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PREFACE

The first workshop on the AProlog language was held 31 July — 1 August 1992. Interest
in AProlog has grown a great deal in the past several years. There is now active work
in all areas of its theory, application, design, and implementation, including such topics
as hypothetic reasoning, modular programming, proof theory, program transformation,
natural language parsing and understanding, theorem proving, rewriting, generalization,
compilation, and abstract machines. This workshop brought many of the people working
on various aspects of AProlog together to discuss common problems and perspectives. This
two day workshop attracted more than 30 attendees.

Robert Harper (Carnegie Mellon University) and Fernando Pereira (AT&T Bell Labs)
kindly accepted to give invited talks. Harper spoke on “Modules for Elf” and Pereira spoke
on “Semantic Interpretation as Higher-Order Deduction.” Two computer systems were also
demonstrated: the Prolog/Mali implementation of AProlog was demonstrated by Olivier
Ridoux and the linear refinement of AProlog, Lolli, was demonstrated by Joshua Hodas.
There were also 16 contributed papers, which are contained in these proceedings.

There is an electronic mailing list for discussions and announcements pertaining to
AProlog and related topics. The current list contains more than 250 addresses. To be
added to this list, send e-mail to 1prolog-request@cis.upenn.edu.

I would like to thank the organizing and program committee — Elsa Gunter (AT&T
Bell Labs), Gopalan Nadathur (Duke University), and Frank Pfenning (Carnegie Mellon
University) — for their helped in designing the format of this workshop and for reading
and reviewing all submitted papers. I would also like to thank Billie Holland for her help
in local arrangements and with putting together this proceedings. Finally, I would like to
thanks the Institute for Research in Cognitive Science at the University of Pennsylvania
for providing the funds and facilities for holding this workshop.

Dale Miller

University of Pennsylvania
Philadelphia, PA, USA
December 1992
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General Model Theoretic Semantics and Negation as Failure in
Higher-Order Logic Programming

Mino Bai *
School of Computer and Information Science
Syracuse University
Syracuse, New York 13244-4100, USA
mbaiQtop.cis.syr.edu

1 Abstract

We introduce model-theoretic semantics [6] for Higher-Order Horn logic programming language.
We define general programs where the bodies of program clauses may contain negation symbol.
We also define an interpreter for general programs. To derive a negative goal we need a negation
as failure rule. For this, SLDNI-resolution with equality theory is also developed. We prove the
soundness theorem analogous to Clark’s fundamental theorem in {10]. -

2 Introduction

Many extended versions of Prolog are developed which incorporate higher-order features in logic
programming languages to make programs more versatile and expressive [28, 8, 1]. In this paper, we
build a model-theoretic semantics for a higher-order logic programming language which is suitable
for describing declaratively operations of such programming language.

Church [9] introduced a simple theory of tyvpes as a systemn of higher-order logic. This system
incorporated A-notation in its particularly simple syntax which actually be viewed as a version of
simply typed A-calculus. Henkin first gave a semantics for Church’s system based on general models.
Domain members of a general model are truth values, individuals, and functions. Church’s system
was proved to be complete with respect to Ilenkin’s semantics [15]. Andrews studied general models
further in [3, 4, 5], and built a non-extensional model which is suitable under settings of resolution
theoremn proving [2]. The proof theory for this svstem is shown to have a close resemblance to that
of first-order logic: there is, for example. a generalization to Herbrand theorem that holds for a
variant of this system [22, 23].

AProlog [28] was the first language to show that higher-order logic could be used as the basis of
a practical programming language. AProlog is based on typed A-calculi which have their ultimate
origin in Russel’s method of stratifying sets to avoid the set theoretic paradoxes. One advantage
of logic programs over coventional non-logic programns has been that they have simple declarative
model-theoretic semantics. That is, in logic programs the least fixpoint is equal to least model,
therefore it is associated to logical consequences and has a meaninful declarative interpretation. In

! Address correspondence to the author, School of Computer and Information Science, Center for Science and
Technology/Fourth Floor, Syracuse University, Svracuse, New York 13244-4100, USA, Telephone number of the
author, 315-443-2466
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higher-order logic on which AProlog is based, compared to first-order case, it is extremely difficult
to build an effective model-theoretic semantics. One of these difficulties is that the definition of
satisfaction of formulas is mutually recursive with the process of evaluation of terms (see [15, 2, 3,
4, 5]). In first-order case, the model-theory is two level [19]. First we define a domain of individuals,
and then define satisfaction wrt this domain. As a result of this in higher-order logic it is difficult to
define Tp operator for a logic program P: In a definition of Tp operator for a logic program P, we
consider a set of atomic propositions as an interpretation, and need a fixed domain without regard
to interpretations. The second reason is that since higher-order logic programming languages are
usually formulated in non-eztensional form, we need a non-extensional model to describe properly
such languages.

Henkin’s general model semantics is extensional: i.e., if two objects in a model have the
same extension, then they must be equal. Extensional models are very difficult to deal with,
and unsuitable to describe a higher-order logic programming language like AProlog which con-
tain a propositional type in its primitive set of types. For example, we can define a program
P1 = {pla) — T,q(a) — T,7(p(a)) — T} in AProlog. Given program P;, the goal r(p(a)) will
succeed in AProlog, but the goal r(¢(a)) will fail, since the unification of r(g(a)) and r(p(a)) will
simply fail. For any extensional model M for P;, M will assign the value T for p(a) and ¢(a).
So p(a) = ¢(a) is a logical consequence of P;. M will also assign the value T to r(p(a)), so the
extension of the predicate which M will assign to » contains T. Therefore r(g(a)) is a logical
consequence of the program P;. Note that for this program the valuation of terms is mutually
recursive with the satisfaction of formulas, since a formula can occur as an argument of predicate
or functional symbols.

As shown above extensional models are difficult to define and unsuitable for higher-order logic
programming. In this paper, we develop a non-extensional model where domain is independent from
interpretations and build a fixed point semantics, and we prove the completeness of the interpreter
in [26].

3 Higher-Order Horn Logic Programming Language

In this section we describe a higher-order logic programming language for which we build models
in the later sections. For the exposition of our logic programming language £ we will follow closely
those in [28, 27].

The set 7 of types contains a collection 7y of primitive types and is closed under the formation
of functional types: i.e.,if a,3 € 7, then (o« — ) € T. The type constructor — associates to the
right. The type (o — () is that of a function from objects of type a to objects of type 3.

We introduce a very convenient notation from [29]. For each type symbol «, and each set §
containing objects or expressions, we write S, to denote the set of things in S which are of type a.
We sometimes write {S,}, to denote S. We can also define a type assignment mapping T on the
set Ssuchthat 7: S -7 and forall s € 5, 7(s) = a if s € 5,.

Let S,T,Ty,T> be sets. Given a mapping f: S — T.a¢ € S, and b € T, let f[b/a] be that
mapping f' : § — T such that for f'a = b and f'c = fc for all ¢ # a. Let b be an element in
Ty x T, then b! and b2 are the first and second components of b, so b = (b!,b%). If f is a mapping
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whose values are in T} X T4, let f! and f? be mappings with the same domain as f defined so that
for any argument t, f't = (ft)' for i = 1,2. Thus ft = (f'¢, f%t). If f: § — T is a mapping, then
we say that f is type consistent if for all s € 5, 7(f(s)) = 7(s). If f: 5 — T1 x T, then we say
that f is type consistent if f! and f? are type consistent. For each integer n € w, we write [n] for -
the set {1,---,n}.

We assume that there are denumerably many variables and constants of each type. Let the set
of variables and constants be A and X, respectively. Simply typed A-terms are built up in the usual
fashion from these typed constants and variables via abstraction and application. Our well formed
terms (wfts) are simply typed A-terms. We, as usual, can define the set T(X) of all wfts by giving
the definition of the set T(X), of wfts of type a by induction.

It is assumed that the reader is familiar with most of basic notions and definitions such as
bound, free variables, closed terms (c-terms), substitution and A-conversion for this language; only
a few are reviewed here. Letters f,, sq, 14, - -+, will be used as syntactical variables of wfts of type a.
Type subscript symbols may be omitted when context indicates what they should be or irrelevant
to discussion. By Church-Rosser theorem [7], a A-normal wfts of a wft is unique upto a renaming
of variables. For most part we shall be satisfied with any of these normal forms corresponding to
a wft ¢, and we shall write Anorm(t) to denote such a form. In certain situations we shall need to
talk about a unique normal form and, in such cases, we shall use p(t) to designate what we shall
call the principal normal or p-normal form of t; i.e. p is a mapping from wfts to A-normal terms.
There are several schemes that may be used to pick a representative of the a-equivalence classes of
A-normal terms and the one implicitly assumed here is that of [2].

So far we have introduced A-term structures and operations on A-terms. We can introduce logic
into A-term structures by including o, a type for propositions, amongst the set of primitive types
7o, and requiring that the collection ¥ of constants contain the following logical constants: A and
V of type 0 — 0 — 0; T of type o; and for every type a, 3, of type (@« — 0) — 0. The constants
in ¥ other than A,V,3 and T are called as non-logical constants. A type will be called a predicate
type if it is a type of the form a; — ---a, — o, or a non-predicate type otherwise. Welet I C ¥
be the set of predicate constants. Expression of the form 3(AzG) will be abbreviated by 3zG.

Terms of type o are referred to as goal formula. The A-normal form of a goal formula consists,
at the outermost level, of a sequence of applications, and the leftmost symbol in this sequence is
called its top level symbol. We shall have use for the structure of A-normal formulas that is described
below. A goal formula is said to be an atom (atomic) if its leftmost symbol that is not a bracket
is either a predicate variable or constant. A A-normal goal formula G, then, has the following
inductive characterization: (a) it is T, (b) it is an atom, (c) it is Gy A G, or G V G4, where G
and G are A-normal goal formulas, or (d) it is 32G, where G is a A-normal goal formula.

Now we identify the formulas that we call higher-order definite clauses, goal formula, and
equations. Let G be the collection of all A-normal goal formulas. An atom is an atomic goal
formula A. A rigid atom is an atom A, that has a predicate constant as its head. An atom is thus

a formula of the form pt; - --t, where v = ay,---,a, — o, p is a predicate constant., or variable,,
and, for each ¢ € [n], t; is a A-normal term,,. it is a rigid atom just in case p is a constant.
Sometimes we write p(?1,---,1,) or p(?) for the above atom. Let G be an arbitrary goal formula

and A, be any rigid atom. Let a formula C' be of the form A, — G. Then C is a (higher-order)
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definite clause. Let sy, t, € T(X). Then, as usual, an equation e is of the form s, = t,, and an
extensional equation is of the form s, = t,. Let Def be the set of all definite clauses. Then given
the collection ¥ of constants, our logic programming language £ = L(X) is completely determined
as the triple (T'(X), G, Def). A formula F in a language £ is a goal formula, or a definite clause,
or an equation. We refer a set P of formulas from Def as a higher-order definite logic program.
As usual, variables in definite clauses are implicitly universally quantified. Note that in the above
definition all wfts in 7(X) do not contain such symbols as =, =, —, hence a goal formula G and s,
and t, in an equation s, = t, do not contain those symbols.

We say that a predicate symbol p occurs extensionally in a goal formula G if (a) G is p(?), or
(b) G is G1 A G5 or G1 V G4, or and p occurs extensionally in Gy or G, or (¢) G is 3Gy, and p
occurs extensionally in G;. In following sections, we will define semantics for AProlog. We will take
advantage of the following situation: Since logic programs compute extensions of predicates, and
relations between arguments of predicate symbols constitute extensions of predicates, we don’t need
extensions of terms until we meet extensional occurrences of predicate symbols in the definition of
satisfaction of formulas.

