus
and ACCL). Thus the (metalanguage) type of a substitution is parameterized by a product type
reflecting the structure of the substitution. Note that we are making non-trivial use of both product
types and polymorphism in the definition of substitutions. The additions to the object language
signature of the previous section are4:

Subst : type -; type
clos ' : IIS : t y p e . (S --. Term) i Subst(S) + Term
mapu : IIS1 : t ype . USz : t ype . (S1 + Subst (S2)) -; Subst (S1) + Subst (Sz)
[-,-I : Term i Term -- Subst (Term) " : IIsl : t y p e . IIS2 : type - Subst (Sl) + Subst (SZ) --. Subst (Sl x Sz) - 0 -

Here the subs t term constructor represents the application of a substitution to a term. Basic
substitutions are built using the [-,-I constructor. Thus whereas in AD we had

in ABu the rule is formulated as

I', x : A t, A ~ (x) E B(x) I ' D N E A BETA I? I> apply(abs(A; 44); N) = clos(A4; [A;, A]) E c los(B; [N, A])

These c l o s terms are similar to the hiyheriorder closures introduced by Hannan and Miller [ll]. - -

For this approach to be useful we must be able to maintain these closures in the form
clos(Xx t(M1(x);. . . ; M,(x)); s) where t is the outermost term constructor (not c los) . Therefore
we have the following rule for composing substitutions:

This rule makes use of the two other constructors for substitutions: - o - forms the composition
of two substitutions, while map applies a, substitution to another substitution (In Aa-calculus and
ACCL, these constructors are combined into a single composition operator, with a reduction rule
mapping the second substitution over the first). For the purposes of higher-order abstract syntax,
the crucial point is that whereas the original term Ad has two free variables being substituted for
by two separate substitutions, the resulting term has one free variable being substituted for by a
single composite substitution, with the previous free variables specialized to projections out of this
composite substitution. The rules for applying a. substitution ("projecting out of an environment")
then rely on matching against the projections inserted by the composition rule:

r D s2 E subs t (s) r D c ~ o s (A ~ ; s ~) E B
I' I, c los(Ar . iM(rr,(r)); sl o s 2) - clos(A4; sl) E B

r D sl E subst (s) r D C ~ O S (M ; s2) E B
Su BSTR r D clos(Ax . A4(rrz(x)); sl o sz) c lo s (M; s2) E B

*The quoting annotation ' is borrowed from L E A P [20], and signifies inference of an implicit (type) parameter
based on the types of the remaining arguments.

Proceedings of the 1992 AProlog Workshop

Figure 2 gives the basic type rules for ABu. Aside from the introduction of explicit substitutions,
these rules do not differ much from the original type rules in Figure 1. The type rule which is
noticeable by i t s absence is a rule for typing closures. In fact since our substitutions are essentially
untyped a t the object level such a rule is not sound with respect t o the original system. Instead (as
with the second order Xu-calculus [I]) we present rules for pushing substitutions inside of terms and
typing the result; in general deciding well-typedness is inextricably tied with applying substitutions.
We conjecture that such a closure rule would be sound in a system where dependent product types
and LF-like encodings of terms were used t o represent explicitly typed substitutions.

Figure 3 gives the rules for permuting substitutions with term constructors (including the
CLOSSUBST rule for composing substitutions). Figure 5 gives the equivalence rules for substitutions,
including rules for pushing substitutions inside of other substitutions. Here again we have a rule
(MAPSUBST) for composing substitutions, analogous to CLOSSUBST.

The rules BETA, CLOSCONST, C L O S ~ ~ . ~ R CLOSL, CLOSR, CLOSPI , CLOSABS, CLOSAPP,
CLOSSUBST, M A P T E R M , MAPCOMP and ~ I A P S ~ J B S T constitute a higher-order rewrite system
(HRS) as defined by Nipkow5[18]. \Tie now follow a line of reasoning similar to that for the Xa-
calculus [I] to verify the confluence of this system. To this purpose we separate the HRS into two
subsystems: A B (constituting of only the BETA rule) and Aa (constituting of the remaining rules).
We denote (untyped) reduction under ABa, AB and .ha by -B,, - i ~ and -+,, respectively. Recall
that untyped P-reduction over terms of A p is denoted by --p.

The type rules for object-language terms are given relative to a type environment I?, with any
free variables in an object language term bound in r. When considering the term equivalence
rules as a HRS, the meta-variables in the schematic rewrite rules are considered free and the "free"
object language variables are A-bound in the metalanguage representation. When reasoning about
the correctness of the HRS, we will assume that there are no free meta-variables in terms (any free
object language variables are bound in r). A metalanguage term 34 with free variables in I' may
be considered as a n abbreviation for X I ? . M. so in this sense we are restricting ourselves to "closed"
terms.

Lemma 4.1 (Termination of Aa) The HRS Aa is Noetherian i.e. terminating.

PROOF: We adapt Field's termination proof for ACCL. To reason about termination we will use a
lexicographic semantic path ordering, although with a. slightly non-standard approach. In particular
we assume given, in addition t o the usual term constructors, a countably infinite set of variables
X = { x i } i e , from which all A-bound varia.bles are taken. We define the following precedence on
constructors:

c l o s =,map +,apply >,abs >,pi >,- o - >,[-,-]

The atomic terms are of the forin T, , (. . . (i ~ ~ , ~ (z)) . . .) for z E A'; we make these equivalent under
the equivalence =,and less than all of the other constructurs under the precedence 3,.

'With the generalizatioil that patt.erns are ext.ended t.o product.^, and the restriction that right-hand sides are also
patterns. We conjecture that Nipkow's Higher Order Critical Pairs Lemma still holds for this system.

D. Duggan 7 1

The following measure gives a rough estimate of the eventual size of a term or substitution after
normalization of substitutions:

d ~ f
1x1 - 1

Ini(A4)l 9 / M I

I apply(A4;N) I *' 1 A,! I + I N 1 + 1

I abs(A;Ax.M) I gf I A 1 t 1 M I + 1

Ip i (A;Ax.B)I 5 I A / + J B / + l

I c los (Xr . Adis) I gf I M / . 1 s 1
I [W,A]I dC' I M 1

def
I s 1 o s 2 1 = max(Is1 1.1~2 I)

def Irnap(Xx-sl;s2)I = I s l I . j s 2)

For object language terms A4 = t l (K) and AT s t2(n',), define the precedence ordering M k t N
by the lexicographic combination of k, and eventual size under a-normalization:

Finally kt is extended t o a siinplification ordering k:

1. Mi N for some i E [~ i x] , or

2. M k t N and M > N j for all j E [n], or

3. M zt N , (MI , . . . ,) k* (All, . . . , ATn) and M > ATj for all j E [n].

Here k, is the lexicographic extension of to sequences, with Ax M k N if M k N , M k Ax - N if
MkN, and Ax. M k X x . N if AllkN.

We can then verify that > is a silnplification ordering, and that M > N where M and N are left
and right hand sides, respectively, of any rule in the HRS.

Lemma 4.2 (Confluence of h a) .\a is conflue?zi on a-closed ternzs i.e. if r 1, M E A, M -+: N1
and M +: NZ, then there exists nlz h' sucll that AT1 -: N ciizd N2 -: N .

PROOF: We verify local confluence by an exa.mination of higher order critical pairs [18]. Confluence
then follows from termina.tion. The difficult case is for the critical pair formed by CLOSL and
CLOSSUBST in

Proceedings of the 1992 AProlog Workshop

clos(Ax . c los (M(n l (x)); sl (nl (5))); s2 o s;)

We verify by induction on (maximal length of a-reduction sequences, size of term) that:

The base cases are for atomic terms of the form A4 = Ax . Ay . K;, (. . . ri, (x) . . .) for z E {x, y),
M - Ax . Ay . z for z g' {x, y), and A i = Ax . Ay - type(i). 13

We now let o (M) (u(s)) denote the (unique) normal form for the term M (substitution s) under
the Aa HRS. The remainder of the proof of confluence for ABu follows very closely that for the
Aa-calculus, in particular using Ha.rdin's interpreta.tion technique and confluence for Ap.

We,verify that the HRS ABu is a correct implementation of substitution. The following rules
are for the judgement form r D {N/z)A4 * Ad':

Ass r D {N/x)A =+ A' r , y : A' D {N/r) (,M(y)) * Mt(y)
T D {N/x)abs(A; A4) * abs(A1; M')

PI r t> {N/x}A * A' r, y : A' D {hr/x)(B(y)) ==+ Bt(y)
r D {N/x)pi(A; B) pi(A1; B')

We can then verify the following lemma. by induction on the structure of a. term M (or equivalently
by induction on a derivation in the inference system just defined):

Lemma 4.3 Suppose I?, x : A kEcc A4 E B. If I' I- {AT/x)A4 * A4' then

u(clos(An: . Ad; [A', .A])) = A4'

Corollary 4.1 Suppose r k ~ c c . M E A and F kEcec. E -4. If A4 -0 N then M -;3, N .

PROOF: By the definition of P-reduction and the previous lemma, it suffices t o perform a Beta-
reduction and then normalize with respect to A0i.e. if A4 -13 hT then 3M' . M -B M' and M' +: N .

D. Duggan

Corollary 4.2 0-reduction is conjltre~zt on Au nornzal forms.

Lemma 4.4

1. For closed terms M and N , if A 1 +B N the12 o(A1) o (N) .

2. For closed substitutio~zs s cuzd t . if s -B t the12 ~ (s) -j ~ (t) .

Theorem 1 ABo is confluent on closed terms.

PROOF: Using Hardin's interpretatioll technique [l] and Lemma 4.1, Lemma 4.2, Corollary 4.2
and Lemma 4.4. Hardin's technique amounts t o verifying the following diagram (where the vertical
arrows represent reductioil to a-normal form):

(Beta U a)* (Beta U u)*
.<+.-•

This crucial result is the basis for the type-checking algorithm presented in the next section.
Finally we formulate a statement of correctness for A B a relative to AD:

Theorem 2 (Soundness of A B o)

1. If I-, I? N I" env then a (r) = u(I") and tECC a (r) env

2. If r l--, M - N E A then u (r) tECC u (M) = a (N) E ~ (i l) .

4. If r I-, s - t E Subst (S) then

(a) if S = T e r m then o (s) r [M , A] = a(l) for sonze M , A such that a(r) tECC M E A.

(b) otherwise S E (S1 x $ 2) for some ,S1. .S2: then u(s) z s1 o s2 -- ~ (t) for some sl , sz
such that I-, sl E Subst (S 1) and T I-, s2 E Subst (5 ' 2) .

It is unclear how to obtain an a.nalogous completeness result. Although it has been suggested that
this can be done for the Xu-calculus by rewriting closures to BETA-redices, this does not seem to
adequately handle definitional equality in the type system.

74 Proceedings o f the 1992 XProlog Workshop

5 A Type-Checking Algorithm

Finally we briefly present a type-checking algorithm for Ap based on the system presented in the
previous section, and state without proof the conditions for its correctness. Figure 6 presents the
type-checker as a collection of inference rules, where closures are type-checked essentially by pushing
substitutions inside of terms and type-checking the result.

These rules use numerous auxiliary algorithms. The rules for checking for cumulativity and
convertibility (in Figures 7 and 8, respectively) are very similar, and amount to interleaving re-
ductions t o WHNF with recursive checking of subterms. Figures 9 and 11 give the algorithms for
reducing terms and substitutions, respectively, to W HNF. Finally Figure 10 gives the algorithm for
type-checking substitutions.

In contrast t o the type system of ABa, the type-checking algorithm does not "validate" the
environment for each use of a. va.riable. Rather it assumes a a initial valid environment and then
maintains the validity of the environment as terms are added to i t . Also the WHNF reduction
algorithms do not type-check their result, a.nd rely for their correctness on the following:

Lemma 5.1

1. If r I- , M E A and 44 -;3, N the11 I? t , S E .A.

2. If I? t , s E S u b s t (S) and s +;, t then r I - , t E Subst (S)

3. If r I-, M E A then I? I-, A E Type(i).

4. If I' Fo c l o s (M ; s) E A then r l-, s E Subst (S) for some S .

Forthejudgement forms I? D M E A, r D A 5 A', r D M + N , r D M - N , r D s E Subs t (S)
and r D s t , let r kalg A4 E A, r I-,[, A 5 A', r talg M + A', r Ealg M - N , r kalg s E S ~ b s t (S)
and Falg s - t , respectively, denote derivability a.ccording to the inference rules of the type-
checking algorithm. The sta.tement of soundness for the type-checker is then given by

Theorem 3 Suppose I- , T' - r env. Theri:

1. If I' I-,lg M E A then r I-, M E A.

2. I f r k-,lg A E ~ y p e (i) , r F a) , A' E Type(i) cinrl I? I-,,g A 5 A' then I-, A 5 A' E Type(i).

3. If I' Farg M E A, r I-,I, N E A and r 114 - hi then r F, M N N E A.

4. If I? I-alg M E A and r 1lJ - N then r l-, Ad - IIJ E A.

6. If r kalg s E S u b s t (S) and r talg s - t then r I - , s - t E Subs t (S1

D. Duggan

6 Conclusions

We have presented an approach t o incorporating explicit substitutions into LA-like languages, based
on a generalization of Miller's patterns to product types. Although there appears to be some promise
with the approach, ultimately its usefulness may depend on iniplementational considerations. In
particular the form of restricted P-reductions allowed in the Illetalanguage appear somewhat more
complicated t o implement than Po-reduction [15]. Although there are advantages t o having substi-
tutions outside of the inference engine in A-Prolog-like languages, it remains t o be seen what the
performance penalty for this might be. However provided this performance penalty is not too great,
there are important pragmatic advantages to providing substitutions outside of the programming
language evaluator. Among these are that applications that do not use substitutions should not
pay the price for their provision, and also t11a.t applications ma.y be provided in a more flexible
way (e.g. as "classes") allowing them to be tailored for specific applications. This is important for
example in providing "defined constants" in a theorem-proving environment, which are crucial for
controlling the size of terms during comparison and printing.
Acknowledgement: Paul Taylor's diagra.m pa,cka.ge was used to draw the diagram on Page 9.

7 Appendix

Proceedi~lgs o f the 1992 XProlog Workshop

E N V N I L nil env

r , x : A env

r, x : A, I" env
~ , X : A , I " D X = X E A

r env
r D Type(i) = Type(i) E Type(s(l.))

r D A = A' E Type(i) I',x : A D B(x) = B1(x) E Type(i)
PI r D pi(A; B) = ~ i (. 4 ' ; B') E Type(i)

r D A = A' E Type(i) T , z : A D M (z) = A ~ ' (x) E B (x)
A s s r D abs(A; M) = abs(.A1; lM1) E p i (A; B)

r env
CUMTYPE r D Type(i) 3 Type(s(i)) E Type(j)

l? D -4' 5 A E Type(i) I'.z : A' D B (x) 5 B1(x) E Type(i)
CUMPI r D ~ i (. 4 ; B) 5 pi(A1; B') E Type(i)

(x new)

Figure 1: AD: Luo's Estended Calculus of Constructions

D. Duggan

r, x : A, r' env
r , 2 : ~ , r 1 ~ ~ N ~ ~ ~

env
TYPE r D Type(i) - Type(i) E Type(s(i))

PI r D A A' E Type(i) r , x : A D B(x) - B1(x) E Type(i)
r D p i (A ; B) - pi(A1: B') E Type(i)

I? D A N A' E Type(i) T , z : A D 114(2) .v M'(x) E B (x)
A s s r D abs(A; Ail) .v abs(A1; All) E p i (A ; B)

r D A l N M' E p i (A ; B) ~ D N - N ' E A
A P P

I' D apply(A4; N) .v apply(-44'; N ') E c l o s (B ; [N , A])

r , ~ : A D A ~ (x) N A/~(z) E B (X) r D ~ V - N E A
BETA r t> app ly (abs (A; Ad); I\') - c l o s (A{; [A', A]) E c l o s (B ; [N, A])

D A4 .v A l l E A r - I?' env
r1 D Ad - 44' E A

r env
r D Type(i) 5 Type(s(i)) E T Y P ~ (~)

CUMPI r D A' 5 A f Type(i) r, x : A' D B (x) 5 B1(x) E Type(i)
r D p i (A ; B) 5 pi(.-ll: B') E Type(i)

Figure 2: hBa: EC'C' \iVitl-I Esplicit Subst i tut ioi~s

Proceedings o f the 1992 XProlog Workshop

r D [Ai l , A] E Subst (Term)
r D C ~ O S (A ~ y ; [I W , A]) .v M E A

CLOSPI
r D pi(clos(A; s) ; Xy . clos(Xx . B(x; y); s)) E C

r D clos(Xx . pi(A(x); B(x)); s) - pi(clos(A; s); Xy . clos(Xz . B(z; y); s)) E C

r D abs(clos(A; s) ; Xy . clos(Xx . M(x; y); s)) E C
C ~ o s A s s r D clos(Xx . abs(A(x); Ail(z)); s) -- abs(clos(,4; s) ; Xy . clos(Xx . M(x; y); s)) E C

CLOSAPP
r D apply(clos(A4; s) ; c lo s (N; s)) E C'

r D clos(Xx. apply(~l/l(x); N (2)) ; s) -- apply(clos(A4; s); c lo s (N; s)) E C

I? D clos(Xa: . A ~ (x ~ (z) ; x?(x)) ; sg 0 map(s1; s z)) E C
CLOSSUBST r D clos(Xx . clos(Ail(r); sl (z)); s2) - clos(X3: . 2 1 1 (~ ~ (x) ; A ? (x)) ; S? o map(s1; s?)) E C

Figure 3: ABa(cont'd): Substitutioxl Rules for Terms

D. Duggan

ENVNIL nil - n i l env

I? - I" env I? D A - A' E Type(z)
(x new) ENVEXT

(r , x : A) - (I?', x : A') env

I? - r' env
rf N r env

rl w r2 env r2 - r3 env
ENVTR.L\NS rl - r3 env

Figure 4: ABo(co~~t 'd) : Environment Equivalence Rules

MAPCONG r D s2 - S; E Subst (5'2) I' D map(sl; sk) E s u b s t (S1)
r D map(s1; 3 2) - map(s1; sk) E Subs t (S1 1
r D A w B E T y p e (i) T D M w N E A

r D [dl, A] - [Ar, B] E Subst (Term)

I? D [c los (M; s), c los(A; s)] E Subst (Term)
r D map(Xx . [A4(x), A(x)]; s) - [c l o s (M ; s), c los(A; s)] E Subs t (Term)

r p map(sl; s) o map(s2; s) E Subst (S1 X Sp)
r p rnap(Xx - s l (x) o s2(x): s) - map(sl; s) o map(s2; s) E ~ u b s t (S 1 x S2)

l? D map(Xz . s l (i r l (~) ; A ? (I)) ; s o map(sz; s)) E Subst (S)
r D map(Xx . map(sl(z); s?(z)) ; s) -- map(Xx . sl(al(x); K ~ (x .)) ; s 0 map(s2; s)) E Subst(S)

Figure 5: ABa(coi1t'd): Equivalence Rules for Substitutions

Proceedings o f the 1992 XProlog Workshop

r D A E A' I? DA'-Type(i) r , x : A D ~ ~ (X) E B (x)
A s s r D abs (A , M) E p i (A , B)

A P P r b h . l ~ B ' b B ' p i (4 , ~) ~ D . N € A ' r ~ ~ 4 ' 3 . 4
I? D apply(4.l; N) E c l o s (B ; [N, A'])

I' D clos(A4; s) E B' I? D B' 2- pi(.4; B) r D c l o s (N ; s) E A' r D A' 3 A
CLOSAPP r b c l o s (X a . apply(Ail(x): , W (r)) : s) E c l o s (B ; [c l o s (N ; s) , A'])

Figure 6: Type Checking Algorithm for ECC

D. Duggan

r D M --i pi(A; B) D M' ?- pi(A1; B') r D A' 5 A I?, x : A' D B(x) 5 B1(x)
r ~ p i (A ; B) 5 pi (A1; B')

Figure 7: Cuillulativity Algorithm for ECC

EQPI r D M - p i (i l : B) D 1 ' - p i (B) r D .4' - A r, x : A' D B (x) - B1(x)
r D p i (. 4 ; B) +- pi (A1; B')

Figure 8: Term Equivalence Algorithm for ECC

Proceedings of the 1992 XProlog Workshop

r D Ad -- abs(A: ill1) I' D clos(M1; [N, A]) - M"
r D apply(Ad; N) - M"

r D A4 - apply(Alf; N')
r D apply(A4; hi) - apply(apply(M'; N ') ; N)

REDCLOSPI r D clos(Xx. p i (A(z) ; Bin:)); s) - pi(clos(A; s); Xy . clos(Xx. B(x; y); s))

REDCLOSABS r t> clos(Xn: - abs(A(x); M (n :)) ; s) - abs(clos(A; s); Xy . clos(Xx . M (x ; y); s))

REDCLOS APP r D clos(Xx . apply(Ad(x); N(x)); s) ?;. apply(clos(Ad; s) ; c lo s (N; s))

Figure 9: W H N F Reduction Algorithm for Terms

D. D uggan

r D A E A ' r DA1-Type(i) r D M f B r D A w B
T D [Ad, A] E Subst(Term)

T D map(Xx - s1(7il(x); KZ(X)); s o map(s2; s)) E Subst(S)
MAPSUBST r D map(Xx . map(sl(z): ~ (2)) ; s) E Subst(S)

Figure 10: Type Inference for Substitutions

REDMAPTERM
I' D map(Xx - [Ad(x), A(x)]; Y) - [c los(M; s) , clos(A; s)]

r D map(Xx . sl (nl(x); ~ ~ (2)) ; s o map(sz; s)) - s'
REDMAPCOMPOSE r D map(Xx . map(sl (x) : 4 2)) ; S) cu' S'

Figure 11: WHNF R.eduction Algorithm for Substitutioils

Proceedings of the 1992 AProlog Workshop

References

[I] Martin Abadi, Luca Cardelli, P.-L. Curien, and J.-J. Lkvy. Explicit substitutions. Journal of
Functional Programming, 1(4):375-416, 1991.

[2] R. Burstall and B. W. Lampson. A kernel language for abstract data types and modules. In
G. Kahn, D. B. MacQueen, and G. Plotkin, editors, Semantics of Data Types, pages 1-50.
Springer-Verlag, 1984. Lecture Notes in Computer Science 173.

[3] Luca Cardelli. Typeful programming. Technical report, DEC Systems Research Center, 1989.

[4] P. Crkgut. An abstract machine for the normalization of A-terms. In Proceedings of ACM
Symposium on Lisp and Functional Programming, pages 333-340, 1990.

[5] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic
formula man.ipulation, with application to the Church-Rosser theorem. Proceedings of the
Iconinklijke Nederlandse -4kademie tun lifetenschappen, 75(5):381-392, 1972.

[GI D. Duggan. A type-theoretic fra.mework for metaprogra.mming. 111 preparation, 1992.

[7] D. Duggan. Unification with extended patterns in ecc. In preparation., 1992.

[S] C. Elliott and F. Pfenning. Higher order abstract syntax. In Proceedings of ACM SIGPLAN
Conference on Programming Langunge Design and Inzplementation, 1988.

[9] John Field. On laziness and optimality in la.n~bda interpreters: Tools for specification and
analysis. In Proceedings of ACAl Synzposiunz on Principles of Programming Languages, pages
1-15, 1990.

[lo] Georges Gonthier, Martin Abadi, and Jea,n-Jacques Lkvy. The geometry of optimal A-
reduction. In Proceedings of AChl Syiiz110siuiiz 0 1 2 Principles of Programming Languages, 1992.

[l l] John Hannan and Dale Miller. From opera.tiona1 selnantics to abstract machines (preliminary
results). In Proceedings of A CM Syrnposiunz on Lisp and Functional Programming, 1990.

[12] R. Harper and R. Pollack. Type checking with universes. In Proceedings of the International
Joint Conference on Theory and Prclclicc of .Softu~arc Developnzent, 1989.

[13] Joshua S. Hodas and Dale Miller. Logic programming in a fragment of intuitionistic linear
logic. In Proceedings of IEEE Symposiz~m on Logic in Computer Science, 1991.

[14] Z. Luo. Ecc, an extended calculus of constructions. In Proceedings of IEEE Symposium on
Logic in Computer Science, pages 385-395. 1989.

[15] D. A. Miller. A logic programming 1angua.ge wit,li la,rnbda.-a,bstraction, function variables and
simple unification. In P. Schroeder-Heister, editor. Extensions of Logic Programming. Springer-
Verlag Lecture Notes in Computer Science, 1990.

D. Duggan 8.5

[16] D. A. Miller and G. Nadathur. A logic programming approach to manipulating formulas and
programs. In Proceedings of the IEEE Symposivnz on Logic Programming, 1987.

[17] Gopalan Nadathur and Debra Sue Wilson. A representation of lambda terms suitable for
operations on their intensions. In Proceedings of ACPI Symposium on Lisp and Functional
Programming, pages 341-348,1990.

[18] Tobias Nipkow. Higher order critical pairs. In Proceedings of IEEE Symposium on Logic in
Computer Science, 1991.

[19] F. Pfenning. Unification and anti-unification in the calculus of constructions. In Proceedings
of IEEE Symposium on Logic in Con21)uter Science, 1991.

[20] F. Pfenning and P. Lee. Leap: A laaguage with eval and polymorphism. In TA PSOFT'89:
Proceedings of the Iizternatioiactl Joint Co~afereiace on Theory and Practice in Software Devel-
opment, 1989.

Proceedings o f the 1992 XProlog Workshop

Defining Ob ject-Level Parsers in XProlog
Extended Abstract

Amy Felty
A T k T Bell La.l~oratories

600 Mountain Ave.
Murray Hill, N J 07974 USA
felty@research.att.com

1 Introduction

The higher-order logic programming language XProlog contains the simply-typed A-terms as its
basic data structures. These terms can be used to elegantly express the higher-order abstract
syntax [12, 81 of objects that ii~clude notions of bound variables such as formulas, proofs, and
programs. Current implementations of XProlog. however, have no provision for a programmer to
provide a concrete syntax for a particular object-level language. Such a capability is desirable, for
example, in implementing an interactive theorem prover. Providing the user with a familiar syntax
for the logic being implemented can greatly enhance interaction.

In this abstract, we propose an approach to provjtling programmer-defined concrete syntax.
A simple grammar specification language will be used to describe grammar rules that translate
the programmer's object-level concrete syntax to XProlog syntax. On the left hand side of each
grammar rule, we include a term describing how to build the abstract syntax for the rule as a
whole from the components on the right hand side. These terms represent an intermediate form
approximating the higher-order syntax. They can be viewed as untyped A-terms, extended to
handle occurrences of both bound and free (logic) variables that are encountered in the object-level
input.

From a grammar specification, we want to automatically generate a parser for an object language
that can then be accessed by the AProlog programmer. There are many ways to generate such a
parser. For illustration purposes, we will describe a technique using the Yacc parser generator
[5] that was used in performing some initial esperiinents using the experimental Standard ML
implementation (LP-SML) [2]. The impleil~entatioi~ described here will generate parsers that use
a two-step approach to parsing where the first step translates concrete syntax to an intermediate
syntax which corresponds to the usual notion of parse trees, also called first-order abstract syntax.
The second step, which translates first-order to higher-order abstract syntax will be presented as
a XProlog program. Although a one phase approacli implemented directly in ML may be more
efficient, presenting the second phase as a XProlog program plays two roles. First, it provides a
clear specification for what needs to be ii-uplelnented in any one-phase approach, making operations
such as those needed to handle variables and constants explicit. Second, it illustrates the use of
A-terms for expressing and nlanipulating higher-ortler abstract syntax in AProlog.

To illustrate the grammar specificatioir language and its implementation, we will use a simple
object language as an example throughout this papel. Our object language will be first-order

88 Proceedings of the 1992 AProlog Workshop

formulas. In the next section, we discuss higher-order syntax and introduce constants for expressing
the higher-order syntax of our first-order object 1angua.ge. These constants are used to build the
terms that are manipulated internally by a AProlog program, for example an interactive theorem
prover for first-order logic. We then define a concrete syntax for such formulas that will be used
by a user interacting with such a theoreni prover. Then, in Section 3, we present the grammar
specification language. Since part of the implementation will be described via a AProlog program,
we describe this language and an interpreter for it in Section 4. In Section 5, we discuss the
implementation of parsers from gramn1a.r specifica.t.ions, and present the non-logical primitives
added t o XProlog to incorporate parsers. In Section 6, we present the AProlog program for the
second phase of parsing, and in Sectioil 7 we conclude.

2 Abstract Syntax in XProlog

The terms of AProlog are essentially those of the simply typed A-calculus. We assume a fixed set
of primitive types. Function types a.re c~nst ruct~ed using tlie binary infix symbol ->; if r and a
are types, then so is r -> o. The type constructor - > associa,tes t o the right. If ro is a primitive
type then the type 71 -> . . - -> Tn -> ro has 7 1 , . . . , Tn as argument types and TO as target type.
For each type r , we assume that there a,re denumera.bly many constants and variables of that
type. Simply typed A-terms are built in tlie usual wa.y using constants, variables, applications,
and abstractions. Equality between A-terms is taker) to mean pq-convertibility. We shall assume
that the reader is familiar with the usua.1 notions a.nd properties of substitution and a, P , and
conversion for the simply typed A-calculus. See [4] for a fuller discussion of these basic properties.

In this paper, we adopt the syntas of tlle LP-SML implementation of XProlog. Free variables
are represented by tokens with an upper ca.se initial letter and constants are represented by tokens
with a lower case initial letter. Bound va.ria.bles can begin with either an upper or lower case letter.
A-abstraction is represented using ba.cksla.sl1 a.s a,n infix sy111b01. Terms are most accurately thought
of as being representatives of pq-conversion equivalence cla.sses of terms. For example, the terms
X\(f X), Y\ (f Y), (F\Y\(F Y) f and f a.11 represent tlle same class of terms.

Primitive types are introduced using kind c/ecloi.otions and constants are introduced using type
declarations. For example, the following decla.ra,t,ions introduce a, new type and a binary functional
constant.

kind i type.

type f i -> i -> i.

To represent a first-order logic, we introduce two primitive types: f o m for object-level formulas
and t m for first-order terms. We then introduce constants for the object-level connectives as follows.

kind tm type.
kind form type.

type and form -> form -> form.
type o r form -> form -> form.

Amy Fel ty

t y p e imp form -> form -> form.

t y p e neg form -> form.
t y p e f o r a l l (tm -> form) -> form.
t y p e e x i s t s (tm -> form) -> form.
t y p e f a l s e form.

By declaring f o r a l l and e x i s t s to take functional arguments, we have defined object-level binding
of variables by quantifiers in terms of A-abstraction, the meta-level binding operator. Thus, bound
variables of the object language are identified with bound variables of the metalanguage of type
t m . This representation of formulas was first introduced by Church [I]. We can also introduce
constants a t the meta-level to represent const.a.nts. function synlbols, propositions, and predicates
of first-order logic. For example, for a logic cont,a.ining a. constant c, a unary function symbol f , a
unary predicate p, a binary predica.te (I, and a proposition r , we give the following declarations.

t y p e c t m .
t y p e f t m -> t m .
tYPe P t m -> form.
tYPe 4 t m -> t m -> form.
t y p e r form.

Using these definitions, the first-order forniula Vn.(p(j(.x)) 2 q(c , z)) , for example, is represented
by the A-term:

(f o r a l l X \ (imp (p (f XI) (q c Z)))

In our example, we will assume that a user interacts with a program such as a theorem prover
using a more familiar concrete syntax that will be transfor~ned internally to the above syntax. The
concrete syntax we adopt here will closely resemble the usual syntax. In particular, we replace
the commonly used symbols A, V, 3, 1, V, 3, 1 with the ascii strings t , o r , =>, n o t , a l l , some,
f a l s e , respectively. I11 addition, we will use a dot after a quantifier and bound variable, which may
sometimes replace the parentheses around the quantified expression. For instance, when entering
the formula in the example above to a tlleorem prover. a user would type:

a l l x . p (f (x)) => q(c ,Z)

In our grammar specification language, we must include a provision for specifying the class of atoms
of the metalanguage to which a particular identifier of the concrete syntax may belong. We choose
t o allow concrete syntax to contain any one of the three atomic expressions in the metalanguage:
constants, free (logic) variables, or bountl variables. As we will see, bound variables will be treated
the same as constants, and thus we will have only two categories of atoms. During parsing of
a particular input, the class to wllicll each individual identifier belongs is determined. For our
first-order logic, we will restrict occurrences of f i~l~ction symbols, predicates, and propositions to
be constants, while atomic first-order terms can be either coilstants or variables. In the example
above, x in the expression f (x) will be parsed to a hound variable occurrence, Z to a free variable,
and c t o a constant, while the predicates p and q and the function symbol f all correspond to
constants of the metalanguage.

Proceedings of the 1992 XProlog Workshop

(left) ::=

(I-term) ::=

. I
I
I

(atom) ::=
I

(r-elem) ::=

I
I

((c ~ ~ ~ s s - I I ~ I ~ z ~) (1-term))
((r1t0112) (string))
((aioiiz) (ident))
(ident)
(app (1-term) (1-term))
(abs (irlent) (I-term))
const I var I cv
((class-name) (ident))
((lez-name) (string))
((/ex-~zr~~ize) (ident))

Figure 1 : Granllnar for Specifying Pa.rsers

3 A Language for Specifying Parsers

A grammar for a particular object 1angua.ge is specified as a set of rules of the form (left) --> (right).
Figure 1 specifies the form that the left a.nd right sides of each grammar rule must take. The left
hand side must be a. (class-name) folloived by a.11 (I-term) which gives the form of the abstract
syntax. This abstract syntax tree is built from the individual coinponents found on the right hand
side. The right side of a grammar rule is a, list of elements described by (r-elem) above. An (r-elem)
has one of three forms. If it is of tlle first for111 shown in the figure, the (class-name) indicates that
the rules for the appropriake class must be used to pa.rse the next token(s) from the input t o ob-
tain an item of this class. If successful, the term obtained will "instantiate" the identifier (ident)
following (class-name). The remaining two forms handle literals or tokens in the input stream. A
(lex-name) identifies a class of objects from tlie lexical analyzer. We do not go into detail about
tI-ie lexical analysis phase in this paper, hut just ilote that (lex-name) is provided t o handle the
interface between this phase and the parsing phase. We could simplify this interface by just allow-
in .-?ue (lex-name) called l i t e r a l or token. for example. In our example we will have two such
cli s so that we may distinguish between symbols and identifiers. When the argument following
(Ic . kame) is a string, the input must. matcli t.he string exactly. The strings " a l l " and " . " in the
syntax of universally quantified for111ula.s will he esa.mples of such tokens occurring in our grammar
for first-order logic. When the argunient. following (ler-lzc~/)te) is an identifier, the next token in the
input stream will instantia.te this identifier as long as it is from the class specified by (lex-nanze).

The terms representing tlie abstract syn tax tree have the form specified by the (I-term) grammar.
They can be viewed as untyped A-terms estelltletl with constructors used to indicate classes for
atoms. Expressions for atoms a.re specified by the first two clauses of the grammar. The constants
const and var take as arguments objects t,llat will correspond to coi~stants or variables, respectively,
of the metalanguage. The keyword cv takes an argument tl1a.t is permitted to be either a constant
or variable. These constants and varia.bles are represented either by a string or an identifier. A
string specifies a specific constant or va.ria.ble. ,411 (I-ternt) can also be simply an identifier or can
be an application or abstraction built using app and abs. Any identifier occurring in an (1-term)
on the left of a grammar rule must also appear on t,lle riglit in an (r-elenz).

Amy Felty

(formula A) --> (form-imp A)
(form-imp (app (app (const "imp") A) B)) --> (form-and A) (symbol "=>")

(form-imp B)
(form-imp A) --> (form-and A)
(form-and (app (app (const "and") A) B)) - -> (form-and A) (symbol "t")

(f orm-atom B)
(form-and A) --> (form-atom A)
(form-atom (app (const " f o r a l l ") (abs X A))) - -> (symbol " a l l ") (i den t X)

(symbol " . ") (formula A)
(form-atom A) --> (symbol "(") (formula A) (symbol ")I1)
(form-atom (const A)) - -> (iden t A)
(form-atom A) --> (pre-ap A) (symbol "1 "1
(pre-ap (app (const P) M)) --> (iden t P) (symbol " (") (term M)
(pre-ap (app P M)) - -> (pre-ap P) (symbol ",") (term M)
(term M) --> (symbol "("1 (term M) (symbol "1")
(term (cv MI) --> (iden t M)
(term M) --> (pre-ap M) (symbol "1")

Figure 2: A C;ralnmar for First-Order Logic

Figure 2 contains a grammar specifica.tion of a. pa,rser for our first-order logic using this language.
We only consider conjunction, implica,tion, a.nd universal quantification here. The other connectives
are handled similarly. This gramma.r illustra.tes hoiv precedence and associativity can be handled
in this framework. Here, conjunction binds tighter than implication, and implication is right-
associative, while colljunction is left-associa.tive. Each of the consta.nts symbol and iden t appearing
on the right hand side in the rules is a lexical cla.ss (or (lez-ncime)) for symbols and identifiers,
respectively. These two classes are defined a.s regu1a.r expressions in the lexical analyzer. We do
not give their specifications here. There are four classes for formulas in the grammar. The first is
for the general category of formu1a.s and is defined by the first rule in the figure: A is a formula
if A belongs t o the form-imp class. This latter cla.ss ha.ndles implications and its associativity.
The first of the two rules for this cla.ss state tha.t a formula is an implication if i t has a formula
with no top-level implication on the left. and a forillula possibly with a top-level implication on
the right. In the abstract s y n t a . ~ term on t,he left, a.n implimtion is represented as the constant
imp applied t o its two formula, a.rgument.s. The keyword const is used in this term to indicate
that its argument corresponds t o a constant of the 1netalangua.ge. The second rule for formimp
handles the case when there is no top-level implication. Formulas with no top-level inlplication are
described by the formand c1a.s~. The fact t.11a.t this c1a.s~ is a subclass of form-imp insures that
implication does not bind as tightly a.s conjunction. This class is similar to formimp except that
the associativity is reversed. In this ca.se. f orm-atom is the su11cla.s~ for formulas with no top-level
& or =>. A form-atom is either universa.lly quantified or is an a.tomic formula. The first rule for
this class handles universal qua.ntifica.tion. 111 a particular insta,nce, the identifier that is assigned

92 Proceediligs of the 1992 XProlog Workshop

t o X may have occurrences in the struct,ure assigned to A . The fact that these occurrences should be
considered bound is recorded on the left by using the abs construct. In the second rule, we allow
atomic formulas t o be parenthesized. The third rule handles propositions. Since we stated in the
previous section that we restrict propositions to be meta-level constants, the keyword cons t is used
on the left side. The fourth and last rule of this class handles predicates applied t o one or more
arguments, as defined by the pre-ap class, and is terminated by a right parenthesis. A member of
the pre-ap class can either be a predicate symbol followed by a left parenthesis and a member of
the term class for terms of our first-order logic, or a pre-ap followed by a comma and then a term.
A term as specified by the term class can occur inside parentheses, it can be atomic, in which case
i t may correspond to a constant or variable of the metalanguage, or it can be a function symbol
applied t o one or more arguments. The pre-ap class handles the third case in the same way that
i t handles predicates. The keyword const is used 011 the right of the first rule of the pre-app class
since both function syn~bols and predicates nlust be constants.

4 XProlog

Formulas are introduced into XProlog by including a pri~nitive type o for propositions, and intro-
ducing suitable constants with their types for the logical collectives and quantifiers. In particular,
we introduce constants for conjunction (,), disjunctions (;), and implication (=>) having type o ->
o -> o. The constants for universal quantification (p i) and existential quantification (sigma) are
given type (A -> o) -> o for each type replacing the "type variable" A . A function symbol whose
target type is o, other than a logical constant. will he considered a predicate. A A-term of type o
such that the head of its PI]-long form is not a logical constant will be called an atomic formula.

We define two classes of propositions, cal1t.d gocrl foniazrlms and definite clauses (or just clauses).
Let A be a syntactic variable for atomic fol.lnulas. G a syntactic variable for goal formulas, and D
a syntactic variable for definite clauses. These two classeh of formulas are defined by the following
mutual recursion.

G := I G1,G2 I G1 ;G2 I sigma n:\G 1 p i m\G I D=>G

A logic program is a finite set of definite clauses. \\'hen we write definite clauses, we will omit
outermost universal quantifiers. In addition. the ontermost implication, if there is one, will be
written using : - which denotes the converse of implication. In a definite clause of the form A : -G,
the atomic formula A is called the hear1 of the clause. and C: is called the body. There is one final
restriction on definite clauses: the head of a definite clause must have a constant as its head. The
heads of atomic goal fornlulas on the other llaitd may be either variable or constant.

A complete non-deterministic search procedure based on intuitionistic provability can be defined
by the following six search operatioils [9]. In these operations, T' is the current program and G is
the current goal.

AND: If G is (GI ,Gz) then try to sho\v that l ~ o t l ~ GI alld C;2 follow from 'P.

A my Fel ty

OR: If G is (GI ;Gz) then try to show tlla,t either GI or G2 follows from P.

INSTANCE: If G is (sigma x\G1) then try t o show t11a.t there is some term t of the same type
as x such that [t/x]G1 is provable from P .

GENERIC: If G has the form (p i x\G1) then pick a new parameter c and try t o prove [c /x]Gf
from P.

AUGMENT: If G has the form (D=>G1) then proceed t o attempt t o prove G' from P U {D).

BACKCHAIN: If G is atomic, we consider the current program. If there is a universal instance
of a program clause which is equal to G then we ha.ve found a proof. If there is a program
clause with a universal instance of the form G : -GI then try to prove GI from P.

The XProlog interpreter makes choices which are left unspecified by the high-level description of
tlie non-deterministic interpreter, ma.ny of which are similar to those routinely used in Prolog. The
order in which conjuncts and disjuncts a.re a.ttempted and the order for backchaining over definite
clauses is determined exactly as in conventional Prolog: conjuncts and disjuncts are attempted in
the order they are presented. Definite cla.uses a.re backchained over in the order they are listed in
P using a depth-first search paradigm to 11a.ndle failures. In the extended language, clauses can be
added dynamically by the AUGMENT operation. We specify that new clauses get added t o the top
of the list.

In the INSTANCE operation, the Prolog implemeiita.tion technique of instantiating the existential
quantifier with a logic (free) variable which is la,ter "filled in" using unification is employed. Thus
instead of picking a term t , the INSTANCE sea.rch opera.tion will introduce a new logic variable as the
substitution term. A similar use of logic va.riables is ma.de in. implementing BACKCHAIN: a clause
frorn P is chosen and an instance is nmde by replacing all outermost universally quantified variables
with new logic variables. This universal insta.nce of t.11e cla.use is then unified with the current goal.
This operation may partially or fully insta.ntiate the iietrr logic variables. The addition of logic
variables in our setting requires liigller-order unificat.ion sil~ce these variables can occur inside A-
terms.

The presence of logic va.riables requires t11a.t GENERIC be implemented slightly differently than
is described above. In particular, if the goal or tlie current program P contains logic variables, the
new constant introduced by this operation must not, appea.r in the terms eventually instantiated
for tliose logic variables.

XProlog permits a degree of polymorphism by allowillg type declarations to contain type vari-
ables (written as capital letters). We will 1na.ke use of this polymorpl~ism in our program for
translating first-order t o higher-order syntax. This program will be used t o translate objects of
arbitrary type.

5 XProlog Primitives for Parsing

In generating parsers from grammar specifications, it is possible to employ one of the well-studied
parsing methods or use existing parser generato]. tools [13, 7. 5 , 6, 3, 111. Choosing t o use a

94 Proceedings of the 1992 XProlog Workshop

particular method will have impact on what kinds of grammars may be accepted as well as on
efficiency of the resulting parser. As an example, we choose the Yacc parser generator [5] , and thus
implement LALR grammars. We use the ML-Lex and ML-Yacc tools to implement lexical analyzers
and parsers, respectively. These tools are the ML versions of the unix lex and yacc utilities.

The first phase of the procedure uses tlie ML-Lex tool for generating lexical analyzers which
transform an input stream to a list of tokens. We will say very little about this phase here. In LP-
SML, a lexical analyzer for a user-defined object language can be derived in a straightforward way
from the ML-Lex specification for XProlog syntax. I11 our example, we choose t o parse identifiers
in the same way that XProlog does, so we take this information directly from the existing ML-
Lex specification. We must then add rules for the literal strings representing the connectives of
first-order logic.

Any specification in our grammar specification langtlage can be transformed in a straightforward
manner to input to ML-Yacc. We view the constants app, abs, etc., as constructors for XProlog
terms representing a first-order approximation of the desired higher-order syntax. The ML-Yacc
phase of parsing will build the internal represelltation of these XProlog terms. For the final phase of
parsing, in the next section, we present a XProlog program that transforms this first-order syntax
to higher-order syntax. Since XProlog terms are thl~ed. we must make sure that a term obtained
from a translatioil from concrete syntax is correctly typed. As we will see, type checking is handled
by the final phase of parsing.

In order t o accommodate user-definetl parsers. \ve provitle two new commands, use-parser used
t o generate and load a parser, and p a r s e used to call the parser on particular expressions in an
object language. They have tlie following types.

t y p e use -pa rse r s t r i n g -> o.
t y p e p a r s e s t r i n g -> s t r i n g -> (A -> o) -> o .

The argument to use-parser is the na.mt of tlic file containing the grammar specification. For
exa.mple, if the grammar for first-order logit. in Figure 2 were in a, file called fol.gram, the command
(use-parser "fol") will read in the file. create the specifica.tion of the lexical analyzer and use
ML-lex t o generate i t , and create the Yacc specifica.tion a.nd use ML-Yacc to generate the parser
which translates concrete syntax to int<ermedia.t,e terms. A goal of the form (p a r s e P a r s e r I n
G) uses the parser named by P a r s e r on the input In . In writing the interactive component of a
program such as a theorem prover in XProlog, tlic progra.mmer will ma,ke use of standard read and
write predicates as in Prolog. Here, we a.ssunle t,liat input can be obtained from read predicates in
the form of a string which can then be pa.ssetl on to t,lie p a r s e command. If the parse fails on the
string In , the goal fails. Otherwise, an out,put tern1 Out is obta.ined representing the higher-order
a.bstract syntax of the input term, and t,lreli t,lle goa.1 (G Out) is a.ttempted. Here, the type of Out
is unified with tlie type of the bound varial~le i n G ant1 an error is signalled if this type-unification
fails.

During execution of a XProlog pr0gra.m. new constants will be generated dynamically by the
GENERIC operation and new logic variables will be generated by INSTANCE and BACKCHAIN. In an
interactive session, we will want to ina,ke at least S O I I I ~ of these constants and variables accessible
to the user, so tha,t they may be a.cceptetl as inp~11 I,!. user-defined pa.rsers. For the purposes of this

Amy Fel ty 95

paper, we will assume tliat there is some lnethod by wliich names are established for new constants
and variables, and only those with establislied nanies can be accessed by the user. For example,
one way in which logic variables can get establislied names is by being printed out to the screen
by a n output command. More specifically, if a term to be output t o the screen contains a logic
variable that does not already have a name, a name is chosen that does not conflict with the names
of currently existing variables and is established for that variable.

Establishing the correspondence of the objects in the input stream t o actual constants and
variables with established names will take place during the second phase of parsing. To make this
correspondence for variables, we will make use of a non-logical XProlog primitive f v a r of type A
-> s t r i n g -> o. A goal of the form (f v a r V Name) will succeed if V is a logic variable with the
established name Name. It will also succeed if V is a variable with no established name. If there is
some other variable V ' with establislied irallie Name, V will be set equal t o V ' . Otherwise, the name
Name will be established for V.

Logically, any variable found in a user's input that doesn't already exist with an established
name can be viewed as a new one generated by INSTANCE. In a goal of the form (p a r s e P a r s e r
I n GI, if the resulting term Out has 71 new variables XI, X, that didn't already have established
names, then consider the tern1 Out ' wit11 bound variables X I , X, and body Out. Then, the goal
we solve after a successful parse is actually:

6 Translating First-Order to Higher-Order Syntax

We introduce the type i t e r m for the intermediate terms that are constructed by the Yacc-generated
parser. The constants app, abs , etc., int,rocluced in our grarnrriar clauses will be considered con-
structors for terms of this type. They have the following types.

tYPe aPP i t e r m -> i t e rm - > i t e r m .
t y p e abs s t r i n g -> i t e r m -> i t e r m .
t y p e c o n s t s t r i n g -> i t e r m .
t y p e v a r s t r i n g -> i t e r m .
t y p e cv s t r i n g -> i t e r m .

In addition, we have the following ~>retlicates tliat will be used in implementing the syntax
translation.

t y p e nameof A -> s t r i n g -> o .
t y p e t r a n s i t e r m -> A -> o .

The nameof predicate handles the translation of constants and occurrences of bound variables in
object-language terms. It relates a ~neta-level constant to the string containing its name. A type
variable is used for the first argument since the:,? constairt:, can be of any type. Before translation

96 Proceedings of the 1992 X Prolog Workshop

of a particular term, we start with one nameof clause for every constant in the environment with
an established name. We also need to know the type of each constant, so we must include type dec-
larations. Dynamically generated consta.nts that have no established name need not be considered
since they have no external representa.tion visible to the user. Constants with established names
include a t least all those declared by the programmer. Thus, when parsing a formula of first-order
logic, for example, we must include a t least. the following declarations and clauses.

kind form type .
kind t m type.

and form -> form - > form.
imp form -> form -> form.
f o r a l l (tm -> form) -> form.
C t m .
f t m - > t m .

P t m -> form.
9 t m -> t m -> form.
r form .

nameof and "and".
nameof imp "imp".
nameof f o r a l l " f o r a l l " .
nameof c "c".
nameof f " f " .
nameof p "p".
nameof q "q".
nameof r " r" .

A nameof clause will be added dynamically for eacl~ binding occurrence of a variable that is en-
countered during parsing. Then, as parsing proceetls. each argument to const or cv will be checked
against the existing nameof pairs. For an argu~nent to const, if it does not match anything, the
parse fails. An argument to cv, if i t is not a constant, will be interpreted as a free variable. The
t r a n s predicate used for the general translation takes two arguments. The first is the input. It is
the result of the parse by the Yacc-generated parser, and thus is the intermediate first-order syntax.
The second argument is the resulting term in the desired higher-order syntax. The translation is
defined by the following clauses.

t r a n s (app M N) (P Q) :- t r a n s M P , t r a n s N Q.
t r a n s (abs X M) N :- p i c\ (nameof X c => t r a n s M (N c))
t r a n s (const M) N :- nameof N M, ! .

t r a n s (var M) N :- f v a r N M.
t r a n s (cv M) N :- nameof N M, ! .

t r a n s (cv M) N :- f r eeva r N M .

Amy Felty

The first two clauses handle applicatioil and abstraction. In an application, each argument is
translated and the result of the first translation is directly applied to the second. Note that types
must match in order for this clause t o succeed. P must have a functional type and Q must have the
appropriate argument type. Otherwise, the translation fails. The clause for abstraction transforms
an intermediate term with occurrences of string representation of a bound variable t o a term of the
metalanguage containing an actual abstraction. In this clause, the GENERIC operation is used to
introduce a new constant, say c, t o play the role of the bound variable. The AUGMENT operation
adds the atomic clause relating tlle string representatioll of the bound variable to this constant.
This clause is available while translating the body M. It will be used to replace all occurrences of
the string X in the intermediate term M to the constant c. If successful, the result of the translation
must match the template (N c) . N will be the term obtained by abstracting out all occurrences
of c. I t is important that the new clause added by A U G ~ ~ E N T be added to the top of the list of
nameof clauses. If a bound variable is introducetl \vitll tlle same naille as an existing constant, it
is important that all occurrences within the scope of the bound variable get parsed as occurrences
of this bound variable and not as the already existing constant.

The last four clauses pertain to translation of atoms. The non-logical feature cut (!) of XProlog
is needed in these clauses. It is used to eliminate backtraching points. It is a goal which always
succeeds and commits the interpreter to all choices lllade since the parent goal was unified with
the head of the clause in which the cut occu~.s. Here, we do not want backtracking to cause an
identifier to be interpreted as more than one kind of atom. The first clause uses nameof to translate
constants or occurrences of bound variables. The nest clause translates free variables using the
f v a r primitive to determine if the variable occurs in the current context, and to generate a new
one when i t doesn't. The result of the translatioil is the already existing or the new variable. The
next two clauses handle an atom that can be either a constant or variable. The order in which
they are attempted is important. First, it must be checked whether it occurs within the scope of a
bound variable or is a constant. If not, it is a logic variable.

We end this section by discussing how the last phase of parsing fits in with the rest. As stated
in the previous section, a goal of the form (p a r s e P a r s e r I n G) uses the parser named by P a r s e r
on the input string In. It does so i n tll~.ee steps. First. it ~vill run the lexical analyzer, and
second, i t will run the Yacc-generated parser on I n to obtain a term, say Mid, the intermediate
syntax representation of the input. Let p a r s e r be the nanie of a XProlog module containing all
the code presented in this section except the clauses specific to the first-order logic example. Let
c o n s t a n t s be the module colltaiiling the type declarations and nameof clauses for all the constants
with established names in the current environ~iic~rt. The final step of the p a r s e command is an
at tempt t o solve the following goal.

p a r s e r ==> (c o n s t a n t s ==> ((t r a n s Mid Out) ,(G O u t)))

The ==> symbol is the meta-level connective that instructs the interpreter to load the module
named on the left of the arrow into menlory ant1 atltl all of tlle clauses in this module to the current
program. Note that the p a r s e r motlule is a static object. while the c o n s t a n t s module nlust be
created dynamically since it will depend on the cznvi~.onment a t the time the p a r s e command is
invoked.

Proceedings of the 1992 XProlog Workshop

7 Conclusion

We have proposed a high-level specification language for integrating object-language parsers into
XProlog. For illustration purposes, we described a two phase method of implementing this facility.
There are several other possibilities. For example, still using tlie ML-Yacc facility, a one phase
approach can be implemented directly in h4L and may be more efficient. To do so, instead of
building the XProlog terms of type i t e rm, we can view tlie constants app, abs, etc., as ML functions
which take their arguments and directly form the iilternal ML representation of the appropriate
higher-order syntax. The operations handled by the t r a n s program must now be handled by these
functions. Thus, for example, these functions must distinguish between constants, bound variables,
and free variables and keep track of tlleir scope, recognize occurrences of free (logic) variables that
exist in the current environment, add to the current environment any new logic variables that occur
in a successfully parsed term, and verify that tlie resulting term is well-typed.

Another possibility is to consider a form of definite clause gramlnars as in Prolog [ll]. In fact,
the grammar specification in Figure 2 already llas a form nlucli like a definite clause grammar. In
[lo], an extension of definite clause grammars to handle scoping coiistructs is described. It would
be straightforward to implement our grammar in t h e manner described in that paper. In doing
so, we obtain a XProlog program to parse a list of tokens to a term of type i t e rm, where the left
hand sides of rules in Figure 2 correspontl to the Iieads of clauses and the right t o the body. The
list of elements on the right become a conjunction of subgoals. In fact, we can modify such a
program so that i t incorporates the t r a n s progsanr and performs parsing from a list of tokens to
higher-order syntax in a single pliase. IIoivever. a XProlog program obtained from this grammar
cannot be executed directly. To see why. note that tlrere is a rule for the f o r n a n d class where
the first element on the right also requires a tern1 from the fo rmand class. In the corresponding
program, form-and will be a predicate and using the clause corresponding to this rule will cause
infinite brallching in the search. This is a common problem in a grammar with infix operators. It
is possible t o change tlie grainmar to obtain an executable parser, though care must be taken in
doing so.

In this paper, we have introduced a p a r s e comnland to esplicitly call a parser on a given input.
At tlie point such a call is made, only the syntas of the given object language can be parsed.
Object-level terms cannot contain arbitrary XProlog syntax inside them. In some cases, it may
be desirable t o mix the two syntases. For esample, the programmer may want t o write programs
that use object-level syntax inside clauses. and may not want to have to invoke a parse command
explicitly t o do so. For instance, a user sllol~ld a t least be able to specify new infix symbols. To
handle this, some method for integrating the exist i ~ i g XI'solog parses with user-defined parsers will
be needed.

Acknowledgments

The author would like t o tha.iik Elsa. Gnnter. Dale h,Iiller. Olivier Nora, Fernando Pereira, and
Iconrad Slind for valuable discussions on t.11is t.opir.

Amy Fel ty

References

[l] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56-68, 1940.

[2] Amy Felty, Elsa Gunter, and Frank Pfenning. LP-SML, a Standard ML Implementation of
XProlog. In progress.

[3] J. Heering and P. Klint. The sy11ta.x definition formalism SDF. In J. A. Bergstra, J. Heering,
and P. Klint, editors, Algebraic Specification, chapter 6, pages 283-297. Addison-Wesley, 1989.

[4] J. Roger Hindley and Jonatllan P. Seldin. lrztr~cxluctiorz to Cor-rzbiizatory Logic and Lambda
Calculus. Cambridge University Press. 19SCi.

[5] S. C. Johnson. Yacc-yet another compiler compiler. C~omputing Science Technical Report 32,
AT&T Bell Laboratories, Murray Hill. X J , 197.5.

[GI G. I<ahn, B. Lang, B. Mblkse, a.nd E. hlorcos. hletal: a. formalism to specify formalisms.
Science of Computer Progr[r.nziizing, :3:151-1M. 1983.