4 General Model Theoretic Semantics

In this Section we build model-theoretic semantics for the language £. As introduced in Section 1
we need a non-extensional model to prove that a resolution system in type theory is complete. The
model in [2] is in a sense non-extensional. But it doesn’t provide an adequate notion of “general”
non-extensional model for our purpose: Domain is defined by indexing extension of the element in
it by wfts. The indexed entity like (¢, p) is called a V-complexe where V is a truth value evaluation
of formulas. So only one kind of domain is used in [2], since the set of all wfts is predetermined
given a language £. In [2], in order to define the domain of interpretation we need a semivaluation
function V, as above, which evaluates proposional formulas to T or F. The definition of domain
or the evaluation of terms is mutually recursive with the definition of evaluation of formulas.

Now we generalize Andrews model to a model where we index the extension by an element from
a general domain which we call frame. ;From this model we build a model where the definition of
domain is independent from the definition of satisfaction. These two models will be shown to be
isomorphic and elementarily equivalent in the sense that the sets of valid sentences in each semantics
are same. Since our language £ is based on A-calculus and application is a basic operation of the
A-calculus, any model of £ should be an applicative structure which is a A-model.
Definition Let A be a set and - a binary operation over A such that for all o, 8 € 7T, for all
a € Ay—p,b € Ay, a-bis an element in Ag. Then A = (A,-) is said to be an applicative structure.
An assignment into a set A is a type consistent mapping v : A — A. A A-model is a triple
(A, || - ||} such that {A,-) is an applicative structure and || -|| a binary function such that for each
assignment ¢ into A and term t,, ||ta]l, € Aa, and for all terms f € T(X)a—p and t € T(X)q4,
ftlle = Il fllg - Itlles and for all term ¢ and « € A, [[A2at|ls - @ = [|t]|g[a/z,])- We call the function
Il - || @ valuation function in A. _ 0

A frame is a nonempty set D of objects each of which is assigned a type symbol from the set 7
in such a way that every object in D,_3 is a function from D, to Dg for all type symbols a and
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B. A pre-interpretation F of the language £ is a pair (D, J) where D is a frame, and J is a type
consistent mapping in £ — D. An assignment into a pre-interpretation is an assignment into the
frame of the pre-interpretation. Note that D,_ 3 is some collection of functions mapping D, into
Dg, i.e. Do,y C Do — Dg. A pre-interpretation F = (D, J) is said to be general iff there is a
binary function V¥ = V such that for each assignment ¢ and term t,, Vyto € Do, and the following
conditions are satisfied for each assignment ¢ and all terms: (a) if z € A, then Voz = pz. (b) if
c € I, then Vye = Je. (¢) Vo(ft) = (Vo f)Vet  (the value of the function V,, f at the argument
Vot ). (d) Vo(Azatg) = Ad € Do - Va/z)tp  i-e. that function from D, into Dg whose value for
each argument d € D, is V(4/4)ts-

If a pre-interpretation F is general, the function V7 is uniquely determined. We can prove this
by induction on the definition of terms. We call the unique function V7 the intentional valuation
function of terms in the pre-interpretation F. Vft is called the intention of t in F wrt ¢. We
sometimes write Vg as V,, as VF, or as V, when pre-interpretation or assignment is clear from
context, or irrelevant. It is clear that if ¢ is a c-term, then V7t may be considered meaningful
without regard to any assignment. In this case, V7 is called the intention of ¢ in F and written as
t’. Obviously for a general frame D, (D,-,V) where - is interpreted as a functional application is a
A-model, but in a pre-interpretation logic symbols such as logical operators and predicate constants
are not fully interpreted. So we call it a pre-interpretation.

Now we will give interpretations to logical symbols, after discussing a few constructions of
posets. Any non-empty set A can be considered a poset under the identity relation where z C4 y
iff z = y. We call this type of poset discrete. Let P; and P, be disjoint posets. P; U P is a poset
P = PiUP; such thatforallz,y € P,2 Cpyifa Cp yorz Cp, y. Py X Pyisaposet P = P X P,
where for all z,y € P,z Cp y if 2! Cp, y' and 22 Cp, y%. Let S be a set, and P a poset. § — P
is a poset F such that for all f,g € F, f Cp gifforall s € S, f(s) Cp g(s). Let B be the set of
boolean values T and F where F Cz T. We shall write V and A for Ug and Mg, respectively. Let
A be a set. We can consider A a discrete poset. A predicate P over A of type a;,--+,a, — 0 is a
mapping in A,, X -+ X Ay, — B, or equivalently a subset of A,, X -+ X A,,. And we consider
truth values T and F as null-ary predicates over A of type () — o such that T() = T and F() = F,
respectively. More generally, we define predicates T;;}]_,,_’O,,1 for each list aq,- -+, a, of types where
n > 0as Ay, XX Ay, We write ®(A) for the set of all predicates over A. Given two predicates
P,Q € ®(A), it is obvious that P C Q if P and @ are of same type and P is a subset of Q.

Definition Let D be a frame. A semivaluation of D is a function V with domain D, and range the
set B of truth values such that the following properties hold: for all ¢,, d,, fo—o € D, (a) V(T’) = T.
(b) V(V'cod,) = V(eo)VV(d,). () V(N eod,) = V(e )AV(d,). (d) V(T, famo) = T iff there is some
e € D, such that V(f,—,e) = T. Given a frame D and a semivaluation V of D, we define the set
D of V-complezes based on D as follows: For each type v we define the set D, of V-complexes.,, and
one-one onto mapping k- : D, — D, as follows by induction on v4: (a) D, = {(d,Vd) : d € D,}. For
d € D,, kod = (d,Vd). (b) When a € Ty — {0}. D, = {{d.d) : d € D,}. For d € Dg, kod = {(d,d).
(¢) Da—p = {{for3 0 forg): f € Do_p}. For f € Do_p, ka—pf = (fr x5 0 fokg). We say that
D is the set of V-complexes based on D. We can also introduce one-one onto mapping « : D — D
such that for a € 7,d € D,,xd = k,d. and function v whose domain is D such that for d € D,,
v(d) = (rd)?. =
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Now it is easy to see that (a) if f € D,_,g, then v(f) : Dy — Dg, (b) for a € Dy, v(f)a =
(fal,v(fa')), and (c) D = {(d,v(d)): d € D}. And for any a € D, xa' = a, and for any mapping
x whose values are in D, x! ok = x. Let D be a set of V-complexes. Then we define the applicative
operation % of type (@ — ),a — f: For a € Dy—p and b € D,, a* b is defined to be a%h. The
operation  is left associative. Let a € Dy, ....q,—p and b; € D,, for i € [n]. Then by definition of
D it is easy to see that ax by x---x b, € Dg. Moreover, (D, «) is an applicative structure and for
all f € Dy—p,d € Dy, (Kf)*(rd) = &(fd).

Definition Let D be a set of V-complexes. We can define a binary mapping V such that for all
assignment ¢ into D, V,, : T(X) — D, and for all t € T(T), Vit = V. a

Let ¢ be an assignment into D. Then for all term ¢, KVt = Vyoxt. If ¢ is an assignment into
D, then for @ € Dqa, Vp(Azat) *a = Vy[a/e,it- If D be a general frame and D a set of V-complexes,
then there is the unique V satisfying that for all ¢, € T(X) and assignment ¢ into D, V,t, € D,,
since the function V is unique. Therefore (D, . V) is a A-model.

Now we want to define a notion of extension of a V-complex in the usual mathematical sense:

e.g., if a € D,,,...an—0o, then we want the extension of « to be a predicate over D.
Definition Given a frame D, we define a primitive eztensional domain E, for a € 7y: (a) E, = B.
(b) Ey = Dy for a € T — {0}. Given an « € D,,....a,—3 Where n > 0 and 3 € 7y, we define a
mapping a® in D,, — -+ — D,, — Ej by induction on n: (a) When n = 0, a® = a?. (b) When
n>0,a® = Adj € D, - (axkd)®.

We call al the intention of a, and a® the eztension of a. m|

Let a € Doy, jan—p Where n > 0 and 8 € 7o. Then (a) for all d; € Dy, i € [n], a®dy---dn =
(axkdy % ---kdy)?, (b) If B € To — {0}, then a® = a'. We can show this by induction on n.
Definition ? Let F = (D,J) be a general pre-interpretation and V a semivaluation of D. An
L-structure A is a pair (D, J) such that D is a set of V-complexes based on D. We say that A
is based on F or on D. An assignment @ into A is an assignment into D. When F is a formula
in L, we write AF[¢] to say that A satisfies F wrt ¢. (a) When s,,1, € T(X), Aksa = tal¥)
iff Vpsa = Vola, AESa = tal@] T (Vesa)® = (Vita)®. (b) When G is a goal formula, AEG[y] iff
V2G = T. (c) When A — G is a definite clause, ApA — G[p] iff AR A[p] whenever ARG[p]. We
write AF to say that a formula F is valid in A if AeF[¢] for all assignments ¢ into A. Given a
set of definite clause P, we say that A is a model or D-model for P, and write AP, if each definite
clause in P is valid in A. Given a closed goal formula G. we say that G is a logical consequence of
P, and write PG if G is valid in all models of P. ]
Definition Let D be a general frame and S a subset of D,. Then S is upward saturated if a)
T’ € §,b) c € §implies V'ed,V'dc € S ford € D,.c) c.d € S implies A'cd € S, and d) fo—ods € S
implies 3/, foo € S. a

Let § C D,. Then there is a smallest upward saturated set extending 5. Let C be the collection
of upward saturated set extending 5. C is not empty. since D, € C. So NC exists. It is easy to
check that it is upward saturated. It fulfills the other considerations, by definition. Tte smallest
upward saturated set extending S is called the upward saturated closure of S, and is denoted as

SY.

2Note that in this definition the symbol for satisfaction in A is the small . The normal size |= is used for another
definition of satisfaction which is defined later in this paper.
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If $ C D, we can always find by the above method an extension of S which is saturated. The
above definition is certainly simple, but it is unsatisfactory on several grounds. For example, it does
not make explicit how the elements of the closure of S are generated from the elements of 5. ;From
this reason we give a more constructive definition, involving restricted set-theoretic methods.
Definition Let § C D,. An elementary S-derivation is a sequence c!,---,c™, m > 1, of elements
from D,, where for each i € [m], at least one of the following conditions is satisfied: (a) ¢! = T'.
(b) ¢ € S. (c) There is a j < ¢ such that ¢ is either V/c¢’d or V'd¢? for some d € D,. (d) There
are j,k < i such that ¢! = A’¢/ck. (e) There are j < i and f € Dy_,, such that ¢/ = fd for some
de D, and ¢ =3, f. O

Note that if ¢1,---,¢™ and d1,---,d" are two elementary S-derivations, then the concatenation
cl,.-.,¢™ d!,---,d" is also an elementary S-derivation. Furthermore, a nonempty initial segment
of an elementary S-derivation is again an elementary S-derivation. An element d € D, is elementary
S-derivable if there is an elementary S-derivation ¢!,---,c¢™ where ¢™ = d. This is equivalent to
requiring that d be an element (not necessarily the last) in some elementary S-derivation. The set
of all d € D, that are elementary S-derivable is denoted by E(.5). We shall show that E(S) is the
upward closure of S referred to above.

Theorem 4.1 Let S C D,. Then: (a) S C E(S). (b) E(S) is upward saturated. (c) If S C S’ and
S’ is upward saturated, then E(S) C §'. (d) SV = E(S5).

Proof The proofs of (a) and (b) are obvious. (¢) Let § C S’ and S’ be upward saturated. We
prove by induction on m that whenever c!,---,¢™ is an elementary S-derivation then ¢* € S’ for
i € [m]. When m = 1. it is clear. If the property is true for m, and ¢!, --,c¢™, ¢c™*! is an elmentary
S-derivation, then by IH we have that ¢' € S’ for i € [m]. Furthermore ¢™+'is T/, orace § C &,
or it is obtained by one of the defining rules from the elements in §’. In all cases it is easy to see,
by IH and definition of upward saturatedness, that ¢™+! ¢ §'. (]

Definition Let (D, J) be a general pre-interpretation. Then we write II( D) for the D-base which
is defined to be the set {p(a1,---,an) :p € Iy, 0,0 and a; € D, for all ¢ € [n]}. O

A subset K of II(D) induces a unique mapping Ix in II — ®(D) as follows: for all d € D,
(d) € Ix(p) iff p(d) € K. Let K; C K, C II(D), then it is easy to see that Ik, Cn—eo) Ik,
Sometimes given K C II(D), we write simply K to mean the mapping Ix.

Given I C TI(D), we can introduce set Sy such that S; = {p'd : pd € I}. We define a function
Vi: D, — B as follows: for each d € D,, Vid = T if d € S¥, F otherwise. And V; is obviously a
semivaluation of D. And foralld € D,, d € S?’ only if there is an Sy-derivation for d. This follows
from Theorem 4.1.

Theorem 4.2 Let I CII(D). d € S}’ only if there is a finite I' C I such that d € S}{.
Proof Assume d € SY. Then by the fact that a derivation sequence is finite, it is clear that there
is a finite I’ C I such that there is a finite elementary Sp/-derivation sequence. |

Definition Let I C TI(D). Then I induces the set D of V;-complexes based on D and that one-one
onto function k; : D — DI given by the definition of V;-complexes, and the following functions
whose domain is D: the function v; such that for each d € D. vj(d) = (x;d)?, and the function e;
such that for d € D, e;d = (x;d)®. Let d € Do—;3. Then for all dy € Dq, e;(d)d; = e;(dd;). 0O
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Lemma 4.3 Let I C I CII(D). Then (a) V;, C V. (b) vy, Cop,. (c)er Cey,. O

Definition Let (D, J) be a general pre-interpretation. An interpretation M is a pair (D, I) where
I is a type consistent mapping in II — ®(D). We call M a D-interpretation. An assignment
¢ into M is a type consistent mapping ¢ : A — D. When F is a formula in £, we write
M E Fly] to say that M satisfies F' wrt ¢. For all goal formulas G,Gy,Go, for each rigid
atom A, (a) When sq,ta € T(Z)ay M [ 8o = tafp] iff Vysa = Vota, M | 8o = tafep] iff
e1(Vpsa) = er(Vyta). (b) M E Tlg]. (¢) M = p(ty,- -, tn)[e] iff (Vpta, -+, Vi) € Ipif pis a
constant, or (Vy i1, -+, V,tn) € poer(p) if p is a variable. (d) M | Gy V Gap] iff M | Gyp)] or
M Golp]. () M = G1 A Gofp] iff M | Gi[p] and M | Gafg]. (f) M | 32,G iff there is a
d € D, such that M = G[g[d/z.]]. (g) M E A — G[p] iff M | A[g] if M = G[g].
We write M |= F to say that a formula F is valid in M if M | F|g] for all assignments ¢ into
M. Given a definite program P, we say that M is a model or D-model for P, and write M | P,
if each definite clause in P is valid in M. Given a closed goal formula G, we say that G is a logical
consequence of P, and write P = G if G is valid in all models of P. m]
Definition Let F = (D, J) be a general pre-interpretation, V a semivaluation of D, and D be the
set of V-complexes based on D. Given an L-strucure A = (D, J) based on F, the D-interpretation
A® induced by A is defined to be (D,I) where I = Joxo (-)® | II. Conversely, given a D-
interpretation M = (D, I) based on F, we can get the set D® of V;-complexes based on D. Then
M® is an L-structure (D®,J) induced by M. )
Using the above facts and since assignments into ) and D have one-one correspondence between
them, we can show that the two semantics are elemetarily equivalent in the following sense.

Theorem 4.4 (a) For all formula F in L, E F iff eF. (b) If P be a definite program and G a
closed goal, then P | G iff PEG. o

Theorem 4.5 The extensionality is not valid.

Proof Take an extensionality formula p, = ¢, — p. = ¢,. It is obvious that Vf,po = Vf,qo does not
imply that V,p, = V,q,. For the extensionality formula (Vz, - fr = gz) — f = g, we take a € Tp
and B = o and D-interpretation I such that /f = /g = T?. Then f = g but not always f =¢. D

Let M = (D, I) be an interpretation based on F = (D, J), we can identify M with the subset [
of II{ D). And every subset I of II( D) is a D-interpretation. Obviously the set of all D-interpretation
is a complete lattice with the usual set inclusion ordering between D-interpretations.

Theorem 4.6 Let I, C I, CII(D). If I E Glg]. then I; = Gly].

Proof By induction on G. When G is T, it is obvious. When G is a rigid atom p(t,---,t,),

since I1p C Lp, I, E Glp]. When G is p({y,---.1,) where p is a variable. Since e;, C ey,

L = p(t1, -+, tx)[¢]. When G is Gy A Go. I} E Gilp] and I} E Ga[¢]. By IH I, E G1[¢] and

I E Ga[g]. So I; E Glg]. When (' is Gy V G,. Assume. wlog, I1 | Gi[e]. By IH I E Gi[g].

When G is 32,G;. There exists a d € D, such that Iy | Gi[p[d/24]]. By IH I E Gi[e|d/z4]].
]

So I E G[).
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Let F = (D, J) be a general pre-interpretation. We can define a mapping TZ from the lattice
of D-interpretations to itself. Let F be a pre-interpretation (D, J) of a definite program P and I
a D-interpretation. Then TB(I) = {p(d1,---,d,) € TI(D) : there exist an assignment ¢ into D and
a clause p(t1,+-+,tn) — G € P such that d; = V,t; for each i € [n] and I = G¢]}

Lemma 4.7 T,l? is monotonic, i.e. given I; C I, C II(D), T%(Il) C Tg(Iz).

Proof Assume p(dy,---,d,) € T4 (I1) for p(dy,---.d,) € II(D). Then there are an assignment ¢
into I, and a clause p(t;,--+,t,) «— G € P such that V,t; = d; for all 7 € [n] and I} E G[yp]. By
Theorem 4.6, I; E G[¢]. )

So T'; is a monotonic transformation on the set of all D-interpretations.

Lemma 4.8 Let I CII(D). Then I =P iﬁTg(I) clI.

Proof =) Assume p(di,---,d,) € Tp(I) for some p(d;y.---.d,) € II(D). Then there are an
assignment ¢ into D and a clause p(ty,---.t,) — G € P such that V,t; = d; for all ¢ € [n] and
I = Glp]. Then since I =P, I E p(t1.---,t,)[¢]. Therefore p(dy,---,dy,) € 1.

<) Similarly. O

Lemma 4.9 Let I1 and I; be D-models of P. Then Iy NIy is also D-model of P.
Proof Since Tp({;) C I and Tp([2) C Iz, by monotonicity of Tp operator, Tp(I1NI) C Tp(l) C
I; and T‘p(Il n Ig) - T'p([g) CI,. So T‘p(]l Nnl)Chnli. O

But the set of all D-models is not closed under join operation, i.e. I; Ul is not necessarily a D-
model, whenever I; and I are D-models. Take for example the definite program P; = {p «~ ¢,7}.
Then II(D) = {p,q,7}. {q} and {r} are D-models for P,, but {g,r} is not a D-model.

Lemma 4.10 Let (I, ne. be w-chain of D-interpretations. Then for each goal G and assignment
@ into D, Une,In | Glp] only if there is an n € w such that I, & G[y].

Proof Let I = Upe, . Then I = Gg] only if Vi(V,G) = T. So there is a finite I’ C Isuch that
Vi (V4,G) = T. Therefore there is an n € w such that I’ C I,. By monotonicity I,, &£ G[¢]. 0

Lemma 4.11 Tg is continuous.

Proof Let (I, )new be aw-chain of D-interpretations. We need to show: Tp(Unewln) = Uneo Tp (1)
The monotonicity of Tp implies that U,e,Tr(ln) € Tp(Unewln). Now we need to show that
Tr(Unewlrn) C Unew TP(1n). Let dy,---.dy € D, and p(dy,---.d,) € II{(D). Assume p(dy,---,d,) €
Tp(Unewln), to show p(dy,---.d,) € Une, Tr(I,). There are p(ty,--+,t,) — G € P and an assign-
ment ¢ into H such that ¢t; = d; for all i € [n] and U,e, I, = G[p]. So there is n € w such that
I, = G[p]. Therefore there is n € w such that p(dy. -, dy) € Tp(l,). o

So we can show that every definite program has the least D-model as follows:
Theorem 4.12 (TR)“(¢) is the least fizpoint of TR. O

Theorem 4.13 Let MR = N{I C (D) : I | P}. then ME is the least D-model of P and
ME = T4(¢).
Proof By Lemmas 4.8,4.9,4.7 and Theorem 1.12. O
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5 Herbrand Models

In order to determine validity or logical consequences, we need to consider all interpretations of the
language £. In this section we shall show that we can restrict our attention to Herbrand models.
That is, we show that if A is true in all Herbrand (that is symbolic) models it follows that A is
true in all models and a fortiori in the model intended by the person who wrote the program.

Definition The Herbrand frame H is a set such that (a) H is the set of all p-normal c-terms. (b)
Let f € Hyp, then for all t € Hy, f(t) = p(ft). ]

It is obvious that the Herbrand frame H is countable.

Definition The Herbrand pre-interpretation HF is a pre-interpretation (H,J) such that H is the
Herbrand frame and J satisfies the following: (a) If ¢, is a constant such that « is a primitive type,

then Jey = ¢o. (b) If dy—.g is a constant of type a — 3, then for all t, € Hy, (Jdaop)(ta) =
do,_.ﬁta. ]

Lemma 5.1 The Herbrand pre-interpretalion is general. o

Definition An Herbrand interpretation M is an interpretation (H,I) based on the Herbrand pre-
interpretation. The Herbrand base HB is the set II( H). m]

Let I C II(H) be an Herbrand interpretation and ¢ an assignment into /. Then we can consider
@ as the generalized substitution o such that for each term t € T(X), ot = (¢ T FV(t))t. It is easy
to see that for every term ¢, ¢t is a c-term and V,t = ¢t, for each goal formula G, ¢G a closed goal
formula, and for each definite clause C, ¢C' a closed definite clause.

Let I be a D-interpretation based on F. The Herbrand interpretation I induced by I is an
Herbrand interpretation such that for every A € TI(H), A € I iff I £ A. Let ¢ and ¢’ be
assignments into H and D, respectively. Then we say that o is induced by ¢ if ¢’ = poVZ. The
mapping V7 : H — D is a homomorhism from I* into I, since for p € lla, ... an—os hi € Ha,,i € [n],
if {h1,---,hn) € I*p, then (VFhy, - ,VFh,) € Ip. Let h € H,,..an—o- Then for all h; € H,, 1 €
(n], (h1,- -, hy) € ey+(h) implies (VZ hy,--- . V7 h,) € er(VFh).

Lemma 5.2 Let I,I*,¢', ¢ be as above. Then (a) Ift is a term, then Vf,(got) = Vf:,t, (b) If A is
a rigid atom then I* = A[p) iff I E A(], (¢) If G is a goal formula such that I* | G|y], then
I & G[¢'], (d) If C is a definite clause such that T |= Cl¢'], then I* = Cl¢], (e) Then if I = P,

then I* = P. 0

Let F be a general pre-interpretation. Then [E=r denotes logical implication in the context
of fixed domains and functional assignment. Specifically =x 7 denotes logical implication in the

context of Herbrand frame and functional assignment.
Let G be a goal formula. We write 3(() to denote the existential closure of free variables in G.