[7] Michel Mauny and Daniel de Rauglautlre. Parsers in ML. In Proceedings of the ACM Confer-
ence on Lisp and Functional Pr~ogr~crr)~rnirzg. June 1992.

[8] Dale Miller. Abstract syntax and logic prograrnniing. In Logic Programming: 'Proceedings
of the First and Second Russian Coi~ferences on Logic Programming, number 592 in Lecture
Notes in Artificial Intelligence, pa.ges 322-337. Springer-Verlag, 1992.

[9] Dale Miller, Gopalan Nadathur. Frank Pfenning. and Andre Scedrov. Uniform proofs as a
foundatioil for logic programming. rlrinc11.s of PIII-e rrrztl Applzed Logzc, 51:125-157, 1991.

[lo] Remo Pareschi and Dale Miller. Extending definite clause grammars with scoping constructs.
In D. H. D. Warren and P. Szeredi, editors, Intcrncrtioiz(11 Conference in Logic Programming,
pages 373-389. MIT Press, June 1990.

[ll] F.C.N. Pereira and D.H.D. Wa,rren. Defini t,e cla.use gra.mmars for language analysis-a survey
of the fornlalism and a compa,rison with a u g ~ ~ l t i ~ t e t l t.l.a.nsition networks. Artificial Intelligence,
13:231-278, 1980.

[12] Frank Pfenning and Conal Elliot. Higher-order a.bstra.ct syntax. In Proceedings of the ACM-
SIGPLAN Conference orz Progr(~.riirni~z~j Lnngrlnye Design crrzcl Inzylenzentation, 1988.

[13] C. Reade. Elements of F~~nctiorzal P~-yr.crr~znli i~. Interna.tiona1 Computer Science Series.
Addison- Wesley, 1989.

Proceedings o f the 1992 XProlog Workshop

A Deductive Database View of Embedded Implications

Burkhard Freitag
Technische Universitat Miinchen

Ins t i tu t fiir Informatik
Orleansstrasse 34, D-MTS000 Miinchen SO

Germany
freitagC2informatik.t~-muenchen.de

1 Abstract

In this paper a modular deductive database language based on embedded implications is presented.
Our language can be considered a subset of A-Prolog [2 3] . Its notion of embedded implication
can best be compared to that of the module system of A-Prolog. We allow negation-as-failure
in subgoals of a rule or query as well as in the consequence of an embedded implication. The
main motivation for the definition of our language has been the desire to make a notion of local
definitions available for deductive database systems liaving a bottom-up query evaluation strategy,
e.g. the LOLA-system [7].

Hap1 : = 1 maplist ([I , [I) .
maplist(CXIL],[YlR]) :- f (X , Y) , maplist(L,R).)

Conv := convert (In,Out) :- (maplist (In,Out) <= Mapl) .
f (U,V) :- look-up(U,V).)

Figure 1: Sample progra.ms Mapl and Conv in basic syntax

2 Basic Language

A BNF-style grammar of our basic syntas is sl~o\vn in figure 2 . Rules are implicitly universally
quantified. This applies also to t.he rules referenred by a.n implica.tiona1 subgoal. Only programs,
i.e. sets of universally closed fornzulas, a.re a.llowed in the antecedents of implicational subgoals.
This is a major restriction' as compared to A-Prolog [23] and the languages proposed e.g. in [19],
[16], [12], [5] . Neither in rules nor in goals lllultiple consequences or nested implications are allowed.
However, such programs and goa.ls ca.n ea.sily be transformed into the basic syntax. Program names
simply serve as placeholders for tlie corresponding rule sets. 111 particular, we do not allow mutual
program references. Sample progra.msg in ba.sic synt.as a.re shown in figure 1.

'Work is underway to define a less restrictive syntax t,llat still preserves bottom-up evaluability.
2To the sample programs shown in t.his paper in general a variant, of the hfagic Set Transformation [2], [3] has t o

be applied t o generate safe, i.e. bot,t,om-up evaluahle. r l~les .

Proceedings of the 1992 A Prolog Workshop

(query)
(program)
(rule-set)
(rule)

(body)
(subgoal)

(i-subgoal)
(reference)
(program-reference)

(literal)

(atom)

(term)

(predicate-symbol)
(function-symbol)
(functor)
(variable)
(program-name)
(string)

: - (body).
(rule-set)
C (rule)')
(head).
(head) : - (body).
(subgoal) {, (subgoal))*
(i-subgoal)
(literal)
((literal) <= (reference) {, (reference))*)
(program-reference)
(program-name)
(program)
(atom)
$not (atom)
(predicate-symbol)
(predicate-symbol) ((term) { , (terln)}*)
(variable)
(function-symbol)
(function-symbol) ((term) { , (term))*)
(functor)
(functor)
{ a - z) (string)
{ A - Z I -) (string)
{ A - Z) (string)
{ a - z l A - Z 1 0 - 9 ($ 1 -) *

Optional parts are enclosed in the meta-symbols [. . .] and groups are enclosed in the rneta-symbols { . . .).
Repetition of a group is indicated by { . . .I". The meta-symbols should be distinguished from the four syntax
elements C, I , C, and), respectively.

Figure 2: BNF-style Grammar of Basic Syntax

3 Bottom-Up Evaltzation

As opposed t o A-Prolog [23] and most other query laliguages with embedded implications proposed
in the literature (e.g. [19], [4], [5]) , our language does not have a. Prolog-like top-down evaluation
strategy.
Instead, a top-down query compilatio~z into aa evaluating relational expression is applied in analogy
to the ordinary deductive database case (For more details see e.g. [Xi] , [7]). In a subsequent bottom-
up query evaluation phase, the proper set of answer tuples is computed in a set-at-a-time fashion.
Our query evaluation scheme thus generalizes the evaluation scheme of most deductive database
systems because embedded implicatio~ls call be handled. Many researchers consider bottom-up
evaluation superior over Prolog-like top-down eva.lua.tion if large quantities of data have to be pro-
cessed, which will typically occur in databa.se-like applications, e.g. in traffic information systems.
In the presence of context extensions as ilitroduced by embedded implications, a combination of
resolution and context extension has to be applied in the top-down compilation step. Context

Burkhard Freitag 103

extension may precede the resolution step, if the predicate symbols are labelled by an appropriate
context identifier, e.g. the 1exicogra.phically ordered list of names of the programs forming the
context. In figure 3 the different program contexts encountered during processing the sample
query : - (convert (In, Out) <= Conv 1 . are made visible by labelling the predicate symbols.
However, it is not necessary that the context extension step precedes the actual query compilation.
The results presented in [9] indicate how to interleave labelling and compilation for deductive
database programs with embedded implications. For more details see [8] and [9].

.-
Ma~llconv,~apll .-
{ maplistlcOnv,,,,~ ([I , [I .

m a p l i ~ t ~ , ~ , ~ , , ~ ~ ~ ~ (CX I LI , CY I RI) : - f lconv,~apll (X ,Y) r

m a ~ l i s t ~ c o n v , ~ a ~ l l (L * R) .)

Figure 3: Program contexts made visible by labelling predicate symbols

4 Perfect Model Se~na~ltics

The operational semantics of programs in basic syntax as sketched above is an almost direct im-
plementation of an iterated fixpoint semantics [I] or perfect model semantics [24], that has been
defined for stratifiable programs with negation-as-failure and embedded implications in [8]: Fol-
lowing the line of [19] we define the generalized Herbrand interpretations and a validity relation

between generalized interpretations and goals. The immediate consequence operator Tw of a
set W of programs maps the set of generalized Herbrand interpretations onto itself. As a major
difference t o [19], we do not require a t this point that generalized Herbrand interpretations are
internally monotonic (see below). It can be shown that generalized interpretations in our slightly
more general sense as well as the generalized immediate consequence operator have the essential
model theoretic properties just as in the ordinary deductive database case (cf. [I]). Consequently,
a minimal fixpoint of Tw is a minimal model with respect to # of the set of programs W.
A natural ordering is imposed on a set W of programs by their implicational depth, i.e. the
length of reference chains t o other programs3. Therefore we can horizontally partition a set of
programs into a sequence of i-strata W k , i.e. sets of programs with equal implicational depth
k. It can be observed that the elements of an i-stra.tum do not, refer to ea.ch other and thus

3Note, tha t program names are allowed i n the ant.ecedents of embedded i~nplications.

104 Proceedings of the 1992 XProlog Workshop

may be processed simulaneously. By stratifiability with respect t o negation every single program
in an i-stratum Wk can be partitioned into an ordered set of n-strata. We can think of the
collection of n-strata as partitioning every Wk in vertical direction. By every such vertical partition
a corresponding immediate consequence operator is defined. In analogy t o the fixpoint procedure
for ordinary deductive database progra.ms, we compute a sequence of minimal fixpoints of the
immediate consequence operators proceeding from the rightmost i-stra.tum W , t o the leftmost i-
stratum, and, within each i-stratum Ws, starting a t the lowest n-strata and proceeding to the
highest n-strata. Using the techniques of [I] it can be shown that a minimal generalized model of
W is computed which, indeed, is the perfect generalized Herbrand model [24]. See [8] and [9] for
more details.

5 Negat ion-As-Failure

Negation-as-failure is known to be problematic in ordinary deductive database programs due to its
intrinsic nonmonotonic behaviour. On the other hand, deductive database programs often have to
rely on implicit negative information. i.e. a form of negation-a.s-failure, because there are situations
in which one simply does not have explicit nega,tive information available. For instance, one would
like t o avoid t o explicitly sta.te an inequality axiom for every pair of constants introduced by base
relations4.
The situation grows more difficult if rules or queries have iinplicational subgoals. Sets of programs
have t o be processed simultaneously t o account for references to other programs (cf. [6]). If we
allow an unrestricted use of negation-as-failure the generalized Herbrand interpretations generated
by the immediate consequence operators are not in general internally monotonic (cf. [19]). From
the more procedural point of view it might appear quite natural to get a smaller set of true formulas
when more information becomes available in an extended context. However, from a logical point
of view the use of negation-as-failure should be restricted in a, wa.y that the internal illonotonicity
of the generalized perfect model is preserved. .4n extension of our syntax and semantics allowing
to quantify over free variables of a module is currently under investigation. In many cases, this
extension should make i t possible t,o shift 11ega.tion-as-fa.ilure down to the ba,se relations where its
use can be controlled.
As a more logical justification of negation-a,s-fa.ilure we refer the reader to the literature on cir-
cumscription (e.g. [15], [17], [14]) which has been used since long by the A1 community to formalize
nonmonotonic reasoning.

6 Modules and Static Scopiilg

Our semantics of embedded implications induces a, clyrzcrntic scopiny rule for predicates. While this
behavior is suitable for hypothetical reasoning, it is clear t11a.t fro111 a software engineering point of
view static scoping should be preferred [Is], [21]. Consequently, the basic syntax of our language is

'See e.g. the definition of the notrmember-predicate in figure 5 and its use in the definition of path.

Burkhard Freitag

(module)

(module-interface)

(import-declarations)

(export-declarations)

(local-declarations)

(module-imports)

(declaration)
(predicate-schema)
(module-reference)
(output-argument-list)
(input-argument-list)
(argument-list)

(argument-spec)

(module-name)

$module (module-name) :
(module-interface) (module-implementation)

[(import-declarations)]
[(export-declarations)]
[(local-declarations)]
[(module-in~ports)]
(rule-set)

$ i m p o r t
{ (decla.ration))*

$ e x p o r t
{ (declaration))*

$ l o c a l
{ (declara.tion))*

$impor t -modules
{ <= (module-reference) . }*

(predicate-schema.) .
(predicate-symbol) ({ < (functor) >)*)
(output-arguments) (module-name) (input-arguments)
(argument-list)
(argument-list)
[I
[: (argument-spec) { , (argument.-spec))* I
(predicate-symbol)
(predicate-symbol) : =(predicate-symbol)
(program-name)

. . .
Rules for basic syntax modified as follows
(reference) (module-reference)

I (program-reference)

Figure 4: BNF-style C;rammar of Module Syntax

extended by a notion of module parameteriza.tio11 a,nd predicate encapsulation. A BNF grammar
of the module syntax is shown in figure 4. Sample modules can be found in figure 6 and figure 5.

A module consists of an interface and an i~itpIen-~erztatiolz. In the interface, the import and export
predicate symbols have t o be declared5. The implementation part starts with declarations of the
local predicate symbols and a list of references to the imported modules. By importing a module,
the definitions of (some of) its exported predicates are made visible in the importing module.
Consider the following declaration occurring in module Graphs of figure 5.

$ impor t -modules
<= [l e n : = l e n g t h ,nmemb: =not-member] L i s t s [I .

'Currently, only the arity of predicate symbols is declared. The symbols occurring in a predicate schema are
dummy attribute names. I t is planned, lioweve~. to extend dec la~a t io l~s to type declarations, e.g. as proposed i n [2 2] .

Proceedings of the 1992 XProlog Workshop

$module Graphs:
$import

::= edge(<node>,<node>).
$expdrt

: : = connected(<node>, <node>) .
::= path(<node>,<node>,<list-of-nodes>).

$local
::= nmemb(<item>,<list-of-items>).
::= len(<list-of-items>,<peano-integer>).

$import-modules
<= [len: =length ,nmemb: =not-member] Lists [I .

{
connected(X,Y) :- edge(X,Y) .
connected(X,Y) : - edge(X,Z) , connected(2 ,Y) .
path(X,Y, CX,Yl) :- edge(X,Y).
path(X,~, [XIPI) :- edge(X,Z), path(Z,Y,P), nmemb(X,P).

3

$module Lists:
$export

: := append(<list~of~items>,<list~of~items>,<list~of~items>).
::= member(<item>,<list-of-items>).
: := not~member(<item>,<list~of~items>).
::= length(<list>,<peano-integer>).

$local
: := equal(<item>,<item>).

{
append(,L,L) .
append(CXIL11, L2, [XIL3]) : - append(Li,L2,L3).
member(X, [XIL]) .
member (X , [Y IL]) : - member (X , L) .
not-member(X. [I).
not-member(X. [Y I L]) : - $not equal(X ,Y) , not-member(X ,L) .
length(C1,O).
length(CXIL1 ,s(N)) :- length(L,N) .
equal(X,X).

1

Figure .5: Modules Graphs a.nd L i s t s

The programmer states that the predicate synlbol l e n g t h of module L i s t s shall be visible within
Graphs as the predicate l e n , and that not-member shall be visible as nmemb. Semantically, nodule
import call be understood as a default illodule reference which is automatically added to the
(possibly empty) premise of every subgoal occurrillg in a rule of the importing module [19]. The

Burkhard Freitag

$module Hap1 :
$import

::= f(Iterns,Items).
$export

: := maplist(list(ltems),list(ltems)).
€
maplist (C1, U 1.
maplist([XIU, CYIRI) :- f(X,Y), maplist(L,R)

1

$module Conv :
$import

: := look~up(Items,Items).
$export

: := convert(list(Items),list(Itms)).
$local

: := map(1ist (Items) ,list (Items)).
<
convert (In ,Out) : - (map(In, Out) <= [map: =maplist] Mapl [f : =look-up]) .

1

$module Table :
$export

. . . - .- look-up(peano-integer,number)
C look,up(O,O).
look-up(s(O),l).
. . . 1

Figure 6: Sa,mple lnodules Mapl, Conv, and Table

first connected-rule of module Graphs, for insta.nce. is tra.nsformed into"

connected(X,Y) :- (edge <= Clen(U.V) :-length(U,V).
nmemb(U, V) : - not-member (U, V) .) ,
Lists-Rules)

where L i s t s -Rules denotes the rules of lnodule Lists.
The local declarations are followed by a set of rules defining the exported and the local predicates.
Imported predicates must not be defined within the importing module. In the module syntax, an
implicational subgoal may have module references in its premise. A module reference is a program
name surrounded by an input and an output aryunaent list of the form [p , := q,, . . . , p , := q,], i.e.
a list consisting of argument specifications p, := q, where p, and q, are predicate symbols.

The following scoping and parameterization rules a.pply to our module language:

61n addition, every symbol of a module is labelled to provitle for encapsulation. See also the section on unique
module labelling below.

108 Proceedings of the 1992 XProlog Workshop

Predicate symbols, regardless whether imported, exported, or local, are in general invisible
outside the module, in which they are declared.

Module parameterization is governed by the argument specifications occurring in the argu-
ment lists of a module reference. Only by an input (output) argument specification can
the imported (exported) predicate symbols of a module be accessed. Access is realized by
automatically generated linking rules (see below).

Syntactically, the predicate symbol, that is closer to the module name, is the module param-
eter, and the symbol, that is closer to the enclosing module or query, is the actual argument
symbol. Local predicate symbols can not be accessed at all from outside the module.

In the module reference [map : =maplist] Mapl [f : =look-up1 , for instance, the predicate sym-
bol look-up is the actual argument for the input parameter predicate f , and map is the output
predicate symbol serving as an actual argument of the output parameter predicate mapl i s t
(see figure 6). As for imported modules. embedded implications with module references are
transformed into an embedded implication in basic syntax. The convert-rule of module Conv
shown in figure 6, for instance, is transformed into

c o n v e r t (I n , O u t) :- (m a p (I n , O u t) <= Cmap(X,Y) :- m a p l i s t (X , Y) .
f (X,Y) :- look-up(X,Y) .) ,

Mapl-Rules) .

where Mapl-Rules denotes the set of rules of lnodule Mapl. Note. tha.t these are already in
basic syntax.

If a parameter predicate symbol 1) is literally the same as its actual argument, the correspond-
ing argument specification 11: =?I 1na.y be abbreviated to 11.

The enclosing module7 is the scope of all symbols either used as actual arguments in module
references, or occurring in the conclusioil of an implica.tiona1 subgoal, or occuring in unnamed
rule sets, tha t are part of the premise of an implica.tiona1 subgoal. These symbols must be
declared as local predicate symbols of the enclosing module.

Program names without argument lists occurring in the premise of a.n implicational subgoal
are treated like unnamed rule setss.

By a simple transformation the appropriate module instances can be obtained at preprocessing or
compilation time. To this end, for each reference to a program a unique label is generated from
the program name. The predicate symbols occurring in the program a.re subsequently prefixed by
the so obtained unique symbol. Parameter passing is provided through special linking rules which
the transformation generates from the user-defined input a,nd output argument lists of a module
reference. The labelled and transfornled queries and lnodules a,re in the basic syntax and can be
processed accordingly. For a, more detailed description of the module syntax see [lo] and [ll].

' B ~ convention, the enc los i~~g module of a top-level query is the (empt.?) tl~tnrmy module Top.
'Note, that unnamed rule sets and progratll narlle+ witllout argument 1ist.s are dynamically scoped within the

enclosing module. By this feature hypothetical reasolrit~g call be realizecl.

Burkhard Freitag 109

Assume, for example, that t o an occurrence of the Conv-module has been assigned the label 0. Then
every symbol of this module occurrence is labelled by 0, and every module reference occurring in
Conv is assigned a new label, say 1. This process is continued until no new module reference
is foundg. After labelling and transformation into basic syntax, the convert-rule of the current
module Conv reads as

where Mapl-1 denotes the set of rules of module Mapl after labelling each symbol by the label 1.
In this example no further labelling is required since Mapl does not contain module references.

In a language with higher order quantification the desired closure properties of a module M can
be described by the formula ([13],[20]) V i n l . . .Vinn,30z~tl . . .3out,M, expressing that the input
predicates in1, . . . , inm are t o be trea.t,ed a.s formal pa.raineters and, furthermore, tha i the output
predicates out l , . . . ,out, may depend on the in,, in,,. If the existential quantification is re-
placed by Skolem functions the higher order unification a.s introduced e.g. in [13] and [20]) gives
the desired result. Our renaming transformation 11a.s essentially the same effect.

By the above scoping rules it should not be possible to access local predicates from outside a
module. This can be achieved by shifting the rules defining local predicates into the premises of
the body literals of the rules defining esported predica.tes as proposed in 1191.

If modules are separately compiled into relation valued functions, we do not need the above de-
scribed transformations. Instead, an appropriate paraineterization is chosen for the generated
evaluating functions. However, the transformation approach as well as the higher order unification
approach show, that static scoping can be achieved without devia.ting very much from the pure
logic language with embedded implications.

A prototype system based on a preprocessor, that performs context extension by a source-to-
source transformation has been implemented on top of the experimental deductive database system
LOLA1' developed a t the Technische Universitat Miinchen (T U M) [7].

8 Future Work

Currently, work is underwa.y to define an appropria.te form of nega.tion-as-failure. In addition, we
investigate the incremental compilation of luodules and the combination of functional and logic
programming obtained this wa,y. Another tlirect.io~~ of fnture resea.rch is the decla.ra.tive formulation

'Note, that cyclic module references are not. allowed.
10 T h e LOLA project is a subproject of the joint effort. "Objektbanken fiir Experten" betweell several german

universities. I t is funded by the German go\lernrnent.al institution "Deutsche Forschungsgemeinschaft" (DFG) under
contract B a 722/3-3 "Effizient,e Verfahren zur logisclren Dednktion iiber Objekthanken".

110 Proceedings o f the 1992 AProlog Workshop

of constraints controlling the configuration of modules, which could be based on the notion of a
module's signature as proposed e.g. in [25] .

References

[I] K.R. Apt, H.A. Blair, and A. Walker. Towards a Theory of Declarative Knowledge. In J.
Minker, editor, Foundations of Deductive Databases and Logic Programming. Morgan Kauf-
mann, 1988.

[2] C. Beeri and R. Ramakrishnan. On the Power of Magic. In Proc. of the 6th ACM SIGACT-
SIGMOD-SIGART Symp. on Principles of Datnbwse .Systenas, Sun Diego, pp. 269-283, 1987.

[3] I. Balbin, G. S. Port, aad I<. Rainamohana.rao. Magic Set Conlputation for Stratified
Databases. University of Melbounle, Dep. of Computer Science, Technical Report 87/3,
Parkville, Australia, 1987

[4] A. Brogi, E. Lamma, and P. Mello. Inheritaace aad Hypothetical Reasoning in Logic Pro-
gramming. In Proc, of the 9th Europecr~z Conf. on Artificial Intelligene, 1990

[5] D. M. Gabbay and U. Reyle. N-PROLOG: A11 Extension of PROLOG with Hypothetical
Implications. I.. Journc1,l of Logic Progrc~n-r~~zi~zg, 319-355, 1984.

[6] D. M. Gabbay. N-PROLOG: An Extensioi~ of PROLOG with Hypothetical Implications.
1I.Logical Foundations and Negation as Fa.ilure. Journal of Logic Programming, 251-283,
1985.

[7] B. Freitag, H. Schutz, and G. Specht. L O L A - -4 Logic Language for Deductive Databases and
its Implementation. In Proc. 2nd Intl. Synzp. on Dntcibase Systems for Advanced Applications
(DASFAA '91), Tokyo, Japan, 1991

[8] B. Freitag. Module und Hypothetisches Schliessen in Deduktiven Datenbanken. Technische
Universitat Miinchen, P1l.D. dissertation, in German. 1991.

[9] B. Freitag. Extending Deductive Database Languages by Embedded Implications. In
A. Voronkov, editor, Proc. Intl. Conf. on Logic Progmnaiizing and Automated Reasoning
(LPAR'92), St. Petersburg, July 1992, LNAI 624 , pp. 84 - 9.5. Springer-Verlag, 1992.

[lo] B. Freitag. A Deductive Database Langua.ge Supportiilg h4odules. In Proc. 2nd Intl. Computer
Scierzce Conference (ICSC'92) - Data clrracl Ii~aourledg~ Eltgilzeerirzg: Theory and Applications.
Hong Ii'ong, Decenz ber 1992.

[l l] B. Freitag. A Deductive Database La.ngua.ge Supportiilg Modules. Universitat Passau, Tech-
nical R.eport, MIP-9204, 1992

[12] L. Giordano, A. Martelli, and G. R.ossi. Local Definitions with Static Scope Rules in Logic
Programming. In Proc. Intl. Conf. on Fifth G'enerc~tion Conaputer Systems, 1968.

Burkhard Freitag 111

[13] J. Hodas and D. Miller. Representing Objects in a Logic Programming Language with Scoping
Constructs. In D. Warren and P. Szeredi, editors, Logic Programming, Proc. 7th Intl. Conf.
on Logic Progranznzing. MIT Press, 1990.

[14] V. Lifschitz. Computing ci~cumscription. In Proc. 9th Intl. Joint G n f . on Artificial Intelli-
gence, 1985.

[15] J. McCarthy. Circumscription: A form of non-monotonic reasoning. Artificial Intelligence,
13, 27-39, 1980.

[16] L. T. McCarty. Clausal intuitionistic logic. I. Fixed-point semantics. Journal of Logic Pro-
gramming, 93-132, 19S8.

[17] L. T. McCarty. Circumscribing embedded in~plications. In A. Nerode et al., editors, Proc.
1st Intl. Workshop on Logic Progranznzing and .ATon-Monotonic Reasoning, pp. 211-227. MIT
Press, 1991.

[18] P. Mello and A. Natali. Logic Prograrnrning in a Software Engineering Perspective. In Proc.
North American Conference on Logic Pr~gr~nziiaing. MIT Press, 1989.

[19] D. Miller. A Logical Analysis of Modules in Logic Programming. Journal of Logic Program-
ming, 79-108, 1989.

[20] D. Miller. Lexical Scoping as Universal Quantifica.tion. In Proc. 6th Intl. Conf. on Logic
Programming, Lisboa, 1989. MIT Press, 1989.

[21] L. Monteiro and A. Porto. Contextual Logic Programming. In Proc. 6th Intl. Conf. on Logic
Programming, Lisboa, 1989. MIT Press, 1989.

[22] A. Mycroft and R. A. O'Iieefe. A Polymorphic Type Systenl for Prolog. Artificial In te l l igen~ ,
23, 295-307, 1984.

[23] G. N,adathur and D. Miller. A11 Overview of /\-Prolog. In Proc. 5th Intl. Conf, on Logic
Programming, pp. 810-827. MIT Press. 1988.

[24] T. C. Przymusinski. On the declara,tive semantics of deductive databases and logic programs.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pp. 193-217.
Morgan I<aufmaizn, 1988.

[25] D. Sanella and L. Wallen. A Calculus for the Constructioii of Modular Prolog Programs.
Journal of Logic Progrananziizg, 147-1 77, 1992.

[26] J. D. Ullman. Principles of Data.base a.nd Iinouledge-Ba.se Systems. Vol. 11. C:omputer Science
Press, 1989.

Proceedings o f the 1992 XProJog Workshop

From Context-Free to Definite-Clause Grammars
(Generalization from Examples)

Juergen Haas
Depar tment of Genetics

University of Pennsylvania
Philadelphia, 'PA 19104-6145

haas@cbil.humgen.upenn.edu

B11ara.t Jayara.man
Depar tment of Computer Science

S t a t e University of New York a t Buffalo
236 Bell Hall

Buffalo, NY 14360
bharat@cs . b u f f a10 . edu

Abstract

This paper discusses the mechanical transforma.tion of an unambiguous contest-free grainmar
(CFG) into a definite-clause grammar (DCG) using a finite set of examples, each of which is a
pair (s, m), where s is a sentence belonging to the la.ngua,ge defined by the CFG and m is a
semantic representation (meaning) of s. The resulting DCG would be such that i t could be exe-
cuted t o compute the semantics for every sentence of the original DCG. Our proposed approach
is based upon two key assumptions: (a) the sema.ntic representation language is the simply-typed
A-calculus, and (b) the semantic representation of a sent,ence is a, function (expressed in the typed
A-calculus) of the semantic representations of its parts (compositionality). With these assumptions
we show tha t a higher-order DCG can be systematically constructed using a unification procedure
for typed A-terms. The needed procedure differs from the one given by Huet in that the types
for variables are not completely known in a.dva,nce; aad it differs from the one used in AProlog in
that there is an additional source of nondeterminism in enumerating projection substitutions. We
believe that such a system would simplify the task of building DCGs when the semantic represen-
tation involved quantified terms, and could be a, useful tool for generating natural query language
front-ends for various applications.

The goal of this work is to develop a systeln that, tvill take as input an unambiguous context-free
g rammar (CFG) and a finite set of pairs (s, 1 7 2) ~ where s is a sentence belonging to the language
defined by the CFG and nz is the serna.ntic representa,tion (meaning) of s, and will produce as
output a definite clause grammar (DCC:) (Pereira and Warren 1980, Pereira and Shieber 1987)
capable of computing the semantic representations for all sentences of the CFG. We envisage that
the system would actually work interactively, by querying the user for the semantic representations

11.1 Proceedings of the 1992 AProlog Workshop

for a series of key sentences (which it determines according to some scheme) and reporting back
t o the user the synthesized DCG after each sentence until the user accepts the DCG. In order
t o narrow the search space of possible solutions, we adopt the following two constraints: (1) the
semantic representation language is the simply typed A-calculus; (2) the semantic representation
of a sentence is some function (expressed in the typed A-calculus) of the semantic representations of
the phrases that constitute the sentence (compositionality). Under these assumptions we believe
that , if there is a DCG satisfying the input pairs, it is possible t o systematically search for it; if
there is no solution, the search may sometimes be nonterminating.

The motivation for our work steins from the fact that it is not easy t o manually modify a
CFG t o obtain a DCG especially when the sema,ntic representations involved quantified terms (as
in natural languages). However, by the compositiona~lit,y principle, the semantic representation of
a sentence can be systema.tically obtained from those of its constituent phrases. Hence, it seems
feasible, in principle, t o have the computer a.ssist a, human in the transition from a CFG t o a DCG.
A potential use of our proposed system is that it might facilitate rapid prototyping of natural-
language interfaces t o databases, since the interface could be obtained by defining the syntax along
with typical input sentences and their semantic representa.tions. Our proposed use of the simply-
typed A-calculus not only has precedent for natural 1a.ngua.ge semantics (Dowty et a1 81, Miller and
Nadathur 86), the availability of a, unification procedure for simply-typed terms (Huet 75) allows
us to reduce the problem of generalization from esa.niples to a unification problem. However, as we
shall see later, certain importa.nt chaages to Huet's procedure are needed in our context, since the
types for variables are not conlpletely known in adva.nce.

The remainder of this paper is structured as follows: section 2 outlines the synthesis procedure;
section 3 briefly discusses aspects of the synthesis procedure, especially compositionality, termina-
tion, multiple solutions, and types; section 4 illustrates the procedure with an example; and section
5 presents the current status and prospects of this work and brief comments on closely related
work. Familiarity with the typed A-calculus and Huet's unification procedure is assumed.

2 Syntl~esis of DCGs froill CFGs and Exai~lples

In the pseudo-code below, we assume, for simplicity of presentation, that a CFG rule has either
a single terminal on its rhs or a sequence of one or more nonterminals (in practice, we permit
both terminals and nontermillals on the rhs). As in Prolog DCGs, nonterminals are identifiers
beginning with a lowercase letter, and terminals are such identifiers surrounded by [and 1. As in
AProlog (Nadathur and Miller 88), (F X) stands for function a.pplication and X\E stands for AX.E
(A-abstraction). We assume that application is left-associa.tive, i.e., (F X Y) is short-hand for ((F
X) Y). The basic scheme is given below, the top-level procedure being SYNTH.

Procedure SYNTH(G)

The procedure SYNTH takes as input a CFC; and constructs a higher-order DCG after obtaining
the semantic representations for salnple sentences interactively.

1. Let G be an unambiguous CFG 11a.ving n rules. \vith sta.1.t symbol s.

J . Haas, B. Jayaraman

2. Construct the higher-order DCG as follows:

a. If the i-th CFG rule is a; --> bil . . . bikt, the 2-th DCG rule will be

(v v l - - . v k i) ai((Fi Vl-..~'li,),Q'k,+l) --> bil(Vl,Q'il), - a - bik,(Vk,,~ik,),

b. If the i-th CFG rule is a; --> [t] , the i-th DCG rule will be

a;(F;,ail) --> [t].

For the sake of clarity, we maintain the types for the function variables Fl, . . . , F, explicitly:
In 2a, the type of I< is a; and the type of Fi is ail -- . . . + a;k, + ~ ; (k , + ~) . It is important
t o note that the function variables Fl, . . . , F,, as well as the type variables aij, i = 1,. . . , n,
j = 1, . . . , k; are free varia.bles of the DCC;, i .e., they a.re not universally quantified like the
variables Vi.

3. Solve for the variables F; in the above DCC; as follows.

E + 4; done + false; i - 1;

WHILE not done DO

a. Generate a set of new sentences .seZJ; 1 5 j 5 k;, for some finite ki (selection strategy for
these sentences is omitted here). For ea.ch se,, , input from the user its semantic representation
nij, a simply-typed term of type t;, .

b. Execute the goal s (M , tij, se;,, [I) , 1 5 j 5 k;, using the constructed DCG of step 2. For
each se;j, let m;j, 1 < j < bi, be the computed a,nswer for variable hl.

c. E + E U { m i j = n i j : 1 5 j < b;) .

d. Call SOLVE(E), whose definition is given below. If successful, SOLVE nondetermin-
istically returns one of the multiple masilllally general unifiers which are possible. Assign
done c true if either unification fails? or unifica.tion succeeds and all sentences of the CFG
have been enumerated, or unification succeeds a.nd the user accepts the resulting DCG after
replacing all variables F; in the DCG of step 2 according to one of the unifiers of E and
reducing all A-terms to their normal forms.

END WHILE

4. If unification failed in step 3d, print "no solution", else print the DClG found.

Procedure SOLVE(E)

Procedure SOLVE tries to solve the set of higher-order equa.tions E by attempting to find substi-
tutions for the free function variables occurring in E.

1. E t E ; F +- {F; : i = 1 . . . I >) : LT - o (the empty substitution)

Proceedings of the 1992 X Prolog Workshop

2. WHILE E # 4 D O

a. Select equation e = (el, e2) from E, and call SUBST(e)-note that el is flexible and ez
is rigid. If S U B S T succeeds, it returns a substitution term t for the variable V a t the head
position of el. (Definition is S U B S T is given below.)

b. a t a{(V,t)) (composition of substitutions); E - E a . Reduce all terms in E and c to
their normal form.

c. E c D E C O M P (E) (definition of DECOMP is discussed below).

END WHILE

3. Return a J. F (the restriction of a to the va.ria.bles F).

Procedure S U B S T (e)

Let e = (el, e2)', where

and the (simple) type of @ is completely known, say b1 - . . . - 6, - /.?, but the type o f f may not
be completely known-only the number of arguments of f would in general be known. Procedure
S U B S T nondeterministically selects and returns an imi tat ion or a projection substitution for the
head of el, provided that the appropriate type constraints are met.

Im i ta t ion substitution: applicable only if @ is a constant
f + Awl . . . Xwp.(@ (hl 2 / 7 1 . . . lop) . . . (h g I L ' ~ . . . z i j p)) , where the type of w, is y,, provided
the type of f can be unified with yl - . . . - 3p - P . Each new function variable h, is
assigned a type yl - . . . -- y, - 6,. for i = 1.. . ..(I.

Project ion substitutions:
f + Awl . . . Xtop.(wi (h l wl . . . top) . . . (h , ,1111 . . . top)), for ea.ch 1 5 i 5 p, provided the
type (7;) of wi can be unified wit,h €1 - . . . - 61 - 13, and the type of f can be unified with
71 + ... -+ Yp p. Each new function variable h , is assigned a. type yl - . . . - yp -+ c,,
for i = 1,. . .,1.

While only one imitation substitution is possible, for projection substitutions, there is nondeter-
minism in the choice of wi a.s well as the choice of number of arguments, 1. The latter arises because
the type y; of w; may not be completely kno1~11.

'If e l has fewer prefix variables than e z , we assunLe (1 is g-espantletl so 1.11at. they have the same number ol prefix
variables. If i t has more prefix variables than of c.2 , t.lre11 t11el.t. is no unifying subst.itutioll.

J. Haas, B. Jayaram a.n

Procedure DECOMP(E)

E is a set of equations (or disagreement pairs). This procedure is similar to Huet's SIMPL (Huet
1975), except tha t the types of function variables are determined as the structure of the terms is
recursively traversed. We omit presenting the details of this type propagation in this paper, since
the needed procedure is similar to that used in XProlog. Note that the right-hand sides of all
equations will be closed terms, with known (simple) types, hence this procedure plays a crucial role
in propagating type information.

3 Discussion of the Synthesis Technique

We clarify several facets of the synthesis procedure just described

1. Compositionality: The compositionality principle is espressed in step 2 of procedure S Y N T H
by assuming that , in a CFG rule a - -> b1 . . .6k, the meaning of the nonterminal a is some
function F of the meanings of the nonterlninals bl . . . b k , where F is expressible in the typed
A-calculus. When terminal symbols are present along with one or more nonterminals on the
rhs of a rule, our methodology assumes that the meaning is independent of these terminal
symbols; if the semantics of any such terminal [t] is to be taken into account, it should be
replaced by a new nonterminal 7 1 , and a new rule 71 --> [t] added to the CFG.

2. Tgpes: One of the crucial issues in this synthesis is the determination of types for the free
function variables. The lack of complete kiiowledge of these types in advance marks an
important point of departure from Huet's procedure. While the unification procedure of
XProlog must also work with polylnorphic types, a crucial difference in our work is that there
is an additional source of nondeterlninism in procedure S U B S T in enumerating projection
substitutions. In practice, the needed types tend not to be very complex, and therefore the
additional nondeterminism may not be a practical problem. Furthermore, since large DCGs
would be synthesized in a modular fashion, the number of unknown variables processed could
be kept reasonably small. It seenls very reasonable to restrict the user-supplied semantic
representations to closed A-terms, in \vhich case we only need a rnatchirtg procedure, rather
than a unification procedure. When it is known that terms are of second-order type, we have
the pleasant property that there is a finite matching algorithm (Huet and Lang 78). Recently,
even third-order matching was also shown to be decidable (Dowek 92), although this decision
procedure cannot be directly used to generate matching substitions.

2. Termination: In step 3 of S Y N T H , we increinentally generate a set of equations, where each
equation relates the user's chosen semantic representation for a sentence and the semantic
representation that would be derived from the higher-order DCG for this sentence. There are
three possible outcomes in solving these equations: failure, success, and nonterrnination. In
case of failure, there is no higher-order DC'C; satisfying the given semantic representations.
In case of successful unification and if tlie C(FG generates a finite language, then successful
termination is achieved when all senterlces have been enumerated. Since the unification
procedure is only recursively enumerable. tlie search m a sometimes proceed indefinitely

Proceedings of the 1992 AProlog Workshop

when there is no solution. If we restricted a.ttention to matching, our problem would reduce
t o general higher-order matching (beyond order 3) , whose decidability is still unknown.

3 . Multiple Solutions: Since the unification of typed A-terms could result in multiple maximally
general unifiers (i.e., most general unifiers do not always exist), multiple DCG solutions are
possible a t any stage. We are currently examining criteria that the sample sentences must
satisfy so that a unique solution is produced, in the sense that the DCGs corresponding t o
all other solutions exhibit the sa,me input/output behavior.

4 Example

We illustrate the synthesis by "stepping through" procedure SYNTH for a very simple example.
For readability, we indicate the types only select,ively in this derivation.

(Step 1.) Assume the CFG is as follows:

s --> pn, iv.
pn --> [shrdlu] .
pn --> [eliza] .
iv --> [runs].
iv --> [halts] .

(Step 2.) The DCG resulting from step 2 would be a.s follows:

s((F1 A B)) --> pn(A), i v (B) .
pn(F2) --> [shrdlu] .
pn(F3) --> [elizal.
iv(F4) --> [runs].
iv(F5) --> [halts].

(Step 3a.) Using the CFG from step 1, the system genera.tes the following sample sentences:
[shrdlu,runs], [eliza,runsl, a.nd [shrdlu, halts], for which the user provides the correspond-
ing semantic representations: (run shrdlu). (run eliza), and (halt shrdlu), where run)
= i -+ o, r(ha1t) = i i o, ~(shrdlu) = i, and ~(eliza) = i .
(Step 3b.) Executing ea.ch of these sentences on the enhanced CFG (step 2) , the following terms
are obtained: (F1 F2 F4), (F1 F3 F4), and (F1 F2 F5).
(Step 3c.) We obtain the following set of higher-order equations:

((Fl F2 F4) = (run shrdlu),
(F1 F3 F4) = (run eliza),
(F1 F2 F5) = (halt shrdlu))

(Step 3d.) The a.bove equation-set is pa.ssed on to procedure SOLVE, which in turn calls SUBST
to obtain a substitution for F1, since F 1 is a.t the I1ea.d position of the first equation-assumed to

J . Haas, 3. Jayararnan 119

be the chosen equation. There is only one applica.ble imitation substitution, K\L\ (run (HI K L)) ,
since F i has two arguments and run has one argument. However, this substitution fails t o satisfy
the third equation. Hence, a projection substitution must be chosen. Since the type of Fi is
a1 --t a2 + o, the projection substitution must take two arguments. The simplest projection
substitutions in this case would be K\L \L or K\L\K, both of which would eventually lead to failure.
The substitution that eventually succeeds is:

F1 <- K\L\ (L (Hi K L))

Replacing all occurrences of F1 in the above equa.tions with its substitution and simplifying
those terms using the A-conversion rules leads t,o the following set of equations:

((~ 4 (Hi F2 F4) = (run s h r d l u) ,
(F4 (HI F3 F4)) = (run e l i z a) ,
(F5 (HI F2 F5)) = (h a l t shrdlu)}

DECOMP has no effect in this case since the 1lea.d~ of all left-hand side terms are flexible. However,
as a result of the type const,radilts t,llat. come wit.11 t,lle slibst,it~ution term for F1, the type of F4,
namely, 0 2 , is unified with a.3 - o, which in turn insta.ntiates the type of F1 to crl - (03 -+ o) --t o.

Now F4 is the head of the first ecluation and SUBST is called t o provide a substitution for i t .
Since the type of F4 is as -- o, the following imita,tion substitution is applicable:

F4 <- K\ (run (H2 K))

The type constraints that come with this substitution term imply that the type of the argument
(H2 K) of run is the same as tlze type of the corresponding argument of run in the right-hand side
terms, namely i.

Replacing all occurrences of F4 by its substitution aad reducing all terms to their normal form
results in the following set of equations:

((run (H2 (Hi F2 K\(run (H2 K))) 1) = (run s h r d l u) ,
(run (H2 (Hi F3 K\(run (H2 K))) 1) = (run e l i z a) ,
(F5 (Hi F2 F5)) = (h a l t shrd lu))

Applying DECOMP to the above equation set we get:

((H2 (Hi F2 K\(run (H2 K)))) = sh rd lu ,
(H2 (Hi F3 K\(run (H2 K)))) = e l i z a ,
(F5 (HI F2 F5)) = (h a l t shrd lu))

Next, SUBST may choose projection substitution K \ K for H2 which transforms the e q u a t i o ~ ~ s
to:

((HI F2 run) = sh rd lu ,
(HI F3 run) = e l i z a ,
(F5 (Hi F2 F5)) = (h a l t sh rd lu))

120 Proceedings o f the 1992 XProlog Workshop

Again, DECOMP has no effect and we proceed to the nest iteration of SOLVE. The next sub-
stitution chosen by SUBST should be the projection substitution K \ L \ K for HI, which would
yield:

CF2 = sh rd lu ,
F3 = e l i z a ,
(F5 F2) = (h a l t shrd lu))

This implies tha t both F2 and F3 are of type i, which implies H 1 is of type i + (i -, o) + i. This in
turn instantiates the type of H2 to i + i, and the type of F4 t o i -, o. Therefore, F1 will have
type i + (i -+ o) -. o. The obvious choice for F2 ant1 F3 now is shrdlu and e l i z a , respectively,
which leaves only one equation:

C(F5 shrd lu) = (h a l t shrd lu))

The type of F5 is easily inferred to be i - o. F5 will be replaced by K \ (h a l t (H3 K)) :

C(H3 shrd lu) = (shrd lu))

The projection substitution K \ K for H3 completes the deriva.tion. The final substitutions with
their types are:

F1: (i + (i + o) + o) = K\L\(L K)
F4: (i + o) = run
H2: (i + i) = K \ K
H I : (i --+ (i + o) i i) = K \ L \ K
F2: i = shrd lu
F3: i = e l i z a
F5: (i 4 o) = h a l t
H 3 : (i + o) = K \ K

(Step 4.) Substituting these in the grammar from step 2 yields the following higher-order DCG:

s((K\L\(L K) A B)) - -> pn(A), iv (B) .
pn(shrd1u) --> [shrdlul .
pn(e1iza) --> Celizal .
iv(run1 - -> [runs].
iv (ha1t) --> [ha l t s] .

5 Status and Further Work

An implementation of our sy~lthesis procedure ha.s been completed. Using this implementation, we
have successfully synthesized larger DCGs tllan the one shown in this paper, and we are examining
the synthc ..is of a DCG for the 11atural query 1angua.ge of C:ha.t-80 (Warren and Pereira 1982). There

J. Haas, B. Jayaraman 12 1

are several interesting theoretical and practical issues that we have not addressed here: enumeration
order for sample sentences and their effect on the synthesis; methodology for writing grammars and
semantic representations so that solutions can be efficiently found; constraints from different types
of grammars and semantic representations; efficient implementation of higher-order matching and
search control; and partial execution of the higher-order DCG, to convert i t into a first-order DCG
for more efficient execution-we have explored this topic to some extent in (Haas 93).

The techniques needed t o develop our proposed system can also lead to a new approach to
machine learning as well as program synthesis from examples, by combining higher-order unification
with learning from examples. The recent work of Hagiya (Hagiya 90, Hagiya 91) represents an
interesting step in this direction. Finally, we note that i t appears possible t o augment the input
CFG with parameters t11a.t specify contest sensitive fea.tures such a.s llumber and gender agreement,
without affecting the scheme described in this paper. The restriction to unambiguous CFGs is
also not an absolute requirement, a.nd it a.ppears possible to extend our approach to ambiguous
grammars, which is crucial for general na.tural 1angua.ge a.pplications.

Ackilowledgments

We thank Dale Miller, Fernando Pereira, a.nd the anonymous referees for their helpful comments
and suggestions. This research was supported in pa.rt, by NSF grant CCR 9004357.

References

Dowty, David R., Wall, Robert E. and Peters, Stanley (1981) "Introduction to Montague Seman-
tics," Dordrecht, Holland; Boston: D. R.eide1 Pub. Co.; Hingl;a,m, MA.

Dowek, G. (1992) "Third Order Matching is Decidable," Seventh Annual LICS, pp. 2-10, Santa
Cruz, CA, June 1992.

Haas, J. (1993) "Automatic Generaliza.tion of Semantics," Pl1.D. dissertation, Department of Com-
puter Science, SUNY-Buffalo, expected 1993.

Haas, J. and Jayaraman, B. (1992) "1ntera.ctive Synthesis of Definite Clause Grammars," Proc. J t .
Intl. Conf. and Symp, 0 7 1 Logic Progmn2n1iny. pp . 541-5.5. PvlIT Press.

Hagiya, M. (1990) "Programming by Example a.nd Proving by Example using Higher-order Unifi-
cation," In M. E. Stickel, editor, Proceedings of the 10th International Conference on Automated
Deduction, pages 588-602, I(aisers1autern. Germany. July 1990. Springer-Verlag LNAI 449.

Hagiya, M. (1991) "From Progranllning by Esample t o Proving by Example," In T. Ito and A.
R. Meyer, editors, Proceedings of the Ii~ter~zc~fioizwl Conference on Theoretical Aspects of Computer
Software, pages 387-419, Sendai, Japan, September 1991. Springer-Verlag LNCS 526.

Huet, G. P. (1975) "A Unification Algorithm for Typed A-Calculus." Theoretical Computer Science,

122 Proceedings o f the 1992 XProlog Workshop

Miller, D. and Nadathur, G. (1986) "Some Uses of Higher-Order Logic in Computational Linguis-
tics," Proc. 24th Annual Meeting of the Assoc. for Computational Linguistics, pp. 247-255.

Nadathur, G. and Miller, D. (1988) "An Overview of XProlog," Proc. 5th ICLP, pp. 810-827.

Nadathur, G. and Miller, D. (1990) "Higher-order Horn clauses," Journal of the ACM, pp. 777 -
814.

Pereira, F. C. N., and 'Cliarren, D. H. D. (1910) "Definite Clause Grammars for Language Analysis
- A Survey of the Formalism and a Coinparison with Transition Networks," Artificial Intelligence,
vol. 13, pp. 231-27s.

Pereira, F. C. N. and Shieber, S.M. (1987) "Prolog and Na.tura.1-La.ngua.ge Analysis," CSLI.

Warren, D.H.D., and Pereira, F.C.N. (1982) "An efficient easily adaptable system for interpreting
natural language queries," Anzerictin Jour12r1.l of Conll~utrrtionc~~l Liizgu.istics, S (3-4) , 110-22.

Generalization at Higher Types

Robert W. Hasker and Uday S. Reddy
Department of Computer Science

University of Illinois a t Urbana-Champaign
Urbana, IL 61801 USA

{hasker, reddy)@cs .uiuc . edu

1 Abstract

Finding the most specific generalization of first-order terins is well understood, but the generaliza-
tion of higher-order terms remains unsolved. We provide a framework for the second-order case
by using a categorical structure for terms and identifying a class of useful generalizations called
relevant generalizations. We show that con~plete sets of masimally specific generalizations exist
and are computable. Such generalizations have an important application for proof modification in
automated proof systems.

2 Introduction

Automated proof development systems, including program verification systems, program construc-
tion systems, and program transformation systems [4, 10, 2, 151 face the problem of how to incor-
porate modifications. Having constructed a proof for a theorem (or, a program for a specification)
as a combination of manual and automated effort, we would certainly not wish to redo the entire
effort when the theorem is slightly modified. There is no great damage in redoing the automated
part of the proof, but redoing the manual part of the proof manually could be too cumbersome.
An ideal automated system should be able to compare the old and new theorems, keep track of the
differences, and apply the steps of the old proof to the new theorem as long as they are applicable.
We call such a system a replay system.

A fundamental problem in building replay systems is drawing analogies between the old and
new theorems. The problem can be restated in terms of anti-unification [14, 161. Given two terms
t and u, find the most specific generalization g of the two terms together with the attendant
substitutions 6 : g --t t and a : g - u. The triple (g,B,o), called the anti-unifier of t and u,
contains the information necessary to relate the subterms o f t and u.

If t and u are first-order terms, their first-order anti-unifier can be computed using well-known
techniques [14, 16, 81. However. in modern proof systems the formulas and terms involved are
higher-order [7, 11, 10, 41. Secondly, even if the terms are first-order, the first-order anti-unifier
does not contain enough infornlation to relate all corresponding subterms. For instance, if a formula
A is replaced by a conjunction A A B, the first-order anti-unifier gives the trivial generalization x ,
loosing the information that A appears in both the formulas. Another common modification often
made is to add parameters to functions and predicates. However, the first-order anti-unifier of f(t)

'The work by Hasker was supported in part h!~ a grant from Motorola Gorp

124 Proceedings of the 1992 XProlog Workshop

and g(t , u) is again trivial. Thus, higher-order generalization is necessary t o compute analogies in
a replay system.

Surprisingly, even though the first-order anti-unification algorithms has been known since [14,
161, its higher-order counterpart does not seem t o have received attention. Recently, [12] gave
an algorithm for anti-unifiers for a special class of terms called patterns (terms restricted so that
only abstraction variables can appea.r as arguments of a free variable), but the general case is yet
unsolved. The pattern restriction precludes using such anti-unifiers in replay systems because it
generates nearly the same anti-unifier as in the first-order case. In fact, the difficulties in generalizing
higher-order terms while allowing for common subterms are considerable. While first-order terms
form a complete lattice with unifiers a.s infs a.nd a.nti-unifiers as sups, higher-order terms do not
even posses infs. Huet's [8] "algorithm" computes a, complete set of minimal unifiers, but the set
can be infinite. For the opposite direction of upper bounds, we show that complete sets do not
exist, in general. In fact, we believe that the na:ive notion of "more general than" used in the
first-order case is not meaningful for higher-order terms.

In this paper, we consider the problem of generalization restricted to second-order terms. We
define the notion of generality using a categorical fra.mework with substitutions as morphisms be-
tween terms. Complete sets of generaliza.tions do not exist even in this setting, but we note that this
is due to certain trivial generalizations. By restricting a.ttention to nontrivial generalizations (called
relevant generalizations), we find that conlplete sets exist and have interesting properties. We also
show that the complete sets are conlputable and give a semi- practical algorithm for computing
them.

3 Notation

We will generalize simply-typed A-terms [3]. If C = U,C, is the set of constants and 11 = M,V, the
variables, then a term is well-typed if it is consistent with the rules

We use the convention that constants are set in t y p e and va,riables in italics. We assume all terms
are well-typed.

The order of a type T is defined as

The order of a term is just the order of its type. I11 this paper, we assume all terms are first or
second-order, so all constailts are in CSeD ,,,,,, D,, and all variables in \ID, ,,,,, D ~ , for n , nz 2 1.

1% assume the usual a, 0, and 11 conversion rules. All equivalences between A-terms and
substitutions over A-terms are assunled to be modulo A-conversion. Application associates to the

R. W. Hasker, U. S. Reddy 125

left and -t t o the right; parentheses are often dropped when they are not needed. By the Church-
Rosser and strong normalization properties of typed A-calculus (see, e.g, [5]), every term of type
Dl + . . . 4 D, + D,+l can be written in the form2

where each x; is distinct, h E C, U If,, and each ui is in norinal form. We call h the head and T i

the arguments. Following [8], we say that a term is flexible if its head is a free variable and rigid
otherwise (i . e , if it is a constant or a bound variable). We will abbreviate terms in normal form
as Ax1 . . x,.h(ul,. . . , u,) or even as A G . h (G) where denotes the sequence X I , . . . , x,. If n is
0, then x, is the empty sequence, and if IL is arbitra.ry (but finite) we denote the sequence as just
T. The identity function Ax.x is a.bbreviated as T and the general projection function A z . x k as
x;. The set of free variables in the term t is 3 V (f) , and the set of bound variables is BV(t). The
context of u in t is denoted t[u] or alterna.tively a.s t[a. - u] if its position is relevant.

A substitution 8 is a finite map from varia.bles to type-equivalent terms with the domain de-
noted as dom(8) and free variables in the range a.s rarz(8). Oid denotes the identity substitution.
Application of 0 onto term t is variously denoted by 8(t) and 8 : t - u (where u = O(t)). The
composition of two substitutions is defined as 0 o o = At.O(a(t)). To make substitutions easier to
read, we will often leave the variables being bound implicit: if the substitution 0 is being applied
to term U, we may write i t as [O(xl), . . . , 8 (~ ,)] where (x l , . . . , x,) are the free variables listed in
the order they occur when reading u, from left to right.

4 The category of generalizations

First-order generalizations can be compared using the preorder ,u 5 u 30.0 : v + u. This
ordering is adequate because the substitution is unique. but in the higher-order case it often is not.
Category theory provides a framework which supports distinguishing between substitutions.

In this section we examine the category of terms show that it is inadequate. This leads to the
category of generalizations and a discussioll of its ina,decluacies.

Definition 4.1 Given a type T, the category T, has as objects terms of type T. The arrows of
T, are given by substitutions 8 : t - n sl~ch tha.t do177.(8) = FV(t) , ran(8) = 3V(u) , and O(t) = u.
The composition is substitution composition a.nd the identity arrows are identity substitutions.

We often leave the type subscript T implicit. %'hen 6 : 1 - u we say that t is more genernl than u
(or conversely, u is more specific than t) . But, 8 iildica,tes in what way t is more general than u.
For first-order terms, T is a preorder; i .e, there is a t most one substitution between any two terms.
For second-order terms, this is not the case: for example,

[Xx.g(x, a)] and [Xx.g(x, x)] : f a - g(a , a)

Tha t is, for the second order case, a term ma,y genera,lize another in multiple ways. This is the
motivation for considering categories instea,d of preordess.

'Note that such forms are in normal form with respect to /j, but not 7.

126 Proceedings of the 1992 XProJog Workshop

Definition 4.2
substitutions 8 :
a substitution p

If a E T is a term, the category G(a)-of generalizations of a-has as its objects
t -+ a for t E T. A (generalization) morphisrn p : ($1 : tl -, a) + ($2 : t2 -+ a) is
: t l i t2 such that the following tria.ngle commutes:

(G(a) is often called the "slice category" T , / ~ L .) ~

This definition can be extended to generalizations of multiple terms. We show the binary case:

Definition 4.3 If a l ,a2 E T , the category G (n l . n z) has as its objects pairs of substitutions
(el : t + a l , 82 : t - a 2) A morphisrn

is a substitution p : t + u that is a genera1iza.tion morpllislll in both G (u l) and G(a2) . That is,
the following diagram commutes:

As an aside, note that G (a l , a 2) is the pullba.cli G(cil) X T G (a 2) in Cat. That is, if src is the
forgetful functor, the dia,gram

commutes.

3Note that T, can itself be treated as a slice category T y p e / r where T y p e is the category of types [9, 61

R. W. Hasker, U. S. Reddy 127

Examples 4.4 The following examples illustrate that generalizations which include common sub-
terms are more specific:

Dc - h c [El - EC

Z

These generalizations are not isomorphic because the only substitution from hc t o x , {h H Xy.x),
is not a generalization morphism. In comparison, [12] disallows the more specific of the two gener-
alizations because hc is not a valid pa,ttern. The only generaliza.tion meeting the pattern restriction
is ([Dc] : x H Dc, [Ec] : x H EC), thus patterns do not capture common subterms.