Theorem 5.3 Let P be a definite program and G a goal formula. Then P |= 3(G) iff P Enr IG).
Proof <=) Let an Herbrand interpretation induced by the given interpretation / be I*. Assume
I|=P. Then I* = P, so I* = 3(G). Then there is an assignment ¢ into I* such that I* E G[p].
Let the assignment ¢ into I be induced by . Then [ | G[¢'] by Lemma 5.2 (¢). So I | 3(G).O
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If ¢ is a substitution, then ¢_,, is that substitution o such that o = ¢ 1 (A — {z}).

Lemma 5.4 Let I C II(H). Then for all closed substitution o, assignment ¢ into H, and goal
formula G, I = oGly] iff I E ¢oG.
Proof We prove by induction on G. When G is T or a rigid atom, it is obvious. When G is
p(t1,--,t,) where p € A. I | oG[y] iff (poty,---,p0ts) € er(pop) iff ('poty,- -, @ pot,) €
e1(¢'[pop/p]p) for all assignment ¢’ into H iff I | poG[¢] for all assignment ¢’ into H iff I = poG.
When G is 32,G1. I E oG[p] iff [ E 3za0_;,Gi[y] iff there is an h € Hy such that I |
00—z, G1[p[h/z4]] iff there is an h € H, such that I | ¢[h/z]0_z,G1 by IH iff for all assignment ¢’
into H, I = @' p[h/2a}0-2,G1,since p[h/zs]o-z,G1 is a closed goal. iff I = (¢'[h/24])P-za0-24G1
it I oy, 02, Gil¢'[h/xa)] Iff I |E 3aap_p 00, Gile'] Iff I | poG. O

Corollary 5.5 For all assignment ¢ into H, goal formula G, I = G[¢) iff I E ¢G. m]

Theorem 5.6 For all closed substitution o and goal formula G such that 03z,G is closed, I |=
03z,G iff there is an h € H, such that I E o[h/z,]G.

Proof Let ¢ be an assignment into H. I | 032,Gy] iff I | Jz40_,,G[p] iff there is an h € H,
such that I | o_;, G[p[h/z,]] iff there is an h € H, such that I | ¢[h/zs)o-z,G by Corollary 5.5
iff I | o[h/z4]G[p] by Corollary 5.5. since p[h/xy|o_,, = po[h/2a]. a

Corollary 5.7 Let M = N{I CII(H): I £ P}. Then M = P.
Proof Follows from Theorem 4.13. o

Theorem 5.8 (TH)“(¢) is the least fized point of TH and ME = (TH)*(¢).
Proof Follows from Lemma 4.11. O

Theorem 5.9 Let A€ II(H). Then P | A iff ME = A.
Proof P | A iff P Ewns A iff for all H-interpretation [ such that I P, Ae [if Ae ME. O

For the definite program P; introduced in section 1, it is easy to see that

%,(8) = {pla).qla), r(p(a))}

So r(p(a)) is a logical consequence of Py, while 7(¢(a)) is not.

The program P; is non-extensional in the sense that extensional identity of arguments of the
predicate r does not imply extensional identity of proposition r(-). In [30] Wadge defined a fragment
of higher-order logic programming language (in fact it’s a pure subset of HiLog [8]) where every
program behaves extensionally.

Example We can define the following higher-order logic program Ps in the language of [30]: Let
M AP be predicate constant of type (int — o),list — o and - be an infix functional constant of
type int,list — list and p and ¢ predicate constants of type int — o and P3 include the following
definite clauses.

MAP(z,x-l) — zz NMAP(z,1).

MAP(z,nil) — T.
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Assume that the above clauses are the only clauses that defines the predicate M AP. Let I be
a fixpoint of Tp,. We shall show that p = ¢ — MAPp = M APq is valid under I. Let p = ¢ valid
under I. Then for all a € H;y;, pa € I iff qa € I. Moreover the set Hj;,; has the following inductive
characteriztion. (a) nil € Hiist. (b) Fora € Hing, a1l € Hys ifl € Hyisy. To prove MAPp = M APgq
is valid in I, it’s enough to show that for all { € Hy;5e, MAP(p,1) € I iff MAP(q,l) € I. We prove
this by induction on I. Obviously M AP(p,nil), MAP(q,nil) € I. Let a-l € Hjp,. Assume
MAP(p,a-1) € I to show MAP(q,a-!l) € I. Then pa, MAP(p,l) € I. So by IH, MAP(g,l) € I.
Therefore MAP(q,a-1) € I. m]

6 Completeness

In this section we prove completeness of interpreter in [26]. Our actual interpreter is that of [26]
plus backchaining when atomic goals need to be solved. The definition of this non-deterministic
interpreter can be given by describing how a theorem prover for programs and goals should function.
This interpreter, given the pair (P, G) in its initial state, should either succeed or fail. We shall use
the notation P F G to indicate the meta proposition that the interpreter succeeds if started in the
state (P, G). The search related semantics which we want to attribute to the logical constants can
be specified as follows: (a) P+ T. (b) PGy VG only if PF Gy or PF Ga. (¢) PF Gy AG; only
if P+ Gyand P+ Ga. (d) P Jz2,G; only if there is some term ¢ € T(X), such that P\ [t/z,]G;.
(e) P I A only if there are a definite clause A; — G; € P and a substitution o such that A = 04,
and Pt oGy

Let F be a formula of £. Then |F| denotes the set {¢F : ¢ is an assignment into H}. It is easy
to see that if F is a goal formula, |F| is a set of closed goal formulas, and if F is a definite clause,
then |F| is a set of closed definite clauses. This notation can be extended to set T' of formulas of
L:|T=U{lF|: FeTl}.
Definition Let I’ be a set of formulas that are either closed atoms or definite clauses, and let G
be a closed goal formula. Then a ['-derivation sequence for G is a finite sequence G',G?,---,G™ of
closed goal formulas such that G is G, and for each i € [n], (a) if G is a closed atom, then i) G' is
T,orii) G* € T, oriii) there is a definite clause G' — G7 € |I'| such that j < i, (b) if G* is G, V Gy,
then for some j < i, G7 is either G or G, (¢) if G* is G; A G4, then for some j,k < i, G' = G,
and G* = Gy, (d) if G* is 32,G1, then there is a t € H, and j < i such that [t/z,]G; = G7. a

Theorem 6.1 Let I C II(H). Then for all closed goal formula G, I |= G iff there is an I-derivation
sequence for G.

Proof <) Let G',---,G™ be an I-derivation sequence. We prove by induction on i: for all 7 € [n],
I = G*. When i = 1, then it is obvious. When 7 > 1. If G = G1 A G, then by IH, I = G, and
I'E Gs. So Il Gy AGy. If G' = 32,G4, then by IH, there is a t € H, such that I | [t/z4])Gh.
So I | Jx4G1 by Theorem 5.6.

=) Follows from Theorem 4.1, since for a Herbrand interpretation I, we can identify I with §;. O

Lemma 6.2 Let G be a closed goal formula. Then P+ G iff there is a P-derivation for G.
Proof See [28]. O
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Theorem 6.3 Let G be a closed goal formula. Then P+ G iff P E G.

Proof By Theorems 5.9,5.8, P = G iff T$(¢) = G. Let I, = TH(¢) for n € w. Now we need to
prove that there is a P-derivation G, -, G' for G iff there is an n € w such that I, = G.

=) By induction on /. When G is T, Ip = T. When G is G1 A G2, then there are P-derivations for
G1 and G, whose lengths are less than I. So by IH, there are ny,ny € w such that I, = G; and
I, E G;. Assume, wlog, ny < na. Then I, = G, so I, E G1 A G2. When G is 32,G;. Then
there are a term t € H, and a P-derivation for [t/2,]G; whose length is less than {. So by IH,
there is an n € w such that I,, = [t/2,]G1. Therefore I, &= 32,G1 by Theorem 5.6. When G is a
rigid atom A. Then there are a number j < [ and a definite clause A — G’ € |P|. By IH, I,, = G7.
Therefore 1,41 E A.

<) We prove the claim by induction on n. First assume the claim true if I, | G. To prove the claim
for n + 1 assume I..1 E G. Then there is an I,,4q-derivation G!,---,G™ for G by Theorem 6.1.
Now we prove, by induction on 7, that there is a P-derivation for G, for each i € [m]. £ G"is T, it
is immediate. If G is a rigid atom A, then since A € I, there is a definite clause A — G, € |P|
such that I, = G1. Then by our first assumption, there is a P-derivation for G1. We now get a P
derivation for A by appending A to this sequence. When G* is G; A G3. Then by our second IH,
there are P-derivations for G; and G3. Now we get a P-derivation for G* by appending G* to the
end of concatenation these sequences. When G' is 32,G1. By second IH, there is a term t € H,
such that there is a P-derivation for [t/z,]G;. to which we attach G* to get P-derivation for G*. O

7 Equality and D/&-Interpretations

Much of the research in logic programming concentrates on extensions of Prolog. An important
issue is the integration of the essential concepts of functional and logic programming. Another issue
is the use of equations to define data types. Works along these lines can be found in 11, 18].

In this section we will develop semantics for higher-order logic programs augmented with an
equality theory £. We will establish the existence of the least model and least fixpoint semantics.

Let D be a frame and R an equivalent relation on D. For each type a € 7, we write R, for the
restriction of R to D,. Then

R=J Ra.

o€T

Let d be an element of D,. Then [d]g is the equivalent class containing d. We also say that R is a
congruence relation on D if R is an equivalent relation on D and for all o, € T, for all d € D,_.3,
for all ¢ € Dy, [d]glc]g = [dec]g. We sometimes write [d]g as [d] when the congruence relation is
clear from the context.

Since = is a binary predicate symbol, any interpretation of it should be a binary relation R
over a frame D. And R should be an equivalence relation and congruence relation, because R must
satisfy the following axioms of equality.

r==x
rT=y—y==a
r=yAy=z—ar=:
f=9he=y—fr=ygy
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Given a frame D and a congruence relation R on D, we define a quotient frame D/R as a frame
{Da/Ra}a.

If ¥ = (D,J) is a pre-interpretation, F /R is defined to be a pre-interpretation
(D/R,J') such that for each constant ¢, J'¢c = [Jc]R.

Lemma 7.1 Let R be a congruence relation on D. If a pre-interpretation F = (D, J) is general,
then F [R is also general.

Proof Let V be a valuation function in ¥, and /R = (D/R,J’) and ¢ an assignment into F/R.
Then there is an assignment ¢’ into F such that ¢ = ¢’ o [-]g. Define a binary function V' such
that for each term ¢, V|t = [V it]g. We show V' is a valuation function in F/R by showing that
for each term ., prta € D,/R, by induction on t,.

When 2, is a variable 2., V2o = [Vy24] = [¢'2.] = p2a. When t, is a constant cq, V]co =
[Vprea] = [Jea]l = J'ca When t, is fz_ass,

V:p(fﬁ—vasﬁ) = [Vg:'(f,t?—~cvsﬁ)]

(Ve fo—a)(Versp)]

Vo fa—alVorss) by definition of R

= (V, fa—o)(Vi53) by induction hypothesis

Il

When t, is Azgs,, let
d' =V (Azgs,) = [VaArgs,]
= [A[) € D,g . ch’[b/zﬁ]‘s"/]

For b € Dg,
d) = Vs,
= [(VpAzzs,)0] by definition of R
= [Vrio/zg)54]
= V;[[b]/ra]‘g“ by induction hypothesis
a
Corollary 7.2 Let HF be the Herbrand pre-interpretation, then HF /R is general. O

In the remaining of this section we assume that every pre-interpretation we mention is general.
Since a congruence relation R over a pre-interpretation F can be taken as an interpretation of the
equality symbol =, we have

Proposition 7.3 Let P be a program, £ an equality theory and A be a closed atom. Then

P,EE A < P.E kxR A for all pre-interpretation F
and congruence velation R over F

O

We want the existence of a canonical model for the equalitv theory, i.e. we wish the existence
of a congruence Rg over HF such that
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Proposition 7.4 £ |= sq = ta iff [Sa]R, = [ta]r, where s, and t, are closed terms. m]

But this can be achieved only if the theory £ has a finest congruence relation Rg. This motivates
our choice of using Horn equality clauses in our framework presented below.
A definite clause logic program P is defined to be a finite set of definite clauses

A—elA---Nex, NG

where A is a rigid atom in Goal, i.e. not an equation, each e; is an equation and G is a goal formula
in Goal.
A Horn equality clause takes one of two forms

e — e N ANey

or
.__el/\.../\en

where n > 0 and all the ¢;’s therein are equations. As usual, variables in Horn equality clauses are
implicitly universally quantified. We define a Horn clause equality theory to be a set of equality
clauses. A given consistent Horn clause equality theory £ defines a logic programming language
whose programs, called definite logic programs, are the pairs (P,£) where P is a definite clause
logic program.

Lemma 7.5 Let F be a pre-interpretation (D,.J). Then there ezists a finest congruence over F
generated by each consistent Horn clause equality theory £.

Proof Consider models of £ over the frame D, and for our purposes here, a model is a set of pairs
from D. Suppose now that I is the intersection of a set of models of £. If I is not a model itself,
then there are a clause C of the form

s=t—s =LA As, =1,

or of the form
— S =HA - Asy =1,

and an assignment ¢ into D such that I does not satisfy C' under ¢. Let

Ves=c¢, Vgt=d
Vesi=¢; Vb, =d;. 1€ [n].

Then if C is of the first form then (c;,d;) € I for all ¢ € [n], while {¢,d) ¢ I, contradicting the fact
that {c,d) is in the models of the set in question. If C' is of the second form then (c;,d;) € I for all
it € [n], which is clearly impossible. The finest congruence then is given by the intersection of all
models of £. a

We thus may now write /& to denote this finest congruence. In a situation where both F
and F /€ are being discussed. we write V for the evaluation function in F and write V' for the
evaluation function in F/¢.
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Corollary 7.6 Let C be a clause of & then C is valid under F/E. ]
As a consequence
Lemma 7.7 Let (P,£) be a definite program and A a closed atom. Then
(P,E)E A= (P.E)EFric A for all pre-interpretation F.

Proof Let F = (D, J). Then it suffices to prove that (P,&) Ex/e A <= (P,£) l=}'/R A for all R.
=>) Let Ry be the finest congruence relation. For some R, let I be any D/R-interpretation
such that I E (P,&), but I [£ A. Construct the following D/&-model I’ by defining that
I' & p([di]r,, " +»[dnlR,) iff I k= p([di]R.---,[ds]R) for all predicate constant p. This is well
defined because Rg is finer than R. It is now easy to see that I' = (P,&) but I' £ A. a

Lemma 7.8 Let (P,€&) be a definite program and A a closed atom. Then
(P.E)E A= P Erc A forall pre-interpretation F.
Proof This lemma follows from Lemma 7.7 and Corollary 7.6. a
Theorem 7.9 Let (P,E) be a definite program and A a closed atom. Then
(P,E)E A < P Enze A.
Proof This theorem follows from Lemma 7.8 and the fact that P is in clausal form. o

We now give definitions with respect to a given logic program (P, £).

We consider the fixpoint formalization of an intuitive semantics of our logic programs. Let F
be a pre-interpretation (D, J). Then Tp ¢) maps from and into D/E-interpretations and is defined
as follows: for D/E&-interpretation I,

T(p’g)(I) = {plar, - a,) € I(D/E): there are a clause
p(tl,--'.tn)<—el /\---/\em/\G'in P
and an assignment into D/& such that
Vit = «a;, for i € [n] and
I'=Eer Ao New AG[e]}.

Lemma 7.10 T(p ¢y is monotonic.

Proof Let I; C I, C II(D/f). Assume p(a1,---,an) € T(pgy(l1). Then there are a clause
p(t1, -+ ,tn) — e A---Aen AG € P and an assignment ¢ into D/E such that V(,t; = a; for i € [n]
and h Eeg A---Aem AGlp]. So I} |E Gly] and for all j € [m], I E ej[¢]. Since satisfaction
of equations does not depend on interpretations. I, |= €,[y], for all 7 € [m]. And by Theorem 4.6
I, E G¢]. Therefore I, = €1 A -+ Aep AG[). a

We can prove following lemma similarly as Lemma 4.8.



Mino Bai 17

Lemma 7.11 Let I CII(D/E). Then
I l= P = T('p’g)(f) - 1.
(]

Using above lemma and monotonicity of T(p ¢) we have the intersection properties of models.

Lemma 7.12 Let I} and I; be D/E-models of (P, E).
Then I N I also a D/E-model of (P, ). o

We can now establish the existence of the least model.

Theorem 7.13 There is the least D/E-model of (P.E).
Proof By above lemma the intersection of all D/&-models of (P, ) is itself a D/E-model of (P, £),
which is obviously the least D/&-model. O

Lemma 7.14 T(p ¢) is continuous.
Proof Let (Ii)r be an w-chain of D/E-interpretations and I, = Uil;. We now need to show that

Tipoydo) = U Tip ey(k)-
By monotonicity of Tp ¢y we have
UeT(p o)) C Tip.ey(Lo)

In order to establish
T('P,f)(lw) c UkT(’pyg)([k),

assume p(ay, -+, ap) € T(p,e)(l,). Then there are a clause p(t;,---,t,) — ey A+ -Aeny AGin P
and an assignment ¢ into D/ such that V,t; = a; for i € [n] and I, = e1 A--- Aem A G[p). Then
I, E G[g], so there is a k € w such that [, = G[¢]. And as before Iy = e;[y] for j € [m]. So
I = e1 A~ Aem A Glp]. Therefore there is a k € w such that p(a1,---,a.) € T(p &)(Ik). m]

By continuity of T(p ¢), and Lemma 7.11. we now have
Theorem 7.15 T‘(‘ipyg)((b) is the least fixpoint of T p &y and the least D[E-model of (P, E). 0O

We are now in a position to give the declarative semantics of higher-order logic program with
equality as a natural extension of the declarative semantics of the traditional first-order logic
programs.

Theorem 7.16 There is a least H/E-model M(p ¢y of (P.E), and for all A € II(H),

(p.f) ‘: A= M('pyg) t: A.
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8 General Programs

In this and following sections, we study various aspects of negation. Since only positive information
can be a logical consequence of a definite program, special rules are needed to deduce negative
information. The most important of these rules are the closed world assumption and the negation
as failure rule. Next section introduces general programs, which are programs for which the body
of a program clause can contain negation symbol. The major results of this paper are soundness
theorems for the negation as failure rule and SLDNF-resolution for general programs.

The framework of definite clauses presented before allows us to obtain only “positive informa-
tion”, i.e. the only goals which are logical consequences are positive. The lack of ability to obtain
“negative information” is a major drawback from both the theoretical and practical point of view.
In dealing with models of logic formulas in general, there is duality between both truth values. In
practice, this duality can be extremely important, for example in database applications

There are two main approaches to this problem. The first is to extend the language of definite
clauses. For example, one familiar extension used in Prolog systems is that of clauses containing
at least one positive literal. Known colloquially as “negation in the body”, this extends definite
clauses, which are clauses containing exactly one positive literal.

The second approach is to adopt special rules or assumptions which tell us, under given circum-
stances, when information is negative. Amongst the most prominent of these are the closed world
assumption and the negation as failure rule. The first states that all atoms which are not logical
consequences are false. The second is implementation dependent; it states that an atom is false if
all attempts to prove it terminate unsuccessfully.

Our approach is a combination of both these approaches. Based on the concept of completed
databases and the negation as failure rule of Clark [10], our complete logic programs, written
(P*,E*), allow us to have negative goals as logical consequences, whereas a definite clause program
(P, &) can not. From an operational point of view. we adopt a negation as failure rule. We justify
our approach by showing that these declarative and operational aspects of negation coincide.

9 Programming with the Completion

In this section, general programs are introduced. These are programs whose program clauses
may contain negation symbols in their bodv. The completion of a program is also defined. The
completion will play an important part in the soundness results for the negation as failure rule and
SLDNF-resolution. The definition of a correct answer is defined for general programs.

A formal definition of complete logic programs requires the concept of unification completeness
of an equality theory.

We now define generalized unification over an equality theory £. An £-unifier of two terms s
and t is a substitution 8 such that & = 6s = #1. An important property is that two terms are
E-unifiable iff there is a closed substitution over H of the terms such that the closed instances are
both in the same class of the finest congruence over H generated by £.

This does not mean, however, that if two terms are equal in another algebra modelling £ then
they are £-unifiable.
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Let 3= sy, ++,8, and T = t;,---, 1, be two sequences of terms of length n, and write 3 =7 for
1= ANz, =1,.

We already have, by definition, an intimate connection between truth in £ and £-unification; two
sequences of terms 3 and 7 are £-unifiable iff £ | 37(3 = t). With negation issue at hand, we need
a dual property; that is, we need to establish a relationship between non-existence of £-unifiers and
falsity in £. We thus require that an equality theory dictates that equality holds only if £-unification
is possible. To express this formally, if 8 is the substitution

[11/1’1, v .in/.’l,'n]
let eqn(f) denote the conjunction of equations
Ti1=L AN, =1,.

For each pair 3,7 of sequences we require the existence of a set U(3,7), possibly empty, possibly

infinite, of £-unifiers such that if ¥ = y;.-- -, yx are all free variables in 5 and 7 then
EEF=T— \/ 3eqn(¥)
fel(5.1)

where 3 denote existential quantification of those free variables in egn(#) which are not in 7. We
adopt the convention that an empty disjunction is false. Thus the above expression means that
if an assignment of the free variables in terms 3 and 7 is such that 3 = 7 is true in a model of £,
then at least for one of the £-unifiers #, Jegn(#) is also true in the same model and assignment.
Consequently, when there is no unifiers of 3and 7 (i.e. U(5,1)=0),E 3 #1.

The essence of unification completeness is that every possible solution of any given equation can
be represented by an £-unifier of the equation. In particular, when there are no £-unifiers, there
can be no solution.

Let 5 and 7 be two sequences of terms of equal length, and o and @ two £-unifiers of 3 and 7.
Then we say that o is a more general £-unifier than 8, denoted by o < 6 iff o is a more general
substitution than # is. An f-unifier ¢ is mazimal iff there is no £-unifier which is more general
than o.

Next we extend the definition of goal formula to that of general goal formula to incorporate the
negation symbol.

Definition 9.1 A general goal formula is defined inductively as follows:
(a) An equation of the form s, =1, where s,.1, € T(Z) is a general goal formula.
(b) T is a general goal formula.
(¢) An atomic goal A is a general goal formula.

(d) If G1 and G; are general goal formulas. then so are G V G2, G1 A Go, 3zG, and -G;.
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Note that atomic goal formulas and terms s,, ¢, in equation s, = t, do not contain symbols = and

.

We shall use the following abbreviations:
1. VzG for ~3z-G
2. G1 O G4 for (—|G1) vV Gy

3. s#tfor ~(s=1).

Definition 9.2 A general program clause is a clause of the form
A=

where A is a rigid atom and G is a general goal formula. We call A the head of clause and G the
body of clause. ]

In [19] normal programs in first-order logic are defined. These are programs whose program
clauses my contain negative “literals” in their body. In higher-order logic, however, normal pro-
grams are meaningless; if atom of a negative literal is flexible then by substituting a term for the
head predicate variable of the atom we have a general negative goal formula which is not literal. For
example, let = Pa be a negative literal where P is a predicate variable. By applying the substitution
[Az - pz V qz/ P] to this literal we obtain a negative goal formula =(pa V.ga) which is not a literal.