These are not isomorphic because there is no substitution from Ax. f(~(x), ~ (x)) to Xx.g(~(x), x).

>.p(xl v Q(x) Xx.P(x) r\ Q 2) An:. f(P(n:). P(nb))
1

Examples 4.5 I t is also instructive to esa.mine generalizations which are unrelated by morphisms.
The first illustrates that for two generaliza.tions to be related, subterms must be used consistently:

[X Y - ' . ~ A Q(z)]

[Xx.D(x,b)] : f a - D(a. b) and [X X . D (~ , ; ~)] : yb - D(a,b)

[Ayz.f(y, Q (z)
[A?/,-.$ V Q(z)]

These are unrelated because any genera.liza.tion morphism would have to eliminate the a (from
f a) or b (from gb). The second example illustra.tes that different substitutions give rise to unique
generalizations:

[Xxy.E(z,x,y)] : A Z . ~ (Z , 2) - XZ.E(Z, 2, Z)

[Xxy.E(y,x,x)] : At.y(z, z) - Az.E(z,:,r)

These are unrelated because the substitutiolls project distinct a.rguments.

Two generalizations yl a.nd g2 a.re is0172or11hic, written gl E gz, if there are p : g, -+ g2 and
pop : g2 -+ g1 such that p 0 pop = did = pop o p. We can show that iso~norphisms are renarnings.

Definition 4.6 ([12]) 8 is a rennmii2g i f f for all f E (lonl(8), B(f) = X ~ . h (7) where h is a variable
and 7 is a permutation of T .

Lemma 4.7 gl 2 g2 by p : gl - g2 and p,, : gz - g1 i f f p aad p,p are rena.mings.

This follows from the observa.t~ion t,ha.t whenever H (a (f)) = f and a(f) = k . t , 1 must be flexible
and all xi E T occur in t .

128 Proceedings of the 1992 XProlog Workshop

Observation 4.8 ([a] : f i a) is initial in G (n) .

This is because there is only one substitution between AT. f(T) and any term. Since Bid is a left
identity,

Observation 4.9 did : a + a is terminal in G(a).

However, the morphisms of G (a) are not a1wa.y~ unique:

Example 4.10

Another difficulty is that G is not well-behaved with respect to maximal objects. Ideally, the
maximally specific generalizations of ally two terms c1 and b would be the maximal objects of G (a , b) .
However, the maximal objects are often undefined. The following examples show that the sources
of maximal objects have unbounded depth and width. We also show that the arbitrarily large terms
are not isomorphic to smaller terms, thus defining lnasinlal objects up to an isomorphism would
not be sufficient.

Example 4.11 Consider G(Da,Eb), where (1 aad 6 are arbitrary terms:

~ (c L , I))

Note that the two generalizations are not isomorphic because there is no generalization morphism
in the opposite direction. If p was such a. morpllism. then h e a d (p (f)) = h or p(f) = K , but neither
choice allows both sides t o conlmute simultaneously. Similarly? g can be mapped to f' o g' and so
on. A generalization morphism in the opposite direction call be found after a few repetitions of the
pattern, but the generalizations remain nonisomorphic.

Example 4.12 G (c , d) contains

1

[Xxyz. f(s . y)] [/\xy.g(~.g:e)]

1

R. W. Hasker, U . S . Reddy 129

Again, these are not isomorphic. This example can also be generalized to an arbitrary number of
subterms in place of e. A similar situation occurs when bound variables are repeated arbitrarily
often:

Example 4.13 G(Xx.Dx, Xx.Ex) contains

5 Relevant generalizations

These examples show that while G may be more a suitable category in which to find maximal
generalizations than T, it is not ideal. We can improve on G by restricting attention to only those
generalizations which are relevant, where relevance means that each subterm is useful in forming
the generalization. In particular, the following definitions permit variables only when they are
necessary and permit rigid subterms only when they are actually used.

Example 4.11 suggests disallowing nested flexible subterms. We use the following definitions:

Definition 5.1 A generalization 9 : t -+ a is said t o be redundant if t has a subterm of the form
f (. . . , g (. . .), . . .) and O(f) # f or % (g) # g. Mre say t11a.t a gesieralization is condensed if it is not
redundant.

A variable in a condensed generaliza.tion must occur either a,t the outermost position or as an
argument of a consta.nt. This bounds the depth of t,erms.

Examples 4.12 and 4.13 illustrate that we must limit the number of tiines subterms can appear.
The solution is t o disallow most substitutions which elimina.te subterms.

Definition 5.2 A substitution 9 : t [f (? i)] - n is said to elinzi~znte uk if %(f) = XT.M and xk does
not occur in M.

Tha t is, a subterm of f (~) is eliminated if #(f) is illdependent of the corresponding abstraction.
This is a generalization of the definition of elilninabion introduced in [13].

Definition 5.3 A subterm ,uk of t [W (z)] is rr~~el ir~t irrrrble if

ii. uk E B V (t) and uk = ,up for k' # k .

Definition 5.4 A generalization 19 : t - (L in G (a) is cluttered if for solrle f E cloni(%), %(f)
eliminates an uneliminable subterm.

130 Proceediilgs of the 1992 XProlog Workshop

By disallowing cluttered generalizations, we bound the width of terms. However, some general-
izations which eliminate bound variables are allowed so that Xxy.x and Xxy.y can be generalized

(using X X Y . ~ (3, Y)).

Definition 5.5 A generalization g E G (u) is said t o be relevcinl if i t is condensed and not cluttered.
Let R (a) be the full subcategory of G(a) consisting of relevant generalizations. Similarly, let R (a , 6)
be the full subcategory of G(a , b) consisting of pairs of relevant generalizations.

Examples 5.6 The following generalizations are irrelevcint:

This is redundant because of the

Xz. f (y (s))

append(x, 1) cons(x. 1)

\ ,L This is cluttered because the sub-

[Xz.append(x, l)] term cons(x, 1) is not eliminable.

Xx.zerop(x) Az.z = .u

This is cluttered because x is not
elimina.ble.

Ax. f (x , z)

If we ignore renamings,

Lemma 5.7 R (a) is finite.

This is because the number of consta.nts is limited by the size of CL, which limits the number of free
variables (since each must be separa.ted by a consta.nt), and the suill of the two limits the number
of bound variables. Since R (a , b) conta.ins only pairs of object,s from both R(a) and R(6) ,

Corollary 5.8 R (a , b) is finite.

Since the most specific generalization ma.y not be unique, we define the set of maximally specific
generalizations:

Definition 5.9 MSG(a, b) is the 1ea.st set of genera1iza.tions in R(n, b) such that Vg E R(a, b), 39' E
MSG(a, b) such that g -- y' (up to an isoniorphism).

R. W. Hasker, U. S. Reddy 131

Note that the least set exists because if g -+ g i a.nd g - gi where g{ * gi , then 9; and 9; are

isomorphic by Lemma 4.7.

Examples 5.10 Some maximal (relevant) generalizations:

[nodes] \ [f r inge] /
Xx.len(f (x))

This is maximally specific
because l e n is the only
common constant.

sqr(s q r (2 1)
/ This illustrates how mul-

tiple maximal objects can
a.rise when there are dif-
ferent possible pairings.

XX.X f x f C(2)
As.x - C(2) * r - C(2) Different ways of instan-

tiating can also lead to
multiple generalizations.

[Xabc.a + b \ + c] / [X U ~ C . R - c * b - C (2)] or Note that there are more
.~ '=b-C] genera.lizations as well.

5.1 Properties of R

G is not a preorder because its morpllisins are not always unique. In this section, we show that
R is a preorder. This property is interesting in itself and also helps in showing the correctness of
our algorithm to compute the co~nplete set of rrlost specific generalizations. All the results of this
section extend t o the binary case (and multiple term cases) because the morphisms of R (a , 6) are
a subset of the morphisms of R(a) and R(b).

I.,emma 5-11 Whenever g l , g2 E R(cL) and p : yl - ya. p : s r c (g l) - s r c (g 2) is relevant.

Proof Let gl be 81 : t l - a and yz be 02 : t a - a. If p : t1 - t 2 is not relevant, p eliminates a
subterm w of t l . But then O2 o p eliminates ,w; this contradicts O2 o p = O1.

Theorem 5.12 R(a) is a preorder.

132 Proceedil~gs of the 1992 XProlog Workshop

We need t o show that there is a t most one morphism between any two general i~at ions .~ Consider
the commutative diagram

u
u - a

t [f
in R(a) and let f (m) be the outermost subtern1 o f t such that f is a free variable and p l (f) # p2(f) .
Observe that since pl : t i u and p2 : t - u a.re relevant, there is at least one occurrence of pl(f (F))
and pa(f (~)) in u. Also observe that this occurrence nlust be the same for both pl and p2 since
f is the outermost variable for which pl a.nd p2 differ. Call this occurrence u'. The key lemma for
showing that f does not exist is

Lemma 5.13 If p l (f) = n l , then p2(f) = T:.

Proof Since pl : t + u is relevant, ea.ch 7Ti other thail ,w; rrlust be elixnina.ble, so they are all
projections different from each other and different from w,. Tlzere are three cases:

1. h e a d (w ;) is a constant: w; is uneliminable, so p2(f) = T:.

2. h e a d (w i) is a free variable: this case is iillpossible because pl : t + a is condensed.

3. w ; E B V (t) : u' = w ; , so since there is no other .to, = w;, pz(f) = T:.

This along with the existence of a u' = pl (f (E)) gives us

Lemma 5.14 h e a d (p l (f)) = h e a d (p 2 (f)) .

Proof of 5.12 We show pl (f) = p2(f). Suppose pl(f) = X Z . I < (~) for some constant K. Then
p 2 (f) is X f . l i (7) by Lemma 5.14, and we use induction on the depth of substitutions (using a
multiset ordering) to show = by constructing the conlnlutative diagram

'Note that renamings are not allowed

R. W. Hasker, U. S. Reddy 133

in R(a) such that pl = pi o 4 and pa = p; o d. The followi~lg function is used to ensure Or : v -+ a
is relevant:

Definition 5.15

projected(K, t) =
the (xj,, . .. ,xjA) such t11a.t each xj, E {K), all jk < jk+l, and xj, occurs in t

Then let

e (f) = X5,.li-(B)

v; = pr~.jecterl(:c,,~ ill;) U pro.jectecl(:c,, N ;)

4 = {f + X%.Ii(l~l(l / l) , h7,z(l/rlz))}

= P I \ f U { h l + X ~ . A d l , h m ~ X ~ m . M m }

pi = pz \ f U {hl +- Xul.Kl,. .. , h,, Xv,.N,}

8' = O \ ~ U { I Z ~ + X I / ~ . P ~ , . . . , h m m X ~ m . P m)

(where each h, is a free va.riable occurring nowhere else). Note tlla,t projected(%, Pi) must be a
subsequence of v; since a cannot introduce a.bstractions. Furthermore, if N ; eliminates xj in v;,
then wj is eliminable. This is because if z j does not appear in N ; , it must be eliminated by a from
Mi, so i t must be in the scope of a free variable f r ' in Mi. Since a : u i a is uncluttered and wj is
eliminated by a (f"), w j must be eliininable. Thus Of : a - a is relevant and we can use induction

to show p i (f) = p:(f 1.
A similar argument is used when the hea.d of both pl(f) and p2(f) is a free variable, g, except

that the details must be modified to ensure Or : v - (L is condensed. Observe that the arguments t o g
must be rigid terms (unless p l (f) = f a.nd p l (g) = y, in which case p2(f) = f and p2(g) = g because -
p2 : v -, t~ is relevant). Thus p l (f) = XK.y(~l1,) and p2(f) = X2n.y(%) where Mi = G,(=)
and N ; = Ha(=). We first show t11a.t for ea.ch k, H k = Gk. Since a o p1 = 6 = a o p2,
o(g o (. . . , Gk, . . .)) = o (g o (. . . , HI,. . . .)) and so ~ (G ' I ,) = a(H k) . Thus Gk = Hk since both are
rigid.

We use induction t o show t1la.t the rest of p l (f) aad p2(f) are the same. Assuming O(f) is
%.g(Hl(r;,l,. . ., r;,p,), . . ., H r n (~ & , ~ , - - . * r ; L,T>,,, 11, let

v; j = projected(%, r , ,) U projected(%, st,,)

(b = {f ~ T L . ~ (H l (~ ~ l . l (~ ~ l . l) , . . a , ~ ~ ~ l , p l (~ l , ~ l 1)) - . * ,

IFJm(flnz.1(1/m.l 1 hm,pm(~m,p,)))}

P: = PI \ f U { l ~ l , l +- X ~ / l . l . ~ ~ l . l l~nL,p", + Xl/,,pm.l.m,p,}
= ~2 \ f U (f~1.1 +- Xl/l.l.*l,13 hnz,p,, + Xvmrprn .sm,pm I

v = + (t)
Or = 8 \ f U { h l , ~ + X1/1.1.~~,,,,-. . . : hm.p,,, +- X ~ m , p , , . ~ ~ , p ,)

Again pi = p; by induction, heilce pl = p2.
Since morphisms are unique a.nd # id is a morpliisnl from any generalization to itself,

Proceedings of the 1992 XProlog Workshop

Corollary 5.16 R (a) is a partial order.

This allows us t o introduce the following notation:

Definition 5.17 Whenever gl + g2 is in R(a) , we say gl is less specific (or, equivalently, more
general) than g2. This is written as yl 5 g2 . Furthermore, we write gl < g2 if g2 4 gl is not in

R (a) -

6 Computing MSG

R(a , b) is finite, so since second-order ma.tching is decida.ble a.nd A-terms are recursively enumerable,
we can compute MSG(a, 6) by generating R (a , 6) and comparing all its objects against each other.
Thus, MSG(a, b) is computable, albeit inefficiently. A illore practical algorithm is suggested by the
observation tha t when the substitutions contain a. common subterm, then they can be made more
specific by factoring out the common term.

The steps for specializing generalizatioils of (L a.nd b are given by the following rewrite relation
-. The algorithm is restricted to generalizing ground terms; non-ground terms can be handled
by L'freezing" the variables; that is, repla.cing tlle~ri by unique constants. The - steps maintain
the invariants

C I 1 : t 7 C1

d 2 : t - b
(61 : t - a , 9 2 : t -- 6) is relevant
if gl - 92, 91 < 92

To compute MSG(a, b), we start with the initial object of R (a , b) and continue specializing the
generalization until no - step is applicable. To simplify the notation, we represent each general-
ization (dl : t + a , 6'2 : t 7 b) by the triple (t , 01, &) .

Delete-variable Variables with the same binding in both substitutions can be removed:

Merge Likewise, variables with the sa.me bindings within each substitution can be merged:

Delete-abstraction Subterrns which a.re not project,ed by either substitution can be eliminated:

where z does not occur in either M or A'.

R. W. Hasker, U. S. Reddy 135

Factor-constant Constants that appear in both substitutions can be factored. This step is
complicated because i t must introduce new function varia,bles for generalizing the subterms and i t
must not create cluttered terms.

({ f .H A z . f l (I L (h ~ (~ l) , . - -, h n (v n)) , ~ o) } (t) ,

(t , dl u { f' - Xzvo.MIVa E & , a + z] ,
0, U{f H X Z . A ~ [K (E)]) , - hl H A v ~ . u ~ , . . . , hn I+ Xvn.un),

e, u {f X T . N [K (B) I)) O2 u { f l ++ A z v o . N [~ P E b , ~ + z] ,
hl - A h .vl, . . . , h,, ++ Xun.v,))

where

I is a constant,
n is the arity of I i ,
h , occurs no where else (for 1 5 i 5 10,
Li is a nonernpty subset of the positions at wllicli I<(E) occurs in M ,

p is a nonempty subset of the positions a t which I<(B) occurs in N ,

vo = projected(Z, A4[Va E ti, a - ,TI) U projectedjz. A'[VP E ,8, P + 21)

(see Definition 5.1.5 for projected). and

uk = projected(Z, u k) U projected(Z, u k) .

If the new or d2 of some hk (or f l) would elimina.te an uneliminable subterm, then this step is
not applicable (with the chosen ti and j) beca.use i t would form a, cluttered generalization.

Factor-abstraction Repeated bound variables can be factored in much the same way as con-
stants except that there is no need to introduce new free variables:

(t , ({ f + AT. f l (. ~ ' , T) } (t) ,
O1 U { f H XT.M[xi]) , - el u { f ' A Z T . ~ / I [V ~ E & , a + z] } ,
O2 u { f I+ A z . N [z ;])) B2 u { f' +- Xzz.N[VP E , 8 , ~ - 21))

where 2; is in I, z, occurs in a t least one other position in both Ad a.nd N , and Li and are proper,
nonempty subsets of the positions a.t which n:i occurs. (ci and 6 must be proper subsets so that the
new generalization is not cluttered.)

Using --., the set MSG call be computed by yen defined as

gen((l,b) = { g I (f , [a] . [b]) -* y , and $y'.g - g'}
where -* is the transitive closure of -.

This algorithm is expensive because it requires exponential time and recomputes the same
generalizations in different ways. Furthermore, some pairs of terms have an exponential number of
generalizations, so there is no polynomial-time algorithm based on the size of the input. It is not
yet clear if a polynomial-time algorithm exists based on the nunlber of generalizations.

The proof this algorithm's correctness depends upon sho\ving: that the set of - rules completely
specifies when one generalization is strictly less instantia.ted than another. First we give some
lemmas:

136 Proceedings of the 1992 XProlog Workshop

Lemma 6.1 If gl E R(a , 6) and gl - g2, then g2 E R(u , b).

Lemma 6.2 Whenever gl , g2 E R(u, 6) and gl - g2, gl < 92.

Proof Observe that each step is of the form (t, 01, 02) - (p(t), 8:) 8:) where p is a generalization
morphism. This shows gl 5 g2. Furthermore, p is not a renaming substitution, so by Theorem 5.12
there is no pop : g2 + gl.

Finally, we show that - steps do not reduce the number of possible generalizations. That is,
given a specific generalization, the set of - steps completely covers all maximal generalizations
which are more instantiated than the given one.

Lemma 6.3 Whenever gh E MSG((1, b), gt E R (a . b). aad gt < gh, there is a g, E R (a , 6) and a
g, 2 gh such that gt - g, a.nd g, 5 9,.

Proof Assume

Then the following diagram illustra.tes this lemma.:

Choose an f E domp, such that p,(f) is not a renaming substitution unless all substitutions are
renamings. Let

Furthermore, assume that if XT.H(E) is a renaming substitution, then H E domp, and p,(H) = H.
Observe that such an f exists because gt < y,,. \Ye \vill show t11a.t for any Xz.H(m), there is a --

step which generates an appropriate y,,. In most cases. we only identify which step is applicable;

R. W. Hasker, U. S. Reddy 137

refer to the algorithm for tlie details of constructing g, and p,. Note that if there is a step to create
g,, then g, E R(a , b) by Lemma 6.1.

There are three cases based on the form of H.

1. H is zi in I: Bl(f) = 41(p,(f)) = T ; = &(p,(f)) = 02(f) , SO Delete-variable is applicable.

2. H is a constant K: head(O1) = head(q51(p,(f))) = Ii = head(#2(pU(f))) = head(@?), so
Factor-constant is a.pplicable.

3. H is a free variable (say g) : Since we are ollly interested in finding an isomorphism of g:, we
can reorder the arguinents to g as g (x l , ~ k . 1 ~ ' k + ~ , . . . , w,) (with correspondiilg reorderings
to q51(g) and &(g)) such that A' is the siilallest integer for which wk+l # xk+l.

If k = n , then 01(f) = 4l(p,(f)) = p ~ (g) and by assumption &(g) = 41(p,(g)) = h (g) .
Thus Bl (f) = O1(g). Likewise. 02(f) = $2 (g). Hence the Merge step is applicable.

If k < n, then there are four ca.ses tlepending upon the form of U'k+l :

(a) W ~ + I is flexible: this would make g, redundant, a. contradiction.

(b) wk+l = xi for i < k: yi occurs illore tllail once in both A4 and N and so a Factor-
abstraction step is applicable. Pick ti a.nd suclz tl1a.t the occurrences of yi in a l (f')
and oz(f') match those in &(y) and &(g) .

(c) wk+l = z; for i > k + 1: y k + ~ does not occur i.n either A4 or N and so a Delete-
abstraction step is applicable.

(d) wk+, = I<(a) where Xi is a constant: beca.use g, is not cluttered, I< must occur in both
M and N , thus a Factor-constant step is applicable. Again, pick 6 and p such that
the occurrences of Ii in a l (f ') and 02(f ') matcl~ those in #q(g) and +?(g).

Theorem 6.4 (Soundness) If g E ge~z(n, b), then y E h/lSG(c~, b).

Proof By Lemmas 6.1 and 6.2, if g E gerz(n,b) then g E R(u, 6). g is maximal by Leinma 6.3.

Theorem 6.5 (Completeness) If g is in h lSG(n . 6). then there is a generalization g' in yen(a , b)
which is isomorphic to g.

Proof By Observation 4.8, we know tl1a.t yo is less specific than ally generalization of a and 6 , so
by Lemina 6.3 we know that for any y there is a sequence of - steps from go to some g' isomorphic
t o g. This sequence is finite bemuse < is well-founded and gl - g2 implies gl < g2.

Proceedings of the 1992 XProlog Workshop

7 Conclusion

We provide a framework for unsolved problem of generalizing second-order terms. Our solution is
based on viewing the structure of terms as a category rather than a partial order. The categorical
view allows us t o capture how one term generalizes a.nother, which is not possible in the conventional
structure of complete lattices [14, 161.

Second-order generalization seems eminently useful for generalizing first-order terms in a useful
fashion. For instance, A and A A B have the maximal generalization

([TI : f (A) + A, [Xx.x A B] : f (A) -+ A A B)

showing that A is replaced by a coiljunction in going to A A B. This information is lost in the
corresponding first-order most specific generalization. Similarly, going t o third and higher orders
would improve the quality of generalization. More importantly, base terms of higher orders also
necessitate going to higher orders. We intel~tl to pursue this in fut,ure work.

Acknowledgements

The authors would like t o tha.nk John Gray for useful discussions on category theory and the
anonymous reviewers for a number of helpful comments. LVe would also like to thank Paul Taylor
for the ma.cros used to genera.te t,lle dia.gra.1~~.

References

[l] Michael A. Arbib and Ernest C;. A4anes. Arrows, Structures, und Functors: The Categoricul
Imperative. Associated Press, New York, 1975.

[2] R. S. Boyer and J . S. Moore. A Coniputcctio~zcrl Logic. Academic Press, New York, 1979.

[3] A. Church. A formulation of the simple theory of types. Journal of Synzbolic Logic, 5:56-58,
1940.

[4] R. L. Consta.ble, et. al. I1izp1e1ii.enti1-r.g ~ t / /~~ ther~~c~t i c . s with tlre ili~ryrl Proof Development System.
Prentice-Hall, New York, 1986.

[5] Jean-Yves Girard, Yves Lafont. and Paul Taylor. Proofs and Types. Cambridge University
Press, Cambridge, 1989.

[GI Joseph A. Goguen. What is unification? .A categorical view of substitution, equation, and
solution.

R. W. Hasker, U . S . Reddy 139

[7] R. Harper, I?. Honsell, and G. Plotkin. A frainework for defining logics. In Symp. on Logic in
Computer Science, pages 194-204. IEEE, June 1987.

[S] Gerard Huet. Rksolution d ' ~ ~ u a t i o n s da,ns des langages d'order 1 , 2 , . . . , w (these d'etat),
December 1976.

[9] F. William Lawvere. Functioi~al semantics of algebraic theories. In National Academy of
Sciences, 1963.

[lo] Lawrence C. Paulson. Natural deduction as higher-order resolut.ion. Journal of Logic Pro-
gramming, 3:237-258, 1986.

[l l] F . Pfenning. Elf: A language for logic definition and verified meta.-programming. In Fourth
Ann. Sgmp. on Logic in C ~ I ~ ~ ~) Z I ~ P I ' .S'cie~lce. pages 313-322. IEEE, June 1989.

[12] Frank Pfenning. Unification and anti-unification in the calculus of constructions. In Sixth
Annual LICS, pages 74-85, IEEE, IEEE Computer Society Press, July 1991.

[13] T. Pietrzykowski. A complete mechaniza.tion of second-order type theory. Journul of the ACM,
20(2):333-365, April 1973.

[14] Gordon D. Plotkin. A note on inductive generalization. In Machine Intelligence, volume 5,
chapter 8, pages 153-163. Edinburgl~ Univ. Press. Edinburgh, 1970.

[15] U. S. Reddy. Transformational deriva.tiou of programs using the Focus system. SIGSOFT Soft-
ware Engineering Notes, 13(5):163-172, Nov 1988. (Proceedings, -4CM SIGSOFT/SIGPLAN
Softw. Eng. Symp. on Practical Software Developillent Environments).

[16] John C. Reynolds. Transformational systenls a,nd the algebraic structure of atomic formulas. In
Machine Intelligence, volume 5. chapter 7, pages 135-151. Edinburgh Univ. Press, Edinburgh,
1970.

Proceedings o f the 1992 XProlog Workshop

Implementing Higher- Order Algebraic
Specificat ions

J a n Heering ' -

Department of Software Technology
CkVI

I<ruislaan 413
1098 SJ Amsterdam, T h e Netherlands

j an0cwi . nl

Abstract

Writing algebraic specifications that are to be esecuted a.s rewrite systems is similar to functional
programming. There are some differences, however. Algebraic specification languages allow left-
hand sides of equations t o be complex first-order patterns that would not be allowed in functional
languages. Functional langua.ges, on the other ha.nd, ha.ve powerful higher-order features not of-
fered by algebraic specifica.tion languages. Some functional languages combine higher-order func-
tions with linear first-order patterns illvolving free da,ta, type constructors, thus offering a limited
(but highly expressive) mixture of functional programming and algebraic specification. A more
ambitious integration of the two is obtained by allowing both signatures and equations in algebraic
specifications t o be higher-order. Operational experiments with such higher-order algebraic specifi-
cations can be performed by translating them to XProlog, an estension of Prolog t o polymorphically
typed A-terms based on higher-order unifica.tion.

1 Introduction

1.1 Higher-order algebraic specificatio~ls

Conventional algebraic data type specifica.tions consist of a first-order signature and a set of equa-
tions. Equations may contain first-order variables, which are implicitly or explicitly universally
quantified. The signature defines the a.bstra.ct syntas of a, 1angua.ge of terms whose semantics is
given by the equations. Such specifications are usually implemented by interpreting them as (first-
order) term rewriting systems (see the survey by Iilop [13]). Each equation is interpreted as a
left-to-right rewrite rule and the resulting rewrite system is used t o evaluate terms by reducing
them t o normal form (if any). The annoying fa.ct that this asymmetric interpretation of inherently
symmetric equations may 1ea.d to rewrit,e systems t11a.t a.re incomplete with respect to equational
deduction from the original specification does not concern us here.

Writing algebraic specifications t11a.t are to be esecuted as rewrite systems is similar to functional
programming. There are some differences, however. Algebraic specification languages allow left-

'supported in part by the European Comrni~nities untlrr ESPRIT project 2177 (Generation of Interactive Pro-
gramming Environments 11-GIPE 11).

142 Proceedings of the 1992 XProlog Workshop

hand sides of equations to be complex first-order patterns that would not be allowed in functional
languages. Functional languages, on the other hand, have powerful higher-order features not offered
by algebraic specification languages.

Some functional languages (e.g., Hope [I , 21) combine higher-order functions with linear first-
order patterns involving free data type constructors, thus offering a limited (but highly expressive)
mixture of functional programming and algebraic specification. A more ambitious integration of the
two is obtained by allowing both signatures and equations in algebraic specifications t o be higher-
order. The higher-order signature defines the abstract syntax of a language of typed A-terms whose
semantics is given by the equations. Parsaye-Ghomi has been one of the first to study this approach

[211.
More recently, Jouannaud and Okada [12] ha.ve a.dvoca.ted the development and implementation

of higher-order algebraic specification languages a,nd, 11a.ving frequently felt the need for higher-
order equations in algebraic specifications ourselves, we thought it would be interesting to be
able t o perform operational experiinents with thein. Higher-order term rewriting requires, first
of all, higher-order matching, which is the special ca.se of higher-order unification in which one of
the terms involved does not contain free va.riables. Two rea.dily available systems incorporating
higher-order unification are XProlog [20], an esbensioll of Prolog to typed A-terms, and the generic
theorem prover Isabelle [22]. Since we had sonle experience with schemes for translating first-order
algebraic specifications to Prolog (see the surveys by Drosten [7] and Bouma and Walters [4]), we
chose XProlog as our target system.

It would be nice if the notion of initial algebra specification, which has unequivocal meaning
in the first-order case [lG], had an equally unequivocal higher-order analogue. This does not seem
t o be the case, however, since it depends on the precise notion of higher-order model one prefers.
Meinke and Moller, for instance, assume l~lodels to be extensional higher-order algebras [15, 181, and
Meinke shows that in this setting higher-order initia.1 algebra specification is strictly more powerful
than its first-order counterpart [14]. Poigne, on the other hand, considers both extensional and
intensional models [23]. Although these questions a.re beyond our present scope, the precise notion
of initial algebra semantics adopted affects the degree of illcoillpleteness of our implementation
scheme.

1.2 Higher-order term rewriting

Higher-order term rewriting, the mechanisll~ me use to execute higher-order algebraic specifications,
is more powerful, but also less manageable than its first-order counterpart. The following examples
illustrate some of its possibilities and problems.

I. Consider the signature

sorts s, bool
functions

a : s
f , g : s - + s
i f : b o o l x s x s -- s

Jan Heering

variables
X , Y : s
F : s + s (second-order variable)
B, B' : boo1

and the second-order equation

if (B, F (S) , F(1')) = F (i f (B , X , Y)).

The left-hand side of (1) matches

in three different ways, namely, for

F = XT/.g(f(l,,')) -3- = n J' = f (a) B = B'
F = XV.g(V) X = f ((1) I' = f (f (a)) B = B'
F = X V. I/' - X = y (f (u)) I F = y (f (f (a))) B = B '

Thus, whereas a first-order match has at most a single solution, a higher-order match may
have many. It may even have solutions that leave some of the variables in the left-hand side of
the rewrite rule uninstantiated, something that callnot happen in the first-order case either.
For instance, the left-hand side of (1) lnatclles

if (B'. C L , (1)

for

The first solution leaves /Ti and 1.' uninsta.ntiated. If (1) is interpreted as a. left-to-right rewrite
rule, this is no problem since both variables are eliminated by P-reduction after substitution
of the solution in the right-hand side:

(1 (17) ,if(B', (1. [L) - (Al, . . (~)(i f (B', -Ae, 1 ')) - a.

A solution instantiating F to AV.1; exists for a.ny i f - term and is, a t least in this case, alge-
braically harmless. The danger of non-termination it entails can be averted by adopting a
parallel reduction strategy treating all solutions 011 a,n equal basis, or by a simple loop check.
For reasons of efficiency we have chosen the 1a.tter alternative.

11. Consider the second-order equa,tions

nzc~p(F. n i l) = nrl (2)

nznp(F, c o n s (S , L)) = co~zs(F (X), nznp(F, L)) (3)

mc111(XT ..I< L) = L (4)

nzap(F,n-tup(G'.L)) = mcip(Xl ' .F(G(V)) .L) (5)

with the signature from example (I) plus the additional declarations

Proceedings of the 1992 XProlog Workshop

sort 1st
functions

nil : 1st
cons : s x 1st + 1st
map : (s -t s) x 1st + 1st

variables
x ,v : s
L : Ist
F, G : s + s (second-order variables).

Equations (2) and (3) define the naup-function for the basic list constructor cases. They
could have been written in virtually the same way in Hope [l, Chapter 61. Equations (4) and
(5) are plausible identities for the 17aap-functioi~. These would not be allowed in Hope since
their left-hand sides involve argumellts Alf.l,. aiid mciy(G, L) which are not constructor terms.
From the viewpoint of higher-order illatching these are harmless, however.

111. Although i t did not happen in example (I) , va.riables in the left-hand side of a higher-order
rewrite rule that are left uainstantia.ted a.fter ma.tching may enter the reduct. We borrow the
following example from Nipkow's paper on higher-order critical pairs [19]. The rewrite rule

can be applied to the term f (g(a, a)) in two ways, one of which instantiates F to XV.a and
leaves X uninstantiated, thus yielding the result f (X) .
To get rid of this problem and to eliminate ambiguous rules such as (I) , Nipkow (following
Miller [17]) restricts left-hand sides of rules to so-called higher-order patterns (HOPs). A
HOP is a term in P-normal form such that each free variable occurring in it is applied only
t o (zero or more) terms that are q-equivalent to distinct bound variables. The left-hand sides
of equations (2)-(5) are HOPs, but the left-hand side of (1) is not since it contains a free
variable F whose argument _X is not a bound variable. Jouannaud and Okada's notion of
general schema [12, Section 4.41 does not include equation (1) either.
To leave as much room for experiment as possible. we do not impose any a priori restriction,
but equations that may cause uniilstantiated variables to enter the reduct are not necessarily
treated correctly by our XProlog code and should be avoided.

IV. Whereas first-order term rewriting requires subterm matching, higher-order rewriting can do
without explicit subterm lookup if each equa.tion t 1 = t 2 is estended to H (t l) = H (t 2) with H
a polymorphic higher-order varia.ble not free in l1 01. t z . In this case, higher-order matching of
the extended left-hand side with the full input term perforins the subterm lookup implicitly.
Like before, useless instantiations of EI to X.Y.s. where s does not contain X , can be rejected
by a simple loop check. The rnatcl~ing st,rat.egy used does not matter as long as the rewrite
system is confluent and terminating (a.pa.rt fro111 the trivial loops caught by the loop check).
This approach is used in Section 2.1. Tact,ics for liigher-order rewriting are discussed by Felty

PI.

Jan Heering

1.3 XProlog

XProlog is a n extension of Prolog t o typed X-terms 1201. Basically, the functions declared in a
XProlog program generate a domain of polymorphically typed X-terms, and polymorphic higher-
order unification takes the place of first-order unification in the proof procedure.

Since X-terms may be subject to cr-, p-, and 7-reduction, the term domain underlying a XProlog
program is not purely synta.ctic. Furthermore, unlike first-order unification, higher-order unification
is neither decidable nor unitary. As a consequence, in XProlog backtracking t o an alternative unifier
of the same pair of terms may occur and the search for a, higher-order unifier may go on forever.

Higher-order matching, the special case of higher-order unification we need, was conjectured to
be decidable in the simply typed ca.se (no polymorphism) by Huet [ll], but this is still an open
problem. The third-order case was recently shown to be decidable by Dowek 151. On the other
hand, Dowek also showed that strongly polymorphic higher-order matching is undecidable [6].
XProlog supports ML-style polyn~orpl~ism. so we included it in our notioil of higher-order algebraic
specification as well, in accordance with Parsaye-Ghomi's original proposal [21]. As far as we know,
the "intermediate" case of higher-order matchillg in combillation with ML-style polymorphism has
not yet been settled, so it may still turn out to be de~ida~ble. In the version of XProlog we used2
the implementation of polymorphic higher-order ullification was incomplete and this caused some
problems. These will be explained in due course. Esamples of higher-order matches with multiple
solutions, none of them subsumed by any of the other ones, were given in Section 1.2. In our
XProlog code, backtracking to an alternative solutioll ma.y occur as a result of loop checking.

This rudimentary knowledge of XProlog in combina.tion with a basic understanding of Prolog
(see, for instance, Bratko's book [3]) suffices to uilderstand the nest section.

2 Translating higher-order algebraic specifications to XProlog

2.1 A very simple sche~lle

Consider the following higher-order algebraic specifica.tion:

module N
sorts nut, boo!, lst(A)
functions

zero : nut
succ : nut + nat
add : nat x nut - nat
t , f : boo1
if :boo1 x A x A i A
nil : l s t (A)
cons : A x Est(A) - l s t (A)
compose: (B + C) x (A - B) - i l - C
m a p : (A + B) x l s t (A) - l s f (B)

2Versiol~ 2.7 (October 1988). I t was obt.ailled by anonynlous ftp from dlrke.cs.duke.edu.

146

equations

add(-X, zero)

add(X , succ(Y))

~f (t , x, Y)

i f (f , X , 1 7)

i f (& F (X) , F (Y))
compose(F, G)

malj(F, n i l)

m a l ~ (F , co~zs(S, L))

map(XI;'. V , L)

nzap(F, nzap(G, L))

Proceedings of the 1992 XProlog Workshop

X

s t~cc(add(X , Y))

A-

1'

F(if (B , X , Y))
X X . F (G (X))

nil

coizs(F (S) , 7ijup(F, L))

L

nzal~(compose(F, G) , L)

Identifiers whose first character is a capital letter are variables. Their type is not declared
explicitly (although i t might have been), but is determined by the context in which they occur. For
instance, X has type nnt in (G) , but polymorphic type A (with A a type variable) in (8).

In addition t o the two carriers corresponding to sorts izat and 6001, the higher-order initial
algebra of N has an infinite number of first-order ca.rriers corresponding to l s t (r) for any monotype
T. In particular, T may be a functional monotype such a.s nut + nut or another 1st-monotype.
The higher-order carriers (function spaces) of the initial a,lgebra consist of the appropriately typed
functions definable in terms of the signature of N.

Equations (10) and (12)-(15) are poly11~0rpliic versions of (1) and (2)-(5) respectively. Equation
(11) defines functional compositioi~. Equa.tions (10). (14) , and (15) merit special attention. These
are the ones tha t are allowed in the higher-order algebraic framework, but not in Hope. As was
pointed out in Section 1.2, the left-hand side of (10) is highly non-deterministic. The left-hand
sides of (14) and (15) are HOPS of a, simple kind, but not constructor cases.

Using the scheme outlined in example (I V) of Section 1.2, we translate N t o the following
XProlog module:

module 1pN.

kind n a t type .
kind bool type .
kind 1st type -> type.

type zero n a t .
type succ n a t -> nat.
type add na t -> nat -> n a t .

type t boo1 .
type f boo1 .
type i f boo1 -> A - > A -> A .

Jan Heering

type nil (1st A).
type cons A -> (1st A) -> (1st A).

type map (A -> B) -> (1st A) -> (1st B).
type compose (B -> C) -> (A -> B) -> A -> C.

type reduce A -> A -> o.
type extrule A -> A -> o.

extrule (H (add X zero))
extrule (H (add X (succ Y)))
extrule (H (if t X Y)
extrule (H (if f X Y))
extrule (H (if B (F X) (F Y)))
extrule (H (compose F GI)
extrule (H (map F nil))
extrule (H (map F (cons X L) 1)
extrule (H (map X \ X L))
extrule (H (map F (map G L)))

(H XI.
(H (succ (add X Y))).
(H X I .
(H Y).
(H (F (if B X Y))).
(H (X \ (F (G XI))).
(H nil).
(H (cons (F X) (map F L)) 1 .
(H L).
(H (map (compose F G) L)) .

reduce X Y :- extrule X Z,
not(X = Z), %%% loop check - X,Z ground
reduce Z Y.

reduce X X.

Arguments of predicates are separated by spaces rather than commas in AProlog, and the
argument list of a predicate is not delimited by brackets. The syntax of A-terms is similar to that
of Lisp. Every predicate or function is a t most unary, so larger arities have to be reduced to arity
1 by currying, that is, by replacing types sl x . . . x s k - so in the algebraic specification with
types sl -> - -> sk -> SO in XProlog. .As usual. the type constructor -> is right-associative.
Predicates always have type . - - -> o.

Kind declarakions are used t o iiltroduce type constructors. The three kind declarations in the
first lines of IpN iiltroduce the zero-adic type constructors nat and bool, and the monadic type
constructor 1st. These correspond to the sorts nnt, Bool, and l s t (A) of N. Thus, apart from
the dtsc'arations of the auxiliary predicates extrule and reduce, the correspondence between the
signatures of N and IpN is straightforward. The translation of equations is equally straightforward.
P u t in the context of a new higher-order variable H. the left- and right-hand side of an equation
become the first and second argument of the corresponding extrule fact. Note that AX.. . . in the
right-hand side of (11) beco~nes (X \ . . . in XProlog. In addition to the extrule facts correspond-
ing to the equations of N, the body of 1pN consists of the clauses (16) and (17) for reduce. These
are independent of N.

Tlle normal form of a term t in the term language defined by the signature of N is obtained by
submitting t o 1pN the question

?- reduce tt NF

1.18 Proceedings of the 1992 XProlog Workshop

where tt is the corresponding term in the term language of IpN. Since free variables in t (if any)
should not be instantiated during rewriting, they do not correspond to XProlog variables in tt, but
are modelled by generic constants (simulated varia.bles) x, y , . . . in the following examples. Thus,
even if t contains free variables, tt is a, ground term.

Rewriting proceeds as follows. The reduce predicate attempts to apply e x t r u l e and, if suc-
cessful, calls itself recursively on the reduct after performing the loop check not (X = Z), where not
is the negation-as-failure predicate a.nd = denotes higher-order unification. The loop check rejects
algebraically correct but operationally useless ma.tches (cf. Section 1.2, examples (I) and (IV)).
When it is evaluated, the values of both X and Z are ground terms because (i) the translated input
term tt is always ground, and (ii) the equa,tions are assumed to be such that their interpretation
as left-to-right rewrite rules does not cause uninstantia.ted va.riables to enter the reduct (cf. Section
1.2, example (111)).

The rewrite strategy of lpN is deterillined prima.rily by the fact that P-reduction is a built-
in rewrite rule that is performed iillplicitly by XProlog during unification, and by the order of
the e x t r u l e facts. Redeses for rule r,, a.re reduretl before redexes for rule T , if m < n. The
redex selection strategy for each individual rule is det.ermined by XProlog's higher-order unification
strategy. The latter can be influenced to some extent by the setting of the projf irst switch of
the XProlog system. If set to on, the higher-order uilificatioll machi~lery prefers projection over
imitation. This reduces the amount of backtra.cking caused by imitative solutions that are rejected
by the loop check, and promotes the simultaneous reduction of syntactically identical redexes.

We reproduce a short sample run of the XProlog systenl using 1pN:

?- use IpN.

~ P N
Yes

?- switch pro j f irst on. 0 # b LLL s l i g h t l y more e f f i c i e n t i n t h i s

Yes
L appl ica t ion than p r o j f i r s t off

?- switch tvw o f f .

Yes

b ALL no type var iab le i n s t a n t i a t i o n warnings

?- reduce (i f y (cons f n i l) (cons t n i l)) NF.
ALL y i s a generic constant - see above

NF = cons (i f y f t) n i l .
Yes

?- reduce (i f y (add (succ zero) (succ zero)) (succ (succ ze ro))) NF.
b 8 * y is a generic constant - see above

NF = succ (succ zero) .
Yes

?- reduce (i f y (i f y l xO x l) (i f y l x2 x l)) NF.

Jan Heering

0 1 0 NF = i f y1 (i f y xO x2) xi . L L i see [9, Section 3.31

?- reduce ((compose (X \ (add X XI) (X \ (add X X))) (succ ze ro)) NF.

NF = succ (SUCC (succ (succ ze ro))) ,

Yes

?- reduce (map (X \ (add X XI) (cons zero (cons (succ zero) n i l))) NF.

NF = cons zero (cons (succ (succ zero)) n i l) .
Yes

?- reduce (map (X \ (compose succ XI) (cons succ n i l)) NF.

NF = cons Var1612 \ (succ (succ Var1612)) n i l .
Yes

?- reduce (map (X \ zero) (map succ 1)) NF.
0 0 0 L/.L 1 i s a generic constant - see above

NF = map (Var347 \ zero) 1 .
Yes

?- reduce (Y \ (add Y zero)) NF

NF = Y \ (add Y zero) . 0 0 0 LLL no rewr i t ing under abs t rac t ion ;

Yes
0 0 0 L L L f i r s t argument of (6a) does not
0 0 0 444 match - see Section 2 . 3

?- reduce (i f y succ succ) NF.

NF = if y succ succ . 0 1 * ALL NF = succ expected - see below

Yes

The last example is not reduced properly became the implementation of polymorphic higher-
order unification in the version of XProlog we used was incomplete. When matching i f y succ
succ with the left-hand side of (IOa), the polytype A 1 - > nat -> na t initially inferred for H is
never instantiated t o (nat -> na t) - > nat - > nat . The rea.son is that the system limits A 1 t o
"primitive" types t o keep the search space within bounds. It is interesting t o see how the matching
behaves in this case:

?- switch tvw on

Yes

0 1 0 L L i give type var iab le i n s t a n t i a t i o n warnings

Proceedillgs of the 1992 XProlog Workshop

?- switch p r in t types on. 8 8 8 ALL p r i n t types of terms

Yes

?- i f y succ succ = (H (i f B (F X) (F Y))) .
* * I XLL "=" denotes higher-order u n i f i c a t i o n

Trying t o p r o j e c t on an argument with type
A 1

Do you want t o go on? (y/n)y
Assuming f o r t h e moment t h a t t a r g e t type i s pr imi t ive

H = Var24 : A 1 \ Var25 : nat \
(i f y Var26 : nat \ (succ Var26) Var27 : nat \ (succ Var27) Var25)

B = B : bool
X = X : A l
F = F : A 1 -> A2
Y = Y : A i ;

The only solution found leaves all va.riables in the left-hand side of (10a) except H uninstantiated
and is rejected by the loop check. The espected solutioil is found if the more precise type (nat ->
na t) -> n a t -> na t is associa,ted with H in an riel hoc fa,shion:

?- i f y succ succ = (H : (na t -> n a t) -> nat - > nat (i f B (F X) (F Y))) .

H = Var26 : n a t -> na t \ Var27 : nat \ (Var26 Var27)
B = y
X = X : A l
F = Var28 : A 1 \ Var29 : nat \ (succ Var29)
Y = Y : A l ;

H = Var54 : n a t -> na t \ Var55 : nat \
(i f y Var56 : na t \ (succ Var56) Var57 : nat \ (succ Var57) Var55)

B = B : bool
X = X : A l
F = F : A1 -> na t -> nat
Y = Y : A 1 ;

The first solutio~l yields the espected reduct when substituted in the right-hand side of (l0a) . The
second solution is a more precisely typed version of the useless one found previously.

Jan Heering

Finally, we give an example showing that 1pN is not confluent for terms containing free variables.
An alternative normal form caa be obtained by backtracking. Note that 1pN does not do this
automatically.

?- reduce (i f y (add x z e r o) (add x (succ z e r o))) NF.
0 0 1 LLL x and y a r e g e n e r i c c o n s t a n t s

NF = i f y x (succ x) ;
1 1 * ALL f i r s t normal form

NF = i f y x (succ (add x z e r o)) ;
* a * LA,! not a normal form

NF = add x (i f y z e r o (succ z e r o)) ;
rn ,!LA @ a second normal form

The general translation schenle sllould be clear from 1pN. The auxiliary names reduce, e x t r u l e
and H should be chosen carefully to avoid clashes wit11 user-defined names. Similarly, overloading of
names that have a predefined meaning in XProlog (t r u e , f a l s e , l i s t , . . .) should be avoided. Apart
from the above-mentioned incompleteness problern and the possible non-termination of higher-order
matching (which we have not encountered so far) , the scheme is correct for higher-order rewrite
systems that do not introduce new variables in tlre retluct, and that are terminating with the simple
loop check shown as well as confluent. For rewrite systen~s lacking the latter property, the input
term may have other norn~al fornis besides tire o l ~ c colr~l)utetl.

2.2 Iillproving efficiency by adding specialized code

Some efficieilcy can be gained by colllbining tlie above method with one of the first-order schemes
discussed in [4, 71. To illustrate the genera.1 idea, we take Drosten and Ellrich's first-order scheme.
In this case the AProlog code genera.ted for A' becomes:

module lpN2.

import 1pN. * * 1 L L L s e e S e c t i o n 2 .1

t y p e reduce2 A -> A -> o
t y p e ana lyze A -> A -> o
t y p e prenormal ize A -> A -> o
t y p e r u l e A -> A -> o

Proceedings o f the 1992 X Prolog Workshop

r u l e (add X ze ro)
r u l e (add X (succ Y))
r u l e (i f t X Y)
r u l e (i f f X Y)
r u l e (i f B (F X) (F Y))
r u l e (compose F G)
r u l e (map F n i l)
r u l e (map F (cons X L))
r u l e (map X \ X L)
r u l e (map F (map G L))

X.
(succ (add X Y)) .
X .
Y .
(F (i f B X Y)).
(X \ (F (G X))) .
n i l .
(cons (F X) (map F L)) .
L .
(map (compose F G) L).

analyze (succ 11) K :- analyze I1 K1,
prenormalize (succ K1) K . %%% (18)

analyze (add I1 12) K :- analyze I1 K1, analyze I 2 K2,
prenormalize (add K1 K2) K . %%% (19)

analyze (if I1 I 2 13) K :- analyze I 1 K1, analyze I 2 K2, analyze I 3 K3,
prenormalize (i f K1 K2 K3) K . %%% (20)

analyze (compose I 1 12) K :- analyze I 1 K1, analyze I 2 K2,
prenormalize (compose K1 K2) K . %%% (21)

analyze (cons I1 12) K :- analyze I 1 K1, analyze I 2 K2,
prenormalize (cons K 1 K2) K. %%% (22)

analyze (map I 1 12) K :- analyze I 1 K1, analyze I 2 K2,
prenormalize (map K 1 K2) K . %%% (23)

analyze X K :- prenormalize X K . %%% (24)

prenormalize X Y :- r u l e X Z,
8 8 Q not(X = Z), ALL loop check

analyze Z Y .
prenormalize X X .

:- analyze X Z , reduce Z Y . %%% (27)
8 0 8 ALL reduce i s defined i n 1pN

lpN2 extends 1pN with code t11a.t is very simi1a.1. to the Prolog code that would be generated by
Drosten and Ehrich's scheme for N had it been a first-order specification. For each p-ary function
f in the signature of N (y > = 1), lpN2 contains a cla.use

analyze (f I 1 . . . Ip) K :- analyze I1 K1, . . . , analyze Ip Kp,
prenormalize (f K1 . . . Kp).

Clause (24) catches everything not matched by the first argument of the preceding analyze cases.
The facts (6b)-(15b) correspond directly to the equatiolls (6)-(1.5). Clause (27) links the new
code to the old code imported from 1pN. Tl~e clauses (24)-(27) are independent of N .

Jan Heering 1.5 :3

The normal form of a term t in the term 1angua.ge defined by the signature of N is obtained by
submitting t o lpN2 the question

?- reduce2 tt NF.

where tt is the corresponding term in the term language of lpN2 (which is the same as that of
IpN). Like before, free variables in t have to he replaced by generic constants in tt (see Section
2.1).

On the examples we tried, lpN2 was from 1 to 5 times faster than 1pN. It may actually be
slightly slower if analyze is una,ble to perform a.ny reductions. Consider, for instance, the term

(compose succ succ) ze ro .

The first argument of (21) does not match (it,s type is not even compatible), so the work done by
analyze is wasted and the reduction to succ (succ zero) is performed by reduce using (l l a)
with

H = Var : n a t -> nat \ (Var zero)
F = succ
G = succ .

On the other hand, the reduction of

map (X \ (compose succ XI) (cons succ n i l)

cons Var \ (succ (succ Var)) n i l

is speeded up by a factor of 5. W11erea.s 1pN spends a large alllount of time on useless matches,
lpN2 performs the reduction in a highly deterillinistic manner using analyze.

2.3 Reduction under abstractioil and partial evaluatioil

Evaluation of programs whose input values are only pa.rtially given is called partial evaluation
(see the annotated bibliography [24]). In the setting of first-order algebraic specification, partial
evaluation corresponds t o reduction of first-order terms containing free variables [9]. In Section 2.1
we gave several examples of this in the setting of higher-order algebraic specification. In fact, the
equations

which played a role in some of the esaml)les, are not needed for ordinary evaluation, but may be
useful for partial evaluation. Needless to say. inore ecluations of this kind could have been added
to the specification N.

15.1 Proceedillgs of the 1992 XProlog Workshop

In the higher-order setting, partial evaluation not only corresponds t o reduction of open terms,
however, but also t o reduction under a.bstra.ction. The two are related by the abstraction rule

which has no analogue in the first-order case. For instance, according to the abstraction rule one
would expect an implementation of hT to reduce Xl'.acld(I< zero) to XY: nat.Y, since add(Y, zero)
reduces t o Y : nut by equation (6). The two in1plementa.tions discussed so far do not do this,
however:

?- reduce (add y z e r o) NF. I * LLL a y i s a g e n e r i c cons tan t

%%% O K , bu t

?- reduce (Y \ (add Y z e r o)) NF.

NF = Y \ (add Y z e r o) . 0 I 0 LLL f i r s t argument of (6a) does n o t match

Yes

?- reduce2 (Y \ (add Y z e r o)) NF.

NF = Y \ (add Y z e r o) . 0 0 0 ALL t h e analyze-predicate of lpN2 does n o t descend

Yes
0 0 0 ALL i n t o a b s t r a c t i o n s

We note that the fact tha t 1pN and lpN2 do not perform reduction under abstraction is in accordance
with common functional programnling practice.

Picking up an abstractioll in the style of 1pN ~vould require higher-order matching with

but the incomplete instantiation of type va.ria.bles during unification mentioned in Section 2.1
precludes this approach. Instead, we a,dd a. ca.se to the tlefiirition of the analyze-predicate in lpN2
just before (24) :

ana lyze (X \ (U XI) (X \ (V XI : - p i C \ (reduce2 (U C) (V C) . %%% (24-1

When i t recognizes an abstraction (X \ (U X)) . analyze uses XProlog's built-in pi-predicate to
convert it t o a generic installce (U C) in tlre universal goal reduce2 (U C) (V C). (Universal
goals in XProlog are discussed by Na.datl1ur a.nd Miller in ('20, pp. 817-8181.) After normalization
by reduce2, the resulting normal form (V C) i s t.urned into a.n a.bstra.ction (X \ (V X)). For
instance,

Jan Heering

?- reduce2 (L \ (map (X \ (add X z e r o)) L)) NF.
0 0 0 /,LA a p p l i c a t i o n of (24-1, (231, (6b), and (14b)
1 0 0 /,LA y i e l d s t h e i d e n t i t y f u n c t i o n of t y p e
0 0 0 L h L 1st n a t -> 1st n a t :

NF = Var335 : 1st n a t \ Var335 .
Ye=

Like (24)-(27), clause (24-) is independent of N.
We conclude this section by pointing out that reduction of polymorphic abstractions is prone

t o divergence. For instance, reduction of the identity function (X : A \ X) of polymorphic type
A -> A leads t o an infinite loop. Clause (24-1 reil-rains applica.ble after each generic instantiation.

3 Further work

From a logical viewpoint, higher-order algebraic specification constitutes a natural integration of
first-order algebraic specification and higher-order functional programming. We intend to perform
further experiments with i t using the iillplelnentation schemes discussed in this paper and perhaps
more efficient ones still to be developed (see, for instance, [lo]). Since polymorphic typing has been
the main source of problems so far, it requires special attention.

Acknowledgement

A suggestion by one of the reviewers of the XProlog Workshop t o use the pi-predicate to do rewriting
under abstraction has been very helpful and was incorpora.ted in Section 2.3.

References

[I] R. Bailey, Functional Progranznziizg with Hope (Ellis Horwood, 1990).

[2] R. Burstall, D. MacQueen, and D. Sannella., Hope: an experimental applicative language, in:
Conference Record of the 1980 Lisp C O I Z ~ ~ W I Z C C . Stanford, 1980, 136-143.

[3] I. Bratko, Prolog Programnziizg for Artificial Iiztelligerzce (Addison-Wesley, 1986).

[4] L.G. Bouma and H.R. Walters, Implenlenting algebraic specifications, in: J.A. Bergstra, J .
Heering, and P. Iilint, eds., Alyebrr~ic ,Sl~eciJl'caion (ACN Press/Addison-Wesley, 1989) 199-
282.

[5] G. Dowek, Third-order ~na.t.ching is decida.ble. Ra.pport. de Recherche, INRIA-Rocquencourt,
1991.

[6] G. Dowek, The undecidability of pattern matching in calculi where primitive recursive functions
are representable. Rapport de Recherche. IKRlA-Rocquencourt, 1991.

156 Proceedings of the 1992 XProlog Workshop

[7] K. Drosten, Translating a1gebra.i~ specifications to Prolog programs: a comparative study, in:
J. Grabowski, P. Lescanne, and W. Wechler, eds., Algebraic and Logic Programming, Lecture
Notes in Computer Science, Vol. 343 (Springer-Verlag, 1988) 137-146.

[8] A. Felty, A logic programming approach to implementing higher-order term rewriting, in: L.-
H. Eriksson, L. Hallnas, and P. Schroeder-Heister, eds., Extensions of Logic Programming,
Lecture Notes in Artificial Intelligence, Vol. ,596 (Springer-Verlag, 1991) 135-161.

[9] J. Heering, Partial evaluatioil and w-completeness of algebraic specifications, Theoretical Cona-
puter Science, 43 (1986) 149-167.

[lo] J. Heering, Second-order algebraic specification o f st.a.tic semantics, Report, CWI, Amsterdam,
in preparation.

[ll] G. Huet, R&solution d'&qua,tions dans les 1a.ngages d'ordre 1 ,2 , w , Thtse de Doctorat
d7Etat , Universit4 de Paris-VII, 1976.

[12] J.-P. Jouannaud and M. Okada, A computatioil model for executable higher-order algebraic
specification languages, in: Proceedirzg:~ of the Sixth Aiznz~ul IEEE Symposiunz on Logic in
Computer Science (I E E E Computer Societ,y Press, 1991) 350-361.