Example 9.3 The well-ordered predicate wo can be defined as follows.

wo(X) —VZ(Z C X Anonempty(Z) O hasleastelement(Z2))
nonempty(Z) — JU(Z(U))

hasleastelement(Z) — JU(Z(U)AVV(Z(V)D U <V))
XCY —VZ(X(Z2)DY(Z))

O

The increased expressiveness of programs and goals is useful for expert systems, deductive
database systems, and general purpose programming applications. In expert systems, it allows the
statement of rules in the knowledge base in a form closer to a natural language statement, such as
would be provided by a human expert. This makes it easier to understand the knowledge base. In
general purpose programming, applications like the above example occur often. If this increased
expressiveness is not available it is only possible to express such statement rather obscurely.

Definition 9.4 The definition of a predicate constant p € Il in general program P is the set of all
program clauses in P which have p as top level svmbol of their heads. w]
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Every definite program is a general program, but not conversely.
In order to justify the use of the negation as failure rule, Clark{10] introduced the idea of
completion of a general program. We next give the definition of the completion.
Let p(t1,-+,tn) <« G be a program clause in a general program P. The first step is to transform
the given clause into
Pz, yxp) — 2= A A2, =t AG

where z,,---,z, are variables not appearing in the clause. Then if y;,- - -,y are the free variables
of the original clause, we transform this into

P(Il,"',l'n)*— 3y1"'3ym($1 =4 A AT, =tnAG)

Now suppose this transformation is made for each clause in the definition of p. Then we obtain
k > 1 transformed formulas of the form

P(fl»'l,"',-’lfn) . El

plagc - oa,) — By

where each E; has the general form
3y c-- Ay = (LA ANx, =1, AG)
and is still a general goal formula. The completed definition of p is then the formula
Pz, xn) — E1 V-V EL (1)

Note that Fy V ---V Ej is also a general goal formula. Some predicate constants in the program
may not appear as top level symbol in the head of any program clause. For each such predicate
constant ¢, we explicitly add the clause

_1(1(‘7:]-,"'-,'1:71)' (2)

This is the definition of such ¢ given explicitly by the program. We also call this clause the completed
definition of such gq.

Definition 9.5 An augmented general logic program P~ corresponding to program P is a collection
of completed definitions of predicate constants in P. mi

In the classical first-order case we form the completion comp(P) of a program P by taking
P~, the augmented logic program corresponding to program P, and adding the axioms of Clark’s
equational theory C*. These axioms. asserting that two terms are equal iff they are unifiable, give
a unification complete equality theory. corresponding in a natural way to the standard equality
theory C consisting of the axioms of identity. Thus. for equation e we have C* = e iff C = e. In
general there is no unique way of extending an equality theory £ to a unification complete one £*
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having this relation to it so we can no longer speak of the completion of a program P with equality
theory £ but must as in [16] consider a pair (P*,£*) where P* is an augmented general program
corresponding to program P and £* some unification complete equality theory. (If P is thought of
as having some underlying equality theory £, then we would require £* = e iff £ = e, but since
this does not specify £* completely it is presumably £* which is directly given.) ;From now on we
always use (P*,£*) in this sense.

Definition 9.6 For a given set ¥ of constants and equality theory £, the £-unification problem in
the language £(X) is to decide, for arbitrary terms s,t € T(X), whether the set U(s,t) of £-unifiers
of s and t is non-empty. The nt*-order £-unification problem is the £-unification problem for an
arbitrary language of order n. If an equational theory £ does not contain other equational clause
than the axioms of identity then we write C for £ and write just unifier or unification for C*-unifier
or C*-unification respectively. O

For example, the first-order unification problem is known to be decidable. Unfortunately, this
does not hold for higher-orders or under general equality theory.

Theorem 9.7 The second-order unification problem is undecidable. O

This result was shown by Goldfarb[13] using a reduction from Hilbert’s Tenth problem. This
result shows that there are second-order (and therefore arbitrarily higher-order) languages where
unification is undecidable.

Besides undecidability of £-unification, another problem is that mgu’s may no longer exists, a
result first shown in [14].

Example 9.8 The two terms F(a) and a have the unifiers [Aza/F] and [Azz/F], but there is no
unifier more general than both of these. 8]

This leads us to extend the notion of a mgu to the £-unification case by considering complete
set of £-unifiers.

Definition 9.9 Given two sequences of terms, 3 and 7, and a finite set W of variables, a set S of
substitutions is a complete set of £-unifiers of ¥ and t away from W (which we shall abbreviate by

CSU(s,1)[W)) iff
1. Forall 0 € §, Dom(c) C FV(5,1) and Intr(c)N (W U Dom(c)) = 0.
2. SCUG,D.
3. For every 8 € U(5,1), there exists some o € S such that o < 0[FV(5,7)].

When W is not significant, we drop the notation [I117]. a

Example 9.10 The following set C* of equality theory is corresponding to the equality theory C
and C* is unification complete. All terms appearing in C™ are in n-expanded form.
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1. AT - FT # t where the term ¢ is rigid and F' € FV (t).

2. AT - f(3) # AT - g(7) where f and g are two different constants.
- zi(3) # AT - z;(T) where T is a list of variables of length k and ¢,j € [k] such that i # j.

@
>
8]

4. 5; #t; = XT- f(3) # AT+ f(¥) where S and T are two lists of terms of same length n and 7 € [n]
and f is a constant.

5. 8 # t; = AT - z;(3) # AT - z;(T) where T and 7 are two lists of terms of same length n and
i € [n] and 7 is alist of variables of length k and j € [£].

As usual the free variables in equality clause are implicitly universally quantified. Note that a naive
extension of Clark’s equality theory to higher-order equality theory does not work. For example
clause 1 corresponds to clause 4 of Clark’s equality theory presented in page 79 of [19]. These
clauses are needed because of occur check in unification algorithms. But in higher-order case the
two non-convertible terms X and F.X are unifiable, since there is a unifier [Ay - y/F]. Note also

that both of these terms are flexible. If one of the two terms is rigid then the occur check will also
work for higher-order unification. m]

To address the operational semantics of complete logic programs, we return to general logic

programs. Corresponding to each (P~,£*), we obtain a logic program (P, ) as follows. All that

we require of the desired & is that it shares with £ the same finest ¥-congruence. There can be

many ways of defining such, e.g., £ = {e : € is a closed equation over H and £* |= e}.
The general logic program P we obtain from P~ is defined as follows. For each predicate
definition of type (1) in P*, obtain & definite clauses where k is the number of disjunctions in the

definition body. Then if
Jy -yt = A AT, =1, AG) (3)

is one such disjunct, obtain the corresponding general clause
pltr, e tn) — G (4)

Note that we do not construct any general clauses from predicate definitions of type (2) in P*.
Thus we defined (P, &) corresponding to (P~. ).

10 Semantics for general programs

In general programs, we have to interpret the negation symbol to give the definition of satisfaction.

Definition 10.1 Let M = (D, I) be an interpretation of £. ¢ an assignment into M. When F is
a formula in £, we write M = F[¢] to say that M satisfies F' with respect to ¢. For all general

goal formulas G, Gy, G, for each rigid atom A.

1. When sq,tq € T(Z)o, M [ sa = tolo] iff Vs, = V1,
ME sq = tolo] iff ef(Vyosa) = ef(Vi i)
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2. ME Tly]

3. M Ep(tr,--,ta)e) iff {(Voti, -, Votn) € Ipif pis a constant
or (Vot1,-++,Votn) € poer(p) if pis a variable

4. M | G1V Gyfp] iff M [ Gifg] or M £ Gafg]
. M | G1 A Gy iff M [E Gifg] and M |= Ga[¢]

<

(=]

. M | 32,G iff there is a d € D, such that M | Glp[d/z,]]
- M RGig] iff M Gilp].

-1

8. M A — Glg] iff M = Alg] if M E G[e].

We write M | F to say that a formula F'is valid in M if M |= F|y] for all assignments ¢ into
M. Given a general program P, we say that M is a model or D-model for P, and write M P,
if each general clause in P is valid in M. Given a closed goal formula G, we say that G is a logical
consequence of P, and write P |= G if GG is valid in all models of P. ]

Lemma 10.2 Let P be a general program. Then P is a logical consequence of P*.
Proof Let (D, J) be a general pre-interpretation and I a D-interpretation such that I is a model
for P*. We want to show that [ is also a model for P. Let p(t;,---,t,) — G be a general clause in

P whose free variables are y;,- -, ym, and  be an assignment into D such that I = G[p]. Assume
V,t; = d; for i € [n]. We need to show that p(dy.---.d,) € I.
Consider the completed definition of p

plry.-- ) — Fy v v Eg

and suppose F; is
dy - Fymlzr = A Aay, =ty AG).

Let the assignment ¢’ into D be (p[di/21]---[d,/2,]). Then for each i € [n], Vut; = d; and
I = G[¢'], since z;’s do not occur in G. Therefore

ITExy=(H A Ax, =t, ANG[¢]

and p(dy,---,d,) € 1. O

We can define T operator as in Section 7. Note that T operator for general program is generally
not monotonic. For example, if P is the program

p—p

then T(p ¢y is not monotonic. However. if P is a definite program, then it is monotonic.
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Lemma 10.3 Let P be a general program and I be a D/E-interpretation. Then I is a model for
(P,&) iff Tpey(I) C 1.

Proof =) Assume p(dy,---,dn) € T(p ¢)(/) for some p(dy,---,d,) € I(D/E). Then there are an
assignment ¢ into D/€ and a clause p(t1,---,t,) — G € P such that V,t; = d; for all ¢ € [n] and
I k= G[¢]. Then since I = P, I = p(t1,-+-,tn)[@]. Therefore p(dq,---,d,) € I.

<) Similarly. ]

Since model intersection property is closely related with monotonicity, model intersection prop-
erty does not hold as following example shows.

Example 10.4 Let P be the program

p—gA-r
¢ — 7.
Then {p,q} and {p,r} are models of P. But their intersection {p} is not a model of P. ]

The next result shows that fixpoints of T(p ¢) give models for (P*,£).

Lemma 10.5 Let I be a D/E-interpretation. Then

I is a fizpoint of T(p ¢y iff I is a model for (P~,&).
Proof Let p € II and recall that there is only one definition of p in P*. If it is of the form (1), i.e.,

p(l'l-."'s:vn) - E] Vv "'VEA‘-,
then this definition is satisfied by I iff for all assignment ¢ into D/E where ¢z; = d;,1 € [n],

p(dy,---,dp) €1 < for some E;.
Vit,=d,. je[n]and I = Glg]

Since for each FE; there is a definite clause about p in P and vice versa, this is the same as
pdi, -+ ,dy) € I <= pldy. -+ .dy) € Tpey(T) for all p(dy,---,dy) € (D/E)
If, however, the definition of p is of the form (2).
-p(T) is satisfied by I <= p(d) ¢ I for all d € D/E.
By definition of T(p ¢), we have for each such p that for all D/E-interpretations I and all d € D/E,
pd) & Tip.ey(d)

Hence (P*, &) is satisfied by 7 iff T(p oy(1) = 1. w
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11 (P,£)-derivation

In this and next sections we describe a mechanism that determines whether the existential closure
of a goal formula is a logical consequence of a set of program clauses. We would like to describe
a procedure that conducts a search for an appropriate derivation sequence that is directed in a
sense by the given goal formula. We call this procedure a (P, £)-derivation. (P, £)-derivation may
be looked upon as a generalization to higher-order context of the notion of (P, £)-derivations that
were introduced in [16, 17}, and are prevalent in most discussions of first-order logic programs with
equality as the extension of SLD-derivations.

Let the symbols G,C and 6, perhaps with subscripts, denote sets of general goal formulas,
general program clauses, and substitutions, respectively. Let us call a finite set of general goal
formulas a goal set. We then define the relation of being “(P, £)-derived from” between triples of
the form (G, C, ) that is basic to the definition of a (P, &)-derivation in the following manner.

Definition 11.1 Let P be a program. We say a triple (G,. (3, 6;) is (P, £)-derived from the triple
(G1,C1,61) if one of the following situations holds:
1. (Goal reduction step) 62 = < and there is a goal formula G in goal set Gy such that
(a) Gis T and G, = G; — {G}, or
(b) Gis G*AG? and G, = (G, — {G}HU{G'.G?}, or
(c) Gis G*v G? and, for i € [2], G, = (G1 — {G})U {G'}, or

(d) G is 32,G' and for new variable y, € A, to goal set G, it is the case that Gy =
(61 = {G}H) U {[ya/2a]G}.

2. (Backchaining step) Let G be a rigid atom in goal set G; such that C; is a variant A — G’ of
a clause in P with no variables in common with those in G; and 6, is an £-unifier of A and

G, and G, = 6:((G1 — {G})U {G"}).

3. Let GG be an equation e in goal set Gy such that there is an £-unifier @ of equation e. Then 6,
be an £-unifier equation e which is more general than 8. And G, = 02(G1 — {e}).

In each of the above steps the goal formula G is called the selected goal in the goal set G;. a
Definition 11.2 Let G be a goal set. Then we sav that a (finite or infinite) sequence
(gi,Cvi,{}i),i =0, 1,2, e

is a (P, £)-derivation sequence for G just in case Gy = (.60 = ¢, and for each 7, (Git1, Ciy1,0i41) is
(P, E)-derived from (G;, C;, 6;). o

We now introduce the concept of a selection rule. which is used to select goals in a (P, £)-
derivation.

Definition 11.3 A selection rule is a function from a set of goal sets to a set of goals such that
the value of the function for a goal set is a goal. called the selected goal in that goal set. 0
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Definition 11.4 A (P, £)-derivation sequence (G;, C;, 6;)o<i<n terminates, i.e. is not contained in
a longer sequence, if there is no triple (Gn41,Cn+1,0n+1) Which can be (P, £)-derived from. If G,
is empty, or consists solely of flexible atoms, we say that it is a successfully terminated sequence. O

Note that if there are any goal formulas in G, then they are of the form
Pty ---t,

where P is a variable whose type is of the form ay,-++,an — 0. Let FP(Gy) be the set of such
predicate variable P in G,. Note that if G, is empty then so is F/P(G,) and for any substitution 6,
6 T FP(G,) is an identity substitution.

Definition 11.5 A (P, £)-derivation is fair if it is either terminated, or for every goal G in the
derivation, (some further instantiated version of ) G is selected within a finite steps. m]

Definition 11.6 A selection rule R is fair if everv (P. £ )-derivation using R is fair. a
For each predicate type 7 we define the wit E;
Eoan—o=A21-- A2y - T
where z; is a variable of type «; for i € [n]. And we define a generalized substitution
O = {{yr, E;) : 7 is a predicate type and y, € A, }.

Definition 11.7 A (P,£) derivation sequence (G:,Ci,8;)o<i<n for G that is a successfully termi-
nated sequence is called a (P, £)-derivation of G and

(61008, 0(0 | FP(G.))) 1 FV(G)

is called its answer substitution. If G = {(i'} then we also say that the sequence is a (P, £)-derivation

of G. O

The following defines the success, finite failure, and general failure sets, denoted by SS(P, &),
FF(P,£), and GF(P,E) respectively for a given logic program (P, ).

SS(P,E) = {p(3) € II(H) :there exists a successful
(P, &)-derivation sequence of p(3)}
FF(P,&) = {p(3) € I(H) : for any fair selection rule,
there exists a number n such that all (P, £)-derivation
sequences of p(3) are finitely failed with length < n}
GF(P,&) = {p(3) € II(H) : for any fair selection rule,
all (P, £)-derivation sequences of p(3) are finitely failed }

General failure is, in general, different from finite failure because there can be a closed atom
which does not have an infinite derivation sequence and yet there is no number n such that all
derivation sequences of this atom are finitely failed with length < n. This possibility arises because
€ can be such that there is an infinite set of maximally general £-unifiers for some pair of terms s
and 2.
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Example 11.8 Let £ = {f(=z, f(y,z)) = f(f(z,y).2)}, the theory of an associative function.
Noting that the equation f(y,a) = f(«,y) has an infinite number of maximally general £-unifiers

[a/y]7 [f(a,a)/y], [f(f(a’ (1), (l)/y], Tt

the program P

pla) — q(fla,y), f(y,a))
g(z,2) — r(x)
r(f(a,z)) — r(z)

is such that FF(P,£) # GF(P,&). This is easily verified by considering the initial goal p(a). So
pla) € GF(P,E)

pla) g FF(P.E).
O

However, if £ is such that for all pairs of terms s and t. there is a finite set of maximally general
unifiers which subsumes all the £-unifiers of s and t, then FF(P,£) is identical to GF(P,£). In
higher-order case even for the equality theory C there are some pair of terms s and t for which
there is no finite set of maximally general unifiers. So in general FF(P,£) # GF(P,¢£).

Example 11.9 Let the program (P,C*) be such that P consists of the following clauses

pla) — q(F(f(a)). f(F(a)))
glz,x) — r(x)

r(f(z)) — r(x)
The unifiers of the equation F(f(a)) = f(F(a)) are
Ay - fA(y)/F). fork € w.

So
pla) € GF(P.CT)

pla) & FF(P.C*)

12 SLDNF-resolution with Equality

In this section we define an appropriate version of SLDNF-resolution for higher-order general pro-
grams and goals with equality theory and prove. in next section, for it the analogue of Clark’s
fundamental theorem([10], that if a goal succeeds it is a consequence of the completion of the pro-
gram, and if it fails then its negation is a consequence. It is to be expected that most of the other
properties of SLDNF-resolution could be proved in this more general context, but tue results are of
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(b) G, is a closed negated goal ~G! and there is an SLDNF-refutation of rank < v of {G'},
or

(¢) G is an equation e and e has no £*-unifier.
(d) Gy is an inequation s # t where £* = s = t.

Note that an SLDNF-refutation (respectively, generally failed SLDNF-tree) of rank v is also an
SLDNF-refutation (respectively, generally failed SLDNF-tree) of rank p, for all u > v.

Definition 12.2 Let (P,£*) be a general program and G a general goal formula. An SLDNF-
refutation of (P, £*) W {G} is an SLDNF-refutation for (P, £*) W {G} of rank v, for some v. O

Definition 12.3 Let (P,£*) be a general program and G a general goal formula. A generally
failed SLDNF-tree for (P,£*) W {G} is a generally failed SLDNF-tree for (P,€*) ¥ {G} of rank v,
for some v. O

If a goal set contains only flexible atoms and negated atoms which are not closed, then no goal
is available for selection. We now formalize this notion. By computation of (P,E*)w {G}, we mean
an attempt to construct an SLDNF-derivation of (P,&*)w {G}.

Definition 12.4 Let (P,£”) be a general program and G is a general goal set. We say a com-
putation of (P,£*) W G flounders if at some point in the computation a goal set is reached which
contains only flexible atoms and negated atoms which are not closed. a

In 2.(a) of the definition of SLDNF-refutation, the transformations for negated formulas have
been presented to try to overcome the limitations of the negation as failure rule. For example,
without 2.(a).iii), the computation of (P, £*)W {--G} can flounder if G contains any free variables.
This problem disappears once the goal is transformed to . Similar problems are overcome by
2.(a).i), and ii).

Now that we have given the definition of computed answer, we consider the procedure a logic
programming system might use to compute answers. The basic idea is to use (P, £*)-derivation,
augmented by the negation as failure rule. When a non-negative goal is selected, we use essentially
(P, E™)-derivation to derive a new goal set. However, when closed negative goal is selected, the
goal answering process is entered recursively in order to tryv to establish the negative subgoal. We
can regard these negative subgoals as separate lemmas, which must be established to compute
the result. Having selected a closed negative goal -G in some goal set, an attempt is made to
construct a generally failed SLDNF-tree with root {G} before continuing with the remainder of
the computation. If such a generally failed tree is constructed, then subgoal set {~G} succeeds.
Otherwise, if an SLDNF-refutation is found for {G}, then the subgoal set {=G} fails. Note that
bindings are only made by successful calls of positive rigid atoms. Negative calls never create
bindings; they only succeed or fail. Thus negation as failure is purely a test.

Example 12.5 Let P consist of the following clauses
r Cy— Vulx(u) D ylu))
pla) — T
gla) — T
q(b) =T
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An SLDNF-refutation of (P,C*) & {p C ¢} is

pPCyq
Yu(p(u) D q(u))

which succeeds since the final goal is an abbreviation of closed goal =3u—(-p(u)V ¢(u)) and we can

build a failed SLDNF-tree for Ju-(-p(u) V ¢(u)).

Ju~(-p(u) V g(u))
~(=p(w) v g(u))
—=p(u) A —g(u)

~ap(u), ~glu)
plu), ~g(u)
T, q(a)
—g(a)

A failed SLDNF-tree for (P,C*) W {¢ C p} is

< p
Vu(q(u) D plu))

which is failed, since the final goal is an abbreviation for =3u-(-¢(u) V p(«)) and there is an
SLDNF-refutation for (P,C*) W {Iu—(—q(u) V p(u))}

Jun(~g(u) V p(u))
(—g(u) V p(u))
~g(u) A -plu)

g, ~plu)
g(u), p(u)
T.p(b)
-p(b)

which succeeds because of the failed tree.
p(b)

13 Soundness of SLDNF-derivation with Equality

Let G be a general goal set {Gy,---,G,} which occurs in a place where normally a formula can
do. Then by G we mean the conjunction G; A --- A (. And we adopt the convention that empty
conjunction is true.

Theorem 13.1 If P is a general program. £ a unification complete equality theory and G is a
general goal set, then for all ordinals v
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(a) if (P,£*)Y G has a generally failed SLDNF-tree of rank v then (P*,£*) = ~G.
(b) if (P,£*)W G has an SLDNF-refutation of rank v with answer 8 then (P*,£) k= 6G.

Proof We prove these simultaneously by induction on v.
(a) We prove the contrapositive, that if there is a H/E£*-model I for (P*,£*) in which 3(G) is true,
then (P,£*) ¥ {G} cannot have a generally failed tree of rank ».

We do this by showing that if an existential closure of a node goal set G in such a tree is true in
I then so is for some successor node goal set G’, which implies the existence of an infinite branch,
contrary to the definitions of generally failed tree. Note that an existential closure of a goal set
{G1,---,G,} is true in I means there is some assignment  into H/E* such that

IE=EG AN ANGe)
So there is an assignment ¢ such that for each goal G, in the goal set,
1 = Gilg).

If the selected goal G, in the node goal set G is G' A G? then by hypothesis G' and G? are
true in 1. So there is a unique child goal set G’

(G- {G' AG*} U {G",G*)

all goals of which are true in 1. A
If the selected goal G,, in the node goal set G is G! v G? then by hypothesis G* is true in I for
some 7 € [2]. So there is a child goal set G’

(G - {G'"vG*Hu{G'}

all goals of which are true in I.
If the selected goal G, is 3yG', then by hypothesis G is true in I under assignment o[d/y] for
some d € H/E*. There is a unique child goal set G’

(G — {3yG Hu {[=/y]G"}

where z is a new variable to G. So all of goals in G’ are true in I under assignment [d/z].
If the selected goal G, in the node goal set G is =(G! A G?) then there is a unique child goal
set G’
(G = {~(GT A G U{(-G) Vv (=G?)}

all of whose goals are true in I under ¢, since (=G') V (~G?) is implied by ~(G* A G?).