[13] J.W. Klop, Term rewriting systems, in: S. Abramsky, D. Gabbay, and T. Maibaum, eds.,
Handbook of Logic in Computer Scierzce, Vol. I1 (Oxford University Press).

[14] K. Meinke, A recursive second order initial algebra specification of primitive recursion, Report
CSR 8-91, Computer Science Division, Depart~llent of Mathematics and Computer Science,
University College of Swansea, June 1991.

[15] K. Meinke, Universal algebra in higher types, Theoretical Computer Science, 100 (1992) 385-
417.

[16] J . Meseguer and J.A. Goguen, Initiality, induction, and computability, in: M. Nivat and J.C.
Reynolds, eds., Algebraic Methods in Semaiztic.c: (Ca.mbridge University Press, 1985) 459-541.

(171 D. Miller, A logic progralnillillg 1aagua.ge with lambda-abstraction, function variables, and
siinple unification, in: P. Schroeder-Heister. ed., Exteizsions of Logic Programming, Lecture
Notes in Artificia.1 Intelligence, Vol. -47.5 (Spl-inger-\'erla.g, 1991) 253-281.

[I$] B. Moller, Algebraic specification with higher-order operators, in: L.G.L.T. Meertens, ed.,
Progranz Specificatiorz a,rzd Tmizsfo~~nzc~fioit (5ol.t.h-fIolland/IFIP, 1987) 367-398.

1191 T. Nipkow, Higher-order critical pa.irs, in: Proceec1iizy.s. of the Sixth Annual IEEE Symposium
on Logic in Computer Science (IEEE C:omput,er Society Press, 1991) 342-349.

[20] G. Nadathur and D. Miller, -411 overvien. of XProlog. in: R.A. I(owa1si and K.A. Bowen, eds.,
Logic Programnziizg-Proceediiys of the Fifth Inlernc~fioizcil Conference and Symposium, Vol.
1 (The MIT Press, 1988) 810-827.

Jan Heering 1.57

[21] K . Parsaye-Ghomi, Higher-order abstract da.ta types. Report CSD-S20112, Computer Science
Department, University of California, Los Angeles, January 1982.

[22] L.C. Paulson and T. Nipkow, Isabelle tutorial and user's manual, Technical Report No. 189,
Computer Laboratory, University of Cambridge, January 1990.

[23] A. PoignC, On specifications, theories, and models with higher types, Information & Control,
68 (1986) 1-46.

[24] P. Sestoft and A.V. Zamulin, eds., Annotated bibliography on partial evaluation and mixed
computation, New Generation Conzprrting, G (1988) 309-354.

Lolli: An Extension of XProlog
with Linear Logic Context Management

Joshua S. Hodas '
Depar tment of Computer a n d Information Science

University of Pennsylvania
Philadelphia, PA 19104-6839 USA

hodasQsaul.cis.upenn.edu

Introduction

The announcement for this workshop began with a passage about the utility of higher-order hered-
itary Harrop formulas for many applications, and the very existence of the workshop is a partial
correctness proof of the passage. Nevertheless, there are applications for which the intuitionistic
management of proof contexts (or, concretely, pr0gra.m databases) provided by XProlog has been
unable t o provide natural, logical solutions. Ma.ny such problems, such as how to program the
Prolog bag-of predicate - which would require a way of augmenting the database such that the
changes survive a failure - seem unlikely to yield to logical analysis in any system related to
hereditary Harrop formulas. Others, however, can be addressed by relatively simple modifications
of the logic underlying XProlog.

In 1990 two problems motivated Dale Miller a.nd me to esamine the possibility of designing a
logic programming language based on a, fra.gment of Ciirard's linear logic [2] similar to the hereditary
Harrop formula fragment of intuitionistic logic.

The first problem involved representing the notion of mutable object state within logic pro-
gramming [3]. While it is sinlple to use representa.tive predicates to store the state of an object in
the database (or proof context), it is not possible to model the modification of state, since the only
c h a n ~ e to the database allowed in XProlog is t11a.t of stack-like augmentation through the use of
impi;iatiuns in goals. Thus, if the sta.te of a switch is stored using the predicates ofland on, and
the program F includes the (slightly) higher-order clauses:

I .={ QG.[toggle(G) c (or1 A (off > G))]
QG.[toggle(G) c (off A (on > G))]

'The author has been funded by ONR N00014-88-Ii-0633, N S F CCR-91-02753, and DARPA N00014-g5-K-0018
through the University of Pennsylvania.

Proceedings o f the 1992 X Prolog Workshop

r , B ; A , B - C
identity

T R r;0-1 1~ absorb
r ; A - A r ; A - T T , B ; A - C

provided that y is not free in the lower sequent.

Figure 1: A proof system for the connectives toy, 1, Sr, 4, *, !, 8, $, Q, and 3.

then the proof of the goal off > toggle(G) might proceed a,s follows:

r. off, on - G
r , o f f - ~ f f r , o f f - - o 1 2 > ~ -OR

r , o f f - o f f A (o n 3 G) - AR

r , off - toggle(G')
J L

r - off 3 toggle(G)
I R

So, rather than being toggled, tlie switch 11a.s indetermina.te state during the proof of G. The
problem is the implicit use, in the appplica.tion of the AR rule, of the contraction rule of intuitionistic
logic which allows the original state of the switch to be copied to hot11 sides of the proof tree.

By considering linear management of proof contests, in which tlie use of contraction and weak-
ening is restricted to formulas ina.rked with the ! operator, this and several other similar problems
can be properly modeled. For instance. if the 1101.11 cla.uses a.bove a,re replaced with the following
linear logic formulas:

r = { !{VG.[toggle(G') c- (0 1 2 I?) (0 8 4 G))])
!{VG.[togglc(G') c- (ofl C, (on -o G))] }

Joshua S. Hodas

then the proof of the equivalent goal, off -o toggle(G) proceeds as:

r, on - G
o f j e d o f l I ' -+on-oG -OR

r, 08 - off @ (on -o G)
@R

-'='L r, 08 -+ toggEe(G)
r - ofS -o toggle(G) -OR

with the desired result that the switch is in the toggled position during the proof of G.
In two recent papers Miller and I have discussed a t length the design of a logic programming

language based 011 such formulas [4, 61. Inference rules for the operators of the language are given
in Figure 1. While these rules are not the standard ones of linear logic, they are equivalent to a
fragment of linear logic. In this system a proof contest consists of two parts: the intuitionistic part
(on the left of the semi-colon), in which arbitrary implicit contraction and weakening are allowed,
and the linear part (on the right of the semi-colon), in which those rules are barred.

Concrete Syntax and Relationship with XProlog

An important aspect of the Lolli project was the hope that the language could be designed as
a modular refinement of XProlog. T11a.t is, any purely XProlog program should run 'unmodified'
within ~ o l l i ~ and behave in the expected way.

Since the logical operators of the two 1a.nguages are different, this embedding requires defining
a mapping of formulas of intuitionistic logic into the new system. Girard gave such a mapping in
the first paper on linear logic [2]. However, given that we are working in the restricted setting of
hereditary Harrop formulas i t is possible t,o define a, more parsimonious, albeit more complicated,
one. This translation, was introduced in a previous pa.per [GI, and is in the form of two mutually
recursive functions, one applied to formu1a.s in nega.tive positions (ie. program clauses), and the
other to formulas in positive positions (ie. queries).

(A)+ = (A) - = A , where A is atomic
(true)+ = 1 (t rue)- = T
(B1 A B2)+ = (B 1) + @ (B2)+
(B1 A B2)- = (B1)- Si: (B 2) -
(BI 3 B2)' = (B I) - (B2If
(B1 3 B2)- = (B1)+ -o (B2)-

(Vx.B)+ = Vs..(B)+
(V2.B)- = Vx.(B)-

(Bi v BPI+ = (BI)+ @ (B2)'

(3x.B)+ = 3 x . (B) +

2The current implement.ation of Lolli is an essentially first-order language (ie., while it allows quantification over
predicates, formulas, and terms, it does not ilnplement A-t.er~ns or higher-order unification), so this section should be
read as referring t o the similar frag~nent. of AProlog.

162 Proceedings of the 1992 XProlog Workshop

The intuitionistic sequent (over just these operators) I7 - G is then mapped to the sequent
J?-; 0 - G+, which has a proof if and only if the original sequent did.

Given the XProlog syntax for hereditary Harrop formula programs, this mapping suggests a
concrete syntax for the operators of the language, which is given in the following table:

II 1 I + I true II

1 3x.B I + 1 e x i s t s x\B8 1

'

As with XProlog, terms and a.toins are written in a curried form and the standard quantifier
assumptions are made. It is straightforward to confirm that existing Prolog and XProlog programs
are written, and run, as expected. For instance, the XProlog query:

Parity

+
Operator

T

p i X \ p i Y \
(memb X (X::Y)) =>

pi X \ p i Y\ p i Z\
(memb X (Y: : Z) : - neq X Y , memb X Z) =>

memb G (a : : b : : n i l) .

Syntax

erase

represents the formula,:

which, when transla.ted into the new systeiu using the () + transla.tion, becomes:

3G.[(VS.Vl.'.nlet11b(.J-. X :: 1 ')) +
(VX.VY.VZ.(nzenzb(-Y, 1' :: 2) o- (~req(.Y, I , .) iitemb(X, 2)))) 3

rnen~b(G'. (I , :: 6 :: ni l)]

which has the concrete syntax:

3The use of f o r a l l and exists as syntax for t.lre explicit quantifiers represents a personal preference of this author.

Joshua S. Hodas

f o r a l l X\ f o r a l l Y \
(memb X (X::Y)) =>

f o r a l l X \ f o r a l l Y\ f o r a l l Z\
(memb X (Y::Z) :- neq X Y, memb X Z) =>

memb G (a : : b : : n i l) .
b

And, when run, this query will ha,ve the same execution profile as the original XProlog query.
In contrast, programs which take advantage of the linear features of the system will of necessity

make use of the new elements of the syntax. So, for instance, the ill-performing intuitionistic
formulas defining the toggle predicate would be written (in XProlog and Lolli) as:

toggle G :- on, off => G .
toggle G :- o f f , on => G .

while the well-performing linear logic formulas would be written as:

toggle G :- on, off -0 G .

toggle G :- o f f , on -0 G .

In order for existing programs to work properly. it is assllmed that the clauses in a module
are loaded into the unbounded (intuitionistic) portion of the proof context. The programmer can
override this assumption by preceding intlivitlual clauses with the LINEAR declaration. Thus, it is
possible t o specify an initial setting for the switcli within the program file, as in:

LINEAR on.

Note that the use of all uppercase for LINEAR, is not optional. Since the system uses curried
notation, this is the only way (short of ruling out its use in other forms) of recognizing that it is a
declaration, and not a predicate name. For consistency, and improved readability, this restriction
is also applied to the LOCAL and MODULE declara.tions described below.

Modules

Lo15 programs are divided into motlules in the same way as XProlog programs. By convention,
enforced by the interpreter, files carry the es ten~ion '.11', and. by analogy to the XProlog ==> op-
eratoi, are loaded using the operator '--0' . The co~llrnaild ' load modulename', which is equivalent
t o 'modulename --o top', is also available.

A module may begin with a list of local constant declarations, such as:

LOCAL a B c.
LOCAL d.

with multiple consta.nts separated by spaces. or listetl in separa.te declarations. Because Lolli is
essentially first-order, types and kinds. allti their declaratiol~s. are not needed or supported. A
future release of Lolli ma.y support L,,,-u~rification [TI . b u t ivill likely still be type-free. Note that

164 Proceedings of the 1992 XProlog Workshop

since constants are untyped, predicate names ma,y be reused at different arities, as in ordinary
Prolog.

The XProlog module system has been extended to allow for parameterized modules. That is,
the module declaration is of the form:

MODULE modname param-1 . . . param-n.

where modname matches the root of the file name3 and the parameters are variables to be unified
placewise with the terms in the loading goal. Note t1ia.t while the formal parameters are variables,
they are generally intended to be viewed as constants within the module, and as such may begin
with lowercase characters if the progra,rnmel. so chooses. Thus, if the module is declared:

.MODULE foo a B

and is loaded with 'f oo c d --o top', then the clauses in f 00.11 are loaded with all instances of
a and B instantiated to c and d respectively.

The logical status of the module systenl can he suinmarized as follows, the declaration:

MODULE mod xl . . . x, .
LOCAL 31 . . . y, .

Hl xl . . . X, 311. . . ym zll . . . zg1 .

LINEAR H;xl . . . x,yl . . . y,sl, . . . s,, .

Hp x 1 . . . X , Y ~ . . . ym zl,, . . . zqp .

associates to mod the parameters x1 . . .z,, the local consta.iits yl . . . y,, and the clauses H1 . . . H,,
which may contain free occurrences of tlie variables XI . . . x, and constants yl . . . y,. Each clause
Hi may also colltaiiz free occurances of the otherwise undecla.red variables 21, . . . z,,. When the
module is loaded within a goal formula, using the synta,x mod tl . . .t,--0 B, that goal is considered
only as short-hand for the goal

f o r a l l zip\ . . .f o r a l l z,,\(H,jtl . . .t,yl . . . y,,, :I,, . . . z , ,) => B] .

Here, we overload the symbols y1, . . . , y,,, to be co~lstants in the LOCAL declaration and bound
variables in the displayed formula above. In general. this overloading should not cause problems.

Joshua S. Hodas 165

Also, in this example, it is assumed that the formula B and the terms t l , . . . , t , do not contain
occurrences of yl,. . . , y,. Finally, it is a.ssumed t11a.t yl . . . y,, t l . . . t,, x l . . .x,, and 21, . . . z,, are
all pairwise disjoint.

The implementation of parameterized modules was driven by the need to be able to handle
the object-oriented programming exa.mples from an earlier paper [3], where they were used to pass
initialization information to objects. Nevertheless they have proved useful in a number of instances.
For example, the following module defines the shell of a multiset rewriting system, along the lines
of the example given in [4, 61. The rewrite rules themselves, however, are in a separate module,
whose name is passed to this one as a para.meter when this module is loaded. In order to ensure
the soundness of the rewriter, a local predicat'e name is used to store the multiset in the database.
That name is, in turn, passed to the rules nlodule ~vllen i t is loaded. The shell is given by:

MODULE r e w r i t e rulemodule.

LOCAL hyp .

c o l l e c t n i l .
c o l l e c t (X::L) :- hyp X, c o l l e c t L .

unpack n i l G : - G .
unpack (X::L) G :- hyp X -0 unpack L G .

r e w r i t e L K : - unpack L ((rulemodule hyp) --o (r e w r i t e (c o l l e c t K))).

while a rule module might be of the form:

MODULE r u l e s 1 hyp.

r e w r i t e G : - G .

r e w r i t e G : - hyp 4 , ((hyp 2 , hyp 2) -0 r e w r i t e G) .
r e w r i t e G :- hyp 4 , ((hyp 3 , hyp 1) -0 r e w r i t e G).
r e w r i t e G :- hyp 3 , ((hyp 2 , hyp 1) -0 r e w r i t e G) .
r e w r i t e G :- hyp 2 , ((hyp 1 , hyp 1) -0 r e w r i t e G) .

and a sample query would be:

?- r e w r i t e r u l e s 1 --o r e w r i t e (3 : : n i l) L .

?L674 <- (3 : : n i l) . ;
?L674 <- (2 : : 1 : : n i l) . ;
?L674 <- (1 : : 2 : : n i l)

Proceedings of the 1992 XProlog Workshop

Implement at ion

Lolli is currently available in two implementations. The first is a simple Prolog meta-interpreter
given in [4, 61 and reproduced in Figure 2. The code as given implements only the propositional
fragment of the language (with a few differences from the concrete syntax described above), but
is useful for experimenting with the core of the underlying logic. The meta-interpreter could be
trivially extended t o the first-order language by re-implementing i t in XProlog. Other than the
change of syntax, that system would differ only in the addition of two clauses t o handle quantifi-
cation. Unfortunately, the lack of op declarations in XProlog would make the system a little more
unwieldy.

The author has also developed a rela.tively rich implementation of Lolli in Standard ML of
New Jersey (which should port, t.o any ML which can handle MLYACC and MLLEX). That im-
plementation supports the full 1a.nguage a.s described here, in a.ddition t o a reasonable selection
of evaluable predicates and one extra-logical control structure (guard expressions). That imple-
mentation was inspired by (and built on a. core of code from) Elliott and Pfenning's article on
implementing XProlog-like languages in a. functional setting [I]. The full implementation of Lolli,
with documentation, many example programs, and DVI files for several relevant papers, is available
by anonymous ftp from f t p . c i s .upenn. edu (1 3 0 . 9 1 . 6 . 8) in the directory /pub/Loll i . If you
retrieve the system, please send mail to hodas0saul. c i s . upenn . edu so that you may be informed
of updates.

Conclusion

The Lolli project is an ongoing one, and the language is by no means frozen. On the other hand,
the collection of program esanlples is growing [4, 6, 51, and this shows that the logic fragment
chosen represents a useful extension of the traditional hereditary Harrop formulas of XProlog.

Acknowledgements

The author is grateful to Dale Miller, for his partnership in this work, and to Jean-Marc Andreoli,
Gianluigi Bellin, Jawahar Chirimar, R.emo Pa.reschi, Pa,b Lincoln, Andre Scedrov, James Harland,
Jean-Yves Girard and Ferilando Pereira for conversations (with the author and with Dale Miller)
about aspects of the design and theory of Lolli. He is also grateful to Frank Pfenning and Conal
Elliott for providing such a strong ha.se to work wit11 i n imp1ementa.tion. Finally, to Elizabeth
Hodas for helpful editoria.1 comnlents.

Joshua S. Hodas

% The logic being interpreted contains the following logical connectives:
X tne/O a constant (empty tensor, written as 1 in the logic)
% erase/O a constant (erasure, written as Top in the logic)
% bang/l the modal, written as I) in the paper.

:- op(l45,xfy.->) . X linear implication, written as -0 in the paper
:- op(145 ,xfy,=>). % intuitionistic implication
:- op(l4O,rfy,x). % multiplicative conjunction (tensor)
:- op(l40,xfy.C 1. % additive conjunction
:- op(l50,xfy,::). % non-empty list constructor

interp(G) :- prove(ni1, nil, G)

prove(1 ,I, true).
prove(I,O, erase) :- subcontext(0,I).
prove(I.0, GI t 62) :- prove(I,O,~l), prove(1 ,O,G2).
prove(I.0, R -> G) :- prove(R : : I, del : : 0,G).
prove(I.0. R => G) :- prove(bang(R) : : I, bang(R) : : 0.C).
prove(I,O, GI x 6 2) : - prove(I.H,Gl), prove(H,O,G2).
prove(I,I, bang(G)) :- prove(I,I,G) .
prove(I.0, A) :- isA(A), pickR(I,H,R), bc(H,O,A,R).

pickR(bang(R)::I, bang(R)::I, R). subcontext(del::O, R ::I) : - isR(R), subcontext(0,I).
pickR(R: :I, del::I, R) :-isR(R). subcontext(S: :0, S: :I) :- subcontext(0,I).
pickR(S: :I, S: :O, R) : - pickR(1 ,O ,R) . subcontext (nil, nil) .

% The following code provides the hooks into application programs.
:- op(l50,yfx,<-). % the converse of the linear implication

% Applications usingthis interpreter are specified using the <-/2 functor (denoting the converse
% of linear implication). Ye shall assume that clauses so specified are implicitly banged (belong
% to the unbounded part of the initial context) and that the first argument to -> is atomic. The
% following clause is the hook to clauses spec-ified using < - .

% A few input/output non-logicals

prove(I,I, write(X1) :- write(X). prove(I,I, read(X)) : - read(X). prove(I.1, nl) :- nl.

% The following is a flexible specification of isA/1
notA(write(-)). notA(read(-)). notA(n1). notA(erase). notA(true). notA(de1).
notA(- L -1. notA(- x -). notA(- -> -) . notA(- => -) . notA(bang(-)I.
isA(A) :- \+(notA(A)).

Figure 2: A Prolog inlplenlentatio~l of Lolli

Proceetljags o f the 1992 XProlog Workshop

References

[I] Conal Elliott and Frank Pfenning. A semi-functional implementation of a higher-order logic
programming language. In Peter Lee, editor, Topics in Advanced Language Implementation,
pages 289 - 325. MIT Press, 1991.

[2] Jean-Yves Girard. Linear logic. Tlteoretical Conzputer Science, 50:l-102, 1987.

[3] Joshua Hodas and Dale Miller. Representing objects in a logic programming language with
scoping constructs. In David H. D. Warren and Peter Szeredi, editors, 1990 International
Conference in Logic Programming, pages 511 - 526. MIT Press, June 1990.

[4] Joshua Hodas and Dale Miller. Logic programming in a fragment of intuitionistic linear logic:
Extended abstract. In G. I<ahn, editor, Sixth i lnnl~nl .Sympo.sium on Logic in Computer Science,
pages 32 - 42, Amsterdam, July 1991.

[5] Joshua S. Hodas. Specifying filler-ga.p dependency parsers in a linear-logic programming lan-
guage. In Iirystopf Apt, editor, Proceedings of the Joint International Conference and Sympo-
sium on Logic Progra,nzming, T~i7cr.shingto~~ D. C,'.. 1992.

[6] Joshua S. Hodas and Dale Miller. Logic programming in a, fra.gnlent of intuitionistic linear logic.
Journal of Information ond Computnfion, 1992. To a.ppear.

[7] Dale Miller. A logic programming language with lambda-abstraction, function variables, and
simple unification. Journal of Logic (i,nd Coi~zp~~. i . (~ t io~~ . 1(4):497 - 536, 1991.

Some Kind of Magic
for (a Restriction of) LA

Alain Hui Bon Hoa '
INRIA Rocquencourt-Ecole Normale Supkrieure

huibonho@ma,rga,ux.inria.fr

1 Abstract

Higher-Order Hereditary Harrop (HOHH) formulas have been seriously studied in the latest years
as a basis for higher-order logic programming languages, resulting in several implementations. Yet,
no alternative t o SLD-resolution has been developed for these languages, while for instance some
Bottom-Up strategy would allow estensions of Prolog applications in such domains as language
analysis, deductive databases or software engineering.
We studied a restriction of the higher-order language L,\, which we named l x , and for which we
could define a sound and complete Bottom-Cp resolution strategy. This strategy turns out to be
very simple, the unification taking care of all the constraints due to quantification over function
variables. We believe that this is a first step towards fully esploiting higher-order logic in several
application fields. As an example, we study the use of the Magic Set method, developed in the
database community and which, when applied to Horn Clauses, solves the problem occurring in a
nai've Bottom-Up resolution of con~puting a great deal of useless facts. We present here an extension
of the Magic Set method t o our higher-order language I,,.

2 Introduction

The perspective of higher-order logic progra.mming la'nguages has been deeply studied lately. Their
interest as meta-programming 1angua.ges and more perspicuous forma,lisms has been established and
argued by many authors. It was proved that Higher-Order Hereditary Harrop (HOHH) formulas
formed a good basis for such a language, since its higher-order features still accept uniform proofs
[12] and thus support a proof strategy estending SLD-resolution (used in Prolog).

As a result, the language A-Prolog was developed [13] implementing HOHH formulas. GQard
Huet's results on higher-order ullificatioll made it possible to handle the unification involved in
the proving procedure. Several implementatiolls of A-Prolog have been given such as Prolog/Mali,
eLF, . . .The problems due t o undecidability and possible la.ck of a most general unifier in higher-
order unification have been eliminated in L,\, a, restriction of A-Prolog, with an acceptable loss of
expressive power. Being a logic programming language with A-abstraction, function variables, and
simple unification [lo], L,, both presents higher-order nice features and is likely to support efficient
implementations.

Yet i t still suffers from the lack of an alternative to the estension of SLD-resolution originally
presented: t o our knowledge, no real attempt to a Bottom-lip resolution strategy has been con-

'This work was partially supported by a grant f1o111 a Eulopean Software Factory (ESF) project.

170 Proceedings o i the 1992 A Prolog Workshop

sidered. In such domains as language analysis [21], deductive databases [2] or software engineering
[18], Horn Clauses are efficiently used with some kind of Bottom-Up strategy which is complete and
more suitable t o the concerned application. The extension of such a strategy to LA would allow
t o apply its higher-order logic in these fields, resulting in appropriate implementations of meth-
ods already studied for A-Prolog by Eugene Rollins and Jeannette Wing [20] as well as Franqois
Rouaix [19] for search in libraries, and Dale Aliller a,nd Gopalan Nadathur in language analysis [ll].

As a first step t o this aim, we have studied a, fra.gment of LA, which we called lA. We discuss
the choice of this fragment of HOHH at the end of the paper. This logic programming language
supports A-abstraction, function va,riables and quantifica.tio11, but does not authorize implication in
clause bodies (which LA does). The main reason for this restriction is that dealing with implication
in clause bodies requires some process introducing and discharging assumptions, which is quite
difficult t o achieve in a Bottom-Up resolution. .4s a restriction of LA, lA also makes use of its
simple and decidable unification algorithm .
We proved that a sound and complete Bottom-Up st,ra.tegy was possible for LA, resulting in a simple
interpreter [7]. While SLD-resolution requires the use of quuntifier prefixes to encode the different
constraints over quantified function variables, our interpreter notably presents the advantage not
t o need any quantifier prefiz.

This Bottom-Up interpreter represents a, first step towards offering higher-order logic features
t o fields for which SLD is not the most adequate evaluation procedure. For instance, in database
systems, i t is for computational reasons advantageous t o consider set-oriented query-processing
procedures. But nai've Bottom-Up strategies tend to do a. great deal of unnecessary work. A nice
solution developed first in the database community [4] and then extended to logic programming
and the Horn Clauses formalism [17] is the method of Ma.gic Sets. This method transforms a logic
program P and a goal into another progra,m Adayic (P) which, when evaluated Bottom-Up, mimics
the SLD-resolution of F . This method therefore solves the problem of useless computations in a
Bottom-Up strategy. We 1la.ve studied a.n estension of the Ma.gic Set method t o our language lA
which could present the same advai1ta.ge.s. Unfortunately, the direct extension of Magic Sets to E x
is not possible since it leads to transformed programs which are no more in lA (nor even in LA). We
propose a sound and complete method relying on the basic principles of the Magic Set method, and
which, when evaluating the transformed progra.111 Bottom-Up, mimics a SLD-strategy prediction
and performs a Bottom-Up resolution from the releva.nt axioms. This method computes more facts
than an exact SLD-resolution, but significaatly restricts the space search of a nai've Bottom-Up
evaluation.

This paper is organized as follows: in section 2. we briefly describe the language l A and we
outline the interpreter originally developed for L x in [lo] and estendi~lg first-order SLD-resolution.
We then sketch in section 3 how l , , can support a simple Bottom-Up interpreter. More details
on this part may be found in [i]. In section 4 , we present the main result of this paper, namely
some extension of the Magic Set method to our higher-order language lA. Introducing a partial
notion of subsumption between prefixed terms. we sho\v how this method rewrites a program into
another which, when evaluated Bottom-lip. miillics a Top-Down prediction mixed with a Bottom-

Alain Hui-Bon-Hoa 171

Up resolution. We prove this method sound and complete. We finally discuss some possible
extensions t o our language.

3 The higher-order logic programming language ZA

We present here the constraints induced by the higher-order logic nature of the variables, and the
logic programs used in lA. We sketch the interpreter deduced from Dale Miller's one for LA. The
reader familiar with LA may skip this section.

Clauses used in lA are the usual Horn clalises extended with function variables, A-expressions
and universal quantification. A condition on t.he s y n t a . ~ of terms ensures the decidability and the
existence of a most general unifier (m.g.u.) in case of success of the unification algorithm. This
allows t o apply a proof method which can be conceived as an extension of the SLD-resolution used
in Prolog (and will sometimes also be referred a.s SLD in the rest of the paper). Complete details
may be found in [lo].

3.1 Extended Horn Clauses

In LA, terms are simply-typed A-terms. .4s it is of no great incidence in our purpose and for the
sake of simplicity, we will consider here untyped A-terms. We deal in lA with Horn Clauses extended
in three ways:

A-expressions, which means we can use A-a.bstra.ction to represent functions and that the
interpreter is able to synthesize A-functions.

function variables, which means we ca,n use free varia.bles to represent functions, and have
them instantiated either by functions origillally defined in the program or by synthesized
A-functions.

r universal quantifications, which lmve different interpretations according to where in the clauses
they are used:

Consider for instance the following logic program:

Query - Vn: P (f (2))

VY (P (Y) - Q (Y))

In this example, the quantified va.riable 2 is placed on the right of +. It is then
said t o be esse?ztially uiziversal: the goa.1 requires we prove P(f (x)) for all x. The
usual treatment of this case is to repla.ce n: by an eigen-variable, i.e. a new constant.
This essentially universal variable therefore cannot be instantiated. For this reason,
variables bound by a. A-a.bst,ra.ction, wllicll cannot be insta,ntiated either, will also
be said essentially universa.1.

Proceedings o f the 1992 XProlog Workshop

The quantified variable y situated on the left of +- is said to be essentially existen-
tiak on the contrary of x, it may be instantiated in order t o prove a goal, in this
case by f (x).

The authorized definite clauses therefore have the following form:

where

- Z represent a set of essentially existential variables which may appear in any term of the
quantified formulae A, B1, . . .

- XI are also essentially existential va.ria.bles, hut which appear only in A.

- the are essentia,lly universal va.ria.bles wllicl~ nlay appea.r in ea.ch of the formulae quantified
by V G .

Moreover a condition denoted by (#) is set on the form of the terms: in any application
(x t l t z . . . t,) where x is an essentially esistential variable, the ti's are required to be distinct essen-
tially universal variables, quantified on the right (in the scope) of x. This guarantees the decidability
of the unification and the existence of a (in some sense) unique n1.g.u. [lo].

The following example using these estensions gives an idea of the problems they raise:

Example 1 Consider the following progruna:

VxVlVbVm (append (cons .z. I) k (cons R: 7 7 1) - append 1 k m)
V k (al)pend nil k k)

and the goal formula Query - V y (a p p e n d (cons (I 7,il) y 2).
Notice that the unknown Z is implicitly quci~ztified by 3 2 V y , ulltich means 2 cannot depend on y.

Then an SLD-like resolution wou~lcl rovyhly proceed this way:

W e replace the essentially unirrerscll vrrriable y by an eigen-variable ij and prove the goal

([~ppend (c o n s 0 wil) ij 2)

We unify this formula. with the hea.d of tlre Jir:r;t clntrse, obtci,ining the substitution

and the new goal: (alq~end nil jj (c o n s r~ m)) .

Alain Hui- Bon-Hoa

Unifying this new goal with the head of the second clause, we get the final substitution

This would lead to a solution for the initial goal (contrary to the intuition), if we hadn't first
specified that Z could not be instantiated by a term containing y. Therefore the resolution
leads to no solution, which was the correct and expected answer.

If we had considered instead the goal for~nvln Qtrery - Vy (append (cons a n i l) y (H y)) ,
where H is a function variable, the same resolution u!oulrl have lead to two solutions:

Again, the condition on H eliminates the first solrrtio~i a.nd u~t . get the expected higher-order answer:

This example shows that a, correct resolution o i our programs needs to retain

- which variables are essentially existential and which are essentially universal.

- their order of appearance during the resolution, so that we can define for each essentially
existential variable the appropria.te essentia.11~ universal variables its substitution terms may
contain.

This will be done in the SLD interpreter by quantifier prefixes, and in the following, we will
underline these prefixes of quantifiers indicating whether a variable is essentially existential or
universal, t o tell them from the syntactic syinbols ill the formu1a.e.

3.2 An SLD interpreter

We formalize here the method used in the previous example. The interpreter is a restriction of
Dale Miller's one for LA: the strategy extends SLD-resolution, the constraints over the variables
are encoded in quantifier prefixes. The unification algorithin is sketched on an example.

To present the interpreter, we introduce a simple meta-logic containing the logical constants
A , T (true), I (false), y, and 3. The atoinic propositions of this meta-logic are then either the
constants T or I, or a sequent judgement T' 3 G. or an equality judgement t = s. The sequent
judgement intuitively correspoiids to the notion of goal to prove and the equality judgement to that
of unification.
The interpreter deals with closed quantified forillulas of the meta-logic, the constraints over the
variables being encoded by these ineta-level quantifications:

Proceedil~gs of the 1992 XProlog Workshop

for instance, Q = 3x1Vx2Vx33z4 retains that x1 and 2 4 are essentially existential vari-
ables while x l a n d 23 are essentially universal ones; moreover 2 4 is in the scope of x2
and x3 (i.e. its substitution terms may contain 2 2 and x3) while xl is not.

The resolution is initialized with Qo (P G) where Qo contains the constants of the program
?' followed by the unknown variable& G, the initial gGl . It ends when there is only a logical
constant left, T meaning a. success aad I a. fa.ilure.

The interpreter then appears as rules over this meta-logic:

AND A sequent of the form T' + G I A G2 is repla.ced with the conjunction of sequents

GENERIC A sequent of the form (P + Qn: G) is repla.cet1 with the sequent

vn: (P 3 [:r + .?IG') -

where 5 is a new symbol.

BACKCHAIN A sequent of tlie form P + A is replaced with the sequent

3Z3ZB ((A = B) A ('P + D))
if the program contains a clause VZ(VSB B - D)

If no such clause exists, then we ha.ve a fa.ilure in the sea.rc1i branch, which we represent by replacing
the above sequent by the constant i.

Quantified equality judgelnents a.re trea.ted by unification. Provided the correctness of the
unification algorithm, this interpreter can be proved sound and complete [lo].
In the following we will keep the same nota.tion x, even when it should be replaced by the eigen-
variable 5.

3.3 Unification in l x

Though general higher-order unification was proved undecidable [6], in the case of L A and thus
of l A , the condition (#) required on the terllls leads to a correct and decidable algorithm [9],
which provides us with a m.g.u. in case of success of the unification. For some reasons which
will become clearer in section 4, and because tliis restores a symmetry in the presentation, we
prefer t o view this unification as one between two prefixed terins Q A A and 3 x 5 B, while it is -
originally and usually presented as an unificatiol~ of tlie two terms and B under the mixed prefix
QA3zB. Thus UNIfi'(Q,4 A? - 35% B) will be comput,ecl using the traditional algorithm denoted by
U72i f y(QA3ZB, A = BT

Alain Hui-Eon-Hoa 175

This view also presents the advantage to sepa.ra.te clea,rly the resolution part from the unification
one: the algorithm then does not consist in a,ppeliding the quantifiers of a head of a clause - 3ZB
to that of a goal Q A , but t o encode the scope const.raints of each variable, thus t o reveal the
dependencies between the most "flexible" ones - 3ds a.nd the essentially universal ones in - QA.
We sketch this algorithm on an example:

Example 2 Consider the problem UhTIFl'(Vnx3xVyVtVuj f (z y) z ,3913~ f (Aa u) v) . The algorithm
proceeds this way:

we first write it under the form

as the functional symbols are es.se~tticrlly uniz*er.wrl clrzrl identical, we compare their arguments

A- abstraction is treated by using the ezteizsiorarriity property A4 = Ax A4x
I

xya = u
Vm3xVyQzVw3u3vVa v = z

we then reveal the dependencies o f & over essentially universal variables by raising it up to x
xya = IL'IJZUI

Vm3x3utVyVzVw3vVa 11 + ~ u ' y t ~ u v = z

the irrelevant argument variabl~s orr tllrli .<uljpr.e.ssed by pruning over : and w

we finally get the substitution o :
u + u"y

Vm3u"VyVzVwVa x k Ayc~ . zl'ly

V H Z

This solution is a m.g.u. in the seizse thrrt n~zy closecl unifier is an instance of a
respecting the constraints encoded by V7n 3 ul'VyVzVu?Va

We have so far obtained a higher-order progra.mming language with an interpreter using an
SLD-resolution similar to that used in PROLOG. The constraints between variables are captured
by quantifier prefixes which melllorize which variables a.re essentially existential and which are
essentially universal, and order then1 so tha t a val.iable is contained in the scope of the variables
on its left in the prefix.

176 Proceedings of the 1992 XProlog Workshop

4 A Bottom-Up interpreter for Z A

4.1 Motivations and intuitions

A first motivation for a Bottom-Up interpreter is theoretical: the good properties of the HOHH
with respects t o uniform proofs allowed the design of a goal directed strategy for proofs, resulting
in the SLD method. I t is thus interesting to draw the parallel between the languages that stemmed
from HOHH and Horn Clauses as far a.s possible, notably concerning the availability of alternative
resolution strategies.

Moreover a Bottom-Up interpreter can be useful in a variety of domains, as can be seen with
Horn Clauses applications: in natural language pa.rsing, whose formalism was proved very close
to that of logic programming [15], people usually sta.rt from the token chain t o be analyzed and
deduce its structure (Bottom-Up approach) ra.ther tha.n conlpute a possible structure and try it
on the chain (Top-Down approa.cl1). In deductive d a t a h s e s , a Bottom-Up strategy, close to the
least fixed point semantics, makes use of set-oriented query-a.nswering procedures, which are more
efficient ways of processing queries in this field [l , '21. hiloreover it presents the important property
of being operationally complete.

We have therefore been interested in studying a Bottom-Up interpreter for 1 ~ . Although the
principle is quite simple, relying on the modus ponelis rule

its application t o our higher-order laaguage is a, little tricky for two main reasons:

1. The modus ponens schema.ta a.pplies to a. c~njunct~ion of atotns (i.e. , of particular formulas
we are able to unify). l A bodies of cla.uses cont.aiil nested qua.ntifications and conjunctions, so
we may have t o deal with conjunctions of arbitrarily complex formulas.

2. The quantification of functional varia,hles involves possible constraints over them: this prob-
lem is addressed by quantifier prefixes in SLD, but ha.s to be considered specifically in a
Bottom-Up strategy.

We designed a Bottom-Up interpret.er [i] , which turns out to be a.s simple as the one for Horn
Clauses. The way we solved the problems described above relies on an analogy between lA quantified
atoms and Horn Clause atoms. We exploit this analogy to extend the Bottom-Up resolution for
Horn Clauses t o I , , . An intuition of this est,ensioll is given here; more precisions will be given in
the rest of the chapter, and a complete justificatioil may be found in [?I:

Universal quantifiers may be distributed over c,onjunctions in bodies of clauses, and we
obtain logica.11~ equivalent formulas. a.ccording t,o t,he ta.utology:

Alain Hui-Eon-Hoa

By applying inductively this transformation, we obtain programs of clauses whose bodies
are conjunctions of quantified atoms. We may then formally apply the modus ponens
schemata, using higher-order unification of prefixed terms (as we presented i t in 2.3).
The prefix for a quantified atomic goal may be easily computed by appending the list
of the universally quantified varia.bles to the list of its (essentially) existential variables
(remember this prefix is only a.n encoding of the va.riables present in the term). This
schemata may be represented by the following rule:

where if' contains the (essentially existential) variables in a(A)

This formal mechanism will be proved correct and looks very simple. In particular, one may
notice that no quantifier prefix needs to be kept during the resolution; it is synthesized a t each
unification step. The reason is that , in a Top-Down resolution, constraints over variables have to
be dynamically accumulated and propagated along the search tree, as bindings are. In a Bottom-
up strategy, on the other hand, we reason from facts and derive other facts which we may then
re-use without knowing their origins. As axioms and heads of clauses only contain essentially ex-
istential variables, no constrail~t is set on them and thus no constraint need be propagated during
the computation. Quantifier prefixes are only needed in the unification step, t o specify the scope
constraints on the variables in the terms to unify. As these constraints are local, they may be
statically computed.

The following example gives an intuitioil of the Bottom-Up procedure applied to the same
program as in example 1:

Example 3 Let 'P be the program

VxVlVkVnz (a l~pend (cons n: I) k (colts 2 nz) - append 1 k nz)
Vk (apl~end nil k k)

and G the goal Query - V y (append (cons (1 n i l) y (H y)) .

A Bottonz- Up resolution woulrl proceerl this 1ucr.y:

Starting from the axionz, we chain it uiith the other clause, obtaining the new axiom:
VxVk (nljpencl (cons .T izil) k (cons x k))

W e chain the new axiom with the (l~.si~.eil goal by the unification:
UNIFY (3 H V y append (cons a n i l) y (H y) = 3 s 3 k append (cons x n i l) k (cons x k))

which identifies s to (I and k to y (u:/~ich is correct ns to the scope constraint) and gives:
N + /\,ti . toll..; (1 u

Proceedings of the 1992 AProlog Workshop

4.2 The Bottom-Up interpreter

The simplicity of this interpreter relies on this remark:
Consider the particular case of a clause of the following form, where A and B are atomic:

where

i represent a set of essentially existential variables appearing either in B or in both A
and B.
iA are also essentially existential va.riables, but which appear only in A.
y' are essentially universal varia,bles appea.ring only in B.

Now if we consider a. cha.iining st,ep wit,h t,he a.xiom 2 C'. we have to realize the unification

17n-In.' (3?3Zd4Vij B = 317 C)

which is computed by

The following remarks hold:

the ZA are left unchanged since they do not a.ppea.r in the terms to unify. In fact they may
even be completely removed from the uuifica~tion. which we will do hereafter.

the Z are not in the scope of the essentially universal y'. Therefore they cannot be substituted
by terms containing variables in the scope of the y'. The only essentially existential variables
appearing in those substitution terms a.re then some R: or some u' which was raised from a u

(and therefore not in the scope of an essentially universal y).

a variable from ii may be substituted by terms co~itaiiling some of the essentially universal y',
but then i t cannot appear in any substitution term of one of the 5.

The resulting substitution a then does not a.ffect the Z A and can instantiate the 5 only with terms
containing no essentially u~liversal variables f o r a.ny va.ria,ble under the scope of a y. As a conse-
quence, a (A) does only contain essentially esist,ent,ial varia.bles, under the scope of no y.

Omitting the quantifiers correspondiiig to essentia.lly esiste~lt~ial variables, as is usually done in
X-Prolog, we thus obtain the folloiving rule presented a.s a. sequent:

We therefore obtain a calculus principle very near to t11a.t of the first order case, except that
the unification is higher-order.

Alain Hui-Bon-Hoa 179

This result can easily be generalized to all kinds of clauses of lA, including nested use of quan-
tification and conjunction, on the ba.sis of the following logic equivalences:

((B A C) 3 A) r (C 3 (B 3 A))
((VX (B A C)) 3 A) ((VX B A VX C) 3 A)

More details may be found in [7] , justifying the following forwaad chaining procedure:

Clauses of the general form

are first transformed into the equivalent ones

V 5 (VZZ4 A - Vy'dyi Dl A VyTy'2 D 2)

to which we apply the following rule:

(A +- Vyj& Dl A Vyjf2 D 2) B
if I f n i . f y (3ZD2vy'df2 D2 = 3cB B) = (Q, a)

a (A) + Vfli71 'l(D1) -

This Bottom-Up procedure can be easily proved souiid and complete using the deduction rules.

We thus obtain a very simple Bottom-Up interpreter which is very close t o the one defined for
first order Horn Clauses. Miraculously, all the higher-order features are handled by the higher-order
unification which, in the case of l , , , presents no problem of termination or uniqueness of the m.g.u.

As the rest of the paper is devoted to an applica.tion of the Bottom-Up strategy, we will hereafter
assume that the clauses of the l A programs a.re written in their expanded form (i.e. bodies of the
clauses are conjunctioll of universally quantified a.tomic goals).

5 An application: Higher-Order Magic Sets

5.1 First-order Magic Sets

In some fields like deductive databases, comput~a.tiona1 reasons make it more advantageous to con-
sider forward chaining strategies. Unfortuna.tely, a straightforward Bottom-Up resolution tends t o
compute many facts useless for the goal t,o prove. \.Ve show t,l~is on a n example where, unlike usual
database conventions, we do not separate intensional and extensional parts.

Example 4 Consider the follou~ing Horn C'IN u.sc.s ~)r.ogrclin:
yath(X, Y) + edge(A-. 1;)
pa th (X,Y) +- edge(X,Z) , p n l h (Z , 1')

Proceedings of the 1992 XProlog Workshop

edge(a, b) .
edge(b, c) .
edge(d, e) .

edge(e, f 1.
and let the query be

Query c pa th (a ,Y) .
The Bottom-Up processing of this query upill conzpvte the complete edge relation and then select
the appropriate instances, i.e. all the paths which may be related will be computed, while only those
starta'ng from a were required.

On the other hand, SLD re~olut~ion presents the atlvantage of reducing the space of search since
the procedure is goal-directed.
To solve this problem, a nice solution was supplied first for databases [4] and then for general Horn
clauses [17] by C. Beeri and R. Ramakrishnan, consisting in rewriting a program P and a query G
into a program which, when conlputed Bottom-Up, mimics a Top-Down evaluation. The rewriting
is performed as indicated below:

First- Order Magic Set transformation:
Let P be a I x logic program, G be a. goal.
Then M a g i c (P) is the program obtained by:

if (D t G I . . .G,) E F , then (D - nzagic-D, G I . . .G,) E h4agic(P)

if (D t GI . . . G,) E P, tlleil (n~ag ic -G, - nrngic-D, G1 . . . G;-1) E M a g i c (P) for each
l _ < i _ < n

An intuition of the isomorphism between a.pplying a.n SLD-resolution and evaluating the Magic
program Bottom-Up may be found i11 [14].

Example 5 This Magic Set tra~zsfornzatioiz produces the following program from the one above,
introducing the new predicates n?agic-put h (112d n?cq I c-edy e :

pa th (X , Y) c n2ugic-puth(Xl I -) , edge(.I-, 1.)
pa th (X , Y) c m a g i ~ - p a t h (~ ~ , I,), ~ d y c (S , Z), pcith(2, I')
edye(a, b) t magic-edge(a, 6)
edge(b, c) c magic-edge(l, c)
edye(d,e) t may ic-edge(d, e)
edge(e, f) c magic-edge(e, f)
rnagi~,edge(~Y, Y) +- magic-path(S , 1')
magic,edge(X, 2) + m a g i ~ _ p a f h (~ X - , 1')
magic-path(Z, Y) + inngic-edge(1.1'). c d g r (S . Z)
magic-path(a, 2).

where the prefix magic coulcl bc i7itllltzt~I!j I .~ (I (/ (I \ . .((I//".

Alain Hui-Bon-Hoa

The computed facts are then the following ones, where the solutions are framed:
magic-edge(a, Z) magic-edge(a, 1')

-
This tzme, the zrrelevant paths concerning the points e , f crnd g are not computed.

Thus this transformation solves the prol,len~ of l.estricting the set of facts computed during a
Bottom-Up resolution.

We study here an estension of this methot1 t,o our 1a.nguage I,,, using the Bottom-Up resolution
presented in the precedent section.

5.2 I m p o s s i b i l i t y o f a direct ex te i l s io i l

A first natural at tempt co~lsists in a direct estension of the first-order Magic Set method to 1 ~ .
This leads to a failure, beca.use qua.ntification prevents from rewriting into correct lA clauses.

Example 6 Consider the siinple yrogrcrnz:

B (a , Y) .
A (Z) t Vx B (Z , p (z)) .

Then a direct application of the Ilfagic ,Set rezilritirzg ulovld give the following program, with the new
predicates magic-A and magic-B:

B (a , Y) c magic-B(a, 1')
A (Z) c magic -A(Z) , Vx B (Z , p (n :))
. . . c magic -A(Z)

The trouble with the second cla.use is t,ha.t we do not know how to transform a quantified goal:
knowing that the desired term in the 1lea.d of the cla,use should intuitively mean "try to prove
B (Z , p (x)) for all x", we have to cope with the following problems:

- On one hand, the universal quantificatioll callnot be put out of the magic tern1 (something
like Vx m a g i c _ B (Z , p (z))) , since such a quantification in a head of a clause would mean that
x is essentially existential, while we want it to be essentially universal.

- On the other hand, t o encode that we have to consider the goal Vz B (Z , p (z)) in its whole (with
x being essentially universal), we can try to rewrite it into the magic term m a g i c - B (Z , p (i)) ,
where 2 is an eigen-variable standing for the essentially universal z . But we then have to
encode that Z is not under the scope of 5, which would require means out of our setting.

- Some magic~foraEE_B(Xx~Z. An:oB(n:)) does ca.t,ch the scope constraint, but cannot be later
unified with magic-B(a, I ") in the clause B(u. 1.') - n~c~g ic -B(a , 1.') derived from the axiom.

18% Proceedir~gs of the 1992 XProlog Workshop

In short, since no scope constraints can be expressed over variables in the head of our lA clauses
(in particular, heads of clauses may only contain free essentially existential variables), the Magic
Set method cannot be directly ext,ended to lA.

5.3 Some kind of Magic for lA

The obvious solution to the problem of having esse~ltially universal variables in heads of the clauses
in the rewritten program is t o rewrite without essentially uiliversal variables. Transforming terms
containing essentially universal variables into terms containillg only essentially existential variables,
in a way we will define below, implies a loss of information. Therefore the whole procedure leads to
the simulatioll of a resolutio~l mixing two steps: a n approximative SLD resolution which achieves a
prediction, and a Bottom-Up evaluation fro111 the restricted set of axioms delimited by the predic-
tion. This procedure was inspired by Franqois BartlGlemy's works on mixed resolution strategies
[3]. The proof of this result will he given at the cntl of the section.

Example 7 Let's consider the following progrttnl:
p (X,Y) +- Vu q(Z,Y, u), r(-x, 2)

with the axioms
q(e1, f X , 1').
q(e1, fX, e2).
r(a, el).

and r(b, el) ' r(b, ez), . . . ,r(b, en).
and the query Query - Vx p(n, H n.).

Then a Bottom-Up evaluation proz~ing fro111 right to left would compute all the facts derived
from the r(b, e;), which may be nunzerotrs c1.71d art of no use to prove Vx p(a, Hx) .

To solve this problem, we propose to cerc~lunte thc jollo~i~irzg derived program:
0) nzagic-p(a, H*) (seed)
1) Success(Vx p(n, H z)) - V r p(o. Ha.) (added clause)
2) p (X , Y) + m a g i c q (X , 1'), Vtr q (Z , 1'. u) , r(-3-. 2)
3) magic-q(Z, Y, U*) - may rc-p(S. J ') , r(.Y, Z) 1 (derived from the first clause)
4) magic-r(X, 2) - magic-p(S. 1')
5) q(el, fX,Y) - n ~ c ~ g i c - q (t ~ . fS. 1.)
6) q(el, fX, ea) + nzngic-q(el, f S . e l)
7) r (a , el) + magic-r(u, e l)
8) r(b,el) +- magic-r(6. e l) i (derived from the axioms)
9) r(b, e2) + nzayic-r(6, t z)

. . .
. . . r(b, en) t magic-r(b, en)

where Success is the predicate giving tht fi1zt1.l result.
and H* and U*ure "l~reclictive" esselzticrlly ezistenticll variables introduced to stand respectively

for H x and u which colztnin e.f;serzticrlly rrrzi~~cr.sal z,aric~,bles.

Alain Hui-Bon-Hoa

The computed facts are:
i) magic-p(a, H *)
ii) m a g i c - ~ (a , 2)
iii) ~ (a , e l)
i v) magic-q(e1, H *, U')
v) q(e1, f X , U *)
v i) q(e1, f X, e2)

v i i) p(a, f X)
v i i i) Success(Vx])(a, f x))

(the seed 0)
(from i and 4)
(from ii and 7)
(fronz i, iii and 3)
(from i, iv and 5)
(froin i, iv and 6)
(from 1 and v)
(110111 rzi (1 1 1 d 0)

Notice that.

a the proofs starting fronz the r(B, e ,) crnd u~hich (ire irrelevant for this goal have been ignored in
the Bottom-Up evaluation of this Magic Set tr.crrzsforr,zec/ program.

a however some unnecessary facts, like y (e l , f .I-, e2) udtose third argument cannot be later uni-
fied with an essentially universal x , moy be computed clue to the ina.ccuracy introduced by the
predictive essentially existential vcrrinble IT' .

a the computation in its whole is sotirzd and con2plete.

We now formalize the method used t o transform our program: lA clauses are assumed t o be
written under their expanded form (cf section 3) D - G I . . . G,, where the G;'s are universally
quantified atomic formulas.

We introduce a mapping p on a term with a quantifier prefix, which we will sometimes also
consider as a substitution on a prefixed term, the following way:

p is defined by /'(Ad) = v{}(114): \vl~ere I,{.') is defined as follows:

H i f p = O
~ v { ' } (t l) . . . r/{')(tl)) if H is a coilstant or H E 5
H'Z if not. H* being a new essentially existential variable

It is important to notice that 11 is not a substitution in the usual sense (respecting a
quantifier prefix), since it also transforills essentially universal variables. This mapping
p is likely t o perforill the "predictive transformation" on terms so that the resulting
program may be correctly computed Bottom-Up. Thus no essentially universal variable
must remain escept those that can be encodeti directly in the terms (i.e. the constants
and the variables bound by a A-abstraction). Therefore the resulting terms only contain
free essentially existential variables. The basic idea of this mapping is to transform

Proceedings of tile 1 992 A Prolog Workshop

any essentially universal varia.ble into a. new esseiltially existential one. To respect
the condition (#) set on I x terms, essentially existential terms will be eliminated and
replaced roughly by a new essentia.lly existential variable. In fact, t o preserve the
correctness of the rewriting procedure, (5) keeps a trace of all the variables bound by a
A-abstraction up t o the current step of decomposition of the term, and these arguments
are kept, so that H'S may actually "represent" H t l . . . t , (this notion will be formalized
later).

We then have the following result:

Theorem 1 (Higher-Order Magic Sets) Let T' be a I,, logic program and G be a goal,
and let M a g i c (P) be the program obtc~inecl by:

a if (D + G1 ...G,) E P , then (D - I I Z (L ~ I C - D , G I . ..G,) E M a g i c (P)

a if (D c GI . . .G,) f P, then (/~(n.agic-C;;) - nt,ngic-D, G I . . .G;-I) E Magic(?) for
each 1 < i 5 n

Then a Bottom-Up evaluation of AIagic(T') is .sol~rztl (11zd contplele, and mimics a Bottom-Up
evaluation from SLD-predicted azionls of 7'.

Some remarks may be done:

a This theorem is similar in its forinulation to the one for first-order Horn Clauses, up to the
introduction of the predictive substitution 11. Besides, when applied to Horn clauses terms, p
behaves like the identity substitution. and our theorem restricts to the usual first order Magic
Sets method.

a Prediction might also be considered for first-order terms, but is made necessary here because
of the impossibility of describiiig scopil~g: constraints in liea,ds of clause.

a p is a particular case of predictive substitution. Obviously, replacing each p(magic-G;) by an
essentially existential variable a.lso leads to a. sound and complete procedure, the difference
being that the prediction is even less a.ccura.te. Thus a, general notion of predictive mapping
may be defined, resulting in a more general formulation of the Magic Set method.

To this aim, we introduce here a partial definitio~t of subsurn~~tion between prefixed terms:

Definition 1 3g B is said to be subs~rnzzrag iht pr-~fiztd term QA A if there exists a substitution o -
on the variableTii of B such that

a (3 c B) - = - (2,4 --I

which stands for the equcrllty trrl(lr r rr qurrr~t~jir 1. pi-(-fix:

Q 4 3 (d B) = -4)

where the f are the variables of ij , 1 0 1 i~zbtc~r~/i(rt~d by u .

Alain Hui-Bon-Hoa

R e m a r k : As for first order terms, if 3 y ' B subsumes Q A A , the o may be obtained by
their unification (which writes ~ n i f y a A 3 2 , B = ~ F w h e n we choose only variables
in y t o be the ones to be instantia.ted.

Def ini t ion 2 A mapping of (essentially existential and universal) variables @ will be called a pre-
dictive mapping for a set of prefixed tenns if 9 (M) only contains essentially existential free variables
and subsumes M for each term M of the set.

Of course, mapping on variables canonically extends to ma.pping on terms, which was implicitly
done in the above definition.

The mapping p defined a.bove is a predict.ive mapping for t,he terms of the program P considered.
Its corresponding a may be defined as follows:

for each H* obtained from a tern1 H t l . . . t , by a /L{'), a (H *) = Xy'.(Htl.. . t ,)[5 c y'l.
This substitution a actually fits the conditions since it suppresses a.ny essentially universal variable
not bound by a A-a.bstraction, and respect a(lrA4) = A f .

Extending the previous theorem to general predictive mapping, we obtain the following result:

T h e o r e m 2 (G e n e r a l H i g h e r - O r d e r M a g i c S e t s) Let P be a 1,\ logic program, G be a goal,
and @ a predictive mapping for the ternas of 'P.
and let M a g i c (P) be the program obtained by:

if (D + G I . . .G,) E P , then (D - magic-D, GI . . . G,) E M a g i c (P)

i f (D t GI . . .G,) E P , then (@(nangic-G;) - .inagic-D, GI . . .Gi-I) E M a g i c (P) for
each 1 5 i 5 n

Then a Bottom-Up evaluation of Alci.gic(P) i.s sorrtzd and contplete: and mimics a Bottom-Up
evaluation fronz SLD-predicted axionas of P .

5.4 Correctiless of the general Higher-Order Magic Set method

Magic Sets often look mysterious. A good understanding of this higher-order Magic Set method (as
well as first-order Magic Sets) may be obtained using a, very general formalism based on Dynamic
Programming evaluation of Logical Push-Do\vn .411tomata developed by Bernard Lang for Horn
Clauses[8]. In this setting, it appears clea.rly that t,lie Ma.gic program is nothing but the encoding
of the evaluation of the initial pr0gra.m using a specific sound and complete strategy (namely, SLD-
evaluating an approximated pr0gra.m ant1 performing exact. Bottom-Up resolution on the focused
set of axioms).

We sketch here the proof for the theorenl concerning the general Higher-Order Magic Set
method, derived from this analysis. Tlle result niainly relies on a sound and complete proving

IS6 Proceedings o f the 1992 XProlog Workshop

procedure M i , mixing Top-Down prediction and Bottom-Up evaluation. As a first intuitive ap-
proach, we show the soundness and completeness of a. rather similar proving procedure M, where
Bottom-Up evaluation follou~s Top-Down prediction. We begin with some simple results:

Lemma 1 If 3y' B subsumes Q A A tllen every QA-closed instance of A (i.e. an instantiation of
the essentia~l~Txistentin1 variables in A respecting the scoping constraints in Q A) is a - 3y'-closed
instance of B.

Proof : This lemma is trivially derived from the definition 1 of subsumption.

Lemma 2 If 3y' B subsunles - Q A A tlterz errcry proof (in the sense of Sequent Calculus) from a lA
logic program p o f a QA-closed iizstnnce of Q A ..I i.s 0 proof of a closed instance of 3y' B. - 7 -

Proof: This is straightforward from lemma 1.

This lemma of course applies to a, pr0gra.m T' with a predictive mapping i9. To simplify the
writing, we extend canonically such a. @ applyi~ig on qua.ntified terms (or atomic formulas) to a
mapping over general formulas:

The previous lemma then yields the following one:

Lemma 3 Having a complete proving procedure (ilzd (1 predictive nzupping iP for a program P ,
proving @(Q - G) from P is complete for yrovirlg - Q C: fronl P .

Proof : From lemma 2, we deduce that the set of answers of a program P for the query Q G (i.e.
of provable Q-closed instances of G) is col~tained in the set of answers for the query 9 (Q c). Thus -
answering t o 9 (~ - G) provides us with a complete set of answers for the query - Q G.

As a consequence, since SLD-resolution is a souud and conlplete proving procedure, the SLD-
evaluation of i9(Q G) from the program T' is complete for proving - Q G. This corresponds to a first
step of redi re diction P.r.cdo (i.e. a complete b u t not necessarily sound resolution) on the goal.
This prediction may be extended if we apply this mctl~otl to each subgoal called by Predo, which
leads to:

Lemma 4 Considering a progranz P . (1. gocll G' nntl (I predictive mapping i9 for P , the method Pred
consisting in SLD-proving @(G) fro112 the trc~izsjornztd progmna @ (P) , where all the formulas in the
bodies of clause have been traizsfornzec/ by i9. 2.5 (1 conzplete proce(1tlre for proving G from the program
P .

Alain Hui-Bon-Hoa 187

This transformed program @ (P) implenlelits prediction a t each step of an SLD-resolution. The
proof may be obtained by induction on the size of the proof tree for an SLD-answer to a given goal.
We may then deduce the following result:

T h e o r e m 3 (A s o u n d a n d c o m p l e t e s t r a t e g y) W e obtain a sound and complete proving pro-
cedure M for a program P and a goal G by cipplying the prediction method Pred followed by a
Bottom-Up computation from the axioms involved in the prediction.

Proof : By lemma 4, the prediction M is complete for proving G and thus guarantees that there
is no Bottom-Up proof for G using an axiom not involved in M. This gives the completeness of
the method M'. Soundness is obtained by applying the usual Bottom-Up proving procedure to the
program P, starting only from the releva.nt axioms.

This proving procedure may be refined by ~llixing the prediction and the Bottom-Up resolution,
instead of applying them successively: ea.cli time a. predictive subgoal @(G) is proved, a Bottom-Up
step is computed trying to unify the predicted fa.ct with G. In case of success, the substitution thus
obtained is transmitted to the rema.ining predictive sul)goals. thus restricting even more the search
space. This strategy may be viewed a.s an extension of Earley Deduction [5].
The sets of subgoals and facts may be defined by tthe following nlutually recursive formulas, derived
from Nilsson's simplified expression of C:a.nlegie Mellish's work [Id]:

Call = I n i t U u { O + (G ' ,) I Bo E c'ull, B1 , . . . , Bi-1 E Succ and

SUCC = U { e (Ao) I BO E Cull , B1,. . . , B, E SUCC and
Ao+G1 ,..., G,EP 17t,g21(-40 . . . Gn, Bo . . . B,) = 0 # 1)

In i t contains the initial goals, and Succ is initialized with the axioms of P

T h e o r e m 4 (A n o t h e r s o u n d a n d c o m p l e t e s t r a t e g y) W e obtain a sound and complete prov-
ing procedure M' for a program P and a yocrl G by al)plyiizg the prediction method Pred mixed with
a Bottom- Up computntion as described ahooe.

Before we attack the proof of this theorem. we need the following lemma:

L e m m a 5 If 3y' B subsunzes 3'1Wv' A , theri for. errch 313:-substitution r whose substitution terms
does not con ta~essen t ia l l y unitx=r,sally r!orioble.~ qtrrrntijerl in o l)ref;s:, ~ (3 f - B) subsvmes ~ (3 1 i l l ; A).

This property concerns interestilig particular cases of subsumption, since the quantified terms
3uVZ A are those representing quantified atoniic goals ill I,,. Tlle r concerned are the restrictions
t o the variables of A of the unifiers obtailletl by chaining .A with a clause head.
Proof since the substitution terms only contain essentially existential variables, r(3y' B) appears -
under the form 3% B', so i t is correct to consider our (partial) subsumption.
The proof of t h i s e m m a relies on an induction on the structure of the term B: we modify a such
that a(3y' B) = 3235 A to obtain a' such that a1r(3i j B) = ~ (3 1 3 : A) - -

la8 Proceedings of the 1992 X Prolog Workshop

if B is a (necessarily essentially existential) va.riable,

- either B occurs in A, then necessa.rily A = B , so r (A) = r (B) , and no a' is needed.

- or B does not occur in A, then B is not insta,ntia.ted by 7, and we choose a l (B) = r (M)
if a(B) = M.

if B is a functional term

- if B is essentially universal, then its head symbol must be a constant or a variable X-
abstracted before. In both cases, A must also be a functional term with the same head
symbol. We may then apply the induction I~ypothesis to the arguments.

- if B is essentially esistential, then the condition (#) states that the arguments in B are
essentially universal variables quantified in the scope of the head of B: B = uy, . . . y,.
In this case, the y; are necessarily previously A-abstracted variables. The discussion is
then similar to the case where B is a variable: i f 11 occurs in A then u is not modified by
a and thus we nlust have A = B. If it doeh not. then we choose a1(u) = Axl . . .x, . r (A) .

a if B is a A-abstraction Xz . B', then so must I)e A, say A = Ay A'.
We apply the induction hypothesis to B' and A'[y c X I , where x is considered as an essentially
universal variable quantified in the scopes of the previous variables.

Proof of theorem 4: The soundness of the procedure is obvious since facts are proved by
genuine Bottom-Up computations (the method M' only leads these computations). We prove the
completeness of M' the following way: collsidering a, pr0gra.m P, a predictive mapping @, we note
@ (P) the program obtained by applying @ to the clause bodies, and we reason by induction on the
size S of an SLD-proof tree for an a.nswer p to a goal G:

If S = 1, then p(G) is an instance of a.n axiom .A of 7'. This axiom is also in @ (P) , since
only bodies of clause are modified. So, by lenirna 3, we deduce p(G) as an answer for
the predictive goal @(Q D). As p(G) also unifies with - Q G in the Bottom-Up step, it
appears a s a MI-answer for Q G. -
Induction hypothesis: we assunie the result to be true up to S: for each goal with an
answer whose SLD-proof tree has a size inferior or equal to S , applying the method M'
with a predictive mapping @ is complete.
We consider now a goal G for which an answer p exists, whose SLD-proof tree has the
size S + 1. We separate the cases a.ccortling to llle la.st rule used in the proofs. Since I A
(as a restriction of L A) supports uniform proofs [12], this la.st rule is a right-introduction
rule until we deal with an a.tornic goal. For I x . t , l l is restricts to the following cases:

- if we use a right-A-Introduction (corresponding to the AND case of the SLD inter-
preter), then Q G is of the forill (Q1 - A ((22 - G 2) , and P provides us with proofs
for p(G1) andT(G2).
Using MI, we first try t.o prove Q1 (;I, and we consider the predictive goal
@(a GI) . Applying the i l l d ~ ~ c t i o ~ ~ ~ ~) o f l i e s i s . 11.. deduce the completeness of

Alain Hui- Bon-Hoa

the procedure for this goal, and thus that some answer T is computed by MI, such
that p(G1) is a QI-instance of r(G1). p(G1) is thus a MI-answer for Q1 GI.
The procedure then considers the predictive goal p@(Q2 G2). ~ y l e m m a 5,
p@(Qa G2) subsumes p(Q2 G2). We may then apply the induction hypothesis to
thegoal Q2 p(G2), with t h e predictive mapping @ :: [p(G2) I+ p@(G2)]. The com-
pletenessobtained guarantees that p(G2) also constitutes a MI-answer for - Q 2 G2.
Thus T(G) is also a MI answer to G.

- since we assume that the quantifiers have been distributed t o atomic goals, as was
suggested in 3.2, right-V-introductions (corresponding t o the AUGMENT rule of
the SLD-interpreter) are always followed by left-=+-introduction (corresponding to
the BACKCHAIN rule of the SLD-interpreter). One unique proof may encompass
this case and that of only using the BACKCHAIN rule, because it may be con-
sidered as a BACIiCHAINing over quantified formulae (using the unification over
quantified terms presented in 2.3). This proof stands as follows:
In the SLD-proof, Q G is first unified with some head A of a clause A + GI. Using
MI, we consider the predictive goal @ (Q - G) . By lemma 3, considering @(Q G)
is complete for proving - Q G. So - Q G also unifies with A via a , and p (~ l) % an
SLD-answer to a(G1).
Besides, by lemma 5, a@(G1) subsunles a (G 1) . Therefore, we may apply the in-
duction hypothesis to a (G t) with the predictive mapping @ :: [a(G1) I+ u@(G1)],
and deduce the completeness of proving q(G1). AS a consequence, p(G1) is also a
MI-answer t o a(G1).
So p(G) appears as a n anslver for the predictive goal @(Q G) . A last Bottom-Up
step is then computed by M I , unifying the facts obtainezwith Q G. This step of
course preserves the completeness of proving Q G, and p(G1) m a y b e chained back
t o - Q G , giving p(G) as a .MI-answer to Q G - -

The General Higher-Order Ma.gic Sets theorem may be deduced by showing that the Magic
Set method is actually a Bottom-Up implementation of this resolutioll procedure MI: the call of
subgoals in the Top-Down predictive phase is ellcoded into the predicates m a y i c X . The proof is
straightforward.

A better and more general proof may be obta,ined, as we said, using the formalism of LPDA:
compiling P with the logic Mi and a. Bottom-Up control yields the general higher-order Magic Set
method. This view is unfortunately too long t.o present here.

6 Conclusions

In the purpose of extending the possible use of L,, to sollie application fields, we have studied
a restriction Z A which allows function va.ria11les a,nd universal qua.ntification. We showed that a
Bottom-Up strategy is available for this language. This strategy is sound and complete, and very
simple, since the unification takes care of all the higher-order features.
Bottom-Up approaches present the adva.ntages of heing complete, a.nd suitable for parallel execu-

Proceedings of the 1 992 X Prolog Workshop

tion. They are also sometimes more adapted t o the kind of reasoning used in the concerned domain.
For instance, this restriction lA suffices to implement semantic interpretation [16], the treatment of
(linear) implication being explicitly described in the program. This example is typically a case of
a program containing a left-recursive clause, and for which Bottom-Up is more efficient: an SLD-
resolution will arbitrarily often apply the rule for discharging assumptions, even though there may
be not enough assumption introductions in the tree below. Conversely, in a Bottom-Up resolution,
assumptions will be introduced before they are discharged.

As an application, we have studied the possibility of extending the Magic Set method developed
for first-order Horn Cla.uses [17] to tlle higher-order language lA. This method solves the problem of
Bottom-Up approaches of computing ma.ny unnecessary fa.cts by sinlulating an SLD-resolution by a
Bottom-Up evaluation of a transforined pr0gra.m. We showed tl1a.t direct extension was not possible.
But, provided some loss of information in an SLD-prediction, we may propose an adaptation of
the method t o lA, which restricts the spa.ce of search a.ll the more significantly as the prediction
ma.y be accurate. This higher-order hllagic Set metliod also relies on the Bottom-Up computation
of a program which may be deduced from the origina.1 one by a, simple transformation. It may be
applied with different predictive ma.ppings. Yet, there is no way to obtain an exact prediction since
scoping constraints cannot be espressed in heads of cla.use. This therefore represents an obligatory
inaccuracy which notably occurs in t,he follo\ving cases:

an essentially universal varia.ble is repla.ced by an essentially existential one, which may then
be instantiated during the prediction.

an essentially existential variable appearing both in the head and the body of a clause may be
replaced by another one in the body (for instance if we had (Xy) , with y universally quantified
in the body). The direct correlatioll between t.he two mriables is lost in the prediction.

The problem of optimizing this predictioll ~.eniains open to disclissions and refinements, and we
may ask just how much this Higher-Order klagic Set method may be really interesting. A first the-
oretical answer is that , although the prediction phase c a , ~ ~ n o t be ma,de exact, this method actually
leads t o a reduction of tlle facts computed. Implenlentation a.nd tests are needed for a complete
answer.
Anyway we believe that a t least this theoretical set.ting may represent a first step towards devel-
oping LA to extend first-order Horn Cla.uses a.pplications.

7 Extensions

The presentation we made here both of Bottom-Up evalua.tion and of some Magic Set transformation
concerns the 1angua.ge 1 ~ . We consider now the possibility of estending these results to larger sets
of terms and formu1a.s:

Extending the terms: the unification involved in I,, makes use of a restricted form of P-
conversion, namely Po-conversion [lo]. This is the rea.son for its good properties. Now full

Alain Huj-Bon-Hoa 19 1

pq-unification may in fact be considered since the Bottom-Up procedure only relies on the
property of essentially existential va.riables in a clause, whether in the head or in the body,
t o be out of the scopes of the essentially universal ones. Bottom-Up resolution could then
also apply t o the same set of formulas, where the condition (#) on the essentially existential
terms is removed. It even makes the predictive mapping in the Magic Set method easier to
be found, since essentially universal variables nlay be directly transformed into essentially
existential ones (lemma 5 would yet have to be proved again with this extension, if we want
t o guarantee the completeness of the Higher-Order Magic Set method).
On the other hand, full ,@unification is only semi-decidable, and the completeness gained
with a Bottom-Up resolution ma.y be lost in such a unification.

Extending the logic: t o rea.ch the whole logic in HOHH, we first need t o allow embedded mixed
quantifications in the clause bodies. The esistential quantification (pi) is not authorized in L A
since it may introduce terms offending the condition (#) . If we extend our terms as described
above, we may add this predicate pr provided we (statically) skolemize all the clause bodies. If
not, we would have essentially existential variables under the scope of an essentially universal
one, and for example, it would be hartler to treat a goal such as Vz3y (P (z , y) A Q (x , y)).

The main difficulty is then to include enlbedtled implications. Such a feature is problematic
since i t requires introducing and discharging assumptions, and thus retaining some "history"
for each fact computed. Some solution may perhaps be obtained by extending the Magic Sets
prediction t o ellcompass i ~ n p l i c a t i o ~ ~ and guide the Bottom-Up search. The transformation
would then need to be applied dynamically. We must admit we have not explored this
perspective yet.

8 Acknowledgements

Thanks to Fransois Barthblemy for his helpful reading and comments, to Eric Villemonte de la
Clergerie for enlightening discussions. I am also grateful to the workshop reviewers who provided
me with very enriching comments.

References

[l] F. Bancilhon and R. Ramakrishna.11. An ama.teur's introduction to recursive query processing
strategies. In SIGMOD, invited pcrper, 1986.

[2] F. Bancilhon and R. Rama.krisl1na.n. Prifo~.niarlct Et~crlrrir.tiorz of Data Intensive Logic Pro-
grams. Morgan Kaufnlan, 1988.

[3] Frangois Barthblemy. Prbdire a boil escient. In rlctes .JTASPEFL791, Bordeaux (FRANCE),
Octobre 1991.

[4] C. Beeri and R. Ramakrishnan. On the polver of magic. In Proceedzngs of the 6th Symposium
012 Principles of Databusc Systenzs, pages 260-'LS.3, 19s;.

192 Proceedings of the 1992 XProlog Workshop

[5] Jay Earley. An efficient context-free parsing algorithm. Communications A.C.M., 13(2):92-
102, February 1970.

[6] Gbrard Huet. A unification algorithlll for typed A-calculus. Theoretical Computer Science,
1:27-57, 1975.

[7] Alain Hui Bon Hoa. A simple a.bstract interpreter for a higher-order logic programming lan-
guage. In Proceedings of the 41h Internationttl ,Synzposiunz, PLILP 92, August 92.

[8] Bernard Lang. Complete evaluatioi~ of Horn Clauses: an automata theoretic approach. Re-
search Report 813, INRIA, November 1988.

[9] Dale Miller. Unification under a. mised prefix. to appear in the Journal of Symbolic Compu-
ta.tion.

[lo] Dale Miller. A logic progran~ining 1a.ngua.ge wit11 1a.mbda.-a.bstraction, function variables, and
simple unification. Journal of Logic and Cor71;11~rt(~tio1z, 1:497-536, 1991.

[ll] Dale Miller and Gopalan Nadathur. Some uses of higher-order logic in computational lin-
guistics. I11 Proceedings of the 24"' .-lrzn7icrl !\/reti12g of the Association for Computational
Linguistics, 19%.

[12] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a
foundation for logic programiniiig. -4 izn(~1.s of Ptr re u12d Applied Logic, 51: 125-157, 1991.

[13] Gopalan Nadathur. A Higher-Order Logic CIS tlic Bnsis for Logic Programming. PhD thesis,
University of Pennsylvania, 1987.

[14] Ulf Nilsson. Abstact interpretamtion: A kind of ma.gic. In Proceerliizgs of PLILP91, 1991.

[15] F.C.N. Pereira and D.H.D. Warren. Pa.rsing as deduction. In Proceedings of the 21st An-
nual Meeting of the Associatiorz for Cor~~putcriio121t(rI Liragzristic, pa.ges 137-144, Cai~lbridge
(Massachussetts), 1983.

[16] Fernando C. N. Pereira. Semantic interpretation as higher-order deduction. In Springer-Verlag,
editor, Lecture Notes in Artificial Intelligence, pa.ges 78-96, 1990.

[17] Raghu Ramakrishnan. Magic templa.tes: A spellbounding approach to manipulating formu-
las and programs. In Proceedings of the !jtl' I~zterncrtionrrl Conference/Symposium on Logic
Programming, pages 140-1.59, 1915.

[l8] Anthony Rich and Marvin Solomoi~. :I logic-lxisetl approa.ch to system modelling. Extended
Abstract, 1990.

[19] F ran~ois Rouaix. private communication.

[20] Eugene J . Rollins and Jeannette hll. Wing. Specifi cations as search keys for software libraries.
In I<oichi Furukawa, editor, Proceedi1lg.s of t h c s"' In te r~ t~~ t iono l Conference on Logic Program-
ming, pages 173-187, 1991.

AIain Hui-Bon-Hoa 193

[21] K. Uehara, R. Ochitani, 0. Iia.kusho, a.nd J. Toyoda. A bottom-up parser based on pred-
icate logic: A survey of the fornlalism and its illlplementation technique. In Proc. of the
International Symposiunz on Logic Progr~11n1izi12g, pa.ges 220-227, Atlantic City, 1984.

Proceedings of the 1992 XProlog Workshop

An Instruction Set for Higher-Order
Hereditary Harrop Formulas

(Extended Abstract)
Keehang: Kwon and Gopalan Nadathur

Depar tment of Computer Science
Duke University Durham, N C 27706, USA
kwonQcs.duke.edu, gopalanQcs.duke.edu

We have been investigating methods for efficient implementation of the logic of hereditary
Harrop formulas. There are several similarities in the structure of this logic and the logic of Horn
clauses that have convinced us of the wisdom of using a WAM-like model as the basis for our work.
However, the logic of interest extends Horn clause logic in several significant respects and methods
for dealing with these have t o be developed. In pa.rt,icular, four facets of the logic can be identified
for which new implementation techniques have to be devised:

(1) the presence of the two new primitives. GEYERIC and A U G M E N T , for controlling the pat-
tern of search.

(2) the presence of lambda terms and the need to perform lambda conversion on these terms,

(3) the embedding of higher-order unification with its branching characteristic within the normal
Prolog computation regime, and

(4) the use of polymorphic typing that . within logic programming, lead to a need for processing
types a t run-time.

We have developed a sequence of schemes for dealing with these new features that , in our opinion,
fit gracefully into the general structure of the WAM [4, 9, 10, 121. In each of these efforts, we have
focused on one specific aspect and described the mechanisms, usually in addition t o those already
present in the WAM, for implementing that aspect. The purpose of the paper being described is t o
consolidate these various discussions into one abstract machine that implements the entire logic of
hereditary Harrop formulas; as such, it serves as a blueprint for an implementation that is currently
being carried out. In this extended abstract we outline only the problems and the broad method
of treatment. The full paper will contain a detailed description of the components of this machine
and i ts complete instruction set.

The search primitive GENERIC arises from tlie inclusion of universal quantifiers in goals. The
operational semantics of this logical syn~bol iiivolves introducing a new constant and then solving
the goal resulting from instantiating the quantifier wit11 this constant. This interpretation cannot
be implemented exactly as described because of the presence of existential quantifiers. The latter
involves guessing an appropriate instance. and the only reasonable implementation is t o postpone

'Work on this paper has been supported by the NSF grant CCR-89-05825

196 Proceediilgs of the 1992 X Prolog Workshop

the guessing till i t can be determined through unification. The problem then is that when a guess
is made, i t might violate the newness constraint on tlle constant used for universal quantifiers.
As a concrete example, i t should not be possible to solve the goal 3xVyp(x, y) from the program
{Vxp(x, x)). The technique generally used to deal with this problem is to skolemize the universal
quantifiers before attempting to solve the goal. However, a static skolemization will not work in
the context of hereditary Harrop formulas. As an example, the goal ((Vzp(x) 2 q) > 3y(p(y) 2 q))
must not succeed, but would succeed under the usual understanding of the static skolemization
process. A dynamic form of skolemization can be used and several related methods for solving this
problem have been outlined in [7]. However, these methods do not blend easily into the design
of an abstract machine and a compila,tion scheme. Fort.unately, there is a method that is readily
implementable. This method (discussed in [l] and [3] and proved correct in [8]) involves thinking of
a hierarchy of "Herbrand universes" and ta.gging varia.bles and constants based 011 the universe they
belong to. The tag on a variable indicates that it ca.n be instantiated only by a term belonging to
the universe a t that level. The tags thus constrain unification and conspire to ensure the correctness
of bindings. From the perspective of our ma.clline, tags a.re ea.sily representable as an extra field
with variables and constants. Universal and existential quantifiers compile into simple instructions
that set tags for variables a.nd possibly increment a. universal tag index. The checking of tags
blends readily into the compiled code generated for unification - the instructions (for the first-
order case) remain the same but possibly involve a simple additional operation. The interpretive
phase of unification (embodied in the unify-value instruction in the WAM) involves a check for
tag compatibility when a variable is ultima.tely bound. However this can be incorporated into the
"occurs-check" that the WAM must do to ensure correctness. (Just a.s in the WAM, situations can
be described where this check may be elided).

The AUGMENT primitive arises from permitting implications in goals. The operational seman-
tics of this symbol is as follows: to solve t.he goal D > G', we a.dd D to the program (the syntax of D
is restricted for this t o be possible) and then a.ttempt to solve G. From the perspective of providing
a reasonable implementation of this opention, there are three issues to be dealt with. First, we
have t o deal with changing sets of pr0gra.m clauses. For example, solving (Dl > G1) A (D2 3 G2)
from a program P involves using progra.ms 'F, 'F U { D l) and P U {D2). A reasonable means for
managing these different program contexts - such as crea.ting ea.ch one by adding and removing
parts of code - is necessary. Second, we would like to compile (and share compiled code for) pro-
gram clauses tha t appear on the left of implications. This requirement is complicated by the fact
tha t slightly different versions of a program clause may be needed a.t different points. For example,
consider using the program clause V X (((D (. ~) > G) A p (x)) > p(f(x))) for solving 3yp(f(f(y))),
assuming p is a predicate na.me, f is a function symbol, D is some program clause and G is a
goal. (We assume that a program cla.use is provided for p for tlle base case of the recursion). Now
two clauses will need to be added to the program: D(f (y)) and D(y) in the course of solving the
query. There is nevertheless a, considera.ble amount of structure that is cornillon between these two
clauses and we would like our implernenta.tion t-o permit this to be shared: this is essential if we
are to compile the code for D in any sense. Tlle final problern deals with backtracking. Consider
solving a goal such as 32((D1 > G 1 (x)) /\ G Z (x)) . .Assume t11a.t we have succeeded in solving the
goal (Dl > Gl(x)) . However, the instaatiation determined for 3: is such that the attempt to solve

Keehang Kwon and Gopalan Nadatl~ur

G z (x) fails. We then have t o backtrack to trying to find another solution t o D l > Gl(x) . Within
the WAM framework, this involves returning to some subgoal of Gl(x). Notice, however, that the
program in existence a t tha t point has t o be reconstructed. Some simple and efficient means for
doing this is needed.

Our machine embodies a solution to all these problems posed by AUGMENT. The problem with
slightly different versions of program clauses is solved by using the idea of a closure: a program
clause is represented by code and bindings for variables. The bindings are determined by some
specified environment record in the sense of the FVAM. The compiled code for the clause contains
initialization instructions that work relative to this environment record. Mechanisms are included
for making the appropriate environlnent record available when the code is t o be executed. The
changing program contexts a.re realized by using a. sta.ck based representatioll of available program
clauses. The compiled code for an implica.tion gives rise to an implication point record on the
local stack. The implication point record a.dds clauses essentially by defining a new access function
to clauses available a t the point of its creation. Some work 11a.s to be done in order to set up
this record a t run-time, but a considerable a.mount of the task can be compiled. The action with
regard to backtracking is simply to resurrect a.n ea.rlier a,ccess function. The usual WAM devices
serve t o determine whether or not a.n acc.ess function will be required subsequent to a successful
computation, preserving the scheme for reclaiming parts of the local stack. (The overall scheme
combines ideas in [3] and [5] and is described completely in [9]).

Given tha t lambda terms are a. central pa.rt, of the logic of higher-order hereditary Harrop
formulas, an efficient implementation requires a good representation t o be devised for these terms.
In determining what is a good representa.tion, a distinction must be made between a situation
where these terms are used as a means for computing a,s in functional programming languages
and where they are used as data structures. In the la.t,ter case the representation must make the
structures of terms rea,dily apparent. Further, the ability to determine equality or unifiability
modulo lambda conversion should be supported. In particular, it should be easy to ascertain
whether two terms are identical except for a. difference in bound variable names and the operation
of 0-reduction on terms should also receive an efficient implementation. In our context, the latter
aspect dictates a representation that allows substitutions to be performed lazily. Thus, consider
the task of determining whether the terms (XxXyXz((x y) s)) (Xww) and (XxXyXz((x 2) t)) (Xww)
are equal, assuming that s and t are conlples terms. It may be concluded that they are not, by
observing tha t these terms reduce to (XyXz(y s t)) a.nd (XyXz(2 it)), where s' and t' result from s
and t by appropriate substitutions. Notice that it is not really necessary to determine the exact
form of s' and t' before reaching this conclusion, and a. means for performing substitutions lazily
can save a potentially costly operation. In implementing this idea., the notion of environments from
functional programming can be used. However, t l ~ e details of such a scheme are considerably more
intricate here because, as is c1ea.r from the example considered, reductions may have t o be done
embedded within abstra.ctions and substitutions must also be percolated into such contexts. A
scheme has been worked out that ta.kes these fa,ctors into account and also makes the checking of
a-convertibility easy by being based on de Bruijn's nameless representation for lambda terms [12].
Our machine embodies a. version of this represent,a.tion.

The notion of unification t11a.t is pertinent to higher-order hereditary Harrop formulas is based

198 Proceedings of the 1992 XProlog Workshop

on equality modulo A-conversion. The resulting conlputation is quite different from that in Prolog,
particularly in that most general unifiers do not exist anymore. A procedure for finding unifiers
has been described by Huet [2]. This procedure has two phases that are applied repeatedly. One of
these phases simplifies the structure of the terms to be unified, eventually either determining that
no unifiers can exist or producing a set of pairs of terms whose unifiers are identical to the unifiers of
the initial pair. In the latter case, the set produced is one for which a unifier can be readily provided,
i.e. i t is a solved set, or one of a finite nuinber of possibilities may be tried t o progress the search
towards finding a unifier. From an implementation prespective, the structure of this procedure
dictates that sets of pairs of terms that have to be unified, the so-called disagreement sets, have t o
be represented explicitly. The representation must sa,tisfy certain characteristics t o yield an efficient
implementation. One requirement arises from the fa.ct that disagreement sets change incrementally
as unification proceeds, with large pa,rts being preserved between sets. Thus a representation that
exhibits a large amount of sharing between sets is desirable. Another requirement is that , in light
of backtracking, i t should be possible to reinsta.te previous sets rapidly. Our machine embodies a
scheme for maintaining disagreement sets tl1a.t appears to meet these criteria. In essence the scheme
maintains a stack of disagreement pa.irs and a linked list through the stack indicates the "current"
disagreement set. Reinstatelllent of a previous set upon backtra.cking is facilitated by making the
list doubly linked and using a trailing mechanism that is in several respects similar to that used
in Prolog implementations for resetting state. Another requirement that Huet's procedure imposes
is the ability t o handle branching within unification. This is catered t o within our machine by
conducting a depth-first search, using a brarzch point record to encode the alternatives that are as
yet unexplored in i ts state. These new records are akin to the choice point record of the WAM and
similarly enable a rapid return to an earlier state followed by the choice of an alternative search
path. Finally, although branching in unifica.tion ma,! eventually be necessary, experimental evidence
suggests that i t might often be avoided by some simple processing steps [6]. Our implementation is
sensitive t o this fact a t several levels. First, the processing structure permits the easy application of
such steps. Second, the creation of branch point records and the explicit encoding of disagreement
sets is delayed until after these steps 11a.ve been a.pplied. Third, specific operations are considered
towards eliminating branching. With rega,rd to the last aspect, our implementation permits a
treatment of first-order like unification problems through the usual mechanisms of the WAM and
can deal with these problenls alillost entirely through compiled code.

The last issue pertains to typing. It nlay a.t first, seem sonlewhat intriguing that types should
play a role in determining the run-time support of a. 1a.ngua.ge. The reason for this, as discussed in
[ll], is twofold: the behavior and outcoille of the unifica.tion process is influenced by the types of
various expressions and, beca.use of a polymorphism t1la.t is permitted in the language, the actual
types involved are only known in the course of execution. Now, it is desirable to reduce the runtime
processing of types t o the greatest possible extent in a good implementation. A look a t the typing
regimen used in conjunction with hereditary Harrop formulas shows that a clever representation
of types and a careful use of informa.tion present during compilation can considerably reduce the
time and space required for type analysis. The essential idea is that by virtue of type declarations
a "skeleton" is known for the type of every primitive symbol a t runtime and this skeleton can be
shared across several incarna,tions of the sgn1l)ol. Further. it is actually possible to compile the type

Keehang Kwon and Gopalall Nada.tliur 199

analysis that is required due t o the refinement to "leaves" in this skeleton in parts of the program.
This type analysis is in fact a form of first order unification that the WAM machinery is adept
a t carrying out. A proper meshing of the unifica.tion instructions for types with that for terms is
required (involving answering questions such as when type comparison must be initiated and when
types have t o be written as opposed to checked for compatibility). These details have been worked
out and are embodied in our machine. At a level of detail, this requires the addition of a heap,
called a type heap, for the processing of types in our machine. These can be merged into the usual
heap. However their separation adds a desirable flexibility to the processing scheme.

References

[I] Conal Elliott and Frank Pfenning. -4 semi-functional inlpleinentation of a higher-order logic
programming language. In Peter Lee, editor. Topics i n .4dvnnced Language Implementation,
pages 289-325. MIT Press, 1991.

[2] Gkrard Huet. A unification algorithm for typed A-calculus. Theoretical Computer Science,
1:27-57, 1975.

[3] Bharat Jayaraman a.nd Gopalan Nada.tliur. Im~>lementation techniques for scoping constructs
in logic programming. In 1.ioichi Furuka.wa., editor, Eigh,tll International Logic Programming
Conference, pages 871-886, Paris, France, June 1991. hlIT Press.

[4] Keehang Kwon, Gopalan Nadathur, and Debra Sue Wilson. Implementing polymorphic typing
in a logic programming language. Submitted, August 1992.

[5] Evelina Lamma, Paola Mello, and Antonio Natali. The design of an abstract machine for
efficient implementation of contexts in logic programming. I11 G. Levi and M. Martelli, editors,
Sixth International! Logic Progra17~1~zzng Conference, pages 303-317, Lisbon, Portugal, June
1989. MIT Press.

[GI Spiro Michaylov and Frank Pfenning. An empirical study of the runtime behavior of higher-
order logic programs. I11 Conference Record of the Workshop on the XProEog Programming
Language, Philadelphia, July-August 1992.

[7] Dale Miller. Unifica.tion under a. mixed prefix. Technical Report MS-CIS-91-81, Computer
Science Department, University of Pennsylvania.. October 1991. To appear in the Journal of
Symbolic Compntcitio~z.

[8] Gopalan Nadathur. A proof procedure for the logic of hereditary Harrop formulas. Technical
Report CS-1992-17, Departnlent of Computer Science. Duke University, November 1992. To
appear in the Journal of Automated Recrsonirly.

[9] Gopalan Nadathur, B11ara.t Jayaraman, and Iieehang Iiwon. Scoping constructs i11 logic pro-
grammii1.g: Implementation problems and their solution. Submitted, May 1992.

200 Proceedil~gs of the 1992 XProlog Workshop

[lo] Gopalan Nadathur, Bharat Jaya.rama.n, and Debra. Sue Wilson. Implementation considerations
for higher-order features in logic programming. Submitted, November 1992.

[ll] Gopalan Nadathur and Frank Pfenning. The type system of a higher-order logic programming
language. In Frank Pfenning, editor, Types in Logic Programming, pages 245-283. MIT Press,
1992.

[12] Gopalan Nadathur and Debra Sue Wilson. A represelltation of lambda terms suitable for
operations on their intensions. In Proceedings of the 1990 ACM Conference on Lisp and
Fuactional Programming, pages 341-348. ACM Press, 1990.

Implementing a Notion of Modules in the Logic
Programming Language XProlog

Keehang Kwon, Gopalan Nadathur and Debra Sue Wilson
Department of Computer Science

Duke University
Durham, N C 27706, USA

kwonQcs.duke.edu, g o p a l a n Q c s . d u k e . e d u , dswQcs.duke.edu

1 Abstract

Issues concerning the implementation of a notion of n~odules in the higher-order logic programming
language XProlog are examined. A progranl in this language is a composite of type declarations
and procedure definitions. The module construct that is considered permits large collections of
such declarations and definitions to be decomposed into smaller units. Mechanisms are provided
for controlling the interaction of these units and for restricting the visibility of names used within
any unit. The typical interaction between modules has both a static and a dynamic nature. T$e
parsing of expressions in a module might require declarations in a module that it interacts with,
and this information must be available during compilation. Procedure definitions within a module
might utilize procedures presented in other nlodules and support must be provided for making the
appropriate invocation during execution. Our concerll here is largely with the dynamic aspects
of module interaction. We describe a method for compiling each module into an independent
fragment of code. Static interactions prevent the compilation of interacting modules from being
completely decoupled. However, using the idea of an interface definition presented here, a fair
degree of independence can be achieved even a t this level. The dynamic semantics of the module
construct involve enhancing existing program contests with the procedures defined in particular
modules. A method is presented for achieving this effect through a linking process applied to the
compiled code generated for each module. -4 direct implementation of the dynamic semantics leads
t o considerable redundancy in search. We present a way in which this redundancy can be controlled,
prove the correctness of our approach and describe run-time structures for incorporating this idea
into the overall implementation.

2 Introduction

This paper concerns the implementation of a notion of modules in the logic programming language
XProlog. Logic programming ha.s traditiona.11~~ 1a.cked devices for structuring the space of names and
procedure definitions: within this paradigm. progralus a,re generally viewed as monolithic collections
of procedure definitions, with the names of constants and data, constructors being implicitly defined
and visible everywhere in the pr0gra.m. ,L\lthough the a.bsence of such facilities is not seriously felt

'Work on this paper has been supported by the NSF grant. CCR-89-05825.

202 Proceedings of the 1992 XProlog Workshop

in the development of small programs, structuring mechanisms become essential for programming-
in-the-large. This fact has spurred investigations into mechanisms for constructing programs in
a modular fashion (e.g., see [11, 14 , 19, 201) and has also resulted in structuring devices being
included in some implementations of a Prolog-like language on an ad hoc basis. Most proposals put
forth have, a t the lowest level, been based on the use of the logic of Horn clauses. This logic does
not directly support the realization of structuring devices, and consequently these have had to be
built in a t an extra-logical level. The logic of hereditary Harrop formulas, a recently discovered
extension t o Horn clause logic [13], is interesting in this respect because i t contains logical primitives
for controlling the visibility of names and the availability of predicate definitions. The language
XProlog is based on this extended logic and thus provides logical support for several interesting
scoping constructs [lo, 111. The notion of nlodules whose impleinentatio~~ we describe in this paper
is in fact based on these new mechanisms.

The language XProlog is in reality a typed language. One manifestation of this fact is that
programs in this language consist of two components: a set of type declarations and a set of
procedure definitions. The module concept that we consider is relevant to a structuring of programs
with respect to both componei~ts. In a simplistic sense, a nlodule corresponds to a named collection
of type declarations and procedure definitions. This view of modules reveals that the use of this
structuring notion has both static and dynamic effects. The typical use that might be expected
of any module is that of making it contellts available in some fashion within a program context
such as another module. The main impact of making the declarations in a module visible must
clearly be a static one: to take one example, the type associated with some constant by the module
in question may be needed for parsing expressions in the new context. The effect with regard to
predicate definitions is, on the other hand, largely dynamic. Thus, procedure definitions in the new
context might contain invocations to procedures defined in the "imported" module. The important
question t o be resolved, then, is that of how a reference to code is to be resolved in a situation
where the available code is changing dynamically.

From the perspective of implemeilting the module notion, the main concern is really with the
dynamic aspects. In particular, our interest is largely in a method for compiling the definitions
appearing in modules and in the run-time structures needed for implementing the prescribed se-
mantics for this construct. We examine these questions in detail in this paper and suggest solutions
t o them. Now, XProlog has several new features in coinparisoil with a language such as Prolog and
a complete treatment of compilation requires methods to be presented for handling these features
as well. We have studied the implementation issues arising out the other extensions in recent work
and have detailed solutions t o them [i , 16. 171. We outline the nature of these solutions here but do
not present them in detail. In a broad sense, our solutions to the other problems can be embedded
in a machine like the Warren Abstract Machine (CI'AM) [21]. We start with this machine and
describe further enhancemei~ts to it that serve to implement the dynamic aspects of the module
notion. There are several interesting characteristics to the schellle we ultimately suggest for this
purpose, and these include the follo\ving:

(i) A notion of separate compila.tioii for niodules is support.ed. As we explained above, there is a
potential for static interaction l~etweelt niodules t11a.t makes completely independent compila-
tion impossible. However, this situatioll is no different from that in any other programming

li'eehang Kwon, Gopalan Na.dathur and Debra Sue \44l,soa

language. We propose the idea of an interface definition t o overcome this problem. Relative
t o such definitions, we show that the separate compilation goal can actually be achieved.

(ii) A notion of linking is described and implemented. The dynamic use of modules effectively
reduces t o solving goals of the form h,l ==> G where M is a module name. The expected
action is t o enhance an existing program context with the definitions in M before solving G.
The symbol ==> can, in a certain sense be viewed as a primitive for linking the compiled code
generated for a module into a pr0gra.m context. Using ideas from [8] and [16] we show how
this primitive can be implemented.

(iii) A method for controlling redundancy in search is described. The dynamic semantics presented
for modules in [ll] can lead to the definitions in a nlodule being added several times to a
program context, leading t o considera.ble redundancy in solving goals. We present a sense in
which this redundancy can be elimimted, prove the correctness of our approach and show how
this idea can be incorporated into the overall implementation. The general idea in avoiding
redundancy has been used in earlier implementa.tions of XProlog [2, 91. However, ours is, to
our knowledge, the first proof of its correctness a.nd the embedding of the idea within our
compilation model is interesting in its own right.

The remainder of this paper is structured a.s follows. We describe the language of XProlog
without the module feature in the next section. focussing eventually on the general structure of
an implementation for this "core". In Section 4, we present the module notion that is the subject
of this paper and outline the main issues in its implementation. In Section 5, we present our
first implementation scheme. This scheme permits separate compilation and contains the run-time
devices needed for linking. However, it 11a.s the dra.wba.ck that i t is may add several copies of a
module t o a program context leading to the mentioned redundancy in search. We discuss this issue
in detail in Section 6 and show a wa,y in which redundancy can be controlled. In Section 7 we use
this idea in describing mechanisms tha,t can be incorpora.ted into the basic scheme of Section 5 to
ensure that only one copy of a module is available in a program context a t any time. Section 8
concludes the paper.

3 The Core Language

We describe in this section the part of the XProlog language that can be thought of as its core.
Our presentation will be a t two levels: we shall describe the logical underpinnings of the language
and also attempt t o describe i t a t the level of a usable programming language. Both aspects are
required in later sections. The exposition a t a logical level are needed to understand the semantics
of the modules notion and to justify opti~nizations in its implelnentation. The presentation of the
programming language is necessary to underst ancl t h e value of niodules as a pragmatic structuring
construct.

Proceedings of the 1992 XProlog Workshop

1.1 Syntax

The logical language that underlies XProlog is ultimately derived from Church's simple theory of
types [I]. This language is typed in the sense that every well-formed expression in i t has a type
associated with i t . The language of types that is actually used permits a form of polymorphism.
The type expressions are obtained from a set of sorts, a set of type variables and a set of type
constructors, each of which is specified with a unique arity. The rules for constructing types are
the following: (i) each sort and type variable is a type, (ii) if c is an n-ary type constructor and
t l , . . . , t , are types, then (c tl . . . t,) is a type, and (iii) if a and /3 are types then so is a -, P.
Types formed by using (iii) are called fz611ction types. In writing function types, parentheses can be
omitted by assuming that -+ is right associative. Type variables have a largely abbreviatory status
in the language: they can appear in the types associated with expressions, but a t a conceptual
level such expressions can be used in a conlputation only after all the type variables appearing
in them have been instantiated by closed types. A type is closed if it contains no type variables.
However, these variables permit a succinct presentatioi~ of predicate definitions and, as we mention
later, their iilstantiatioils a t run-time can often be delayed. Thus, type variables provide a sense of
polymorphism in AProlog.

At the level of concrete syntax, type variables are denoted by names that begin with an upper-
case letter. The set of sorts initially contains only o, the boo1ea.n type, and iwt, the type of integers,
and 110 type constructors are assumed. The user can define type constructors by using declarations
of the form

kind c type -+ . . . - type.

The a.rity of the constructor c that is thus decla.red is one less than the number of occurrences of type
in the declaration. Noting that a. sort might be viewed as a nullary type constructor, a declaration
of the above kind may also be used to add new sorts. As specific examples, the declarations

kind i type.
kind list type -+ type.

add i to the set of sorts a.nd define list a.s a, una.ry constructor. The latter will be used below as a
means for constructing types corresponding to lists of objects of a homogeneous type .

The terms of the language are coilstructed from given sets of constant and variable symbols,
each of which is assumed t o be specified with a. type. The constallts are categorized as the logical
and the nonlogical ones. The 1ogica.l consta.nts consist of t.he following:

true of type o, denoting the true proposition,
A of type o --. o - o, representing conjunction.
V of type o - o - o. representing disjunction,
3 of type o - o - o. repl.esent.ing implica.tion,
sigma of type (A - 0) - 0: representing existential quantification,

pi of type (A - o) - o, representing universal quantification.

Keehang Kwon, Gopalan Nadathur and Debra Sue blfilson 205

The symbols sigma and pi have a polymorphic type associated with them. These symbols really
correspond to a family of constants, each indexed by a choice of ground instantiation for r and a
similar interpretation is intended for other polymorphic symbols.

In the machine presentation of nonlogical constants and variables, conventions similar to those
in Prolog are used: both variables and constants are represented by tokens formed out of sequences
of alphanumeric characters or sequences of "sign" characters, and those tokens that begin with
uppercase letters correspond to variables. The underlying logic requires a type to be associated
with each of these tokens. Symbols that consist solely of numeric characters are assumed to have
the type int. For other symbols, an association is achieved by declarations of the form

type constant type-exp?.e.bsion.

Such a declaration identifies the type of consln~~f with the corresponding type expression. As
examples, the declarations

type nil (list A).
type :: A i (list A) - (l i s f A) .

define the constants nil and :: that function as constructors for homogeneous lists. Types of
constants and variables may also be indicated by writing them in juxtaposition and separated by
a colon. Thus the notation X : int corresponds to a variable X of type int.

The terms in our logical 1angua.ge a.re obta.ined from the constant and variable symbols by
using the mechanisms of function abstra.ction and application. In particular (i) each constant and
variable of type T is a term of type r , (ii) if z is a variable of type T and t is a term of type T', then
Xxt is a term of type r + T', and (iii) if t l is a, term of type (r2 + TI) and t2 is a term of type r2,
then (tl tz) is a term of type 71. A term obtained by virtue of (ii) is referred t o as an abstraction
whose bound variable is z and whose scope is t. Sinlilarly a term obtained by (iii) is called the
application of tl to t2.

Several conventions are adopted towa.rds enhancing rea.dability. Parentheses are often omitted
by assuming that application is left associa.tive a.nd that abstraction is right associative. The logical
constants A, V and > are written as right a.ssocia.tive infix operators. It is often useful to extend
this treatment t o nonlogical consta.nts, and a device is included in XProlog for declaring specific
constants to be prefix, infix or postfix opera.tors. For insta,nce. t.he declaration

infix 150 xfy ::

achieves the same effect that the declaraiion op(150,x fy. ::) a.chieves in Prolog: it defines :: to be
a right associative infix operator of precetlence 1.50.

An important notion is that of a positive term wllich is a. term in which the symbol > does
not appear. We define an atonzic forinu.1~ or tom to be a term of type o that has the structure
(P tl . . . t,) where P, the head of the a.t.om, is either a nonlogicaa constant or a. variable and
t l , . . . , t,, the arguments of the a.ton1, are positive t,erms. Such a, formula is referred to as a rigid
a t o ~ n if its head is a nonlogical constant. a.nd a.s a. .flexible atoll1 otherwise. Using the syrrlbol A

206 Proceedings of the 1992 XProlog Workshop

t o denote arbitrary atoms and A, to denote rigid a.toms, the classes of G-, D- and E-formulas are
identified as follows:

G ::= true I A I (GI A GZ) ((GI V Gz) I sigma (XxG) I
pi (AxG) ((E > G)

D ::= A, (G > A, (pi (XXD) ((Dl A D2)

A curious aspect of these syntax rules is the use of the symbols pi and sigma. These symbols
represent universal and existential quant,ifica.tion respectively. The quantifiers tha t are used in
conventional presentations of logic p1a.y a dual role: in tlle expression VxP, the quantifier has the
function of binding the variable x over the expression P in addition to that of making a predication of
the result. In the logical language considered here, these roles are separated between the abstraction
operation and appropriately chosen constants. Thus the expression VxP is represented here by
(pi (XxP)). The former expression may be thought of a.s an abbreviation for the latter, and we use
this convention a t a metalinguistic level below. .4 sinli1a.r observation applies to the symbol sigma
and existential quantification.

The G- and D-formulas determine the prqrums and queries of XProlog. A program consists of
a list of closed D-formulas each element of which is referred to as a program clause, and a query or
goal is an closed G- fo r rn~ la .~ . In writing the program cla.uses in a pr0gra.m in XProlog, the universal
quantifiers appearing a t the front a.re left iiilplicit. A similar observation applies t o the existential
quantifiers a t the beginning of a query. There are some other conventions used in the machine
presentation of programs. Abstraction is depicted by \, written as an infix operator. Thus, the

, expression XX(X :: nil) is represented by X\(-Y :: nil). The symbols A and V are denoted by , and
; as in Prolog. Implications appearing a t the top-level ill program clauses are written backwards
with :- being used in place of >, and tlle synibol 3 in goal formulas is written as =>. Finally, a
program is depicted by writing a secluence of progra.111 cla.uses, ea.ch clause being terminated by a
period. An example of the use of these conventions is provided by the following clauses defining
the familiar append predicate, assuming t,he types for nil and :: that were presented earlier.

(append nil L L).
(append H :: L1 L2 H :: L3) :- (c~l)pend L1 L2 L3) .

Notice that not all the needed type i~lformation has been presented in these clauses: the types of
the variables and of append have been omitted. These types could be provided by using the devices
explained earlier. However, type declarat~ons can he avoided in several situations since the desired
types can be reconstructed [15]. For example, the type of appeizd in the above program can be
determined t o be (list ,4) - (l i s t .4) - (l i s f -4) - o. The type reconstruction algorithm that is
used is sensitive t o the set of clauses containetl in the program. For example, if the program above
included the clause

-

2 ~ h i s definition is more general than t,he one usually el~tployed in that existelitial quantification is permitted over
D formulas appearing to the left of implicat.iol~s i l l goals. Tl~is feat,ure does not. add anything new a t a logical level,
but is pragmatically useful a we see lat.el.. This extentled tiefinit.ion is also used in [4]

Keehang Icwon, Gopalan Nada.t hur and Debra Sue M'ilson

(append (1 :: nil) (2 :: ni l) (1 :: 2 :: n i l)) .

as well, then the type determined for append would be (l ist i n t) -+ (l ist i n t) + (l i s t i n t) --+ o
instead.

The example above shows the sinlilarity of XProlog syntax to that of Prolog. The main difference
is a curried notation, which is convenient given the higher-order nature of the language. There are
similarities in the semantics as well as we discuss below.

1.1 Answering Queries fro111 Progralns

We present a n operational semantics for AProlog I)g providing rules for solving a query in the
context of a given program. The rules depend 011 the top-level logical symbol in the query and have
the effect of producing a new query and a new program. Thus, tlie operational semantics induces a
notioil of computational state given by a prograni aild a query. We employ structures of the form
P - G where P is a listing of closed program clauses and G is a closed G-formula to represent
such a state. We refer to these structures as ,sequer?ts, and tlie idea of solving a query from a set of
closed program clauses correspoi~ds to that of colistructilig a derivation for an appropriate sequent.

Several auxiliary notions are needed in presenting the rules for collstructing derivations. One
of these is the notion of equality assumed in our language. Two terms are considered equal if
they can be made identical using the rules of A-conversion. We assume a familiarity on the part
of the reader with a presentatioll of these rules such as that found in [5]. We need a substitution
operation on formulas. Formally, we think of a substitution as a finite set of pairs of the form
(x , t) where x is a variable and t is a tern1 whose type is identical to that of x; the substitution
is said t o be closed if the second component of each pair in it is closed. Given a substitution
{ (x , , t ,) ~ l < i 5 n) , we write F [t l / x l , . . . , t , , / x , ,] to denote tlie application of this substitution to
F. Such an application must be done carefully to avoid the usual capture problems. The needed
qualifications can be captured succillctly by using the A-conversion rules: F[t l / x l , . . . , t,/x,] is
equal t o the term ((Ax l . . . Xx,F) t l . . . t ,). We also need to talk about type instances of terms.
These are obtained by making substitutions for type variables that appear in the term. Finally, we
are particularly interested in ternls that do not have any type variables in them and we call such
terms type variable free.

The various notions described above are used in definiiig the idea of an instance of a program
clause.

Definition 1 An instance of cr clo.scd p~~ogr.rr~~r clo~rsc D i.5 g i ~ ~ r z (1,s follows:

(i) I f D is of the form A,. or G > A,., tltcrl cr11y lypc ~*or.znblt free type i~lstance of D is an instance
of D.

(ii) If D is of the form D l A D2 then on irzsta~?cr of Dl or of D2 is an instance of D .

(iii) If D is of the form V Z D ~ , , the11 an irz.~i(rncr of Dl[i/.z.] for crray closed positive term t of the
same type as x is a12 instance of D .

208 Proceedil~gs o f the 1992 XProlog Workshop

The restriction t o (closed) positive terins forces an instance of a, program clause to itself be a
program clause. In fact, instances of program clauses have a very simple structure: they are all of
the form A, or G > A,.

In describing the derivation rules, and thus the operational semantics of our language, we restrict
our attention t o type variable free queries. We present a more general notion of computation later
based on this restricted definition of derimtion.

Definition 2 Let G be a type variable free query and let 'P be a program. Then a derivation is
constructed for P - G by using one of the following rules:

SUCCESS B y noting the G is equal f o a 1 2 instrrrzce of (I progranz clause in P .

BACKCHAIN B y picking aiz insturzce of a proyr.ar)z clause i12 P of the form GI 2 G and con-
structing a derivation for T' - G I .

A N D If G is eqrral to G 1 A G2. by coi~.st~~~~.ctirzg derivations for the sequents P - G I
and P G'2.

OR If G is equal to GI v G2, by corzstructirzy a derivatioiz for either P - G1 or
P - G Z .

INSTANCE If G is equul to 3xG1! by constrt~~cting (I derivation for the sequent P - G l [t l x] ,
where t is a closed positive tern2 of the same type as x .

GENERIC If G is equal to VxG1, by constructing u derivation for the sequent P - G l [c / x] ,
where c is a nonlogical coizstarzt of the scinze type as z that does not appear in V x G
or in the fornzulas in F .

AUGMENT If G is equal to (3 x 1 . . .3z , ,D) > G , by constructing a derivation for the sequent
D [c l / x l , . . . , c n / z n] , 'P - G , tdtere, for 1 < i < 1 2 , C , is a nonlogical constant of
the same type as xi that does not appear in (3 ~ : ~ . . .3x,D) > G or in the formulas
in P ,

To understand the operationa.1 sema.~ltics intluced by these rules, let us assume a program given
by the following clauses

(r e v L1 L2) : -
(((rev-uux nil L2),
(p i (X\(pi (Ll\(pi (L2\

((rev-auz .)i' :: L1 L 2) : - (I . F . L ~ - ~ I T ~ X L l .Y :: L 2)))))))))
=> (rev-aux L1 n i l)) .

and consider solving the query (r e v 1 :: 2 :: nil 2 :: 1 :: nil). The first rule that must be used in a
derivation is BACKCHAIN. Using it reduces the problem to that of solving the query

Iieehang Kwon, Gopalan Nadathur a11 d Debra Sue \\'ilson

((rev-aux nil 2 :: 1 :: nil),

(pi (X \ (P ~ (L l \ (p i (L2\
((rev-aux X :: L 1 L2) :- (rev-aux L l ,'i' :: L2)))))))))

=> (rev-aux 1 :: 2 :: nil ni l)

from the same program. The AUGMENT rule is now applicable and using it essentially causes the
program t o be enhanced with the clauses

(reu-aux nil 2 :: 1 :: nil).
(rev-aux X :: L1 L2) :- (rev-auz L1 .k= :: L2).

. I I) Using the BACKCHAIN rule twice in prior t o solving the query (rev-auz 1 :: 2 ..
conjunction with the last clause produces the goal (rev-aux nil 2 :: 1 :: nil). The derivation
at tempt now succeeds because the goal is an instance of program clause.

The above example indicates the programming interpretation given to logical formulas and sym-
bols by the operational semantics. Progranl clauses of the form Vxl . . .VxnA, and Vxl . . .Vxn(G >
A,) function in a sense as procedure definitions: the head of A, represents the name of the proce-
dure and, in the latter case, the body of the clause, G , corresponds to the body of the procedure.
From an operational perspective, every prograln clause is equivalent to a conjunction of clauses in
this special form, and a program is equivalent to a list of such clauses. Thus both correspond to
a collection of procedure definitions. C;oal.s correspond to search requests with the logical symbols
appearing in them functioning as primitives for specifying the search structure. Thus, in searching
for a derivation, A gives rise to an AND branch, V to an OR branch and s igma to an OR branch
parameterized by a substitution. These symbols are used in a similar fashion in Prolog. The sym-
bols 3 and pi, on the other hand, do not appear in Prolog goals. The treatment of these symbols
is interesting from a programming viewpoint. The first symbol has the effect of augmenting an ex-
isting program for a limited part of the computation. Thus, this symbol corresponds to a primitive
for giving program clauses a scope. The sy~nbol pi similarly corresponds to a primitive for giving
names a scope; processing this synlbol requires a new name to be introduced for a portion of the
search. A closer look a t the operational semantics reveals a similarity between the interpretation of
pi and the treatment given to existential quantifiers in E-formulas through the AUGMENT rule.
This is not very surprising since the formulas Vz(D(x) > G') and (3xD(x)) > G are equivalent
in most logical contexts, assuming z does not appear free in G. From a pragmatic perspective,
then, the existential quantifier in E-for~nulas enables a name to be made local t o a set of procedure
definitions, i.e., i t provides a meails for infornlatioll hiding.

A computation in XProlog corresponds to constructing a derivation for a query from a given
program. We are generally interested in extracting a value from a computation. In the present
context, this call be made clear as follows.

Definition 3 Let P be a collection of progrcrm clrruses crnd let G be a type variable free query
of the fornz 3x1 . . . 3xnG1; the varicrblcs 2.1. x,, crrr c~ssu~ned to be inzplicitly quantified here.
An answer to G in the coiatexl of F is n rloac(1 .s~rbstifvlior, ((2 : ; . t , ,) (l 5 i < - 11.) such that
P GI [tl /x l , . . . , tn/x,] has deriz:c~tiorr.

210 Proceedings of the 1992 XProlog Workshop

In general our queries may have type variables in them. The answers to such a query are given
by the answers t o each of its type va.ria,ble free type insta.nces.

Our ultimate interest is in a procedure for carrying out conlputations of the kind described above
and for extracting results from these. The rules for constructing derivations provide a structure for
such a procedure but additional mechanisms are needed. One problem involves instantiations for
type variables. There is usually insufficient infor~nation for choosing instantiations for these a t the
points indicated. This problem ca.n be overconle by allowing type variables into the computation
and by using unification t o increillentally determine their instantiations. A similar problem arises
with existential quantifiers in queries. For example, solving a query of the form 3xG requires
a closed term t t o be produced tha.t ma.kes G [t / x] solva.ble. The usual mechanism employed in
these cases is t o replace z with a logic va.ria.ble, i . ~ . , a, pla.ce-holder, and to let an appropriate
instantiation be determined by unifica.tion. However, this ~ilechaaism must be used with care in
the present situation. First, the unification procedure t11a.t is used must incorporate our enriched
notion of equality, i. e . , higher-order unifica.tion [6] must be used. Second, the treatment of universal
quantifiers requires unification to respect certa.in constraint,^. For example, consider the query
3xVyp(x, y), where p is a predicate constant. Using the mechanisms outlined, this query will be
transformed into p(X, c), where c is a new constant and S is a logic variable. Notice, however, that
X must not be instantiated with a term t11a.t conta.ins c in it . A solution to this problem is to add
a numeric tag t o every constant aad va.riable and t,o use these ta.gs in constraining the unification
process [3, 181.

A suitable abstract interpreter call be developed for XProlog based on the above ideas3. In
actually implementing this interpreter, two additional questions arise. First, there is some nonde-
terminism involved: in solving an atomic goa.1. a, choice ha.s to be made between program clauses
and in solving GI V Gz a decision 11a.s to be rna.de bet,ween solving G I and G2. The usual device
employed here is t o use a depth-first search with backtra.cking. The second question concerns the
implementation of implications in queries. To understand the various problems that arise here, let
us consider a query of the form (D > Gl)AG2. This query results in the query D > GI which must
be solved by adding (the clauses in) D to the progra,nl, solving the clauses in G1 and then removing
D. The addition of code follows a stack b a e d discipline and can be implemented as such. However,
if a compilation model is used, some effort is involved in spelling out a scheme for achieving the
addition and deletion of code. Moreover the "progra.m clauses" that are added might now contain
logic variables in them. Thus, consider solving t.he goal 3L(rev 1 :: 2 :: n,il L) using the clause for
rev presented earlier in this section. Tlle pr0gra.m would a t a certain stage have t o be augmented
with the clause (rev-auz nil L) where L is now a logic va.riable. In general, we need now to think of
procedures as blocks of code a.nd bindings for some varia.bles. Continuing now with the solution of
the query (D > G I) A Gz, the goal G2 will be attempted after the first conjunct is solved. A failure
in solving this goal might require an alterna.tive solution to GI to be generated. Notice, however,
that an at tempt to find such a solution must. be n~atle in a cont.ext where the program once again
contains D . An implementation of our 1a.nguage must support the needed context switching ability.

Implementation tecluniques lmve been tlevisetl for solvil~g the various problems mentioned above

3 ~ c t u a l l y , the proper treat,ment of type varial>les i l l a cor~rp~~tatiorr is still all open issue. However, a discussion of
this matter is orthogonal to our present purpo>es.

Keehang Kwon, Gopalan Nadathur alld Debra Sue \I7ilson 211

[7, 16,171, resulting in an abstract machine and a compilation scheme for the core language described
in this section. We do not discuss this explicitly here, and will rely on the reader's intuition and
indulgence when alluding to these ideas later in the paper. However, the discussion of modules will
require a closer acquaintance with the scheme used for iillplementillg implications in queries, and
we then supply some further details.

Before concluding this section, it is interesting to note the connection between our notion of
computation and deduction in a logical context. The following proposition describes this connection.

Proposition 4 Let P be a program and let P' be the collection of all the type variable free type
instances of formulas in P. Further, let G be a type variable free query. Then there is a derivation
for P - G if and only if G follot~~s fro/,, 'P' i r i irltriitiortistic logic.

Only the only if part of this proposition is non-trivial. For the most part, this follows from the
existence of uniform proofs for sequent,^ of the kind we a.re int,erested in; see, e.g., [13] and [l a]
for details. One additional point to note is the treatment of existential quantifiers in E-formulas.
However, this causes no problem beca.use the introduction of existential quantifiers in assumptions
can always be made the last step in intuitionistic proofs.

4 Modules

The language described thus far only permits programs that are a nlonolithic collection of kind,
type, and operator declarations together with a set of procedure definitions. Modules provide a
means for structuring the space of declarations and also for tailoring the definitions of procedures
depending on the contest. The ultimate purpose of this feature is to allow programs to be built up
from logical segments which are in some sense separate.

At the very lowest level, the module feature allows a name to be associated with a collection
of declarations and program clauses. ,411 example of the use of this construct is provided by the
following sequence of declarations that in effect attaches the name lzsts with the list constructors
and some basic list-handling predicates:

naodule l is ts .
i n f i x 150 :: x f Y.
kind list type - t y p e .
type nil (l i s t A).
type :: A - (l i s t -4) - (l i d -4)

(append nil L L) .
(append (H :: L1) L2 (H :: L 3)) :- (append L1 L2 L 3) .

(member H (H :: L)) .
(mernbe~. X (H :: L)) : - (nz.enabei* S L) .

(leizgtlt 0 n i l) .
(length N (H :: L) : - ((l e i ~ g t h 11'1 L) . .\- r.c .\- 1 + 1) .

212 Proceedings of the 1992 XProlog Workshop

One way t o think of this module declaration is as a declaration of a list "data type". This data
type can be made available in specific contexts by using the name l ists in a manner that we describe
presently. This discussion will bring out the intended purpose of the modules feature. However,
there is one use that can already be noted. Looking a t the lists module above, we see that the
types of the predicates defined in it have not been provided. These types can be reconstructed, but,
as we noted in Section 3, the types "inferred" depend on the set of available program clauses. The
module boundary provides a notion of scope that is relevant to this reconstruction process: looked
at differently, the types of all the symbols appearing in the clauses in a module are completely
determined once the module is parsed.

The meaning of the module feature is brought out by considering its use in programming. In
the presence of modules, we enhance our goals to include a new kind of expression called a module
inzplicution. These are expressions of the for111 A l ==> G, where A4 is a module name. Goals of the
new sort have the intuitive effect of adding A1 to the program before solving G. In making this
precise, however, the effect of hf on two different components have to be made clear: on the type,
kind and operator declarations and on the procedure definitions.

The effect on the space of declarations that we assume here is simple. All the associations
present in M become available on adding .I1 to the contest. This is really a statzc effect in that it
provides a contest in which to parse the goal (; in a lalger goal .\I ==> G. As a concrete example,
consider the goal

l is ts ==> (append 1 :: 2 :: 71,%1 3 :: il,il L) .

In parsing this query, there is a need to determine the types of append and of ::. The semantics
attributed t o the modules feature requires the types associated with these tokens in the module
l is ts t o be assumed for this purpose. This a.ppears to be the most natural course, given that we
expect the definition of appe~zd provided in lists to be useful in solving this query.

From the perspective of procedure definitions, we assume the semantics for modules that is
presented in [ll]. Within this framework. the dyna.mic aspects of the n~odule feature are explained
by a translation into the core langua,ge. Thus, a. module is tllought of as the conjunction of the
program clauses appearing in it. For insta.nce. the l i s t s module corresponds to the conjunction of
the clauses for append, m e r n b e ~ and length. Under this interpreta.tion, a module corresponds to a
D-formula as described in the last section. Now if module A4 corresponds to the formula D , the
query M ==> G is thought of as the goal D => G. The run-time treatment of module implication
is then determined by the AUGMENT rule presei~t~ed in the last section. In particular, solving the
goal M ==> G calls for solving the goa.1 C: a.fter adding the predicate definitions in the module M
t o the existing program.

The analogy between a module and a data. type raises the question of whether some aspects of
an implementation might be hidden. Our lailguage 1)ermit.s constant names to be made local to a
module, thus allowing for the hiding of a. da1.a strnct,ure. To a.chieve this effect, a declaration of the
form

local constant, . . . , coi~s tant .

can be placed within a module. The names of the coi~stants list.ed then become unavailable outside
the module. For example, a.dding the declaration

Keehang Kwon, Gopalan Nadathur and Debra. Sue Il;ilson

local ::.

t o the lists module has the effect of hiding the list constructor ::.
The static effect of the local construct is easy to understand: only some names are available

when the module is added t o a context. From a dynamic perspective, another issue arises. Can
constants defined t o be local eventually become visible outside through computed answers? The
expectation is that they should not become so visible. This effect can be achieved by thinking
of local constants really as variables quantified existentially over the scope of the conjunction of
program clauses in the module. As a.n example, consider the following module

module store.
local emp, stk.
kind store type i type.
type e m p (store A).
type stk A - (store A) - (store A) .
initialize emp.
(enter X S (s tk X S)) .
(remove X (s tk X S) S) .

This module implements a store data. type with initializing, adding and removing operations. At a
level of detail, the store is implemented a.s a. sta.ck. However, the intention of the local declarations
is to hide the actual representa.tion of the store. Now. from the perspective of dynamic effects, the
module corresponds t o the formula

3Emp3Stk (
(init ialize E m p) ,
(p i (X\(pi (S\(eizter 5' (,SIX: S S)))))) .
(pi (X\(pi (S\(remoue A- (,S lk _y ,S) 5 ')))))) .

This formula has the structure of an E-formula and in fact every module corresponds in the sense
explained t o an E-formula. Referring to this formula as EStore, let us consider solving a goal of
the form 3 X (S t o r e ==> G (X)) . The semantics of this goal requires solving the goal 3 X (E S t o r e
=> G(X)). Under the usual treatment of existential quantifiers, this results in the goal (ES tore
=> G (X)) where X is now a logic variable. Vsing the AUGMENT rule, this goal is solved by
instantiating the existential quantifiers at the front of EStore, adding the resulting D-formula to
the program and then solving G (X) . The important point to note now is that any substitution
that is considered for X must not have the constants supplied for Enzp and Stk appearing in it.
Thus the semantics attributed to modules and local tleclarations achieves the intended dynamic
effect.

While module implication is useful for making modules available a t the top-level, modules may
themselves need t o interact. For instance. a module that contains sorting predicates might need the
declarations and procedure definitions in the I ~ s t s module and a module that implements graph-
search might similarly need the store and 1rst.s modules. Tlle needed interaction is obtained in
XProlog by placing an i m p o ~ t declaration in the module \vhich needs other ~nodules. The format
of such a declaration is the folloiving:

Proceedings of the 1992 XProlog Workshop

import M I , . . . , Mk.

In a declaration of this sort, M I , . . . , A l k must be names of other modules that are referred t o as
the imported modules. A declaratioli of this sort has, once again, a static and a dynamic effect
on the module in which it is placed, i.e., the importing module. The static effect is to make all
the declarations in the imported modules, save those hidden by local declarations, available in
the importing module. These declarations can be used in parsing the importing module and also
become part of the declarations provided by that module. The intended dynamic effect, on the
other hand, is t o make the procedure definitions in the imported modules available for solving the
goals in the bodies of program clauses that appear in the importing module. This effect can actually
be explained by using module implication [I l l . Let us assume t11a.t the clause P : - G appears in a
module that imports the illodules A4 1. 111 1;. Tlle tlynanlic semantics i~lvolves interpreting this
clause as the following one instead:

Observe that using this clause involves solving the goal (nil 1 ==> . . . (A4 k ==> G)) that ultimately
causes the program to be enhanced with the clauses in Arll,. .. . A l k before solving G.

The definition of the module graph-senrch presented in Figure 1 illustrates the usefulness of
the module interaction facility provided by import. Tlle definitions of the predicates start-state,
final-state, soln and expand-node have not been presented here, but we anticipate the reader
can supply these. The important aspect to note is the use that is made of the declarations and
procedure definitions in the modules lists and .sfore. For example, the type

(list A) t (store A) i (list A) - (store A) - o

will be reconstructed for add-states. This type uses type constructors defined in in the modules
l is ts and store. Similarly, the procedure ii,c~i,bcr. defined in lis1.s and the procedures initialize,
enter and remove defined in store are used in the program clauses in the module graph-search.
A particularly interesting aspect is the intera,ction between the modules graph-search and store.
Notice that the "constants" em.p a,nd stk used in store a.re not visible in graph-search and cannot
be used explicitly in the procedures appearing there. Thus, importing store provides an abstract
notion of a store without opening up t.he ac1,ua.l iluplement,ation. For example, the current stack-
based realization of the store can be repla.cet1 by a queue-ba.sed one without any need to change the
graph-search module so long a.s the opera.tions itzilic~litt. enter and renzove are still supported.
This change will have an effect on the behavior of y-search though, changing it t o a procedure that
conducts breadth-first search as opposed to the current deptll-first search.

The pragmatic utility of the module feature a.ntl of the scoping a.bility provided by the new logical
symbols in our language is an important issue to consider. and detailed discussions of this aspect
appear in [lo] and [ll]. Our interest in t,llis pa.per is largely on implementation issues, especially
those arising out of the module notion. From this perspective, it is necessary to understand carefully
the dynamic interactions that can arise between modules through the use of the import statement.
We therefore present an esample tl1a.t illustra.tes some of t,l~ese interactions. Figure 2 contains a
collection of interacting modules and Figure 3 exhibits the process of solving the query (m l ==>
(p X)) given these definitions. In presenting this solutiol~ at tempt, we use a linear format based

Iceehang Icwon, Gopalan Nadathur a11 d Debra. Sue \/lrilson

module graph-search.
import l i s ts , store.

(g s e a r c h So ln) : -
((init-open Open). (expc~izd-grnl~l~ Ope11 i ~ i l ,90117)).

(init-open Open) : -
((start-state S la te) , (inilicrlizr 01,). (enter , Y l c ~ l t 01) Open)) .

(expand-graph Open C'losed Soln) : -
(remove State Ope12 ROp).
(((final-state S ta te) , (soln S t (~ t c ,5'011))) :
((expand-node State hTStn ies) ,
(add-states NSta tes ROp (S ta te :: Closed) ATOP),
(expand-graph hrOp (S ta te :: Closecl) ,Solit))).

(addstates nil Open Closed Open) .
(addstates (S t :: R S t s) Open C'losecl -4TOpel1) : -

((member S t Closed), (add-sfntes R,9ts Open Clo.~;ed A1Open)).
(adds ta tes (S t :: R S t s) Open C'losed N O y e n) : -

((enter S t Open A'Op), (c~dcl-stclf es R S t s !lTOp Closed N Open)) .

Figure 1: ,4 R4odule Implementing C;ra.ph Search

P~.oceedings of the 1992 XProlog Workshop

module ml. iizodule nz2. module m3.
import m2. import 17x3. type r i + o.

(p X) :- (q X) , (t AT). (11 b) . (r 4.
(t b) . (q X) :- (s Ax-). (T 4.
(S x) : - (7' x).

Figure 2: A Set of Interacting Modules

nx1 ?- (]IS)
1722,1721 ?- (q -1-1

nz3,nx2,1i21 ?- (. 5 - Y)
nz2,1723,nz2,1121 (I -) - Y < - (L StTC'C

n22,nll ?- (I (1) F A I L
n12,nz3,nz2,ntl (I -) - 4 - < - b SUCC

m2,1??1 ? - (t b) .S I! C'C'

Figure 3: Solving (nzl ==> (11 -4-1) Given the Modules in Figure 2

on the notion of derivation presented in Section :3 but a.ugmented with the use of logic variables.
Further, we use lines of the following form

where G (X) is an atomic goal and Adl, . . . , A l i z are module names. Such a line indicates that G (X)
is to be solved from a program given by the collection of clauses in MI,. . . , M I L . We refer to this
list of modules as a program contest. Now, the attempt to solve this goal proceeds by trying to
match the goal with the head of some clause. If this attempt is successful, the line is annotated
by a binding for the logic variables, e.g., by an expression such as X <- a . In the case that the
match results in additional goals, the following lines pertain to the solution of these goals. If no
match is possible or if the match results directly in a success. the line is further annotated with the
word F A I L or SUCC. In the former case. the succeeding lines indicate the solution attempt after
backtracking and in the latter case they indicate a n attempt to solve the remaining goals.

Let us consider now the attempt to solve the liientioned goal, (m2 ==> ((p X)) . The initial
program context is empty. but dealing with the module implication causes ml to be added to it .
The goal to be solved now is (p There is only one clause available for p and this is interpreted
as if i t were

(p X) :- (n22 ==> ((q X) , (t .I-)))

since ml imports m2. Module 7122 is therefore a.tl~letl to t l ~ e program context and the goal to be
solved reduces t o (q S), (I -4-). Altl~ough not relevant to the solution of the present goal, notice

Keehang Kwon, Gopalan Nadathur and Debra Sue I,l'ilson 'L 1 r

that module m2 also contains a clause for p. The new program context thus contains an enhanced
definition for this predicate and an implernentatiorl must be capable of combining code from different
sources t o produce the desired effect. Tracing through the solution at tempt a few more steps, we
see that the use of the second clause in module m l results in an attempt t o solve (r X). There are
two clauses for this predicate in the relevant program context and these are used in order. Note
that this interaction could not have been predicted from the static structure of m l alone: there
is no compile-time indication that code in module m3 might be used in solving goals appearing
in the bodies of clauses in m l . A compilation scheme must therefore be sensitive t o the fact that
the definition of procedures used within modules are determined dynamically. Continuing with the
solution at tempt, (r X) is solved successfully with X being bound t o the constant a. The task
now becomes one of solving the goal (t a) . Xotice tha.t the program contest for this goal includes
only m l and m2, i . e . , an implellleiitatioit must support this kind of context switching. When this
goal fails, backtracking now requires an alternative solution to (1 . .Y) to be found. However, this
solution at tempt must take pla.ce in a resurrected cont,est,, a.s indica.ted in the figure. Once again,
an implementation of the module feature must be capable of supporting this kind of reinstatement
of earlier contexts.

We consider in the nest section the various irnplementa.t,ion issues pertaining to the dynamic
behavior of modules that are raised by the above esa.niple. ?Ye note that a desirable feature of an
implementation scheme is that it should permit a sepa,ra.te compila.tion of each module; this is in
some sense indicative of the a.bility of this fea.ture to split up a program into logically separate parts.
The scheme that we present for imple~nenting the dynarnic be11a.vior exhibits this facet - separate
segments of compiled code are produced for ea.ch nlodule and these are linked together dynamically
t o produce a desired program contest. However. the idea. of sepa.rate compilation is somewhat more
problematic a t the level of static intera.ct.ion. The nlain issue is t11a.t the parsing of an importing
module requires the various type, kind and operator declarations in the imported modules, implying
a dependence in compilation. This kind of beha.vior is, however, not unique to our context. The
usual solution to this problem is to introduce the idea of an interface between modules. Specialized
t o our context, this involves assigning a. set of dec1a.ra.tion.s to a module name. This assignment may
act in a prescriptive fashion on the actual set of declara.tions appearing in the module in the sense
that they may be required t o conform to the '.interface" requirements. Wi t11 regard to importation,
on the other hand, the interface decla.ratio11s could control what is visible. One consequence of this
view is that the associa.tion of types with consta.nts might be hidden. Such an occlusion must be
accompanied with a hiding of the constant itself a.ntl t,hus a.ffects the dynamic behavior. However,
this behavior can be modelled by the use of ilriplicit local declarations4. A proper use of this
idea will require predica.te definitions also to I)e hidden. This ability is not supported within the
current language: the ability to quantify esistentia.lly over predicate names requires an extension
of the syntax of D-formulas. The est,ension in syntas can be ea.sily accomplished as indicated in
[4] and [lo]. Although we do not trea.t this matt,er esplicitlp here. the desired extension does not
cause any semantical problems and. as indicated in [l6]. can also be accommodated within our

'A related proposal is co~ltaiiled in [I?]. However, tile suggestion there is to determine the local declarations
dynamically, depending on tlle goal to be solved. T l ~ i s appears not to help with the "st.atic" problem discussed here
and also makes i t difficult to generate code for a 111odule i ~ ~ t l r l) e ~ ~ t l e ~ r t of its use.

Proceedings of the 1992 XProlog Workshop

implementation scheme.
While the use of an interface a.s a method for prescribing interactions in this manner has several

interesting aspects, a more conservative view of it is also possible. The interface declarations may be
viewed simply as a distillate of the compilation of the module in question. Regardless of which view
is taken, we assume here that , when a module is being compiled, all the type, kind and operator
declarations obtainable from the imported modules are known. The scheme that we present in
the next section then generates the code for capturing the dynamic behavior of a module by using
only these interfaces and parsing the nlodule in cluestion. In this sense, our scheme is capable of
supporting the idea of separate compila.tion.

5 Implementing the Dynamic Semantics of Modules

The crucial issue that must be dealt with in an impleinentation of the dynamic aspects of modules
is the treatment of module implication. In particular. we are interested in the compilation of goals
of the form M ==> G. Withill a model that supports separate compilation, the production of code
from the predicate definitions appearing in ,\I nlust be performed independently of this goal. The
compiled effect of this goal must then be to enhance the program contest by adding the code in
M to it. Under this view, the symbol ==> becomes a primitive for linking code. The crucial issues
within an implementation thus beconle those of \that structures are needed for realizing this linking
function and of what must be produced as a result of the compilatioll of a module to facilitate the
linking process a t run-time.

We have developed a scheme elsewhere [16] for implementing goals that contain implications.
The dynamic semantics of module implication coupled with some features of the mentioned scheme
make i t an apt one to adapt to the present contest. The essence of our scheme is t o view a program
as a composite of compiled code and a layered access function to this code. The execution of an
implication goal causes a new layer to be added to an existing access function. Thus, consider an
implication goal of the form (C1, . . . , C',) => C; where, for / 5 1 5 n, C', is a closed program clause
of the form Vxl . . . Vx,AT or Vzl . . . Vz,,(G' 3 A,.) 5 . Each C', corresponds to a partial definition of
a procedure tha t must be added to the front of tlle prograin while an at tempt is made t o solve G.
These clauses can be treated as an independent progranl segnlent and compiled in a manner similar
t o that employed in the WAM. Let us suppose that the clauses define the predicates p l , . . . ,p,.
The compilation process then results in a segment of code with I . entry points, each indexed with
the name of a predicate. In our contest, con~pilatioil must also produce a procedure that we call
find-code tha t performs the following function: given a predicate name, this procedure returns the
appropriate entry point in tlle code segment if the name is one of p l , . . . ,pT and an indication of

- - - -

5 ~ n the general case, every implication goal call t,e transforn~etl inlo one of the form

where Q, is 3 or V and C,(zl,. . . , x,,) is a program clause of t l ~ e sort. irrdicatetl but w11icl1 may depend 0 1 1 the variables
X I , . . . , xm. Existential quantifiers may arise in co~~sicleratiorrs of r~ioclule i~nplication o111y if the module notion is
enriched to allow for parameterization. Universal cluarlt.ifiers [lo arisv intlirectly tl~rough locul declarations whose
treatment is considered later in this sectior~.

Keehang Kwon, Gopalan Nadathur and Debra Sue Wilson 'L 19

failure otherwise. This function can be implemented in several different ways such as through the
use of a hash-function, but the details will not concern us here. Returning now t o the implication
goal, i ts execution results in a new access function that behaves as follows. Given a predicate name,
find-code is invoked with it. If this function succeeds, then the code location that i t produces is the
desired result. Otherwise the code location is determined by using the access function in existence
earlier.

The process of enhancing a context described above is incomplete in one respect: the new clauses
provided for pl, . . . ,p, may in fact be adding t o earlier existing definitions for these predicates. To
deal with this situation, the compilation process must produce code for each of these predicates
that does not fail eventually, but instead looks for code for the relevant predicate using the access
function existing earlier. Rather than carrying out this task each time it is needed, using an idea
from [8], i t can be done once a t the time the nen program contest is set up. The idea used is the
following. A vector of size r can be associated with the implication goal, with the zth entry in this
vector corresponding to the predicate p,. Now, the cornpilation of the body of the implication goal
creates a procedure called lznk-code whose purpose is to fill in this vector when the implication
goal is executed. This procedure essentially Uheh the n a ~ n e of each of the predicates and the earlier
existing access function to compute an entry point to available code or, in case the predicate is
previously undefined, t o return the address of a failing procedure. To complement the creation of
this table, the last instruction in tlie code geiieratetl for each of tlie predicates p, must actually
result in a transfer t o the location indicated by the appropriate table entry.

In the framework of a WAM-like implementation, the layered access function described above
can be realized by using what are called ir~aplzcatioiz poz~zt records. These records are allocated on
the local stack and correspond essentially to layers in the access function. The components of such
a record, based on the discussions thus far. are the following:

(i) the address of the find-code procedure corresponding to the antecedent of the implication

goal 1

(ii) a positive integer r indicating the number of predicates defined by the program clauses in the
antecedent,

(iii) a pointer t o an enclosing implica.tion point record. and thereby to the previous layer in the
a.ccess f ~ ~ n c t i o n , and

(iv) a, vector of size r that indica.tes the nest clause t.o t,ry for each of the predicates defined in the
antecedent of the implica.tion goal.

The program context existing a t a particular stage is indicated by a pointer to a relevant implication
point record which is contailled in a register caller1 I. Now a goal such as (C 1 , . . . ,C,) => G' is
compiled into code of the form

push-impl-point t
{ Compiled code for C; }

pop-imp1 -point

220 Proceedings of the 1992 AProlog Workshop

In this code, t is the address of a statically created ta,ble for the antecedent of the goal that indicates
the address of i ts find-code and link-code procedures and the number of predicates defined. The
push-impl-point instruction causes a. new implica.tion point record t o be allocated. The first three
components of this record are set in a straightforwva,rd manner using the table indicated and the
contents of the I register. Filling in the last component involves running link-code using the access
function provided by the I register. The final a.ction of the instruction is t o set the I register to
point t o the newly created implication point record. The effect of the pop-impl-point instruction
is t o reset the program context. This is achieved simply by setting the I register t o the address of
the enclosing implication point record, a value stored in the record the I register currently points
to.

There are a few points about the scl~eme t1escril)ed that are worth mentioning. First, under
this scheme the compila.tion of an at,omic goal does not yield a a instruction to transfer control to
a particular code address. Rather, the instruction produced must use an existing access function
(indicated by the I register) and a.n indes generated fro111 the name of the predicate t o locate the
relevant code. Notice that this behavior is to 1)e anticipated, given the dynamic nature of procedure
definitions. The second observation pertains to the resurrection of a context upon backtracking.
Under our scheme, the program contest is reduced to the contents of a single register. By sav-
ing these contents in a WAM-like choice point record a.nd by retaining implication point records
embedded within choice points, the necessary contest switching can be easily achieved.

We turn finally to the implementa.tion of luodule implica.tion. Let us consider first the treatment
of a module implication of the form A4 ==> G where A4 is a, module with no local declarations
and no import statements. From the perspective of dyna.mic semantics, M can be reduced to a
conjunction of closed D-formulas of the forin V.X~ . . .Vz,A, or Vxl . . .Vx,(G > A,) , i .e. , of the
form just considered. Thus the scheme outlined a,bove can beapplied almost without change to the
treatment of this kind of nlodule implica.tion. Under this scheme, the compilation of the module M
must produce code that implements the relevant f i11.d-code and Zin,l;-code procedures in addition
t o the compiled code for the various predica.tes defined. The linking operation corresponding t o
==> effectively amounts to setting up an implicat.ion point record. The main task involved in this
regard is that of executing the li~zk-code ful~ction wvhich in a sense links the predicate definitions
in the module t o those already existing in the pr0gra.m.

The handling of local decla.rations does not. pose a.lly major complica.tions. The treatment of
a goal of the form E => G that is indicated by the operational semantics essentially requires the
existential quantifiers a t the front of E to be repla.ced by new constants and the resulting D-formula
t o be added t o the esisting progra.111. Impleinentilrg this itlea, results in the local constants in E
being conceived of as constants but wvith a numeric ta.g t11a.t prevents them from appearing in terms
substituted for logic variables in G. At a level of tletail. these constants can be identified with
cells in an implication point record and the p~s.sh-in2ljl-ljoilal instruction has the additional task of
allocating these cells and of tagging the111 wit11 the appropria.te numeric value.

The only remaining issue is the treatment of import declara.tions. Let us assume that a module
M imports the modules All,J42 a,nd A13. F1.0111 the perspective of dynamic semantics, this impor-
tation has an effect largely on the clauses appearing i n 11f. Let P : - G be one of these clauses.
Based on the semantics of importing. this clause is to be interpreted as the clause

Keehang Kwon, Gopalan Na.da.thur a.12d Debra Sue M;ilsoll

This translation actually indicates a stra.ig11tforwa.rd method for implementing the effect of im-
portation: the body of the clause ca.n be compiled into the code generated for G nested within a
sequence of push-impl-poiizt and pop-iiizplpoiizt instructions. Noting tl1a.t module M may contain
several clauses, an improvement is possible in t'llis basic scheme. We identify with a module two
additional functions that we call load-imports and uizload-imports. In the case of module M,
executing the first of these corresponds conceytua.lly to esecuting the sequence

push-impl-point A41
push-impl-point A42
push-impl-point A43

and, similarly, executing the second corresponds to executing a sequence of three pop-impl-point
instructions. The address of these t\vo functions is includetl in the implication point record created
when a module is added to the program c o ~ ~ t e s t . F~.om the perspective of compilation, the code
that is generated for the clause consideretl now take> the f'ollo\ving shape:

{Code for unifying tlle head of the cla.use)
push-import-poiizt A4

{Compiled code for goal C;)
pop-importgoint M

The push-import-point instruction in this sequence has the effect of invoking the load-imports
function corresponding to module A! and the pop-Sii7yort-ljoi11t instruction similarly invokes the
unload-imports function.

The scheme described above assumes that the a.dtlress of the compiled code .and the various
functions associated with a module caa be indexed by the name of the module. This information
is organized illto entries in a global ta,ble wit11 ea.ch entry 11a.ving tlle following components:

(i) r , the number of predicates defined in t,he module,

(ii) the starting address for the con~piled code seg~iient for the predicates defined in the module;
f ind-code will return offsets from this a.ddress.

(iii) the address of the f iiad-code routine for the module.

(iv) the address of the Eiizk-code routine for the module.

(v) the address of the load-inaporl.5 r o u t , i ~ ~ e for t,lle niotlule. and

(vi) the address of the uizloc~.d-inapo~rts routine for tlit nlodule.

In reality not every module is loaded into lliemoy at the beginniilg of a progralii and hence not
every module has an entry in the global table. If a module that does not already reside in memory
is needed, then a loading process brings the various segments of code in and creates an appropriate
entry in the global table for the nodule. It shoulcl be clear by this point that the codes and
information needed for each module can be ol~tained by a compile-time analysis of that module
and the necessary interface definitioils.

222 Proceedjligs of the 1992 XProlog Workshop

6 Controlling redundancy in search

The semantics presented for module implication and for the import statement could result in the
same module being added several times to a program contest. This has a potential drawback: it
may result in redundancy in the search for a solution to a goal and the same solution may also be
produced several times. To understaading this possibility, let us consider the following definition
of a module called sets which imports the module lists presented in Section 4.

module sets.
import lists.
type subset (l ist A) 4 (l ist -4) - o.
subset nil L .
(subset X :: L 1 L2) : - ((member .X* L2),(.521bstf L1 L 2)) .

Assume now that a11 attempt is made t,o solve t,he goal

sets ==> subset 1 :: 2 :: 4 :: nib 1 :: 2 :: 3 :: 1 ~ 1 1

Using the linear format described in Section 4. part of the effort in solving this goal is represented
by the following sequence:

sets ?- (s ~ ~ b u e t 1 :: 2 :: 4 :: nil 1 :: 2 :: 3 :: nil)
l ists , sets ? - (membel. 1 1 :: 2 :: 3 :: itl.1) SUCC
lists , sets ?- (.s;~~bsel 2 :: 4 :: 1zil 1 :: 2 :: 3 :: ni l)

l ists , l ists ,sets ?- (menzber 2 1 :: 2 :: 3 :: nil)
Eists,lists,sets ?- (n?,einber 2 2 :: 3 :: 1?.%1) SUCC
lists , lists,sets ? - (subset 4 :: nil 1 :: 2 :: 3 :: ni l)

l ists , l is ts , l is ts , sets ?- (111.enzber 4 1 :: 2 :: 3 :: ni l)

It is easily seen that the attempt t o solve the last goal in this sequence in the indicated program
context will fail. Notice however, that a consideral~le amount of redundant search will be performed
before this decision is reached: there are three copies of the i1iodule lists in the program context
and the clauses for menzber in each of these will be used in turn in the solution attempt. A
similar redundancy is manifest in the answers that are computed under the semantics provided.
For instance, the query

sets ==> subset S 1 :: 2 :: nil

will result in the substitution 1 :: 2 :: 1ail for .S being generat,ed twice tllrougl~ the use of the clauses
in two different copies of the nlodule list..;.

The extra copies of the module lists. while 1ea.ding to redundancy in search, do not result in
an ability t o derive new goals or t o find a.tlditiona1 answers. Adding these copies also results in a
runtime overhead: given the implementation scheme of the previous section, the addition of each
copy results in the creation of an ilnplication 1)oint record, thereby consuming both space and
time. A pragmatic question to ask, tliereforc.. is \rl~ethcr the number of copies of any module in

Keehang Kwon, Gopalan Nadathur a ~ ~ d Debra Sue Il'ilso~i 223

a program context can be restricted to just one. In answering this question there is an important
principle t o adhere to. It is desirable that the logical semantics of our language not be altered.
In particular, we still want to be able t o understal~d our language by using the derivation rules
presented in Section 3 and t o understand the dyna.mic serna.ntics of modules through the devices
discussed in Section 4. This principle is important because, as argued in [12], several interesting
tools for analyzing the behavior of progra.nls depend on this kind of a logical understanding of
programming language constructs. In light of this principle, the question raised can be changed
t o one of the following sort: is it possible to preserve the important observable aspects of the
given semantics while perhaps changing the cletadls of the opera.tiona1 semantics so as t o produce
a preferred computational behavior. ,411 a.ffirma.tive answer to this question permits us to have the
best of both worlds. The original senmntics ca.11 be used for analyzillg the interesting aspects of the
behavior of programs while an actua.1 implenle~lt,ation can be based on a nlodified set of derivation
rules.

In the context being considered. the iml~ortant a,spects of program behavior are the set of
queries that can be solved and the answers tha.t call be found to any given query. Both aspects
are completely determined by the set of sequents that have derivations. Thus, based on the above
discussion, we might contemplate cha.nging the underlying derivation rules for our language so as
t o reduce the number of derivations for any sequent while preserving the set of sequents that have
derivations. With this in mind, we observe tl1a.t the main source of redundancy in the example
considered above is the AUGA4EATT rule. -4ssume t11a.t we wa.nt to solve a goal of the form D =>
G. The AUGMENT rule requires D to be a.dded to the program context before attempting to
solve G. Notice, however, t l ~ a ~ t if D is alrea.dy a,va,ila.ble in the progra,m context, this addition is not
likely t o make a derivation of G possible where it earlier was not. A more interesting case is when
the implication goal is of the form (3 r 1 . . . 3 x n D) => G'. In this case the AUGMENT rule requires
the addition of D[cl /x l , . . . , c n / x n] (for a. suit.a,ble choice of c i s) to the program prior to the attempt
t o solve G. However, if the progra.111 a.lready conta.ins a, cla.use of the form D [c ; / x l , . .. ,c',/x,], the
addition is again redundant from the perspective of being a.ble to solve G.

In the rest of the section we prove the observations conta.ined in the previous paragraph. To-
wards this end, we define an alternative to the AVC;A-IENT rule.

Definition 5 Let G be a type variclble free query artd let P be a program. Then the AUGMENT
rule is applicable i f G is of the foniz (3 x 1 . . .3n:,,D) => C;' nnd can be used to construct a derivation
for P -+ G as follows:

(i) If a fornzula of the form D [c { / x l ,c;/x,] c10e.q not appear in P , then by constructing a
derivation for D [c l / r l , c,/.r,,], 7' --- G' udierr, for 1 5 i 5 12, c, is a nonlogical constant
of the same type as z, not c~ppcnriizg 2 1 1 the fr,~.ri,rrl[r.c 212 P.G.

(ii) If a formula of the form D[c; / :c l , c:, /;c,,] appecrrs in P , then by constructing a derivation
for P - GI.

Let us refer to the derivation rules presented earlier as D S 1 and let DS2 be obtained from D S 1
by replacing AUGMENT with AUGhllEI'T'. l\;e say that a sequent has a derivation in D S 1 (D S 2)

224 Proceedjugs of the 1992 XProlog Workshop

if a derivation can be constructed for it by using the rules in D S 1 (respectively, DS2) . We now
make the following observation about derivations in DS2.

Lemma 6 Let G be a type variable free query, let D be a, program clause whose free variables are
included in XI,. . . , x, and let PI and P2 be programs that between them contain a formula of the
form D [c i / x l , . . . , cL/xn] where, for 1 5 i 5 n , c: is a nonlogical constant of the same type as x;.
Further, for 1 5 i 5 n , let c; be a noizlogical constant of the same type as c: that do not appear
in D. Finally, let Pf, P i and G' be obtained from P I , P2 and G , respectively, by replacing, for
1 5 i 5 n , c; with c:. Now, if P1, D[cl /x l , . .. , c,/x,],P2 - G has a derivation of length 1 in
DS2, then there must also be a derir~a,tion in 1352 for P:, Pi - G' that is of length I or less.

Proof. We prove the lemma by an induction 011 the length of the derivation in DS2 of the first
sequent. If this derivation is of length 1, it must have been obtained by using the SUCCESS rule.
Now, if G is equal to an instance of D [c l / x l , c,,/xn]. tlien G' must be equal to an instance of
D [c ; / x l , . . . , cL/xn] . Further, if G is an instance of a clause in PI or in P2 it must be the case that
G' is an instance of a clause in P; or in 7';. From these observations it follows that the SUCCESS
rule is applicable t o Pi, P; - G' as well and so this sequent also must have a derivation of length
1.

Suppose now that the derivation of PI. D[cl /.[.I c,,/n*,,]. F2 - G is of length (1 + 1). We
assume that the requirements of the lemma are satisfied by all sequents that have derivations of
length 1 or less and show this must also be the case for the sequent being considered. The argument
proceeds by examining the possible cases for the first rule used in the derivation in question.

Let us assume that this rule is an AND. In this case G must be of the form GI A G2 and
there must be derivations of length 1 or less for the sequents P I , D [c l / x l , . . . , cn/x,], P2 - GI
and P I , D [c l / x l , . . . , c,/z,], P2 - G 2 . By hypothesis, there are derivations of length 1 or less
for P:, Pi - G1 and P i , Pi - G2. Using these derivations together with an A N D rule, uir

obtain one of length 1 + 1 or less for P; , Pi - G', A G;. Now. G' must be equal t o the formula
G', A Gh. Thus the desired coilclusioii is obtained in this case.

Arguments similar t o that for A X D call be supplied for the cases when OR or INSTANCE is
the first rule used. In the case that GENERIC' is used, G must be of the form VyGl and there must
be a derivation of length 1 for

for some nonlogical constant n of the same type as ?/ that does not appear in G, D [c l / x l , . . . , c,/x,]
or in the formulas in IF1 and &. We call allnost use an argument similar to that employed for
AND. The only problem is that n nligllt be identical to soine c: for 1 5 i < n. However, the
following fact is easily seen: a derivation of lei~gth 1 for a sequent Z call be transformed into one of
identical length for a sequent obtained from Z by replacing all occurrences of a nonlogical constant
b with some other (nonlogical) coilstant of the sanle type. Using this together with the "newness"
condition on a , we nlay assume that (I i b distinct fro111 all t 11e c:s. The argument in this case can
then be completed without trouble.

In the case that the first rule employed is BAC'IiCHAIN, a coinbination of the observations
used for SUCCESS and .4ND inust I>e e m ~ ~ l o ~ ~ e d . In particular. let G{ be the result of replacing, for

Keehang Kwon, Gopalan Nadathur aitd Debra Sue Mrilson 22.5

1 2 i 2 n, all occurrences of ci by c{ in GI. Now, if GI 3 G is an instance of D[cl /x l , . . . , cn/xn],
then G', 2 G' must be an instance of D[c',/xl,. . . , c',/xn]. Further, if G1 > G is a n instance of a
program clause in P , then G', 3 G' must also be an instance of the same clause. Finally, using the
hypothesis, if Pl, D[cl /x l , . . . , cn/zn], P2 - G1 has a derivation of length 1, then P i , P; - G',
has a derivation of length 1 or less. Using these various facts, it is easily seen that if the first rule
used in the derivation for P l , D[cl/xl , . . . , cn/xn], P2 --+ G is BACKCHAIN, then a derivation
can be provided for Pi, P; - G' in which the last rule is once again a BACKCHAIN and, further,
this derivation will satisfy the length requirements.

Suppose now that the first rule used is AUGMENT' and that case (i) of this rule is the ap-
plicable one. Then G must be of the form (3y1 . . .3ymD1) 3 GI and further, no formula of the
form Dl[a{/yl,. . . , a',/y,] must, appea.r in T1. D[c l /x l , c,/.z.,I7 'P2. By assumption, there is a
derivation of length 1 for

where, for 1 5 i 5 m, a, is a constant of appropriate type and meeting the needed requirements of
newness. By an argument sinlilar to that used in the case of BACKCHAIN, we can assume that
the a,s are distinct from the c,s and the c:s. Then, using the induction hypotl~esis, there must be
a derivation of length 1 or less for

where D', and Gi are obtained from Dl a.nd GI by the repla.cement, for 1 5 i < n, of c; by c:. Now,
if a formula of the form Dl[a',/yl:. . . ,ciL,/yn,] did not a,ppea.r in PI or P 2 , then one of the form
Di[a{/yl, . . . , a&/ym] cannot appea.r in Pi 01: P i . Thus, the derivation of the indicated sequent can
be used together with an AUGMENT' rule to obtain one for P i , Pi -+ (3yl . . . 3ym Di) > G{ ; a
newness condition has t o be satisfied by (1 1 , (i7,, for the AUGMENT rule to be used, but this can
be seen t o be the case, using particula,rly the a.ssumption of distinctness from the cis. The derivation
of the last sequent is obviously of length (I + 1) or less. Observing that (3y1 . . .3y,Di) > G{ is
the same formula as Gf , the lemma is seen to hold in this case.

The only situation remaining t o be cousideretl is t11a.t \vhen the first rule corresponds to case
(ii) of AUGMENTf. The argument in this ca.se is similar to that enlployed for case (i) of the same
rule. The details are left to the reader.

Using the above lemma. we now sho\v the equivalence of D.91 a.nd DS2 from the perspective of
derivability of sequents of the kind we are interested in.

T h e o r e m 7 Let P be a program and let G be n fype ucr.r.iab1e free query. There is a derivation for
P - G in D S 1 if and only if there is a (lerivrrfio~~ for the .snnze sequent in 0 5 2 .

Proof. Consider first the forward direction of the theorem. The only reason why the derivation in
D S 1 might not already be one in DS2 is because the .4UC;A4ENT rule that is used is in some cases
not an instance of the AUGMENT' rule. Consider the last occurrence of such a rule in the deriva-
tion. In this case, a derivation is constructetl Tos a S C O U ~ I I ~ OF the fol.111 'P' - (3x1 . . . 3xnD1) > Gf

226 Proceedirlgs of the 1992 XProlog Workshop

from one for the sequent Dt[cl/xl,. . . , cn/xn], P' - G', where the cis are appropriately chosen
constants. Given that we are considering the last occurrence of an errant rule, the derivation for the
latter sequent must be one in D S 2 as well. Since the application of the AUGMENT rule being con-
sidered does not conform to the requirelnents of the AUGMENT' rule, it must be the case that, for
some choice of constants ci , . . . , ck, D'[ci 1x1, . . . , c',/x,] appears in P'. But then, using Lemma 6
and the fact tha t the constants c l , . . . , c, must not appear in G' or in the formulas in P ' , we see that
P' -+ G' has a derivation in DS2. Using this derivation together with case (i) of the AUGMENT'
rule, we obtain a derivation in D S 2 for the original sequent, i.e., for P' - (3x1 . . . 3xnD1) > G'.
We repeat this form of argument t o ultimately transform the derivation in D S 1 for P - G into
one in DS2.

To show the theorem in the reverse tlirect.ion. we observe t,lie following fa.ct: for any program
P', type variable free query G1'and pr0gra.m cla,use D', if 'F' - Gt has a derivation in DS1, then
Dl, P' - G' also has a derivation in DS1. Now, a, deriva.tion in DS2 may not be a derivation in
D S 1 only because case (i) of AUGhIENT' was used in some places. However, this can be corrected
by using the observation just made. In pa.rticu1a.r. we consider the last occurrence of an errant rule
in the derivation and convert it into an occurrence of the .I\lTGhlIENT rule by using the above fact.
A repeated use of this transformati011 yields the theorem.

An easy consequence of the a.bove theorem is the following:

Corollary 8 Let P be a. progmnz un(1 let G' be (1. query. TI1.6 set of answers to G in the context of
P is independent of whether rules iiz DS1 or i~z DS2 crre used in constructing derivations.

We have thus shown that , froin the perspective of solving queries and computing answers, it is
immaterial whether the rules in D,S1 or those in D.92 are used to coiistruct derivations. By virtue of
Proposition 4, we can in fact use the notioil of intuitionistic derivability for the purpose of analyzing
programs in our language while using the rules in 0.52 to carry out computations. At a pragmatic
level, there is a definite benefit to using the ATIGMENT' rule instead of the AUGMENT rule in
solving queries, since considerable redundancy in search can be eliminated by this choice. We use
this observation t o yield a more viable ilnplelnentation of inodule implication and of the import
statement in the next section. We note that ailother approach to controlling the redundancy arising
out of the module semantics is suggested in [12]. However. this approach is less general than the
one considered here in that it applies oiily to in7l)ort statelnents and not to module implications.
Moreover, the correctness of the approach is only co~ljectured in [12]. The observations in this
section can be used in a straiglitfor\vard fashion to verify this conjecture.

7 An Improved Implementation of Modules

We now consider an implementation of our language that uses the AUGMENT' rule instead
of the AUGMENT rule whenever possible. Under the new rule, solving an goal of the form
(3x1 . . .3x, D) > G requires checking if thew i h already a clause of the forill D[c l /x l , . . . , cn/xn]
in the program. Clearly an efficient procet1111.e for performing this test is a key factor in using

Keehang Kwon, Gopalan Na.dat h ur a 11 d Del~ra Sue IVilson 227

the changed rule in an actual implementation. It is difficult to achieve this goal in general. One
problematic case is when the goal (3 . ~ ~ . . .3x,D) > G arises as part of a larger goal and D contains
variables that are bound only in this larger context. Illstantiations for these variables may be de-
termined in the course of execution, thus making it difficult to perform the desired test by a simple
runtime operation. In fact, the device of delaying illstalltiations might even make i t impossible to
determine the outcome of the test a t tlie time the implication goal is to be solved because "clauses"
in the program might contain logic variables. An example of tllis kind was seen in Section 3. The
attempt t o solve the goal 3L(rev 1 :: 2 :: n i l L) resulted there in the clause (rev-aux n i l L) being
added t o the program. The precise shape of this clause clearly depends on the instantiation chosen
for L. A test of the sort needed by .41TC:h4ENT1 cannot I)e performed with regard to this clause
prior to this shape being determined.

The above discussion demonstrates that the optilnization enlbodied in the AUGMENT1 rule can
be feasibly implemented only relative to a re5trictcd class of prograln clauses, namely, clauses that
do not contain logic variables. Of particulal interest fl oln tllis pel spective is a statically identifiable
closed E-formula that has the potential f o ~ appearing repeatedl) in the antecedent of irnplication
goals. Given such a forniula E, a mark call he asbociated with i t that records whether or not the
current goal is dynamically enlbedded witllin the invocation of an irnplication goal of the form E
=> G'. If i t is so embedded and if the current goal is itself of the form E => GI, then, in accordance
with the AUGMENT1 rule, the computation can proceed dilectly to solving GI without affecting
additions t o the program.

The dynamic semantics of module iml,lication provides a particular case of the kind of formula
discussed above, namely the (closed) E-for~nula identified with a module. Thus, assume that we
are trying t o solve the goal 11/1 ==> G. If we know that the module A4 has already appeared in the
antecedent of a module implication goal within wl~ich the current one is dynamically embedded,
then no enhancements t o the program need be made. The implementation scheme presented in 5
provides a setting for incorporating this test in an efficient manner. The essential idea is that we
include an extra field called added in the record in the global table corresponding to each module.
This field determines whether or not tlie clal~ses in a particular module have been added to the
program in the path leading up to the currel~t point in colnputation. When the goal M ==> G is
t o be solved, the added field for 44's entry in the global table is checked. If this indicates that the
clauses in A4 has not previously bee11 added. therr the addition is performed and the status of the
field is changed. Otherwise tlie computation proceeds directly to solvillg G'.

While the idea described above is siniple. soine details have to be paid attention to in its actual
implementation. One issue is tlie action t,o be t.aken on tlie completion of a, module implication
goal. At a conceptual level, the s~~ccessf l~l sollltiol~ of the goal 44 ==> G must be accompanied
by a removal of the code for A i l ; this is a.ccon~plistretl i l l our earlier scheme by the instruction
pop-inzpl-point. However, given the c u r r e ~ ~ t approa.ch, an a.ctual removal must complement only
an actual addition. To facilitate a, determina.tion of the right action to be taken, the added field
is implemented as a counter ra.ther t(1ra.n a.s a hoo1ea.n. This field is initialized to 0. Each time a
module is conceptually added to the progranl col~test . its c~t lded value is incrernented. A conceptual
removal similarly causes this value to be t l ~ > c r ~ ~ ~ r e n t c d . . ~ I I actual removal is performed only wile11
the counter value rea.ches 0.

228 Proceedings of tile 1992 XProlog Workshop

The second issue that must be considered is the effect of backtracking. As we have noted, this
operation might require a return to a. different pr0gra.m contest. An important characteristic of
a program context now is the status of the added fields, and backtracking must set these back to
values that existed a t an earlier computation point. To permit an accomplishment of this resetting
action, changes made t o tltis field must be trailed. A naive implementation would trail the old
value every time a change needs to be made, i.e., every time a module is added or removed. A
considerable improvement on this ca.n be obtained by tra.iling a value only if there is a possibility
t o return t o a state in which it is operative. Thus consider a. goal of tlte form

When the added field for 111 is incremented for the second t,ime. there is a need to trail the old value
only if unexplored alterna.tives esist in the a.tbempt to solve G I . There is a simple way to determine
this within a WAM-like implernenta.tion. Let us suppose we record the address of the most recent
choice point a t the time of processing the outermost (module) implication in the global table entry
corresponding t o m. Now, when the embedded implica.tion is processed, we compare the address of
the current most recent choice point with the recorded value. There is a backtracking point in the
solution of G1 only if the first is great,er t,llaii the secoild. Simila.r.ly, consider the decrement that
is made to the added field when a goa.1 of tlte form 177 ==> C; is completed. The old value needs to
be trailed only if choice points exist within t.he solution for. C;. A test identical to that described
above suffices t o determine whether t,liis is the ca.se.

In order t o implement the above idea., one more field tnust be a.dded to the entries in the global
table for modules, i .e . , one tlta,t records t,he most recent choice point. prior to the latest change
to the added field. This field is called mrcp a.iict is initialized to the bottom of the stack. Notice
that this field needs to be updated ea.clt time aclclecl has t,o be trailed, and this change must also
be trailed. Accordingly, each cell in the tsa.il introduced for ma.naging the added values contains
three items: the name of a, module. the old value of cr.clcled, and tlte old contents of the mrcp
field. Pointers to tltis trail must be ma,iuta.iiled in clloice points and the trail must be unwound
in the usual fashion upon ba.cktra.cking. Module i~uplication is compiled as before, although the
interpretation of push-irn.111-poi~al in and pop-iii1.pl-poii2t in changes. In particular, these can be
understood as though they are invoca.tions to the procedures pushimyl(m) and popimpl(m) that
are presented in pseudo-code fashion in Figure 4. In this code we write m.nzrcp and m.added
to denote, respectively, the narc11 and aclded fields in the global table entry corresponding to the
module m. We also recall that the B register. in the \.\!.4h.I setting indicates the most recent choice
point.

There is an auxiliary benefit to two fields that has been added under the present scheme to
the records in the global ta.ble. .4s inentioned in Sect,iolt .5, our iinplementation permits modules
t o be 1oa.ded 011 demand, and hence does not require a.ll modules to be available in main memory
during a computation. A question that wises is \vhether ntodules ca,n also be unloaded to reclaim
code spa.ce. This unloa.ding must be done carefully beca.use a, rnoclule not currently included in the
program context might still be required l)eca.~lse of tlte 1)ossil>ility of backtracking. A quick check
of whether a module cam be unloa.detl is obtained by exanlining t,he t,wo new fields in the global
table entry for a module. If the 1iz7.cp field 1)oints to the I,ot.ton~ of the stack and added is 0, then
the module is not needed a.nd can hc unloaclecl.

Keehang Kwon, Gopalan Nadath ur a11 d Debra Sue \liilson

p u s h i m p l (m)
beg in

if m a d d e d = 0
t h e n create a n inzplication poi7i.t reco~.d f o r 111:

if m . m r c p < B
then.
begin

t r a i l (m , nz.nzrcp, nt.arlded);
m . m r c p := B ;

e n d ;
m.added : = m.adcled + 1

e n d ;

p o p i m p l (m)
beg in

if m . m r c p < B
t h e n
beg in

t r a i l (n z , nz.nzrcy. ni.c~drled):
m . m r c p := B ;

e n d ;
m.added := m.added - 1:
if m.added = 0 t h e n

S e t I t o m o s t recent inzplicniion poi~st
in record pointed t o b y I

end

Figure 4: Adding and Removing h~lodules fro111 Program Colltests

Proceedings of the 1992 XProlog Workshop

The implementation of the dynamic effects of intport can, in principle, be left unchanged.
However, a significant efficiency improvement can be obtained by noting the following: once a
clause from a module m has been used by virtue of the BACKCHAIN rule, there is no further need
t o check if the modules imported by 112 have been a.dded to the program context. To utilize this
idea, we include two more fields in each in1plica.tion point record:

(i) A field called backchained tl1a.t records the number of times a. cla.use from the module to which
the implication point record corresponds has been backchained upon.

(ii) A field called mrcp that records the nlost recent clioice point prior to the last change to
backchained.

When the implication point record is created, the bnckchrtcnecl field is initialized to 0 and the mrcp
field is set t o point to the bottom of the stacl;. illhenever a clause from a module corresponding to
the implication point record is backchained upon. a conceptual addition of the imported nlodules
must be performed. An actual addition must be contemplated within the present scheme only
if the backchained field is 0. In any case, this field is incremented before the "body" of the
clause is invoked. The increment to backchr~zned is complemented by a decrement when the clause
body has been successfully solved. Finally, an actual removal of the imported modules from the
program context must be contemplated only when Br~ckchrrir~ed becomes 0 again. For tlle purpose
of backtracking, it may be necessary to trail an old value of backchained each time this field is
updated. The mrcp field is useful for this purpose. Essentially, we compare this field with the
address of the current most recent choice point, obtained in the WAM context from the B register.
If the latter is greater than the nzrcp field, then the old value of backchained must be trailed. This
action must also be accompanied by a trailing of the existing mrcp value and the update of this
field t o the address of the current most recent choice point.

The rationale for the various actions described for handling imports is analogous t o that in the
case of module implication, and should be clear from the preceding discussions. At a level of detail,
another trail is needed for maiiltainiilg the old values of the bnckchnzned and mrcp fields. The
cells in this trail correspond once again to triples: the address of the relevant implication point
record and the bacbchained and ii7ibcp values. Poii~ters to this trail must also be maintained in
choice points and backtracking must cause the trail to be unwound. The compilation of clauses
in modules is performed as before: the code produced for the body of a clause in module m
must be embedded within the instructions pusI~-i i i~port- l~oii~f nj and pop-import-point m. These
instructions can be understood as though t h e are invocations to the procedures pushimport (m)
and popimport(nz) that are presented, in pseudo-code fashion, in Figure 5 . Use is made in these
procedures of a register called C I that points lvithin our implementation to the implication point
record from which the clause currently being considered is obtained. Further, we write CI.mrcp
and CI.backchained to denote tlle n ~ r c p and backchnrncd fields in the implication point record that
CI points to.

It is important t o note that once a clause from a nlotlule has been backchained upon, the two
instructions push-import-point and pop-rinporf-porn1 incul very little overhead with respect to
clauses in that module. In particular. at most two tests, a trailing and two updates are necessary

Keehang Icwon, Gopa1a.n Nada t l ~ u r anti Debra Sue \l.'ilson

pushimport (m)
begin

i f CI.backchained = 0
t h e n call load-imports for 112

i f CI .mrcp < B
t h e n
begin

trai l (CI ,CI .ozrcp ,CI .bc~ckc~~ci i i~e~~) ;
CI.mrcp := B ;

end ;
CI.backchained := CI.bnckchcii7zr-r1+ 1

end;

popimpor t (m)
begin

i f CI.mrcp < B
t h e n
begin

trai l (CI,CI.mrcp,CI.b~~.ckclrci,ined);
CI.mrcp := B ;

end ;
CI.bacbchained := CI.backclrc~iiz.ec1 - 1:
i f CI.backchained = 0 then

invoke unload-imports for nl
end

Figure .5: Adding Importetl hlodules t o a. Program Context

232 Proceedings of tile 1992 X Prolog Workshop

for each instruction. This is much less work t lnn tlie creation of implication point records that
was necessary under a direct implementa.tion of tlie opera.tiona1 semantics. Further, this overhead
appears t o be acceptable even if these iiistructions a.re executed repeatedly.

We consider an example to illustrate the manner in which redunda,ncy is controlled within the
changed implementation. Let us a.ssume t,hat t,he modules 1120, ml and m2 are defined as below.

module mO. 1nod1~1e ml. module m2.
import ml , m2. inaport n22. kind i type.
type p i o. t y p e q i - o. type a i.
(p X) : - (q X) , (t S). (q -X) :- (r -I7). t y p e b i.
(T ax) :- (s -y). (r a).

(S 6) .
(t 6).

The attempt t o solve the goal mO ==> (y .I-) is presented below. We auglnent the linear format of
Section 4 as follows in this presenta.tion: Each module in tlie program context is presented by a
pair consisting of its name a.nd the value of the backchailzed field in the implication point recdrd
created for it . At the end of ea,cli line? a list of pa.irs is presented that indicates module names and
the values of the added field in the global ta,ble entry for each of them.

(m0,O) ?- (p S) [(.lo, l),(ml10),(m2,0)1
(m2,O),(ml,O),(mO,l) ?- (rl-t-) [(M O , l) , (m l , l),(m2,1)1
(m2,0),(ml, 11, (?no, 1) 7- (1. S) Y - 1 ,S'I;CC' [(I ~ o , l) , (m l , l) ,(m2,2)]
(m2,0),(m1,0), (mO, 1) ?- (i (1) F . 4 1 ~ [(7n0, l) , (m l l l),(m2,1)1
(n22,O),(ml, I) , (1720,l) ?- (1. -1-1 [(n20, l) , (n z l , l),(m2,2)1
(m2,O),(ml, l) , (m0,2) ?- (Y) S <- b .S'17C'C' [(1 1 1 0 , 1) , (1 1 2 1 , l),(n22,2)]
(m2,O),(ml, 0), (1n0,l) ?- (t 6) 5'l 'C'C' [(nxo, l) , (m l l 1) 1 (m 2 1 I)]

An interesting point t o note in this comput,a.tion is b1ia.t tlie clause (T a) in module m2 is used
only once in solving the subgoal (T X) even though there are conceptually two copies of m2 in
the program context when the subgoal is invoked. Simila.rly, aa attenlpt to find another solution
t o the query will fail, even though the same solut.ion ca.11 he found five more times under a naive
interpretation of the given sema.ntics.

8 Conclusion

We have examined a notion of n~odules for the logic progranliiling language XProlog in this pa-
per. The notion considered provides a means for structuring the two components that determine
programs in this language: the type, kind and operator declarations and the procedure definitions.
Using a module typically involves making itb contents available in some other context. As explained
in some detail, this operation has static a11t1 dynatnic effects within AProlog. Our focus here has
been on the implementation of the dynamic ahpectb of rnodules. At a level of detail, we have

Iieehang Icwon, Gopa1a.n Na.da.thur alld Debra. Sue 'i'i'ilson 233

proposed an implementation methotl tl1a.t is based on a \VA4M-like machine and that has several
interesting features:

(i) It supports the idea of compiling modules separately. In particular, the compilation of a
module produces WAM-like code based on only the program clauses appearing in the module.

(ii) Interpreting a logical operation a.s a primitive for linking a module into a given program
context, i t uses a compilation process to generate linking code and includes run-time structures
for accomplishing the linking function.

(iii) Based on a theoretical ana.lysis of this notion, it includes ~llechanisms for reducing redundancy
inherent in the given dyna.mic selllantics of t.he module fea.ture. The redundancy check is based
on a two-level test t11a.t in the usual situation ca.n be ca.rried out with very little overhead.

There are several significant enrichments to a Prolog-like language that are embodied in XProlog
in addition t o the module feature. A complete implementation of this language must include
mechanisms for dealing with all these features. -4s mentioned already, a detailed consideration
has been given t o the features other than the module notion elsewhere, resulting in an abstract
machine for the core language described in Section 3. An actual implementation of this machine
is currently being undertaken. The mentioned machine is entirely compatible with the ideas for
handling modules that are presented in thiq paper anci we plan to include these ideas within our
implementation effort in the near future.

References

[I] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56-
68, 1940.

[2] Conal Elliott and Frank Pfenning. eLP. a C:on~mon Lisp Ill~ple~nelitation of XProlog. Imple-
iilented as part of the ChiIU ERGO project. May 1989.

[3] Conal Elliott and Frank Pfenning. A semi-functional implementation of a higher-order logic
programming language. In Peter Lee. editor. Topics in Advc~~izce(l Langtiuge Implementation,
pages 289-325. h4IT Press, 1991.

[4] Elsa L. Gunter. Extensions to logic programlning motivated by the construction of a generic
theorem prover. In Peter Schroeder-Heister, editor, Eartensions of Logic Programming: Inter-
national Workshop, Tubinge~z FRG, December 1989, pages 223-244. Springer-Verlag, 1991.
Volume 475 of Lecture Notes irz Ar.fz.ficlc11 I n t c l l ~ ~ c J W .

[5] J. Roger Hindley and Jonathan P. Seldin . I~itr~odzrcfiorl to Conzbinatory Logic and Lambda
Calculus. Cambridge University Press. 1 O S G .

[GI Gbrard Huet. A unification algorithm for typed A-calculus. Tlzeoretical Computer Science,
1:27-57, 1975.

234 Proceedings of the 1992 XProlog Workshop

[7] Keehang Kwon, Gopalan Na.da tliur, a,n<l Debra. Sue LYilson. Implementing polymorphic typing
in a logic programming 1angua.ge. Sub~llittetl, August 1992.

[8] Evelina Lamma, Paola Mello, and Antonio Na.tali. The design of an abstract machine for
efficient implementation of contests in logic progra.mming. In Sixth International Logic Pro-
gramming Conference, pages 303-317, Lisbon, Portugal, June 1989. MIT Press.

[9] Dale Miller and Gopalan Nadathur. XProlog version 2 . 7 . Distributed in C-Prolog and Quintus
Prolog source code, August 198s.

[lo] Dale Miller. Lexical scoping a.s universal qua.ntification. In Sixth International Logic Progmm-
ming Conference, pa.ges 268-283, Lisbon, Portugal. June 1989. MIT Press.

[l l] Dale Miller. A logical a.nalysis of modules in logic progra.mming. Jovrnul of Logic Programming,
6:79 - 108, 1989.

[12] Dale Miller. A proposal for modules in XProlog. In Il'orkshop on the XProlog Programming
Language, Philadelphia., J u l y 1992.

[13] Dale Miller, Gopalan Nadathur, Frank P f ~ i ~ n i n g . and Andre Scedrov. Uiliforrri proofs as a
foundation for logic programming. AIII~(I/S of PIII-c (i1~1 Applied Logic, 51:125-157, 1991.

[14] Luis Monteiro and Ant6ilio Porto. Contextual logic programming. I11 ,Sixth Internatio~zal Logic
Programming Conference, pages 284-299, Lisbon. Portugal, June 1989. MIT Press.

[15] Gopalan Nadathur and Frank Pfenning. The type systenl of a higher-order logic programming
language. In Frank Pfenning, editor, Typen in Logic Proglrcirn~~zing, pages 245-283. MIT Press,
1992.

[lG] Gopalan Nadatlrur, Bl1ara.t Jaya.rama.n, a.ntl Iieehang Ii won. Scoping constructs in logic pro-
gramming: Inlple~nentation prohlems ant1 tllei~. solution. Submitted, May 1992.

[17] Gopalan Nadathur, Bha.rat Jaya.ra1na.n. and Debra Sue Wilson. Inlplementation considerations
for higher-order features. Submitted, November 1992.

(181 Gopalan Nadathur. A proof procedure for the logic of hereditary Harrop formulas. To appear
in the Journal of Auto1.12cited Renl;o/tiny.

[19] Richard O'Keefe. Towards an a.lgebra for constructing logic programs. In 1985 Symposium on
Logic Programming, pages 152-160. Boston. 198.5.

[20] D.T. Sannella and L.A. IVallen. -4 calrulus for the construction of modular Prolog programs.
Journal of Logic Prog~nmnzirag, 12:l-l; - 178. J a ~ ~ u a r y 1992.

[21] D.H.D. Warren. An abstract Prolog instruction set. l'erl~nical report. SRI International, Oc-
tober 1983. Technical Note 309.

XPROLOG IMPLEMENTATION OF
RIPPLE-REWRITING:

ABSTRACT

Chuck Liang
Computer Science Department

University of Pennsylvania
Philadelphia, PA 19104-6389 USA

liang@saul.cis.upenn.edu

Introduction

The wave-rippling theorem proving method was introduced by Alan Bundy et al, to guide the
proofs of inductive theorems [I]. In implementing fra,gments of this work in XPrologl, we hope to
achieve the following:

1. To demonstrate that XProlog7s higher ordered logic of hereditary Harrop formulas can provide
a clear and declarative implementation of the wa.ve-rippling method.

2. A better understanding of the wave-rippling method through this implementation.

3. To demonstrate the use of XProlog in specifying a meta, language of tactics and tacticals used
in controlling theorem proving.

There are two dimensions to consider in building this theorem prover: how much guidance
(information concerning the manner and order of rule application) is inherent in the rewrite system
itself, and how much control should he offered by the meta-level theorem proving mechanism. One
must take care that control mechanisms of the theorem prover do not undermine the inherent
automation of the rules themselves, and yet still provide tlle means to control different degrees of
automatic rewrite.

Augmenting a rewrite system

Alan Bundy's wave rippling method is an attempt a t annotating rewrite rules with suggestions
on how a proof should be carried out [I]. This work was originally intended to solve inductive
problems but can be used to proof other kinds of theorems as well. For example, the following
rewrite rule for the successor operator in a.rithmetic: s (x) + y = S (X + y) could be annotated with
wave fronts and become (to(1,tw s 2) + y = (tu(rt)e s (2 : + y)). Here, s is a constructor called the
wave front and x and (z + y) are contents of the P L I C L V ~ holes. The aim is to "ripple" the wave fronts
outward. If we were t o prove by induction on n: t,l~a.t (a: + y) + t = z + (y + z) , then the inductive

'Three problem domains: arithmetics, lists ancl su~n-series are implemented in our system. They are representitive
of the spectrum of rippling applications. More domains will he adclressed later.

236 Proceedings of the 1992 XProlog Workshop

conclusion is (s(x) + y) + z = s(x) + (y + 2). We would like to show that this inductive conclusion
follows from the inductive hypothesis. This task is made easier if the conclusion was annotated
with wave fronts: ((wave s x) + y) + z = (wave s x) + (y + z). After three application of the
wave ripple rule (wave s x) + y - (wave s (x + y)) (twice on the left, once on the right), we
obtain (wave s (x + y) + 2)) = (wave s x + (y + z)). Now the wave fronts have been fully rippled,
and what's inside the wave fronts is exactly the inductive hypothesis. Another ripple rule, using
the fact tha t s is injective, eliminates the outer s wave-fronts, and the proof is complete. This
illustrates how wave front annotations can guide the construction of a proof. Were there no wave
fronts, the rewrite from the inductive conclusion to the hypothesis could take any of a number of
possible routes, i.e., the search space would be too huge to expect efficient proofs t o result.*

Representing Rippling in XProlog

A wave front is represented as a higher-order la.mbda. term. The bound variable represents the
positions of the wave hole. If t l is the type of expression in question (integer in the above example),
then the wave front will have type t l - t l . The content of the wa.ve holes is another t l expression.
The wave expression constructor "wa.veV have type (t 1 - t l) - t 1 -+ t 1. The entire expression
(wave F r o n t Hole) is again of type t13. This representation means that the wave hole could have
several occurrences inside the front since the bound varia.ble could have several occurrences, but
the content of the hole has to be the same for each occurrence. We chose not to have wave-fronts of
form (wave (Xx.Xy.(P x y)) H 1 H 2) because of typing problems. Such composite wave forms can
be broken up into separate instances: (wave (X.X.(P x H 2)) H1) and (wave (Xy.(P HI y)) H 2) ,
each with i ts own set of rippling rules. This representation is arguably more desirable because we
now ha.ve more control over which pa.rt of the wave to ripple.

The choice of using lambda. terms to represent wa.ve fronts is a natural one. A first order
representation will have to contend with locating the wave holes inside the wave fronts, and with
the well-formedness of expressions. Lambda. a.bstraction makes these issues trivial. An expression
annotated with waves should be recoverable, i.e, we need to be able to know what is the real
expression being considered (wave-fronts, after all, adds no more expressive power to a rewrite
system). A first order representation will require an explicit de-annotation procedure to surgically
remove wave fronts. The higher order represent,a.t,ion has implelllellted the const,ructor wave a.s a
kind of delayed function application. Therefore, de-a.nnotation of a wave expression (wave F H)
is easily accomplished with (F H). Sometillles it is also desirable to merge two wave fronts :

into a single wave front: the conlposition of F a.ltd G . But function composition is expressed
naturally in our system of lambda terms. The merged wave expression is (wave (X2.(F (G x))) H) .
No such obvious method exists in first order systems t1ia.t would allow this kind of composition.

'The reader may wish to see [I] for a more complet,e background on rippling.
3A generic "wave" is used here for simplicity. In tlre act.ualy implementation there are different wave constructors

for each type, i.e, wavei for integers, wave1 for lists. XProlog does not support dependent types (as opposed to Elf),
which would allow a polylnorpl~ic definition of wave that. st.ill ensures that, the type of a wave is the same as the type
of terms i t annotates.

Chuck Liang

The problem of wave annotation also illustrates the natural choice of using a higher-order
representation. In proving a problem of form (VA) (such as (VXx.(x = x + 0))), we need t o specify
the inductive basis, the inductive hypothesis and the inductive conclusion, which is annotated with
wave fronts. This can be done easily in our representation. Let I be an inductive constructor,
for example the successor function in the integer case), then the base case goal is simply (A 0),
the inductive hypothesis will be (A n) for some arbitrary 1 2 , and the inductive conclusion will be
(A (wave s n)) or equivalently (A (wave (Xs.(z + 1)) n)) . 4 The lambda term representation of
wave fronts allows the use of function application to implement substitution, which is a tedious and
(because of the danger of bound variable capture) potentially unsa.fe task in first order systems.

Implementing the theorem prover

Idealy, a rewrite system annotated with wave fronts should need no further support to construct
correct and efficient proofs. We should need only initiate the rippling process. However, it will be
naive t o assume that rippling alone can produce efficient proofs. There are several different types
of rippling rules and the order they are applied is important. Sonletimes it is also preferable to
perform normal rewriting, such as normalization, rather than applying rippling rules. It is therefore
still necessary t o support the wave-aug~nented rewrite system with an underlining theorem prover.

It has been argued that effective theorem provers call not be specified in Prolog because of the
limitations of first-order Horn clause logic. and because the naive. depth-first backtracking method
of Prolog interpreters prohibits more elaborate proof-search methods. However, Amy Felty, in [4,5]
have demonstrated that this criticism of Prolog is invalid. Prolog's internal mechanism may be
naive, but Prolog can be used to define a meta-level language of tactics, which can provide control
over the theorem proving process independently of Prolog's internal search mechanisms. Prolog is
used as the meta-language of the meta-language. hlIucll of limitations of first-order Horn clause
prolog can also be solved by the more expressive, higher-ordered hereditarily Harrop formulas of
XProlog .

Our purpose is t o implement a rich tactic systenl that would give the user the choice of varying
degrees of control over the theorem proving process. The system can be specified to attempt to
prove something automatically, or be used as an interactive proof-editor.

Theorem proving rules and methods are implemented by declaring "tactics". Tactics can be
combined using a language of "tacticals." The follo\ving set of tacticals are defined following
Felty [4].

app ly - tac i d t a c A A .
app ly - tac (then T1 T2) A C : - app ly - tac Tl A B , apply- tac T2 B C .

app ly - t ac (o r e l s e TI T2) A C : - app ly - tac TI A C ; app ly - t ac T2 A C .
app ly - t ac (t r y TI A B : - app ly - tac (o r e l s e T i d t a c) A B.
app ly - tac (r e p e a t T) A B : -

app ly - tac (o r e l s e (then T (r e p e a t T)) i d t a c) A B .

41n the inductive proof case the initial wave front is always t.he i~lductive operator (successor for integers, cons for
lists), but rippling can also be used for non-inductive proof> (see [3]), in wllich case t.he initial annotation of wave
fronts is much more difficult, and requires careful higl~er-order. manipulations.

Proceedings of the 1992 AProlog Workshop

The purpose of a tactic is to advance the theorem proving process by one or more steps.
apply-tac is given a tactic name and the current goal or form of the problem, and gives the
updated goal, or the result of applying the tactic on the current goal. The aim is t o reduce the
initial goal (the theorem t o be proved) to t r u e g o a l , which represents triviality. i d t a c is the most
simple tactic in leaving the problem unchanged. The t r y tactic prevents failure by returning the
same goal should the tactic fail. r e p e a t repeatedly a.pplies a. ta.ctic until i t fails. t h e n and o r e l s e
are self-explanatory.

These tacticals form the core of the meta-language of tactics. They are used t o define other,
more complicated tactics and tacticals. They have a natural declaration in prolog (in fact first-order
prolog), and yet greatly extends the ability of prolog by providing more flexible control over goal
search. For example, (r e p e a t (o r e l s e (t a c t i c 1 (Then t a c t i c 2 t a c t i c 3 1 1)) can be used to
repeatedly transform a goal using either ta.ctic1 or sequences of tactic:! and tactic3.

Rewrite rules are implemented as ta.ctics. Ea.ch ta.ctic call be viewed as the implementation of
one or more rewrite rules. They are orga.nized a,s follows:

Primitive normalization rules. These include rules such as (x + 0 = x) for arithmetics and basic
list equalities such as (append a nil) = a. Ta.ctics are defined to iinplement these rules. Each tactic
applies a primitive rule exactly once. We explicitly prevent exhaustive application t o provide the
option of precise control of rewriting through the tactics. Ta.ctics can be exhaustively applied using
the r e p e a t tactical.

Special normalization rules. Additional constructors, such a.s user defined functions, need their
own set of rules and corresponding tactics. For exalnple, the function r e v e r s e for reversing lists
will have a set of rewrite rules representing the functional evaluation rules for r e v e r s e . They are
kept separate from the other normaliza.tion rules; a.gain, t,o provide precise control over rewriting.
The indiscriminate application of both primitive and special rules is achieved using the o r e l s e
tactical.

Wave rippling rules. These rules/tactic.s a.re annotated with a direction: outward (the standard
type), sideways or inward. This is the core of the theorenl prover.

"Proof Plans." A proof-plan is a cla.use t11a.t iml~lements a, series of procedures for carrying out
proofs for a certain type of theorem. Tliese procedures include tactics, but also other facilities.
We could implement proof plans as conlposite ta.ctics but choose not to, because, theoretically,
there could be a meta-language of proof-planning separate from the meta-language of tactics. For
example, integer induction can be specified as the following proof plan:

Prove base case using normalizatio~i.
Annotate inductive conclusion with wa.ve-fronts.
Exhaustively a.pply ripple outward,
Apply normalization to the result,
Match result with inductive hypothesis.

Auxiliary ta.ctics. These include, for example. equality, which makes use of normalization.

Chuck Ljang

Issues in implementing ripple-rewrite in XProlog

The use of Higher-order unification must be precisely controlled t o be effective. In this system,
unification is only performed with variables on one side of the equation.5 This reduces the otherwise
unmanageable number of unifiers returned by the unification algorithm. The use of higher-order
unification is limited to what was described earlier in systems such as arithmetics, which is not
inherently higher-ordered. IIowever, in inherently higher-ordered problem domains such as solving
sum-series, which includes a notion of bound variables, higher-order unification becomes a necessity.
For example, i t is used in determining if a sum-series expression is independent of the index variable
of the series. The implementation demonstrates the safe and effective use of higher-ordered terms
and unification throughout.

XProlog's more expressive abilities allow the system to be defined without any use of extra-
logical constructs found in first-order Horn clause Prolog systems such as cut, not, assert or call.
Assert is replaced by the more logical 3 . For exa:u]>le, say we wanted to define a predicate to test
if a formula is atomic. We could write:

atomic (and A B) :- ! , f a i l
atomic (or A B) :- ! , f a i l .
. . .
atomic Anything.

Or we can explicitly write (a s s e r t (atomic x) for each new x we wish to be considered
atomic. In XProlog, if in solving a goal G we wish to regard some x (usually introduced by
the negative universal quantifier p i) as atomic, we simply write (atomic x => G). Universally
quantified formulas (a t the object level) often require 3 to place conditions on their bounded
variables. This method is used in implementing the sum-series problem to test if an expression is
free of sums (in which case the proof is complete).

The tactic system defined in XProlog further ensures that the system is purely logical. As an
example, tactics do not recursively descend into a structure and perform rewrite on a subterm
unless i t is specifically predicated by the descend tactical. Non tactic-based systems often use cut
(!) t o explicitly control recursive descent. The descend tactical eliminates this reliance on extra-
logical constructs. The use of descend and other search control tacticals also further illustrates
the power of our tactic system in offering varying degrees of control over rewriting. For example,
if the tactic a s s o c i a t i v i t y rewrites terms of the form a + (6 + c) into (a + b) + c, then the tactic
(descend a s s o c i a t i v i t y) will apply associativity to a subterm if it fails a t the outermost level;
(repeat (descend a s s o c i a t i v i t y)) nil1 csha~~st ively rewrite an expression to eliminate a t all
levels terms of the form a + (b + c) . "

'In fact, usually with only one occurrence of all unhountl logic variable. Wllen expedient, Po redex of LA are used
to further ensure smooth unification.

'Although not all implemented, other tacticals si~r~ilar to descend t.l~at provide precise control over search and rule
application can be easily defined given the core t.act.ics. For example, alt.11ougl1 ideally, wave-front. expressions should
only be rewritten by rippling rules, rewrite rules can be ~nade 1.0 clescend into a wave-front with the trans-wave
tactical.

Proceedings of the 1992 XProlog Workshop

Other Considerat ions

Although through this implementation we have formalized wave-rippling as a special form of rewrite,
we have not shown how rippling rules should be selected. Bundy et al. have shown in [2] that
deriving rippling rules directly from the recursive definition of functions in the style of the Boyer-
Moore Theorem Prover is often not complete enough to guarantee the successful proof of a theorem.
In general, a wave rule can be derived from any valid rewrite rule. Each regular rewrite rule
can have a number of different wave-annotations, giving i t several rippling interpretations. If all
possible annotations are given, then this defeats the purpose of having ripple rules guide induction
by limiting the number of choices in each rewrite step. The selection of rippling rules is clearly
dependent on the problem domain. However. it may he possible t o develop some kinds of standards
of specifying ripple rules. For example, it is reasonable to hypothesize that only outward ripple
rules are necessary in solving integer induction problems. We hope to study this problem further.

During the course of this ii~lpleilleiltatioll. many unclear issues in Bundy's presentation of rip-
pling, such as the meaning and use of logic variables, are clarified through the declarative speci-
fication. We wish also to better u~ltlerstand how exactly esistential quantifiers (object level) are
treated.

The problem of typing needs to be addressed further. There are two typing issues to consider.
First, do we put types a t the ineta level (using the typing system of XProlog) or do we define
types a t the object level (so that each rule and/or expression must be annotated with a type). The
current system implements the first approach. Secondly, we wish our system t o be polymorphic
a t least to some extent. For example, we wish to define lists of any type, not just, say, lists of
integers. The first option is to use XProlog's own polymorphic typing system. But this will lead
t o problems in unification. The other option is to put the polymorphism into the tactic structure.
Different rules of the same tactic are defined to permit the application of that tactic to different
types. This is what has been adapted in the current system. For example, there are several rules for
the equality tactic, each for a different type of equality. Neither of these issues has been completely
resolved; they require further study.

Finally, a major goal of ours is to prove that our impleillentation is sound and a t least to some
extent, complete. Alan Bundy have already proved that rippling terminates if the ripple rules are
used ~ o r r e c t l y . ~ Thus, we only need to show that our inaplementation terminates. We also need
t o show that if a rippling rule succeeds then the unannotated version of the rule is valid. Again,
it is hoped that our higher-ordered, tactic-directed implementation will facilitate in such proofs.
As mentioned earlier, the ease of de-annotating wave fronts from an expression to recover the real
formula will be a n important tool in our proofs. The simplicity, flexibility and expressiveness of
our tactic system should aid in the proof of some kind of completeness.

 o or example, if we know t,hat only outward rippling is usetl. ternlination is relatively trivial. The other forms of
rippling obviously comp1icat.e~ the problem great.1~.

Chuck Liang

References

[I] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland and A. Smaill. Rippling: A Heuristic for
Guiding Inductive Proofs. University of Edi~lburgh D.41 Research Paper No. 567. February
1992.

[2] A. Bundy, F van Harmelen, J Hesketh, A. Sma.ill and A. Stevens. A Rational Reconstruction
and Extension of Recursion Analysis. The 11th International Joint Conference on Artificial
Intelligence, pages 359-365. M0rga.n Iia,ufmallil 1989.

[3] A. Bundy, T. Walsh and A. Nunes. The Use of Proof Plans t o Sum Series. University of
Edinburgh DAI Research Pa.per. Februa.ry 1992.

[4] A. Felty. Specifying And Implementillg Theoreill Provers in a Higher-Order Logic Programming
Language. P11.D. Thesis. University of Pennsylvania, August 1989.

[5] A. Felty. Irnplernelrting Tactics al;d Tacticals i i r a Higher-Order Logic Programming Language.
August 1990. Submitted to Journal of .i\utomated Reasoning.

Proceedings o f the 1992 X Prolog Workshop

Searching for Inductive Proofs in
Second- Order Int uitionistic Logic

(Extended Abstract)

L. Thorne McCarty
Computer Science Department

Rutgers University
New Brunswick, N J 08903, USA

mcca r tyQcs . ru tge r s . edu

1 Introduction

Several researchers have studied the problem of inductive reasoning about PROLOG programs,
beginning with an early paper by Clark and Tarnlund [2]. The pioneering work of Kanamori and
Seki [ll] proposed an extended model of PROLOG execution and showed how this extended model
could be used for program verification. A companion paper by Kanamori and Fujita [lo] analyzed
several techniques for the formulation of induction schemata and showed how two or more such
schemata could be merged into one. These ideas have been extended and refbed in a series of
papers by F'ribourg [4, 5, 61. Other contributions include the work of Hsiang and Srivas [9] and
Elkan and McAllester [3]

The biggest problem in all of this work seems to be: How to conjecture an appropriate induction
schema? In this extended abstract, we will show how to formulate induction schemata in second-
order intuitionistic logic [27], and how to search for these schemata in a logic programming language
based on embedded implications [17,18]. This is a report on work in progress, and it relies heavily on
two concrete examples. One example ("Red and Green Blocks") is a variant of a familiar problem
in common sense reasoning; the other example ("Naive Reverse") is a standard problem from the
logic programming literature. We use these examples to illustrate our proposed technique, and to
suggest that the ideas presented here are worth pursuing further. We will tackle the problem of
inductive proofs in greater generality in a future paper.

Section 2 is a brief discussion of the theoretical foundations of our work, abstracted from [20].
The two examples are presented in Sections 3 and 4. Section 5 then outlines our current and future
investigations into inductive reasoning.

2 Theoretical Background

The framework for our work is the language of intuitionistic embedded implications presented in
[17, 181. A similar language is studied in [23] and forms the basis of the XPROLOG program-

244 Proceedings of the 1992 XProlog Workshop

ming language [25]. Prior work on essentially the same language appears in [8, 71. The class of
intuitionistic embedded implications is given by:

Definition 2.1:

An atomic formula is an embedded implication.

If A is an atomic formula and dl, . . . , dl, are embedded implications, then A e A I A . . . A d k

is an embedded implication.

a If A(z) is an embedded implication, then (Qx)A(x) is an embedded implication.

This definition allows implications to be embedded to an arbitrary depth. However, we can restrict
this definition to the class of simple embedded implications - in which implications are nested at
most one deep - without any loss of expressive power, since arbitrary embeddings can be simulated
by defining new atomic predicates using simple embedded implications exclusively.

It is easy to see that Definition 2.1 gives us a language which is equivalent, classically, to full fixst-
order logic. However, interpreted intuitionistically, this language is a proper subset of fist-order
logic with interesting semantic properties [17]. Most significantly, a set of intuitionistic embedded
implications R has the disjunctive property and the existential property. A disjunction of formulae,
AVB, is entailed by R if and only if R A or R + B, and an existentially quantified formula,
(3x)A(x), is entailed by R if and only if R 1 A(x)O for some ground substitution 8. Closely related
is a proof-theoretic property, the existence of linear proofs [18] in which subgoals return definite
answer substitutions to parent goals. (These are referred to as uniform proofs in [24].) Because of
these properties, intuitionistic embedded implications provide a natural generalization of the class
of definite Horn clauses.

But what if we wanted to represent indefinite information as well? A recent paper [21] suggests
a novel approach to this question. Imagine a two-person communication situation in which the
"speaker" applies a set of definite rules to a world of definite facts, and then reports some of these
definite conclusions. Assume it is our job (as the "hearer") to make inferences about the actual state
of the world, even though we have not observed it directly. McCarty and van der Meyden suggest
that the correct way to formalize this problem is to circumscribe [15, 161 the defined predicates
in the set of definite rules, and then to ask whether a certain implicational goal is entailed by the
circumscription. In [21], the set of definite rules consists of a set of Horn clauses, but in [22] this
model is extended to include actions defined by Horn clauses over a linear temporal order, and in
[19] it is extended to include intuitionistic embedded implications as well. In all cases, the basic
idea is to do indefinite reasoning with definite wles .

We now outline the machinery needed for this type of reasoning. Since we are working with
intuitionistic logic, we need to use an intuitionistic version of the circumscription axiom. As in [21],
we restrict our attention here to the circumscription of Horn clauses. Let R be a finite set of definite
Horn clauses, and let P = < PI , P2, . . . , Pk > be a tuple consisting of the ''defined predicates" that
appear on the left-hand sides of the sentences in R . Let R (P) denote the conjunction of the
sentences in R , with the predicate symbols in P treated as free parameters, and let R (X) be the

Mc Car ty 245

same as R (P) but with the predicate constants < PI, Pz, . . . , Pk > replaced by predicate variables
<X1,X2 ,..., Xk>.
Definition 2.2: The circumscription axiom is the following sentence in second-order intu-

itionistic logic [27]:

We denote this expression by Circ(R(P);P) , and we refer to it as "the circumscription of P in
R(P) ." The circumscription axiom has the same intuitive meaning here that it has in classical logic.
It states that the extensions of the predicates in P are as small as possible, given the constraint
that R (P) must be true. Since the logic is intuitionistic, however, the axiom minimizes extensions
at every state of every Kripke structure that satisfies R .

Now let T+!J be a Horn clause and let Q be a set of embedded implications. We are interested in
the following circumscriptive query problem:

We will discuss concrete instances of this problem in Sections 3 and 4. Since Ci rc(R(P) ;P) is a
second-order sentence, however, one might ask: Is it possible to solve the circurnscriptive query
problem a t all? The answer is: Yes, in certain special cases. Our analysis makes use of the concept
of a final Kripke model, which is not discussed in this extended abstract. For more details, see
[21, 19, 201.

First, if R is a set of nonrecursive Horn clauses, the solution is the same in intuitionistic logic
as it is in classical logic [26, 131. Let Comp(R) denote Clark's Predicate Completion [I]. We then
have the following result:

Theorem 2.3: Let R be a set of nonrecursive Horn clauses. Then Ci rc(R(P) ;P) is equiva-
lent to Comp(R).

For recursive Horn clauses, we initially restrict our analysis to a special case:

Definition 2.4: R is a linear recursive definition of the predicate A if it consists of:

1. A Horn clause with 'A(x)' on the left-hand side and a conjunction of nonrecursive
predicates on the right-hand side, and

2. A Horn clause that is linear recursive in A.

Let 'A(x)+AO(x)' be the rule obtained from (1) by applying Clark's Predicate Comple-
tion. We say that 'A(x)+AO(x)' is the prototypical definition of A (x) .

Let 'X(x)+AX(x)' be the rule obtained from (2) by applying Clark's Predicate Com-
pletion and then replacing the predicate constant A with the predicate variable X. We say
that 'X(x)*AX(x)' is the transformation associated with A(x).

Proceedings of the 1992 XProlog Workshop

Now let @(A) be any Horn clause in which the predicate constant A appears on the right-hand
side. For example:

We treat @ (A) as a schema that depends on A, so that we are free to substitute AO, A X and X as
we wish.

Definition 2.5: The induction schema for @ (A) is the following sentence in second-order
intuitionistic logic:

The interesting point about this induction schema is that it takes the form of an embedded im-
plication with an embedded second-order universal quantifier. Second-order intuitionistic logic has
no complete proof procedure, of course, but it turns out that a set of second-order sentences in
this form does have a complete proof procedure. The procedure is similar to the first-order proof
procedure for universally quantified implications discussed in (181. To prove the second conjunct
on the right-hand side of Definition 2.5, we replace the predicate variable 'X' with a new predicate
constant '!X', we assert @(!X) into the rulebase, and we try to prove +(A!X). If this proof succeeds,
then we have proven the goal: (VX)[@(AX) e @(X)] . For a proof that this procedure is complete,
see [20].

We will show how to use this induction schema in Sections 3 and 4. The justification of our
approach is given in the following two theorems, which are proven in [20] using the concept of a final
Kripke model. In the statement of these theorems, A is a tuple consisting of the recursively defined
predicates in R, which is assumed to include only linear recursive definitions, P (A) denotes the set
of prototypical definitions of the predicates in A given by Definition 2.4, and S (A) denotes the set of
all induction schemata for the predicates in A that can be constructed using Definition 2.5.

Theorem 2.6: Q U Comp(R) U ?(A) j= q5 Q u Czrc(R(P); P) /= $

Theorem 2.7: Q U Comp(R) U S (A) $ a Q U Czrc(R(P); P) + $

These theorems suggest that we search first for a prototypical proof of q5, i.e., a proof that uses just
the prototypical definitions P (A) . If we fail to find a prototypical proof, we have failed, period.
But if we succeed, we can analyze the successful prototypical proof in an attempt to construct an
induction schema in S (A) . We can then search for a proof from this induction schema, using the
procedure for second-order embedded implications outlined above.

Intuitively, Theorem 2.6 tells us that prototypical proofs are complete but not necessarily sound,
while Theorem 2.7 tells us that inductive proofs are sound but not necessarily complete. We will
see how to combine these two proof procedures in the following two sections of the paper.

Mc Car ty

3 Example: Red and Green Blocks

The example in this section is taken from [21]. Let R be the following set of rules:

Intuitively, rules (1)-(2) define the concept of a 'ChristmasBlock', and rules (3)-(5) define the
concept of a stack of 'ChristmasBlocks'. Suppose we are told that there exists a stack of 'Christ-
masBlodts' in which block 'a' is above block 'b', and furthermore that 'a' and 'b' are painted green
and red, respectively. Does it follow that there is something green on something red?

Intuitively, the answer should be: Yes. Formally, we can pose this question by circumscribing
the predicates 'ChristmasBlock,' 'OnCB' and 'AboveCB' in rules (1)-(5), adding the following Horn
clause to Q:

GreenOnRed + On(x, y) Green(x) Red(y), (6)

and taking 11, to be the following implication:

GreenOnRed e AboveCB(a, b) A Green(a) A Red(b). (7)

We now try to show that Q U Circ(R(P);P) 1 $.

A successful proof is shown in Figures 1 and 2. Rules (4)-(5) constitute a linear recursive
definition of the predicate 'AboveCB', in which

is the prototypical definition, and

is the transformation. Using the notation in Definition 2.4, the right-hand side of (8) is written as
' ~ b o v e ~ ~ O (x , y)', and the right-hand side of (9) is written as 'AX(x, y)'. Since we are trying to
prove the implication in (7), we construct an initial tableau, lo, with 'AboveCB(a,b)', 'Green(a)'
and 'Red(b)' in its data base, and with 'GreenOnRed' as its goal, and we try to show that this goal
succeeds using the prototypical definition in (8). Figure 1 shows a successful proof, which happens

Proceedings of the 1992 AProlog Workshop

GOR
I1

A
O(x Y G(a) R(b)

0 : { x 2 t X , 1 I1 II II
(YZ+ Y ,)

OCWx 2, y2) O(x2, y2) A CB(x,) A CB(y,)

o : (x 3 + X 2)

{ ~ 3 + hi I/
ACB(x3, y 3) + OCB(x,, y ,) v

o : {a e x g)
{b + Y, 1 I1

DB: ACB(a,b), G(a), R(b)

Figure 1: "Red and Green Blocks," prototypical proof.

to use Comp(R) applied to rule (3). We have thus found a prototypical proof, as guaranteed by
Theorem 2.6.

Our task now is to ('strengthen" the proof from P (A) into a proof from S (A) , if possible. The
first step is to generalize the proof in Figure 1 from a proof that works for the constant 'a' to a proof
that works for the variable 'x'. (See [12] for the analysis of a similar problem in "explanation-based
generalization".) I t is easy to see that this generalization is successful. We now have a proof of the
following universally quantified implication:

(Vx) [GreenOnRed e OnCB(x , b) A Green(x) A Red(b)] . (10)

Let us call this implication @(AboveC~'). Then @(AboveCB) is the following universally quantified
implication:

If we can prove (l l) , we will also have a proof of our original query (7). Therefore, using the
induction schema in Definition 2.5, we try to prove (VX)[@(AX) e @(X)]. This goal is an
implication with a second-order universal quantifier, so we create a new tableau, TI, we add @(!X)
to the data base, and we try to prove @(A!X) in z.

TI : succeeds TI : succeeds

Figure 2: "Red and Green Blocks," inductive proof.

Let us write out each of these schemata in detail. 9(!X) is the following implication:

and @(A!X) is equivalent to the following implication:

(Vx, z)[GreenOnRed -+ OnCB(x, z) A !X(z, b) A Green(x) r\ Red(b)]. (13)

To prove (13)' we instantiate 'x' and 'z' to the special constants '!x4' and '!zqY, we add the right-
hand side of (13) to the data base of TI, and we try to prove the left-hand side of (13). The proof
is shown in Figure 2. The main point to note is that the proof now uses Comp(R) applied to rules
(1) and (2)' which generates a disjunctive assertion. It is therefore necessary to use a "disjunctive
splittingn operation [14] in order to obtain a closed proof. However, Figure 2 shows that the goal
'GreenOnRed' succeeds initially from the disjunct 'Red(!z4)', and then succeeds again from the
disjunct 'Green(!z4)' using 9(!X).

We have thus shown, by Theorem 2 .7 , that & u C i r c (R (P) ; P) $.

4 Example: Naive Reverse

The problem in Section 3 is relatively simple, but we have constructed proofs of this sort for more
complicated problems. In particular, we have applied our techniques to prove various properties of

250 Proceedings of the 1992 XProlog Workshop

PROLOG programs [lo, 31. For example, let 'Append(l,m,n)' be defined as usual:

Let 'Reverse(r,s)' be defined as follows:

Reverse(ni1, nil) -e (16)

Reverse([q I r], p) +. Reverse(r, s) A Append(s, [g], p) (17)

Intuitively, 'Reverse' should be a symmetric relation. We can express this property by taking q!~ to
be the following universally quantified in~plication:

(Vx, y)[Reverse(y, x) +. Reverse(x, y)]. (18)

We now show that (18) is entailed by the circumscription of 'Append' and 'Reverse' in rules (14)-

(17).

To : succeeds TI

Figure 3: "Naive Reverse," partial proof.

Rev(!yl, !x ,)

Il !y = nil
!x =nil

Rev(ni1,nil)

Rev(!x,, !y,) + ~ e v O (! x , , !y,) v

II

DB: Rev(!x,, !y,)

The first part of the proof is shown in Figure 3. Applying our first-order proof procedure for
intuitionistic embedded implications [18], we construct an initial tableau, z, with 'Reverse(!xl, !yl)'
in its data base and with 'Reverse(!y,, !xl)' as its goal. The prototypical definition of 'Reverse' is
given by Definition 2.4, as before, but its use in the tableau proof is slightly more complicated here
than it was in Section 3. Applying Clark's Predicate Completion to rule (16) alone, we have:

Reverse(x, y) 3 x = nil y = nil. (19)

I))

Rev(!y2, I!q,l !r21)

Rev(y3. x 3)

I
!R(x3. ~ 3)

o : (!r2 e x 3}
(! s , C Y , ~ I1

DB: Q),(!R), !R(!r Z ! ~ 2) , App(!s2.L,[!q 21 , !~2)

Mc Carty 25 1

Thus ' ~ e v e r s e ~ (! x ~ , !yl)' is the assertion that '!xl = nil' and '!yl = nil', and when these values are
substituted throughout the tableau lo the goal succeeds immediately, as indicated in Figure 3. We
thus have a proof of the following universally quantified implication:

(Vx, ~)[Reverse(y, x) e ~everse'(x, y)]. (20)

Let us call this implication G1(Reverseo). Then the implication in (18), our ultimate goal, is
(Reverse).

The prototypical proof in Figure 3 has suggested an induction schema, and we now compute
the expression (VR)[+l(AR) e +l(R)] where R is a predicate variable. We can immediately write:

Gl(R) z (Vx, y)[Reverse(y, x) -+ R(x, y)]. P I)

Also, by Definition 2.4, the transformation associated with 'Reverse' is:

and we can therefore write:

Reverse(y, x) e R(r , s) A Append(s, [q], y) A x = [q I r]
Tableau 5 in Figure 3 shows our attempt to prove the right-hand side of this induction schema.
We add al(!R) to the data base and we try to prove G1(A!R). Notice that the equality 'x = [q (r]'
in (23) can be eliminated when we attempt this proof.

However, as Figure 3 indicates, this proof does not succeed immediately. Instead, we are able
to reduce the goal in tableau TI to another universally quantified implication:

We now attempt, in Figure 4, to prove (24). The strategy here is exactly the same: Find a proof
using the prototypical definitions P (A) , and then try to "strengthen" this proof into a proof from
S (A) . The prototypical definition of 'Append' is:

Append(x, y , z) * y = z A x = nil. (25)

Thus, to assert 'Reverseo(!s2, !r2)' and 'AppendD(!s2, [!qz], !y2)' is to assert '!sz = !r2 = nil' and
'!y2 = [!q2I7. When these values are substituted throughout the tableau 71, as shown in Figure 4,
the goal succeeds. We thus have a proof of the following universally quantified implication:

Our task now is to strengthen the proof of (26) into a proof of (24).

Proceedings of the 1 992 X Prolog Workshop

I DB: Rev(!s2,!r ,), App(!s2,[!q21,!y2) I

TI : succeeds

Figure 4: "Naive Reverse," second prototypical proof.

Rev(!y 2. [!qJ !r21)

I1 !y2= [!q21
!r2= nil

Rev([!q21,[!q21>

A
Rev(ni1, s 3) App(nil,[!q21.[!q21)

a : (nil c s 3] 11 11 App(nil.l!q21,1!q21)
Rev(ni1,nil)

Rev(!s2, !r 2) * ~evO(!s , , !r2)
v

A p p (! ~ ~ . [! q ~ l , ! ~ ~) J A P P O (! S ~ , [! ~ ~ I . ! Y ~)

I I

Since there are two recursive predicates on the right-hand side of (24), we can expect the
construction of an induction schema here to be more complicated than it was in our prior examples.
However, it turns out that we can transform the relations 'Reverse' and 'Append' conjunctively in
this case. (In other cases, alternative strategies may be necessary.) Suppose we define:

m+

where R and A are predicate variables and 'RAA' is their conjunction. By Definition 2.4, the
transformation for 'Append' is:

A (x , Y,z) * (3k, 1,n) (28)

A(l ,y ,n) A z = [k 111 A z = [k I n],

and combining this with the transformation for 'Reverse', we have:

R(s, r) A A(s, [91, Y) * (3k, 1, n, 2)

R(l,z3 A Append(2, [kl, r) A A(l , [q l , n) A

s = [k 1 I] A y = [k I n].

Notice, because of the equality 's = [k I 11' in (29), that the f i s t arguments of R and A will always
be identical under the application of this transformation. This is the key observation that allows us
to compose the transformations (22) and (28) conjunctively in this case, and it is also the property

Mc Car ty 253

that allows the "merger" of the induction schemata in [lo]. Finally, substituting the right-hand
side of (29) into the schema a2, we have:

@z(ARAA) 5 (VY, q , r, k, 1, n, 2) (30)

Reverse(y, [q I r l) + R(1,z) A Append(z, PI, r) A 4 1 , [ql, n) A

Y = [k l nl.

Figure 5 now shows that the proof using this induction schema is successful.

T,. : succeeds

Figure 5: "Naive Reverse," second inductive proof.

m m .

We have thus shown, by Theorem 2.7, that (18) is entailed by the circumscription of 'Append'
and 'Reverse' in rules (14)-(17).

-
Rev([!k,l !n4],[!q41 !r,])

I I
Rev([!k,l !n4],[!q41 !r4])

Rev(!n, ,s 3
A

App([!q41 !z41.[!k41.[!q41 !r41)

D : {[qalrs1 + s,l 11 I I
App([!q,l !z41~I!k41,[!q41 !r,l)

Rev(!n, .[q 6(r61)

A I
App(!z4,[!k41,!r4)

!R(s 6,r6) !A(!l,,[q J,!n,) I I
0 : (! l 4 c s d I I 0 : (! q 4 + q 6)

Ilz4 erg) 11
DB: Q2(!R, !A), !R(!I4,!z4), App(!z4,[!k41,!r4), !A(!l4,[!q41,!n4)

5 Current Work

This work is currently being extended in two directions:

1. We are analyzing a wider class of recursive definitions.

2. We are writing a PROLOG interpreter to search for inductive proofs.

Preliminary results of these investigations will be reported at the workshop.

Proceedings of the 1 992 XProlog Workshop

References

[I] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Data Bases,
pages 293-322. Plenum, 1978.

[2] K.L. Clark and S.-A. Tarnlund. A first-order theory of data and programs. In B. Gilchrist,
editor, Information Processing '77 (IFIP Proceedings), pages 939-944. North-Holland, 1977.

[3] C. Elkan and D. McAllester. Automated inductive reasoning about logic programs. In Proceed-
ings, Fifth International Conference and Symposium on Logic Progmmming, pages 876-892,
1988.

[4] L. Fribourg. Equivalence-preserving transformations of inductive properties of PROLOG pro-
grams. In Logic Programming: Proceedings of the Fifth International Conference and Sympo-
sium, pages 893-908. MIT Press, 1988.

[5] L. Fribourg. Extracting logic programs from proofs that use extended PROLOG execution
and induction. In Logic Programming: Proceedings of the Seventh International Conference,
pages 685-699. MIT Press, 1990.

[GI L. Fribourg. Automatic generation of simplification lemmas for inductive proofs. In Proceed-
ings, 1991 International Logic Programming Symposium, pages -. MIT Press, 1991.

[7] D.M. Gabbay. N-PROLOG: An extension of PROLOG with hypothetical implication. 11.
Logical foundations, and negation as failure. Journal of Logic Progmmming, 2:251-283, 1985.

[8] D.M. Gabbay and U. Reyle. N-PROLOG: An extension of PROLOG with hypothetical im-
plications. I. Journal of Logic Progmmming, 1:319-355, 1984.

[9] J. Hsiang and M. Srivas. Automatic inductive theorem-proving using PROLOG. Theoretical
Computer Science, 54:3-28, 1987.

[lo] T. Kanamori and H. Fujita. Formulation of induction formulas in verification of PROLOG
programs. In Proceedings, Eighth International Conference on Automated Deduction, pages
281-299, 1986.

[ll] T. Kanamori and H. Seki. Verification of PROLOG programs using an extension of execution.
In Proceedings, Third International Conference on Logic Programming, pages 475-589, 1986.

[12] S. Kedar-Cabelli and L.T. McCarty. Explanation-based generalization as resolution theorem
proving. In Proceedings of the Fourth International Workshop on Machine Learning, pages
383-389. Morgan Kaufmann, 1987.

[13] V. Lifschitz. Computing circumscription. In Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, pages 121-127, 1985.

Mc Carty 255

[14] D. W. Loveland. Near-Horn Prolog and beyond. Technical Report CS-1988-25, Department of
Computer Science, Duke University, 1988. To appear in Journal of Automated Reasoning.

[15] J. McCarthy. Circumscription: A form of non-monotonic reasoning. Artificial Intelligence,
13:27-39, 1980.

[16] J. McCarthy. Applications of circumscription to formalizing common-sense knowledge. Arti-
ficial Intelligence, 28:89-116, 1986.

[I 71 L.T. McCarty. Clausal intuitionistic logic. I. Fixed-point semantics. Journal of Logic Program-
ming, 5(1):1-31, 1988.

[18] L.T. McCarty. Clausal intuitionistic logic. 11. Tableau proof procedures. Journal of Logic
Programming, 5(2):93-132, 1988.

[19] L.T. McCarty. Circumscribing embedded implications. In A. Nerode et al., editors, Proceed-
ings, First International Workshop on Logic Programming and Non-Monotonic Reasoning,
pages 211-227. MIT Press, 1991.

[20] L.T. McCarty. Computing with prototypes. Technical report, Computer Science Department,
Rutgers University, 1992. Submitted for publication.

[21] L.T. McCarty and R. van der Meyden. Indefinite reasoning with definite rules. In Proceedings
of the Twelfth International Joint Conference on Artificial Intelligence, pages 890-896, 1991.

[22] L.T. McCarty and R. van der Meyden. Reasoning about indefinite actions. In Principles of
Knowledge Representation and Reasoning: Proceedings of the Third International Conference
(KR921, page (forthcoming). Morgan Kaufmann, October 1992.

[23] D. Miller. A logical analysis of modules in logic progranuning. Journal of Logic Programming,
6:79-108, 1989.

[24] D. Miller, G. Nadathur, and A. Scedrov. Uniform proofs as a foundation for logic programming.
Annals of Pure and Applied Logic, 51:125-157, 1991.

[25] G. Nadathur and D.A. Miller. An overview of XPROLOG. In Proceedings, Fifth International
Conference and Symposium on Logic Programming, pages 810-827, 1988.

[26] R. Rei ter. Circumscription implies predicate completion (sometimes). In Proceedings of the
Second National Conference on Artificial Intelligence, pages 418-420, 1982.

[27] A. Troelstra and D. van Dalen. Constructivism in Mathematics: An Introduction. North-
Holland, 1988.

Proceedings of the 1992 AProlog Workshop

An Empirical Study of the Runtime Behavior
of Higher-Order Logic Programs 1

(Preliminary Version)

Spiro hfichajrlov
Department of Computer and Information Science

The Ohio State University
228 Bolz Hall

2036 Neil Avenue Mall
Columbus, OH 43210-1277, U.S.A.

spiro@cis.ohio-state.edu

Fra.nk Pfeilning
School of Conlputer Science
Carllegie hilelloll University

Pittsburgh, PA 15213-3890, U.S.A.
fp@cs.crnu.edu

1 Introduction

Implementation technology for higher-order logic programming languages such as XProlog [17]
and Elf [21] is still in its infancy. There a.re ma.ny features of these languages that do not oc-
cur in ordinary Prolog programs, such as types, variable binding constructs for terms, embedded
implication and universal quantification, or dependent types and explicit construction of proofs.
Some initial work on compiler design for higher-order logic programming languages can be found
in [ll, 16, 18, 1912. At the same time, the language design process for such languages is far from
complete. Extensions [2, 71 as well as restrictions [14] of XProlog have been proposed to increase
its expressive power or simplify the language theory or its implementation.

Obviously, further language design and implementatio~l efforts must be closely linked. It is easy
to design unimplementable languages or implement unusable languages. In order to understand and
evaluate the challenges and available choices, we report the results of an empirical study of existing
example programs. We chose Elf over XProlog for this study for two reasons: (1) accessibility
of the large suite of examples, and (2) ease of instrumentation of the Elf interpreter to perform
measurements. Many of these examples ca.n be trivially transformed into AProlog programs, and
essentially the same issues arise regarding their ruilti~lle behavior. We will discuss later which

'This research was sponsored partly by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U . S. .4ir Force. Wright-Patt.erson AFB, OH 45433-6543 under Contract
F33615-90-C-1465, ARPA Order No. 7597. The views and conclusions contained in this document are those of the
author and should not be interpreted as representi~lg the official policies, either expressed or implied, of the U.S.
Government.

2See also the paper by I<won and Nadathur in this volume

Proceedings of the 1992 XProlog Workshop

measurements are specific t o Elf.
Currently, we have access t o about 10,000 lines of Elf code, written mostly by the authors and

students in a course on Computation and Deduction taught in the Spring of 1992. We selected a
sample of 12 representative examples of about 3500 total lines of code to conduct this study. The
examples cover a range of applications from logic and the theory of programming languages. They
are explained further in Section 3.

We briefly summarize what we consider to be some of the central issues and our conclusion.
Full unification in higher-order languages is clearly impractical, due t o the non-existence of

minimal complete sets of most-general unifiers [8]. Therefore, work on XProlog has used Huet's
algorithm for pre-unification [8], where so-called flex-flex pairs (which are always unifiable) are
postponed as constraints, in effect turning XProlog into a constraint logic programming language.
Yet, even pre-unifiability is undecidable, and' sets of ~iiost general pre-unifiers may be infinite.
While undecidability has not turned out to be a severe problem, the lack of unique most general
unifiers makes i t difficult to accurately predict the run-time behavior of a XProlog program that
attempts t o take advantage of full higher-order pre-unification. It can result in thrashing when
certain combinations of unification problenls have to be solved by extensive backtracking. Moreover,
in a straightforward implementation, common cases of unification incur a high overhead. These
problems have led t o a search for natural. decidable subcase of higher-order unification. Miller [14]
has suggested a syntactic restriction (L \) to XProlog, easily extensible to related languages [22],
where most general unifiers are unique modulo j?ilc\-equivalence.

Miller's restriction has many attractive features. Unification is deterministic and thrashing
behavior due t o unification is avoided. Higher-order unification in its full power can be implemented
if some additional control constructs (when) are available [15].

However, our study suggests that this solution is unsatisfactory, since i t has a detrimental effect
on programming methodology, and potentially introduces a new efficiency problem. Object-level
variables are typically represented by meta-level variables, which means that object-level capture-
avoiding substitution can be implemented via rneta-level 8-reduction. The syntactic restriction
to LA prohibits this impleinentation technique, and hence a new substitution predicate must be
programmed for each object language. Not only does this iilake programs harder to read and reason
about, but a substitution predicate will be less efficient than nleta-language substitution.

This is not t o diminish the contribution that L,\ has made to our understanding of higher-order
logic programming. The operational semantics of Elf. in contrast to XProlog, is based on solving all
dynamically arising equations that lie within an appropriate estension of L A t o dependent types.
All other equations (solvable or not) are postponed as constraints. We found that this addresses
the problems with higher-order uilification without compromising programming methodology.

This still leaves open the question whether this constraint satisfaction algorithm can be imple-
mented efficiently. Part of our study was aimed at determining the relative frequency of various
forms of equations, in order to guide future design of efficient i~nplernentations.

In this paper we study the run-time behavior of a large suite of Elf programs, and demonstrate
the following:

a While a large proportion of progra,nis are outside L,\ syntactically, the cases of unification
that occur dyna,mically are a.lmost all deterniiiiistic.

Spiro Michaylov and Frank Pfennillg 259

All of the programs behave well if nondeterministic cases of unification are delayed until they
are deterministic.

While most programs a t some point use non-trivial cases of higher-order unification, the vast
majority of unification instances are extremely simple, in fact, essentially Prolog unification.

This empirical study has been performed by instrumenting an Elf interpreter t o count:

the relative frequency of different cases of unification,

the relative frequency of various instances of substitution,

the number of times non-deterministic unifica.tion would arise were these cases not delayed.

This leads us t o suggest a strategy for efficient implementation of higher-order logic program-
ming languages, which is essentially the strategy described for Constraint Logic Programming
languages in [9, 121. That is:

The languages should not be restricted synta.ctica1ly.

The unification instances correspo~~cling to those of L,, should be identified as directly solvable,
and the remainder as hard. Hard constraints should be delayed until they become directly
solvable as a, result of further variable instantia.tion. The relevant terminology, concepts and
implementation methods are described in [lo].

Da ta structures and algorithms should be designed to favor the simple cases of unification.

' 2 Properties of Programs

Since our concern in this paper is with efficient irnplementa.tio11tatio (and its interaction with language
design), the properties of progra.ms t11a.t we n~os t need to study a.re the dynamic properties: how
frequently do various phenomena arise when typical queries are executed? This allows us to tune
data structures and algorithms. On the other ha,nd, t.o eva.luate the possibility of syntactic restric-
tions, we also need to know wha.t occurs synta.ctically in programs. We begin by discussing these
syntactic properties and why they are of interest. Then we go on to discuss the dynamic properties.

2.1 Static Properties

LA vs. g e n e r a l va r i ab le appl ica t ions . Because of our interest in the syntactic restriction to LA,
we need t o understand how often and ivhy progra.ms do not fall into this subset. A11 important use
of general variable applications a,ppea.rs in a rule like the following (taken from a natural semantics
in [13])

eval-app-lam : eva l (app El E2) V
<- eva l El (l a m El')
<- e v a l E2 V2
<- eval (El' V2) V.

260 Proceedings of the 1992 XProlog Workshop

where we see a n application of two existential variables (E l ' V 2) t o implement substitution in an
object language by meta-level &reduction.

Even within the LA subset, we can observe interesting static properties of programs. For
example, many programs structurally recurse through an object language expression, where the
object is represented using higher-order abstract syntax. Consider the rule above: the head of this
rule requires only first order unification, which could be implemented as simple variable binding.
Type redundancy . Both in XProlog and Elf there is a potential for much redundant run-
time .type computation. In XProlog, this is due to polymorphism (see [I l l) , in Elf i t is due to
type dependency. Such redundancy can be detected statically. However, the question about the
dynamic properties of programs remains: how much type ~omputa~t ion remains after all redundant
ones have been eliminated.
Level of index ing . This is an Elf-specific property of a pr0gra.m. Briefly, a (simple) type is a
level 0 type family. A type family indexed bq. objects of level 0 type is a level 1 type family. In
general, a n type family indexed by object,s whose type involves level n families is a family of level
n + 1. For example,

o : t y p e . % p r o p o s i t i o n s , l e v e l 0.
pf : o -> t y p e . % p r o o f s of p r o p o s i t i o n s , l e v e l 1.
norm : pf A -> pf A -> t y p e . % proof t r ans fo rmat ions , l e v e l 2 .
p roper : norm P 9 -> t y p e . % proper proof t r a n s f o r m a t i o n s , l e v e l 3.

This is of interest because the level of indexing deterillines the amount of potentially redundant
type computation. Empirically, i t can be observed t11a.t progra.ms a t level 2 or 3 have in some
resper:ts different runtime characteristics than progra.ms a t level 1. We have therefore separated
out the queries of the higher-level. This also helps to separate out the part of our analysis which is
directly relevant to XProlog, where all computa,tion happens a t levels 0 and 1 (due t o the absence
of dependency).

2.2 Dynamic Properties

The major dynamic properties studied in tliis pa.per are substitution, unification and constraint
solving.
S u b s t i t u t i o n . Substitution can be a. significant factor limiting performance. It is thus important
t o analyze various forms of substitution tlia.1, a.rise during execution. When measuring these, our
concern is simple: substitutions with anything other t11a.n parameters (uvars) result from the frag-
ment of the language outside L A , so these represent substitutions that would have had to have been
performed using Elf code if the L,, restriction llad been applied. Moreover, the relative frequency
of para.meter substitution suggests t1ia.t it is crucia.1 for it t o be highly efficient, while general sub-
stitution is somewhat less critical. A proposal rega.rding efficient implementation of terms has been
made in [18]. For our study we eliminated substitutions which a.rose due to clause copying and
during type reconstruction, since these are resic1ua.l~ effects of the interpreter and would most likely
be eliminated in any reasonable compiler.
Unif ica t ion a n d C o n s t r a i n t Satisfaction. M'e measure various aspects of unification and con-
straint satisfaction. Terms involved in equa.t.ions (disagreenlent pairs) are classified as rigid (con-

Spiro Michaylov and h a n k Pfenning 26 1

stant head), uvars (parameters, i.e., temporary constants), evars (simple logic variables), gvars
(generalized variables, i .e . , logic variables applied t o distinct, dominated parameters [14]), flexible
(compound terms with a logic variable a t the head, but not a gvar), abst (a term beginning with a
A-abstraction), or quant (a term beginning with a II-quantification, in Elf only).

One of our goals is t o determine how close Elf co~nputations come t o Prolog computations in
several respects:

How many pairs, a t least a t the top level, require essentially Herbrand unification? These are
the rigid-rigid and evar-anything ca.ses.

How many pairs still have unique mgus, t11a.t is, gvar-gvar, or admit a unique strategy for
constraint simplification, that is, gvar-rigid, abst-anything, or quant-anything?

How often do the relllaining cases arise (which are postponed to avoid branching)?

How successful is rule indexing (a.s falniliar from Prolog) to avoid calls to unification?

In our opinion, while we have not yet completed the required experiments, it is also very important
t o determine the following:

How important is the occurs-check (extended to deal with a dependency check)?

How much time is spent on type computa.tions a.s coinpared to object computations?

a How much time is spent on proof computations. whell it is requested by the user or required
for further computation?

3 Study of Programs

In this section we report our pre1imina.r~ findings. Ll;e currently have detailed statistics on the kinds
of disagreement pairs that arise during unifica.tion, and the kind of substitution that is performed
during unification and search.

3.1 The Examples

Figures 1 and 2 show the data for basic computation queries and proof manipulation queries
respectively, for the range of programs. Thus Figure 1 is especially applicable to the understanding
of AProlog programs, while Figure 2 measures Elf-specific beha.vior.

The two tables in each figure give da.tta on five a.rtas of interest, as follows:

All Unifications
The total gives an indication of conlputational content. while the breakdown indicates the
usefulness of first-argu~nent illdesillg and the arnount of deep search.

Unif Total number of subgoal/head pairs to be unified.
%Ind Percentage of above total unifications avoided by rule indexing.
%S Percentage of total unifications that succeeded.
%F Percentage of total unifications that failed.

Proceedings of the 1992 XProlog Workshop

a Dynamic Unifications
It is also useful t o have this information for rules assumed through embedded implication,
since indexing of such rules is more complica.ted, and compilation has a runtime cost.

Dyn Total number of subgoal/head pairs to be unified, where the head is
from a rule assumed (dynamically) through embedded implication.

%Ind, %S, %F
Percentages of number of uilificatio~ls with heads from dynamic rules,
as above.

a Dynamic/Assunze
By knowing how many rules a.re assunled dynamically, and on average how often they are
used, we can see whether it is worthwl~ile to index and compile such rules or whether they
should be interpreted.

Ass Number of rules assumed by implication.
U/Ass Norinalized ratio of total unifications with dyna~llic rules to number

of rules assumed by implication.
AU/Ass As above, but using only those rules where the unification was not

avoided through indexing.

a Disagreement Pairs
We study the kinds of disagreement pairs t11a.t a.rise to determine which kinds of unification
dominate.

Tot Total number of disagreelllellt pa.irs examined throughout the
computation.

%E-? Percentage of disagreement pairs t11a.t involved a simple evar.
%G-? Percentage of disagreement pa.irs that involved a gvar which is not a

simple evar.
%R Percentage of disa.greement pairs between two rigid terms.
%A Percentage of disagreement pairs bet,ween two abstractions.

a Substitutions
Substitutions and abstractions (the inverse of uvar substitutions) are expensive, and the
efficiency of one can be improved a.t the expense of the other. Furthermore, some kinds of
substitutions are more costly than others. Tllus it is useful t o know what kinds of substitutions
arise, how often both substitution and a.bstra.ction arise, and their relative frequency.

Tot Total number of substitutions for bound variables.
%Uv Percentage of the a.bove where a. uva.r is substituted.
Abs Number of abstra.ct,ions over a, uvar.
Abs/Uv Normalized ratio of such a.bstractions to substitutions of uvars.

The examples used a.re as follows:

a Extraction - Constructive theoreilz yrot:i~tg crrztl progrrrnz extraction [I]

Spiro Michaylov and Frank Pfenning

Figure 1: Basic Computation

Program

Mini-ML
Canonical
Prop
F-O
Forsythe
Lam
Polylam
Records
DeBruij 11
CLS

Program

Mini-ML
Canonical
Prop
F - 0
Forsythe
Lam
Polylam
Records
DeBruijn
CLS

Dynamic Unifications
Dyn %Ind %S %F

1532 93 7 0
8 50 50 0

41 44 41 1.5
33 11 82 0
10 25 -- 1 3 0
'Zli 80 1.5 5

389 88 12 1
274 61 39 0

.5 40 60 U
0 -

All Unifications
Unif %Ind %S %F

15333 87 13 0
177 66 28 6
677 60 30 10
359 65 28 - i

2087 38 23 39
240 50 40 10
982 65 34 1

2459 61 31 8
45 1 25 39 36
278 0 32 68

Dynamic/Assume
Ass U/Ass AU/Ass

67 22.87 1.61
3 2.67 1.33
9 4.56 2.56

17 1.94 0.07
10 1.60 1.20
4 6.50 1.25

45 8.64 1.00
28 9.79 3.79
5 1.00 0.60
0

Disagreement Pairs
' Tot %E-? %G-? %R %A

8716 4 7 0 52 0
427 4 1 8 56 0

1681 54 0 45 1
438 4 0 6 58 0

5812 4 3 0 57 0
874 4 1 0 59 0

2085 48 3 50 1
3880 46 3 53 0
1554 4 4 1 56 0
2455 3 6 0 6 0

Substitutions
Tot %Uv Abs Abs/Uv

6411 98 0 0.00
180 96 36 0.21
202 100 8 0.04
108 100 58 0.54
39 100 0 0.00

149 86 0 0.00
7907 89 81 0.01
1347 100 204 0.15
688 97 16 0.02

0 0

Proceedings o f the 1992 A Prolog Workshop

Figure 2: I'roof Manipula.tion

Program

Extraction
Mini-ML
CPS
Prop
F-O
Lam
DeBruijn
CLS

Program

Extraction
Mini-ML
C P S
Prop
F-O
Lam
DeBruijn
CLS

Dynamic Unifications
Dyn %Ind %S %F

165 82 17 1
107 87 13 0
72 57 43 0

509 71 14 15
27 0 100 0
36 75 22 3
77 51 30 19
0 -

All Unifications
Unif %Ind %S %F

878 89 11 0
2415 73 11 16

162 59 41 0
4957 67 25 8
1140 69 27 4
369 50 44 6
627 20 44 36
333 30 42 28

Dynamic/Assume
Ass U/Ass AU/Ass

54 3.05 0.54
10 10.70 1.40
48 1.50 0.65
71 7.17 2.10
13 2.08 2.08
12 3.00 0.75
24 3.21 1.58
0

Disagreement Pairs
Tot %E-? %G-? %R %A

1580 22 9 66 6
5872 17 1 76 6
592 24 34 54 0

13809 3 5 3 63 1
6800 2 1 1 74 5
3464 22 2 74 3

13441 15 1 71 13
5227 23 0 7'7 0

Substitutions
Tot %Uv Abs Abs/Uv

9016 96 1124 0.01
3644 96 55 0.02
1509 100 1029 0.68

12040 99 443 0.04
12716 99 38 0.00
1825 94 83 0.05

14632 99 150 0.01
2 0

Spiro Michaylov and Frank Pfennjng

Dynamic/Assume
Ass U/Ass AU/Ass

67 22.87 1.61
87 10.67 4.30
87 10.67 4.30
10 10.70 1.40
67 9.45 8.06
67 9.45 8.06

Program

Comp
ExpComp
ExpIndComp
Trans
ExpTrans
ExpIndTrans

Dynamic Unifications
Dyn %Ind %S %F
1532 92 8 0
1798 80 8 12
1798 92 8 0

107 86 14 0
633 15 13 72
63:3 84 13 3

Program

Comp
ExpComp
ExpIndComp
Trans
ExpTrans
ExpIndTrans

Program 11 Comput.ation Transformation

Figure 3: Mini-ML comparison

All Unifications
Unif %Ind %S %F
5562 90 10 0
7200 70 10 20
7200 88 10 2
2159 70 11 19
5255 29 10 59
5255 76 11 1:3

Disagreement Pairs
Tot %E-? %G-? %R %A

2424 4 3 0 57 0
10765 24 4 56 17
4251 3 2 10 52 8
5709 17 1 76 7

27342 2 0 4 61 16
13482 17 8 65 12

Implicit
Explicit
Explicit.-Indexed

Substitutions
Tot. %Uv Abs Abs/Uv

445 97 0
22743 100 778 0.03
15801 100 778 0.05
3612 96 55 0.02

280679 97 2522 0.01
264399 98 2522 0.01

1.30 2.48
8.48 155.09
5.80 145.89

Proceedings of tile 1992 XProlog Workshop

This example involves a large number of level 2 judgments. Indexing is particularly effective
here, and assumed rules are used unusually infrequently. Note that these examples do not
include any basic computation.

An implementation of Mini-ML, including type-checking, evaluation, and the type soundness
proof. Because of the large number of cases, indexing has a stronger effect than in all other
examples.

C P S - Interpretation of propositional logics and CPS conversions [3, 231

Various forms of coirversion of simply-typed terins to continuation-passing and exception-
returning style. Substitutions are all pa.ramet,er substitutions, aad unifica.tion involves an
unusually large number of gva,r-anyt,hing ca.ses. The redundant type computations are very
significant in this esamyle-all the esa.mples are level 2 judgments.

Canonical - Canonical foriizs in the siiial~ly-fypecl I(rrizbcla-ccilculus [21]

Conversion of lambda.-terms to canonical form. A snlall number of non-parameter substitu-
tions arise, but mostly unification is first-order. Here, too, there is much redundant type
computation.

Prop - Propositional Theorenr Prozling crirrl Trrrnsjornzcr.tio12 [5]

This is mostly first-order. In the transforma.t,ions between various proof formats (natural
deduction and Hilbert calculi), a fairly 1a.rge number of assumptions arise, and are quite
heavily used. Unification involves a large number of evar-anything cases.

F-0 - First-order logic theorem provirtg nnd frnizsfornzation

This includes a logic programming style t,lreorem prover a.nd tra.nsformation of execution trace
t o natural deductions. There is ra.ther little a.bstra.ction.

Forsythe - Forsythe type checking

Forsythe is a n Algol-like la.nguage wit,]] intersection types developed by Reynolds [24]. This
example involves very few substitutions, all of which are parameter substitutions. Thus the
runtime behavior suggests a.n almost entirely fissl -orcler program, which is not apparent from
the code.

Lam - Lambda calculus coizvertibilii~y

Normalization and equivalence proofs of terlns in a typed A-ca.lculus. A relatively high per-
centage of the substitutions a,re non-paramet,er substitutions.

Polylam - Type inference in the polynroryhlc larizbdn calculus [20]

Type inference for the polymorphic A-calculus involves postponed constraints, but mostly
parameter substitutions. Unification can be highly 11011-deterministic. This is not directly
reflected in the given tables. as this is the only one of our esamples where any hard constraints

Spiro Michaylov and Frank Pfenning 267

are delayed a t run time (and in only 10 instances). In fact, one of these hard constraints
remains all the way t o the end of the computation. This indicates that the input was not
annotated with enough type inforillation (within the polymorphic type discipline, not within
the framework).

Records - A lanabda-calculus with records and polynaorphism

Type checking for a lambda-calculus with records and polymorphism as described in [6] . This
involves only parameter substitut,ions, and assumptions are heavily used.

A compiler from untyped A-terms to terins using deBruijn indices, including a call-by-value
opera.tiona.1 semantics for source ant1 target language. The proof manipulation queries check
compiler correctness for concrete programs. Indexing \vorks quite poorly, and an unusually
large number of abst-abst cases arise in unification.

CLS [4]

A second compiler from terms in deBruijn representation t o the CLS abstract machine. Sim-
ple queries execute the CLS ma~chine on given programs, proof manipulation queries check
compiler correctness for concrete progra.nls. Tliis is almost colnpletely first-order.

Overall, the figures suggest quite strongly that most unification is either simple assignment or
first-order (Herbrand) unification, around 9.5%, averaged over all examples. Similarly, substitution
is the substitution of parameters for A-bound variables in about 95% of the cases. The remaining 5%
are substitution of constants, variables, or compound terms for bound variables. These figures do
not count the substitution that may occur \v11e11 clauses are copied, or unifications or substitutions
that arise during type reconstruction.

Finally, we compare the Mini-ML progranl with a version written using explicit substitution,
t o evaluate the effects of a syntactic restriction along the lines of L,, . The computation queries had
t o be cut down somewhat because of memory restrictions. In Figure 3 we show the same data as
above for the computation and transformation queries ~sr i t l~ and without explicit substitution. We
also show a version with explicit substitution with the substitution code rewritten to take better
advantage of indexing. Then we compare the C'PU times (in seconds) for the two sets of queries for
all three versions of the program, using a slightly modified3 Elf version 0.2 in SML/NJ version 0.80
on a DEC station 5000/200 with 64XIB of memory and local paging. These results show that there
is a clear efficiency disadvantage to the L\ restriction, given present implementation techniques.
Note that the disadvantage is greater for the transformation queries, since a longer proof object
is obtained, resulting in a more complicated proof transformation. Explicit substitution increases
the size of the relevant code by 3 0 % . ~ u b s t i t u t i o n s dominate the computation time, basically
because one meta-level P-reduction has been replaced by illany substitutions. These substitutions

3 T l ~ e modification involves building proof 0bject.s o11l.v when ueeded for c0rrect.nes.s.
'Actually, the meta-theory was not complet.el,v reduced t.o L A . because type dependencies in the verification code

would lead t o a very complex verificatio~l predicate. \ile estimate that the code size would increase an additional 5%
and the computat io~l time by much more tI1a11 t.llat.

268 Proceedings of the 1992 XProlog Workshop

should all be parameter (uvar) substitutions, whiclz suggests that some (but clearly not all) of the
performance degradation could be recovered through efficient uvar substitution. See the previous
footnote on why non-parameter substitutions still arise in tile proof transformation examples.

3.2 Further Summary Analysis

A few figures were obtained through simple summary profiling and await further detailed analysis.
The summary figures suggest that , for esamples of average size, omitting the (extended) occurs-
check in the current implementation can result in speed improvements of between 40% and 60%.
This is therefore an upper bound on the speed-up that could be achieved through smart compilation
t o avoid the occurs-check.

The current implementation avoids building proof objects to some extent (applicable to Elf
only), which saves about 50% of total computation time. althougl~ tlze savings are not additive
(some of the occurs-check overhead arises in building proofs).

4 Conclusions

We briefly summarize our preliminary conclusions, which are very much in line with the experience
gained in other constraint logic progralzlming languages 11'21.
Language Design. Statically prohibiting difficult cases in unification (by a restriction to L A , for
example) is not a good idea, since it leads to a proliferation of code and significantly complicates
meta-theory as i t is typically expressed in Elf. This coincides with experience in other constraint
logic programming languages such as CLP(72) and Prolog-111.

Our recommendation is t o delay hard constraints (including flexible-rigid pairs that are not
gvar-rigid pairs) aiid thus avoid branching in unification at runtime.
Language Implementation. Indexing ant1 representation of terms in the functor/arg notation
(rather then the curried notation typical for A-calculi) are crucial for achieving good performance,
as they enable quick classification of disagreement pairs and rigid-rigid decomposition. It is rather
obvious that runtime type computation must be avoided whenever possible as suggested in [ll],
and that proof building must be avoided whenever the proof object will not be needed.

We need special efficient mechanisms for direct binding and first-order unification. Furthermore,
unification as in LA and substitution of parameters for bound variables are very important special
cases that merit special attention. Efficiency of substitution of constants or compound terms for
bound variables is important in soiile applications. but not nearly as pervasive and deserves only
secondary consideration.

5 Future Work

A study such as this is necessarily restricted aiid biased by the currently available implementation
technology. The most important figures tlia,t a.rc curl.ently missing:

How much type conlputation ca.n be elilninated. a.nd \vhab would be the effect of eliminating
redundant type c~mputa t~ ion oil the remaining fig111.e~.

Spiro Michaylov and Frank Pfenning

a How often can the occurs-check be avoided.

In longer term work, one would also like to ana.lyse the effect of other standard compilation
techniques of logic programming languages in this new setting, but much of this requires an imple-
mented compiler as a basis.

References

[I] Penny Anderson. Program Development by Proof Transformation. PhD thesis, Carnegie Mellon
University, 1992. In prepa.ra.tion.

[2] Scott Dietzen and Frank Pfenning. IIiglier-order and modal logic as a framework for
explanation-based generalization. Arl(rclri~lc L E (I I ' I Z Z I Z ~ , 9:23-55, 1992.

[3] Timothy G. Griffin. Logical interpretations as coinputational simulations. Draft paper. Talk
given a t the North American Jumelage. .4Tk7' Bell Laboratories, Murray Hill, New Jersey,
October 1991.

[4] John Hannan and Frank Pfenning. Compiler verification in LF. In Andre Scedrov, editor,
Seventh Annual IEEE Synzyosiz/nl orl Logic in Cor~lputcr Sczence, pages 407-418, Santa Cruz,
California, June 1992. IEEE Computer Society Press.

[5] Robert Harper and Frank Pfenning. .4 module system for a programming language based
on the LF logical framework. Technical Report Ch4U-CS-92-191, Carnegie Mellon University,
Pittsburgh, Pennsylvania, September 1992.

[GI Robert Harper and Benjamin Pierce. A record calculus based on symmetric concatenation. In
Conference Record of the Ezgl~trerztlr .411n~rol AC'AI ,Syrn~)osiz~ii~ on Principles of Programming
Languages, pages 131-132, Orlantlo. Florida, January 1991.

[7] Joshua S. Hodas aad Dale Miller. Logic programnli~lg in a, fragment of intuitionistic linear
logic. Information and Conzpvlcrtior~, 199'! To a.ppear. A prelinlinary version appeared in
the Proceedings of the Sixth Annual IEEE Symposiuul on Logic in Computer Science, pages
32-42, Amsterdam, The Netherlands, July 1991.

[8] Gbrard Huet. A unification algoritllni for typed A-calculus. Theoretical Computer Science,
1:27-57, 1975.

[9] Joxan Jaffar, Spiro Michaylov, Peter J . S tucke, and Roland H. C. Yap. The CLP(R) language
and system. AChf Tron.~r/clzoi~~ o?l P r o g r o i ~ ~ r ~ l ~ ~ ~ y Lai~gungc.~ (lizct .!?ystcnzs, 14(3):339-395, July
1992.

[lo] Joxan Jaffar, Spiro Michaylov, and Roland IBp. inetllodology for nranaging hard constraints
in CLP systems. In Barbara Ryder. editor. Pr~occ~ctlirzg~ of the ACAI SIGPLAN Synzposium on
Programnzing Language Desrgn rind I ~ ~ t / ~ l t ~ ~) ~ i ~ t (l t ~ o i ~ . pages 306-316, Toronto, Canada, June
1991.

270 Proceedi~lgs of the 1992 XProlog Workshop

[l l] Keehang Kwon, Gopalan Nadathur, and Debra. Sue Wilson. Implementing logic programming
languages with polymorphic typing. Technical Report CS-1991-39, Duke University, Durham,
North Carolina, October 1991.

[12] Spiro Michaylov. Design and Iml~lementntion of Practical Constraint Logic Programming Sys-
tems. PhD thesis, Carnegie Mellon University, August 1992. Available as Technical Report
CMU-CS-92-168.

[13] Spiro Michaylov and Frank Pfenning. Na.tura,l sema.ntics and some of its meta- theory in Elf. In
L.-H. Eriksson, L. Hallnas, and P. Schroeder-Heister, editors, Proceedings of the Second Inter-
national Workshop on Exteizsiorzs of Logic P1.o!/rcrnz,i2i~zg, pages 299-344, Stockholm, Sweden,
Janua.ry 1991. Springer-Verlag LN.41 ,596.

[14] Dale Miller. A logic progra.mming language with lambda-abstraction, function variables, and
simple unification. In Peter Schroeder-Heister, editor, Extensions of Logic Programming: In-
ternational JVorkshop, Tubingen FRG. December 1989, pages 253-281. Springer-Verlag LNCS
475, 1991.

[15] Dale Miller. Unification of sinlply typed 1anlhda.-t,erms as logic programming. In K. Furukawa,
editor, Proceedings of the Eighth Interrzatioizci~l Cbizjereizce on Logic Programming, pages 255-
269. MIT Press, July 1991.

[16] Gopalan Nadathur and Bharat Jayaraman. Towards a WAM model for lambda Prolog. In
Proceedings of the 1989 North American Conference on Logic Programming, pages 1180-1198.
MIT Press, October 1989.

[17] Gopalan Nadathur and Dale Miller. An overview of XProlog. In Robert A. Kowalski and
Kenneth A. Bowen, editors, Logic Programming: Proceedings of the Fifth International Con-
ference and Symposiunz, Volume 1. pa.ges 810-8'27, Cambridge, Massachusetts, August 1988.
MIT Press.

[18] Gopalan Nadathur and Debra Sue M'ilson. A representa.tion of lambda terms suitable for
operations on their intensions. In Proceedings of thc 1990 Conference on Lisp and Functional
Programming, pages 341-348. AChll Press, .I uue 1990.

[19] Pascal Brisset Olivier Ridous, Serge Le Huitouze. Prolog/mali. Available via ftp over the
Internet, March 1992. Send mail to pm@irisa.fr for further information.

[20] Frank Pfenning. Partial polynlorphic type inference and higher-order unification. In Pro-
ceedings of the 1988 AChi Co7zference or1 Lisp rrricl Ftrnciio~zal Programming, pages 153-163,
Snowbird, Utah, July 1988. AChl PIYSS.

[21] Frank Pfenning. Logic program~ning in the LF logical fra.mework. I11 G6rard Huet and Gordon
Plotkin, editors, Logical Frcrnzeu~orks. pages 1-19--181. Cambridge University Press, 1991.

Spiro Michaylov and Frank Pfenning 27 1

[22] Frank Pfenning. Unification and anti-unification in the Calculus of Constructions. In Sixth An-
nual IEEE Symposium on Logic in Conzpu.ter ,Science, pages 74-85, Amsterdam, The Nether-
lands, July 1991.

[23] Frank Pfenning and Ekkehard Rohwedder. Implementing the meta-theory of deductive sys-
tems. In D. Kapur, editor, Proceedings of the 11th International Conference on Automated
Deduction, pages 537-551, Saratoga Springs, New York, June 1992. Springer-Verlag LNAI 607.

[24] John C. Reynolds. Preliminary design of the programming language Forsythe. Technical
Report CMU-CS-88-159, Carnegie h/lellon University, Pittsburgh, Pennsylvania, June 1988.

Proceedings o f the 1992 XProlog Workshop

A Proposal for Modules in XProlog:
Preliminary Draft

Dale Miller
Computer Science Depar tment

University of Pennsylvania
Philadelphia, PA 19104-6389 USA

d a l e @ s a u l . c i s . u p e n n . e d u

Abstract

Higher-order hereditary Ha.rrop formulas, the underlying logical foundation of XProlog [20], are
more expressive than first-order Horn clauses, the logical foundation of Prolog. In particular,
various forms of scoping and a.bstra.ction a.re supported by the logic of higher-order hereditary
Harrop formulas while they are not supported by first-order Horn clauses. Various papers have
argued that the scoping a.nd abstraction a.vailable in this richer logic can be used to provide for
modular programming [15], abstract data types [14], and state encapsulation [7]. None of these
papers, however, have dealt with the problems of progmnznzirzg-in-the-large, that is, the essentially
linguistic problems of putting together various different textual sources of code found, say, in
different files on a persistent store into one logic program. In this paper, I propose a module
system for XProlog and shall focus mostly on i t static semantics. The dynamic aspects are covered
in various other papers: in particular, see the paper by I<won, Nadathur, and Wilson [lo] in these
proceedings.

1 Module syntax should be declarative

Several modern programming languages are built on declarative, formal languages: for example,
ML and Scheme are based on the A-calculus and Prolog is based on Horn clauses. Initial work
on developing such languages wa.s first concerned with programming-in-the-small: problems with
programming-in-the-large were atta.ched later. At that point, a second language was often added
on top of the initial language. For example, parsing and compiler directives, such as use , import ,
inc lude , and l o c a l , were added. This second 1angua.ge generally had little connection with the
original declarative foundation of the initial langua,ge: its was born out of the necessity to build
large programs and its function was espediency. The meaning of the resulting hybrid language is
often complex since it loses some of its decla.rative purity.

Occasionally, programming design is inflicted with what we may call the "recreating the Turing
machine" syndrome. Turing machines were importa.nt because they were the first formal system
that obviously computed and were clearly easy to implement. They have not been considered
seriously as programming languages for severa.1 rea.sons. including the difficulty of understanding and

'Supported in part by ONR N00014-88-I<-0633, NSF CCR-91-02753, and DARPA N00014-85-K-0018,

274 Proceedillgs of the 1992 XProlog Workshop

reasoning about transition tables. Often the development of modular constructions in programming
languages follows a similar path: it is generally easy to develop a language for programming-in-
the-large that obviously separates a.nd hides details and for which efficient implementations are
possible. Often, however, it is difficult t o reason about the meaning of the resulting language.

In order t o avoid this syndrome we should ask that any proposal for programming-in-the-large
have several high-level principles. For example, we should ask for such proposals to support several
of the following properties.

There should be a non-trivial notion of the equivalence of modules that would guarantee that
a module can be replaced by a.n equivalent module with little t o no impact on the behavior
of a larger program. This property is someti~~les called representation independence (see
Section 3).

Constructs for programming-in-the-la,rge sllould not complicate the meaning of the underly-
ing, declarative 1angua.ge.

Modules should support transitions from specification to implementation.

Modular programming should work sn~oothly with higher-order programming. In Prolog, a
particular challenge is getting the semantics of the c a l l / l predicate correct.

Rich forms of abstraction, hiding, aad para.metriza.tion should be possible.

Modules should allow a rich ca.lculus of transforma.tions. These should include partial evalu-
ation, fold/unfold, and even compilation.

Important aspects of a, module's mea.ning should be a.vaila.ble and verified without examining
the module in detail. Notions of interfa.ces often support this property.

The additional syntax for programming-in-the-large should also be readable, natural, and
support separate compilation and re-usa.bility.

The success of a proposal for modular progra.mming should not be judged simply on its obvi-
ousness or easy of implementation: it should also be judged on its ability to support a large number
of properties such as these.

O n e approach : m a p m o d u l e s y n t a x d i rec t ly to logic There are some logical systems that
can be used as a basis of logic programmillg and that contain natural notions of scope for program
clauses and constants. For esa.mple, the logic of hereditnry Hn.rrop formulas, parts of which were
developed independently by Gabbay and Reyle [dl, McCa.rty [l l , 121, and Miller [13, 15, 161, allows
for a simple stack-based structuring of the runtime program a,nd set of constants. The modal
logic of Giordano, Martelli, and R.ossi [5] provides an interesting variation on the simple "visibility
rules" effecting logic programs based on the intuit,ionistic theory of hereditary Harrop formulas. A
recent linear logic refinement of 1leredita.r~ Harrop forlliulas by Hodas and Miller [8] modifies the
stacked-based discipline of progra.ms by allowing sonle pr0gra.m clauses to be deleted once they are
used within a proof.

Dale Miller 2 75

One approach to developing a principled modular programming language is t o reduce program-
ming-in-the-large t o programming-in-the-small is such a way that modular programming can be
explained completely in terms on the logical connectives of the underlying language. That is, a
linked collection of modules would be mapped to a (possibly large) collection of (possibly large)
formulas. Furthermore, we would like the combinators for building modules to correspond closely
to logical connectives. The static semantics of a. collection of modules is specified by describing
how such modules denote a collection of constants and program clauses. The dynamic semantics
of a collection of modules is specified by describing the collection of goal formulas that can be
proved from them. Given the richness of hereditary Harrop formulas and their variants, the main
challenge in specifying the static sema.ntics of modules appears to be determining the scope and
types of constants.

2 A specific module proposal

We shall now turn to a specific proposal for modules for XProlog. Since the underlying logic of
XProlog is that of the intuitionistic (actually minimal) theory of hereditary Harrop formulas, we
shall consider how modules can be ma.pped into such formu1a.s. It would be interesting to consider
a similar mapping into either the modal or linear logic varia.nts of these formulas mentioned above.
We shall not, however, consider these other varia,tions here.

2.1 General conlme~lts

XProlog extends first-order Horn cla.uses in several ways. As it turns out, much of the scoping
primitives for the module facility proposed here do not come from the higher-order quantification
available in XProlog. In fact, the propositional logic fragment of XProlog supports the stacked-based
treatment of progra.mming clauses. Higher-order qua~ntifica.tioi1 is important, however, in providing
scope for predicate and function syn~bols a.s well as in providing for higher-order programming (an
important abstraction separate from the module proposal here.

Both the proof theoretic and model theoretic treatillents of XProlog's foundation treats a pro-
gram as a pair containing a sig11a.tur.e and set of cla.uses. For example, the proof theoretic treatment
of XProlog given in [16] uses sequents of the form 5; T' - G. where S is a signature (a collection of
typed constants) and P is a set of Z-formulas (closed formulas all of whose non-logical constants are
contained in C). Similarly, a. canonica.1 model for a large fragment of the logic underlying XProlog
can be given as a Kripke model where possible worlds a.re pairs (C, F) , where C is a signature and
P is a set of C-formulas [17]. Thus it will not be surprising that the module proposal presented
here will make extensive use of signatures. Even if XProlog was not a typed language signatures
would be important since the set of constants a.vaila.ble t,o a computation changes, and describing
how that set of constailts change would make use of a notion of signature similar to that used here.
Gunter [6] also makes use of signatures in developing a module calculus for AProlog.

Finally, it is important to say that what follows is just the dra.ft of a proposal. Much of
what follows has not be debated by those currently using implen~entations of XProlog. Also, most
experience with XProlog has been wit11 sma.11 progra.ms. Few people have yet had experience with

276 Proceedirlgs of the 1992 XProlog Workshop

large XProlog programs. This proposal is hopefully another step in determining a viable solution
to programming-in-the-large in this logic progra.mming setting.

2.2 Persistent store

Interacting with a persistent store, such as the Unix file system, is problematic within our logic
programming setting: some non-logical predicates are required a t the core of our module facility.
In particular, the predicate

type load s t r i n g -> o

predicate performs a side-effect: it is used to reflect some of the persistent store into the space of
meaningful XProlog objects. As edits are done on files, new calls to load are needed to update
these objects. An attempt to prove t,lle a.t.om load name takes the string name as a reference to an
actual file. The resolution of this string into a, file can be done in possibly many ways. The method
used in LP2.7 [lS] was to maintain a list of Unix path na.mes and to search in them for a file whose
name is name augmented with ".modv. If such a. file is found, then it is parsed and type checked.
Other methods t o resolve the string name with a file a,re possible.

2.3 Kinds and types

In order t o allow useful types, we adillit type constructors. There is only one of these built into
XProlog, namely the infix "function space" constructor ->. Other type constructors can be declared
via the KIND declaration. (Keywords will be ca.pita.lized for readability: in most implementations
of XProlog, keywords appear in lowercase letters.) For esample,

KIND boo1 t y p e .
KIND l ist type -> type .
KIND p a i r t y p e -> type -> t y p e .

As this example show, the only kind that can be associa,ted with a type constructor is any "first-
order kind" involving only type and ->. Qualifying a, type constructor with a non-negative integer
(0 instead of type, 1 instead of type -> type, etc.) could also have worked here.

Types will be used to qua.lify constants. Types a.re a.ny first-order term structure built from
type variables and type constructors. The presence of types variables will provide XProlog with
a degree of polymorphisn~. Type variables are tokens within type expressions that have an initial
uppercase letter. The following a.re some type declarations.

TYPE n i l l i s t A.
TYPE : : A -> l i s t A -> l ist A .
TYPE append l i s t A -> l ist A -> l ist A -> o .
TYPE memb A -> l i s t A -> o.

XProlog has numerous build-in types, including type o, the type of XProlog formulas.
The subsumption relation on types is that fa.miliar from first order logic: a type is subsumed

by another type if the first is a. substitution instance of the second.

Dale Miller

2.4 Static semantics for types and terms

I will assume that types are property formed (they respect kind declarations) and that formulas
and terms are well typed. See [21] for a fuller discussion of this aspect of static semantics.

2.5 Signatures

Signatures are lists of tokens assigned kinds and types, and are denoted by the syntactic variable
C. The same token can be given a type and a kind. Op-decla.rations are also stored as members of
signatures. The following is an example of a signature.

OP 150 : : xfy .
KIND list type -> type.
TYPE : : A -> list A -> list A.
TYPE nil list A.
TYPE memb, member A -> list A -> o.
TYPE append, join list A -> list A -> list A -> o.

A formula is a C-formula if it is a correctly typed, closed formula all of whose non-logical constants
are from C. Since modules are collections of formula.^, we shall use signatures to qualify (type)
modules.

It will be useful to have signature descriptioizs to represent possibly long lists of constants. For
this, we shall use the keywords SIGNATURE. TYPE, KIND, OP, ACCUMULATE, LOCAL, and LOCALKIND.
The keyword SIGNATURE is used to name a. signature and the keywords TYPE, KIND, and OP are used
simply to enumerate the members of a signature. ACCUMULATE takes a list of signatures: its intended
meaning is to merge in the listed signatures. The two keywords LOCAL and LOCALKIND are used to
limit the scope of types and kinds so that they are a.ctually not part of this signature. The LOCAL
keyword can take a type declaration as an optional third argument; similarly with LOCALKIND. The
following are two signature descriptions.

SIGNATURE lists.
OP 150 : : xfy.
KIND list type -> type.
TYPE : : A -> list A -> list A.
TYPE nil list A.
TYPE memb,member A -> list A -> o.
TYPE append, join list A -> list A -> list A - > o.

SIGNATURE rev.
ACCUMULATE lists.
TYPE reverse list A -> list A -> o .
LOCAL revaux list A -> list A -> list A -> o .
LOCAL join.

278 Proceedings of the 1992 XProlog Workshop

Constants can be given multiple types within the same module or within ACCUMULATEing chains of
modules. It is a n error if these types are not compa.ra.ble via subsumption. Otherwise, the type
assumed is the least general of those types.

Signature descriptions are elaborated into signatures using the following rules. First, eliminate
all ACCUMULATE keywords by replacing them with the signatures they name. In doing this, if a
constant is given two op-declarations, then it is an error if those two declarations are not identical.
Second, LOCAL can be dropped by deleting it and any constant of the same name in the accumulated
signature. If LOCALKIND is present, then first check to see if there are constants in the signature
that have a type containing this type constructor. If so, produce an error. Otherwise, simply drop
this declaration.

The notion of s i g n a t ~ ~ r e corztcr.irznaent is given simply as follows: C1 is contained in C2 if

a for every constant in C1 given a kind, tha,t consta.nt is given the same kind in C2,

a for every constant in C1 given a type T. that constant is given a. type in C2 that subsumes T ,

and

a for every constant in E l given a.n op-decla.ra.tion, that constant is given the identical op-
declaration in Cz.

This notion of signature containment will be needed for defining equal signatures and for a certain
kind of dynamic qualification of modules (see subsectioll 2.10).

We shall assume that there is a special system signature that contains declarations for all logical
and built-in constants of a given XProlog system.

2.6 Module syntax

Modules will be built from kinds, types, aacl pr0gra.m cla.uses using the following keywords: TYPE,
KIND, OP, LOCAL, LOCALKIND, MODULE, ACCUMULATE, and IMPORT. The meaning of TYPE, KIND, and
OP are as they were for signa.ture descriptions. The keyword MODULE names a module (similar to
the keyword SIGNATURE). The keywords LOCAL aad LOCALKIND provide scope to constants within a
module: the dynamic semantics of LOCAL will be interpreted as an existential quantifier, as described
in 1141. The keywords ACCUMULATE and IMPORT will be described further below.

Although only the keyword MODULE must appear a t the front of a module, for the convenience
of parsing and reading modules, we assume that it is a.n error if a, declaration of a constant appears
after the first occurrence of tha.t constant. All declara.t'ions are global in a module. Figure 1 contains
two examples of modules.

2.7 Static semailtics f o r inodules

The static semantics of modules is used to determine which signature and formulas are intended by
the module. Since we are attempting to reduce modules to fornlulas, recursion between modules is
not allowed: tha t is, if modl inlports or a.ccumulat,es mod2 then mod2 can not import or accumulate
modl.

A s.gnature description is built from a module a.s follows.

Dale Miller

MODULE l i s t s .

OP 150 :: xfy.
KIND l i s t type -> type.

TYPE :: A -> l i s t A -> l i s t A.
TYPE n i l l i s t A.
TYPE memb,member A - > l i s t A -> o .
TYPE append, j o in l i s t A -> l i s t A - > l i s t A -> o .

memb X (X::L).
memb X (Y::L) :- memb X L .

member X (X::L) :- ! .
member X (Y::L) :- member X L

append n i l K K .
append (X::L) K (X::M) :- append L K M

j o in n i l K K .
j o in (X::L) K M :- memb X K , !, jo in L K M.
j o in (X::L) K (X::M) :- j o in L K M .

MODULE r ev .

ACCUMULATE l i s ts .
TYPE reverse l i s t A -> l i s t A -> o .
LOCAL rev l i s t A -> l i s t A -> l i s t A - > o .

reverse L K :- rev L K n i l .

r ev n i l K K .
r ev (X::L) K (X::Acc) :- rev L K ACC.

Figure 1: The l ists and rev modules.

280 Proceedings of the 1992 XProlog Worlishop

TYPE and K I N D declarations stay TYPE and K I N D declarations.

All IMPORTed, ACCUMULATEd, and module implication (==>) modules have their signatures
ACCUMULATEd.

If the qualified module importing (===> mod s i g l G is used, then the signature sig is
ACCUMULATEd (see Section 2.10 for a description of ===>).

LOCAL and LOCALKIND become LOCAL and LOCALKIND.

Notice that i t is possible for LOCAL and LOCALKIND to provide scope t o a constant that is IMPORTed
or ACCUMULATEd. If IMPORT or ACCUMULATE is used in a module and there is no corresponding
module with the correct name, then look for a sigimture with that name. Thus modules without
clauses can simply be written as signa.tures.

The static semalltics of the IMPORT keyword coilstructioii is a bit complicated, although it does
follow closely the lines described in [15] a.nd implemented in LP2.7 and eLP [3]. If a module modl
contains the line

IMPORT mod2 mod3

then the modules mod2 and mod3 are made availa.ble (via implications) during the search for proofs
of the body of clauses listed in modl. Thus, if the formu1a.s E2 and E3 are associated with mod2
and mod3, then a clause G > A listed in modl is ela.borated to the clause ((E 2 A E3) 3 G) > A.

Notice that a module denotes both a. set of program clauses and a signature. The signature
that is inferred from a module can be used as an interface: when parsing and compiling modules,
i t should only be necessary for the signa.ture of an a.ccumula.ted or imported module to be read.

2.8 Environment support

The process of parsing a module will also be accoinpa.ni.ed with type checking and type inference.
In particular, a file containing a module may not a.ttribute a type to all constants. In this case, the
programming environment must be able to infer a reasonable type for the undeclared constants.
Type inference can be done much a.s it is in ML: see [%I] for more discussion on type inference for
XProlog .

Signature checking and inference will also need to be done by the environment. Checking
involves making certain that when modules a.re a.c.cumula.ted and imported, constants are not given
incomparable types and decla.ra.bions.

2.9 Dynamic selnailtics for nlodules

I shall assume that the reader is already fanliliar wit11 the operatioilal (dynamic) semantics of
hereditary Harrop formula.^, in particular, with the meaning of implications and universal quantifiers
in goals.

Dale Miller 281

The ACCUMULATE keyword. Although the meaning of this keyword is simple, i t is not
present in either LP2.7 or eLP. It is similar t o the use directive of Prolog/Mali. If a module modl
contains the line

ACCUMULATE mod2 mod3.

then is intended that the program clauses in mod2 and mod3 are available a t the end of the list of
program clauses listed explicitly in modl.

The IMPORT keyword. Proof search based on clauses obtained by importing a module into
another module can benefit from some recent work on provability in intuitionistic logic. For exam-
ple, both Hudelmaier [9] and Dyckhoff [2] have demonstrated that the implication-left rule can be
improved (with respect t o proof sea.rch). For example, the implication-left rule can be split into
several cases depending of the form of the implica.tion. The following is one of these rules.

C ; F , E , G > D - C; 2: F, D - G'
Y; T', (E > G) > D - G'

Consider the case when the formu1a.s D and G' are the same atomic formula A.

Notice that the formula (E > G) > A could be the result of importing a module E into a module
listing the clause G > A. Notice tha.t backcha.ining on a. clause in this module provides an opera-
tional reading of importing: the imported module is added to the current clauses along with the
un-elaborated clauses from the initial module.

A generalization of this inference rule would be the following:

C; T', E, A;="=,Gi 3 A ;) -- G j
S; F,A:=l((E 3 G';) > A;) --- A

where Aj is equal t o A, for some j = I , n . ,411 axgunlent for the completeness for this rule can
be found in [lo].

In the above inference rule, assume tha,t the formula E is of the form 32.D where the list of
typed, bound variables 3 are not in the signa.ture Y. This inference rule could then be modified to

C, 2: P; D, A';", , (G, 3 A ;) - G,
S;P,A:=",,(E > G ;) > A;) --+ A'

Thus, backchaining into a module which imports a module containing local constants essentially
loads its local constants into the current signature and loads it's code (the formula D) into the
current program.

Another important aspect of the dyna.mic semantics of modules is presented in [lo] where the
AUGMENT search rule is modified to be the AUGMENT' search rule. This new rule is used only
for modules and not formulas thus forcing a.n operational (but not declarative) distinction between

282 Proceedings of the 1992 XProlog Workshop

programming-in-the-large and small. The AUGMENT' rule essentially says that if the current
program space already contains a module, tha.t module should not be assumed again: that is, there
should be a t most one copy of a module in the current program space a t a time. The goal mod ==>
mod ==> G is operationally the same as mod ==> G. Such an optimizatioll is unlikely a t the level
of formulas because of the following esa.~nple. Consider a goal of the form (p a) => (p X) => G,
where X is a logical variable. If we checked to see if (p X) in the context, it would seem that we
should allow the unification of X with a. It would be easy to construct exa.mples where the order of
instantiating variables would yield two different answers to this computation, an undesirable effect.

2.10 Questions and additioilal features

I list below some questions and possible a,clditiona.l fea.tures that could be incorporated in the
module system sketched a.bove.

Parametric modules When a module is defined using the MODULE keyword, it might be possible
t o also add to i t a signa.ture over ivllich that module is parametric. A11 example could be given as
follows.

MODULE (qu icksor t K I N D Atype t y p e .
TYPE Order Atype -> Atype -> 01.

TYPE q s o r t l ist Atype -> l i s t Atype -> o .
LOCAL s p l i t Atype -> l is t Atype -> l i s t Atype -> l i s t Atype -> o .
IMPORT lists.

q s o r t nil n i l .
q s o r t (X: :L) K : - s p l i t X L Low High, q s o r t Low R ,

q s o r t High S , append R (X::S) K .

s p l i t X (Y::L) (Y::K) M :- Order X Y , ! , s p l i t X L K M .
s p l i t X (Y::L) K (Y::M) :- s p l i t X L K M .

The argument signature is described using only the K I N D a,nd TYPE keywords and the order in which
items are listed in this signa,ture is importa,nt. Tlle corresponding signature should probably be
written as

SIGNATURE {qu icksor t K I N D Atype t y p e .
TYPE Order Atype -> Atype - > 0).

TYPE q s o r t l i s t Atype -> l i s t Atype -> o .
ACCUMULATE l i s ts .

A use of such a module call be given a.s

?- (qu icksor t i n t 0 ==> q s o r t (2 : : 3 : : 4 : : n i l) L.

Dale Miller 283

Parsing this "module implication" ==> is a bit different from parsing other terms, in particular, the
subexpression {quicksort i n t 0 should be trea.ted by the parser as a subterm over the signature

K I N D i n t type .
TYPE > i n t -> i n t -> o .
TYPE q s o r t i n t l i s t -> i n t l i s t -> o.

plus the signature items in l ists (and the system module, where < is given an op-declaration).

Using cons tan ts t o deno te nlodules a n d signatures. The names for modules and signatures
should be converted to constants tl1a.t are given types, say modname and signame, and declarations
for these names need to be added (destructively) to the system module. In this way, they will be
available globally. Thus, ==> a.nd ===> (this second arrow is described below) would have the types

K I N D modname, signame type .
TYPE ==> modname -> o -> o.
TYPE ===> modname -> signame -> o -> o.

The current convention in LP2.7 and eLP is that there is one module per file and that the file's name
is built from the module's name. This approa.ch l1a.s the a.dvantage that by mentioning a module
name in one of these interpreters, it is possible for the system to find the file containing that module.
It may be an advantage, however, to drop this linkage, in which case, files, possibly containing a
number of modules and signatures, are loaded by using entire path names. For the purposes of
compilation and parsing, once a file is parsed and checked, a: second, parallel file containing only
signatures might be generated from the one that is just parsed. It should only be this second
file that is needed during pa.rsing and compiling of other modules. The aux files generated by
Prolog/Mali [I] are essentially signatures that pa.ra1lel modules.

Quantification over modu le names. It may be possible to permit variables to range over
modules if we are willing to admit runtiine signature checking of nlodules. For example, consider
a goal of the form (===> mod s i g GI. Here mod is a module whose signature is contained in that
given by s ig : this check would be done when this goal is attempted. Thus, in determining the
static properties of a goal with this syntax. siillply use the signature s i g instead of attempting to
determine the one for mod, which may be a variable. Thus, a goal of the form

would search for a module tl1a.t ca,n be used t,o esta,blish the goa.1 G. If all the modules modl, mod2,
and mod3 have a signature conta.ined in the signature s i g , then no runtime error is generated by
this goal. The syntax (===> M s i g G) is essentially the same as (M ==> G) except that M must
be restricted by the sigimture s ig . Notice that it will not be possible to quantify over signature
names.

284 Proceedirigs of the 1992 XProlog Workshop

Other declarations. Other declarations besides those for op might also be allowed. For ex-
ample, certain types could be specified as being open or closed and certain predicates could have
declarations describing how atomic goah could be suspended if certain argument positions are
unbound.

Relationship to other aspects of an interpreter. The interaction of the module system with
inputjoutput and with tlle top-level of an interpreter must also be considered carefully.

3 Formal aspects of this proposal

The design of XProlog ha,s been motiva.ted in pa.rt by the desire to make logic play as large a
role as possible in efforts to estend the expressiveness of logic p~.ogramining. There are many
reasons for this emphasis on logic: the resulting language remains declarative and programs can be
given meaning using such deep meta-theoretic properties as cut-elimination and model theoretic
semantics. Thus, analyzing programnti~zy-in-tlte-s~iz~111 within "pure" XProlog can be attached using
these deep principles. We call hope that the language for describing modules will also have such
principles.

As an example of such principles, consider the problem of representation independence for
abstract da ta types. If we follow the line of argument given in 1141 (and above) for coding abstract
data types, representation indepeildence follows directly. For example, consider the following two
existentially quantified formulas, El and E2, which provide different implementations of queues. (I
shall use the syntactic variable E to range over possibly existentially quantified definite formulas.)

sigma qu\(sigma f\(

pi L\ (empty (qu L L) 1,
pi X\(pi L\(pi K\(enter X (qu L (f X K)) (qu L K))))
pi X\(pi L\(pi K\(remove X (qu (f X L) K) (qu L K) 1)) 1) .

sigma emp\(sigma g\(
(empty emp 1,

pi X\(pi L\ (enter X L (g X L) 11,
pi X\ (remove X (g X emp) emp 1,
pi X\(pi L\(pi K\(remove X (g Y L) (g Y K) :- remove X L K 1)) 1).

Let I- be intuitionistic prova,bility and let k+ be a.n enrichment oft- that is conservative over I- and
that also makes i t possible to rea.son a.bout da.ta structures (that is, iilductioll must be incorporated).
Then if we show that El and E2 are equiva.lent in t+, t l n t is, El t-+ E2 and E2 I - + El, then the
following argument is immedia.te: if I?. El t G then I?, El t+ G since tt enriches t-; by cut-
elimination (assumed also for I-+): r, E2 t-+ G: finally, by conservative extension, r, E2 t- G. Thus,
if a goal G is provable using El? it is provable using E2 (the converse is similar). The fact that
abstractions are based on logic made this argument particularly direct.

Dale Miller 285

Since the higher-order theory of hereditary Harrop formulas has been worked out in [19], there
should be little problem getting this module facility t o work smoothly with higher-order program-
ming. Numerous other formal aspects of this module proposal must also be explored.

4 Conclusion

I have described a possible approa.ch to programming-in-the-large for XProlog. This proposal is
designed t o ensure that the module constructions are declarative and this was done by making
certain that the module syntax can be replaced in a very natural way by logical connectives.

This proposal is just a dra.ft: many details ha.ve been left out. A subsequent version of this
proposal will hopefully correct this shortcoming.

References

[I] Pascal Brisset and Olivier Ridoux. The architecture of an implementation of AProlog: Pro-
log/Mali. In Proceedings of the 1992 XProlog Jl'orkshop, 1992.

[2] Roy Dyckhoff. Contraction-free sequent calculi for intui tionistic logic. Journal of Symbolic
Logic, 57(3), September 1992.

[3] Conal Elliott and Frank Pfenning. eLP, a. Common Lisp Impleme~ltation of XProlog. Imple-
mented as part of the CMU ER.GO project, May 1989.

[4] D. M. Gabbay and U. Reyle. N-Prolog: An extension of Prolog with hypothetical implications.
I . Journal of Logic Programnzing, 1:319 - 3.5.5, 1984.

[5] L. Giordano, A. Martelli, and G. F . Rossi. Local definitions with static scope rules in logic
languages. In Proceedings of the FGC,S Iizternatioizal Conference, Tokyo, 1988.

[GI Elsa L. Gunter. Extensions to logic programming motivated by the construction of a generic
theorem prover. In Peter Schroeder-Heister, editor: Extensions of Logic Programming: Inter-
national Workshop, Tubingen FRG, Deceinber 1989, voluille 475 of Lecture Notes in Artificial
Intelligence, pages 223-244. Springer-Verlag. 1991.

[7] Joshua Hodas and Da,le Miller. Represenbing objects in a. logic programming language with
scoping constructs. In David H. D. Wa.rren a.nd Peter Szeredi, editors, 1990 International
Conference in Logic Progra.mnziizg, pa.ges 5 1 1 - .526. MIT Press, June 1990.

[8] Joshua Hodas and Dale Miller. Logic programming in a fragment of intuitionistic linear logic.
Journal of Information and Computcrtiorz. 1992. Invited to a. special issue of papers from the
1991 LICS conference.

[9] Jorg Hudelmaier. Bounds for ctrt eliminatioiz i n intz~itior2i.stic propositional logic. PhD thesis,
University of Tiibingen, Tiibingen, 1989.

286 Proceedings of the 1992 AProlog Workshop

[lo] Keehang Kwon, Gopalan Nadathur, and Debra. Sue Wilson. Implementing a notion of modules
in the logic programming langauage Xprolog. I11 Proceedings of the 1992 XProlog Workshop,
1992.

[l l] L. T. McCarty. Clausal intuitionistic logic I. fixed point semantics. Journal of Logic Progmm-
ming, 5:l - 31, 1988.

[12] L. T. McCarty. Clausal intuitionistic logic 11. tableau proof procedure. Journal of Logic
Programming, 5 9 3 - 132, 1988.

[13] Dale Miller. A theory of modules for logic programming. In Robert M. Keller, editor, Third
Annual IEEE Synzposiuin on Logic Progmnzi?zing, pages 106 - 114, Salt Lake City, Utah,
September 1986.

[14] Dale Miller. Lexical scoping as universal qua.ntifica.tion. In Sixth International Logic Program-
ming Conference, pages 268-283, Lisbon. Portugal, June 1989. MIT Press.

[15] Dale Miller. A logica,l a,na,lysis of modules in logic progra.mming. Jot~,rnnl of Logic Programming,
6:79 - 108, 1989.

[16] Dale Miller. Abstractions in logic programming. In Peirgiorgio Odifreddi, editor, Logic and
Computer Science, pages 329 - 359. Aca.demic Press, 1990.

[17] Dale Miller. Abstract syi1ta.x a.nd logic progra.mming. In Logic Programming: Proceedings of the
First and Second Russian Conferences on Logic Progrunznzing, number 592 in Lecture Notes in
Artificial Intelligence, pages 322-337. Springer-Verlag, 1992. Also available as technical report
MS-CIS-91-72, UPenn.

1181 Dale Miller a.nd Gopalan Na.da,thur. XProlog Version 2.7. Distribution in C-Prolog and Quintus
sources, July 1988.

[19] Dale Miller, Gopa1a.n Nadathur, Fra.nk Pfenning, a,nd Andre Scedrov. Uniform proofs as a
foundation for logic progra.mming. A7tiznls of Pure and Applied Logic, 51:125-157, 1991.

[20] Gopalan Nadathur and Dale Miller. A11 Overview of AProlog. In Fifth International Logic
Programming Conference, pa.ges 810-8'27. Sea.ttle. Washington, August 1988. MIT Press.

[21] Gopalan Nadathur and Frank Pfenning. The type system of a higher-order logic programming
language. In Frank Pfenning, editor. Typrs i n Logic Progrcrnznzing, pages 245 - 283. MIT Press,
1992.