If the selected goal G, is ~(G! V G?) or =~G!, then the proofs are similar to above case.

If the selected goal G, in the node goal set G is a negated closed goal ~G! then by hypothesis
G! is false in I, so by (b) of induction hypothesis {G!} cannot have refutation of rank < v, so this
cannot be a leaf node. So there is a unique child goal set which simply omits =G! and is also true
in I.



34 Proceedings of the 1992 AProlog Workshop

If the selected goal is an equation s = ¢ then, since this is true in I under assignment ¢, and £*
is unification complete, there is some £*-unifier # of s and ¢ such that Jhegn(8) is true under the
assignment ¢ where % are the variables in 8 not in s or ¢. Clearly these variables may be chosen
different from % so that egn(#) is true in / under assignment o[d/h] for some d € H/E*. Now
eqn(f) implies

z = fz, for each variable z,

hence
F — 8F, for each formula F.

So all the goals in
B(G — {s =1})

are true in J under ¢[d/h). The given node has a child goal set G’
0'(G - {s=1})

for some # more general than 6, i.e. such that there is a substitution o satisfying
E Eb8=¥¢oo0.

Now if o F is true for some assignment v then F is true for some variable assignment (viz. the
assignment o o V},). So all of goals in 6'(G — {s = t}) are true in [ under some variable assignment.

If the selected goal is an inequation s # ¢ then since this is true in / under variable assignment
@ the node cannot be a leaf node, since that requires £ = s = t. So it has a unique child goal set
gl

G-—{s#t}

all of goals of which are also true in I under variable assignment .

The last and main case is where the selected goal G, is a rigid atom p(3). The completed
definition of the predicate p in P* is of the form

pzy—Eyv.--vE;

where each F; is of the form

.

G =TAG)

corresponding to a program clause

M) — G
where Z are new variables not occurring in any such clause, and 7 are the free variables of the
clause. It is easily seen that the same completed definition of p is obtained whatever variants of
the program clauses are used, so we may assume that the same variants are used as are chosen
in verifying the definition of generally failed SLDNF-tree at this node so that the variables 7 are
distinct from the variables T. Since p(%) is true in [ under ¢ one of the formulas

FPE=TAG)
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must be true, i.e. since the variables 7 are distinct from the variables Z,

=1IAG

ol

is true in I under a variable assignment @[d/7] for some d € H/E*. Since £* is unification complete,
3 =1 implies the existence of some £*-unifier § of s and t. As above this implies

0((G - {p®}Hui{c})

is true in I under a variable assignment ¢[d/7][€/h] where A are new variables of # (chosen distinct
from 7,7). Now by the definition of generally failed tree, since 8 unifies p(3) and p(?) there must
be an £*-unifier §' of p(3) and p(7) and a substitution o such that £ = 6 = 6’ 0 0 and a child goal
set

(G - {(pE}HU{G.

As in the last case, all these goals are true in { for some variable assignment.

(b) This is proved by induction on the length ! of the refutation.

l is zero. Then G is empty or consists only of flexible atoms. If ¢ is empty, i.e. true, then
(P*,&*) E G. If G consists only of flexible atoms. then #G is of the form T A--- A T. So obviously
(P~ &%) k 6G.

For the inductive step suppose | > 0 and (,, is the first selected goal in the node goal set
Go=G.

If G is of the form G' A G2, then 6, is the identity substitution ¢ and the unique child goal
set Gy is

(Go — {G' NG} U{G.G?Y.

By induction hypothesis on [
SE)E (620---060,0(0 1 FP(G))))G
Since 6,{G?, G?} implies 6, {G! A G*}, so
PYET)E(610---08,0(0 | FP(G)))Go.
If G, is of the form G' V G?, then 8, is the identity substitution ¢ and next goal set G is
(Go— {G' v G u{GY)
for some ¢ € [2]. By induction hypothesis on [
P E ) E(620---06,0(0 | FP(G)))G1.
Since 6, {G"} implies 6, {G' vV G*}, so

(P™E)E (bro---0b,0(0 | FP(G)))Go
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If G, is of the form 3yG?, then 6, is the identity substitution ¢ and the unique child goal set
Gy is
(Go - {3yG' 1 U {[2/4]G"}

where z is a new variable to Gg. By induction hypothesis on /
(P, ") (f20--:08,0(0 1 FP(G)))G1.
Since 8;{[2/y]G'} implies 6; {IyG'}, so
(P )E(fro---060(0 1 FP(G)))So.

If G, is a rigid atom then there is a variant A — G of a program clause and £*-unifier 6; of
G, and A, and the next goal set G is

01((9’0 - {G'm}) U {G'})
By induction hypothesis on /

(P™,&") [ (620---06,0(0 1 FP(GI)))G1.

But
P lE(610---06,0(0Q | FP(G)))A — G)
and
& ’: 0]G’m - 01‘4»
hence

(P:g*) ): (()1 O--- of)[ (o] (9 | Fp(gl)))go

as required.
If G, is an equation s = t then the next goal set G; is

61(Go — {s = 1})
where 6, is an £*-unifier of s and ¢. By induction hypothesis on [
(P, &™) E (f20---06,0(0 | FP(G)))G1.
Since £* = 0;s = 0,1, it follows that
(P.E)E(fho---06,0(0 | FP(G)))Go

as required.
If G, is an inequation s # t, then the next goal set G, is

01(Go - {s # 1})



Mino Bai 37

where 8,5 and ;¢ are not £*-unifiable, i.e.
E* | Ois # it
since £* is unification complete. So
(P*,E")E (610---06,0(0 1T FP(G1)))Go

as required.
If G,, is of the form —(G' A G?), then 8, is the identity substitution ¢ and the unique child goal

set G is
(Go — {~(G' A GH}) U {(=-G) Vv (~G*)}.

By induction hypothesis on [

(P, &)k (6,0---06,0(0 | FP(G1)))G1.
Since 8,((=G') V (~G?)) implies 6,(~(G' A G?)), so

(P*,E")E (61006, 0(0 | FP(G)))bo.

If G is ~(G! V G?) or ==G! then the proofs are similar to the above case.
If Gy, is a closed negated goal =G then there is a generally failed SLDNF-tree of rank < v for
(P,€£*)w {G'} and the next goal set G; is

Go — {-G'}.
So by (a) of induction hypothesis on v
(P=.&) = -G
By induction hypothesis on /
(P, &) (620--:06,0(0 | FP(G))))G1.
Since 6, is the identity substitution £ we obtain
(P, )E(610---08,0(0 1 FP(G)))Go

as required. O

14 Conclusion

We have built model theoretic semantics for higher-order logic programming languages and estab-
lished the least model and least fixpoint semantics for such languages. Two major relevant aspects
of classical first-order logic have been model theory and proof theory; model theory corresponds to
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specification and declarative notions, proof theory corresponds to operational semantics and imple-
mentations. A proof theoretic characterization of higher-order logic programming is well developed
in [26, 24, 28]; this characterization is based on the principle that the meaning of a logic program,
provided by provability in a logical system, should coincide with its operational meaning, pro-
vided by interpreting logical connectives as simple and fixed search instructions. The operational
semantics is formalized by the identification of a class of cut-free proofs called uniform proofs.

Even though Miller[25] worried about “unquestioned” use of model theory, we believe that model
theoretic development for higher-order logic programming is essential; the existence of a declarative
definition provides an important yardstick against which the correctness of an implementation can
be measured, for example, without it, we would not be able to even state the soundness and
completeness theorems. This situation is even more amplified when the soundness of negation as
failure is needed to be justified; in order to assess the proof theoretic power of completions, in
contrast to the case of models of definite programs, it is not sufficient to restrict here attention to
Herbrand models. It is necessary to consider arbitrary models.

There is a well-known philosophical problem [12]; a knowledge and belief operator such as
knows creates an opaque context and disallows substitution of equals by equals in an opaque
context. Qur logic programming languages also create a similar problem; i.e. since they include the
propositional type in its primitive set of tvpes, they allow such opaque contexts. This situation can
be paraphrased, in our own terms, as: extensional identity of arguments does not imply extensional
identity of applications of such arguments to an opaque operator. To solve this problem the
researchers in Artificial Intelligence proposed to view a concepts as an object of discourse in logic
[21]. In this paper we also take the similar position: we argue that intentions rather than extensions
should be main objects of domain of discourse in higher-order logic programming.

We showed that higher-order logic programming possesses the unique semantic properties of
first-order logic programming such as the least model and least fixpoint semantics, finite failure
and negation as failure.

The work of this paper has, thus, achieved a large part of its original objective, namely that
of developing a model theoretic semantics for higher-order logic programming languages that has
been proved to be so successful for first-order logic programming.
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1 Abstract

AProlog is a logic programming language accepting a more general clause form than standard Prolog
(namely hereditary Harrop formulas instead of Horn formulas) and using simply typed A-terms as
a term domain instead of first order terms. Despite these extensions, it is still amenable to goal-
directed proofs and can still be given procedural semantics. However, the execution of AProlog
programs requires several departures from the standard resolution scheme. First, the augmented
clause form causes the program (a set of clauses) and the signature (a set of constants) to be
changeable, but in a very disciplined way. Second, the new term domain has a semi-decidable and
infinitary unification theory, and it introduces the need for a S-reduction operation at run-time.

MALI is an abstract memory that is suitable for storing the search-state of depth-first search
processes. Its main feature is its efficient memory management.

We have used an original AProlog-to-C translation: predicates are transformed into functions
operating on several continuations. The compilation scheme is sometimes an adaptation of the
standard Prolog scheme, but at other times it has to handle new features such as types, f-reduction
and delayed unification.

Two keywords of this implementation are sharing and folding of representations. Sharing
amounts to recognising that some representation already exists and reusing it. Folding amounts to
recognising that two different representations represent the same thing and replacing one by the
other.

We assume a basic knowledge of Prolog and AProlog.

2 Introduction

The logic programming language AProlog (28, 27, 29, 14, 12, 26, 13, 30] improves greatly on standard
Prolog because it features very powerful operations on terms and programs while still giving them a
logical semantics. A keyword common to all these features is scoping. A-terms introduce scoping at
the term level, explicit quantifications (universal and existential) introduce scoping at the formula
level, and the deduction rules for explicit quantification and implication introduce scoping in proofs,
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i.e. at a dynamic level. Deduction rules for AProlog are usually given in the framework of sequent
proofs.

AProlog requires some implementation effort for being able to compete with Prolog in efficiency
(and then in popularity). Another condition for popularity is to overcome the idea that it is a
“difficult” language, but this is another story. The initial implementation of AProlog by Miller and
Nadathur, and the second one, eLP, by the Ergo Project at Carnegie-Mellon University, were far
from being able to compete with Prolog. Since then, a few teams have worked on the implemen-
tation of AProlog. As far as we know!, current teams are Nadathur, Kwon and Wilson at Duke
University [20, 19, 34], Jayaraman at the University of Buffalo (formerly with Nadathur), Elliott
and Pfenning at CMU [11], Felty and Gunter at Bell Labs, and the authors at Inria.

Other works are done in a similar framework for integrating linear logic and logic program-
ming (Pareschi and Andreoli [4], Hodas and Miller [17]), or higher-order type systems and logic
programming (Elliot [10], Pfenning (36, 37]).

We present in this paper the broad lines of our implementation of AProlog: Prolog/Mali. We
have implemented AProlog for its own merits, and as a demonstration that memory management
issues are a good guide for implementing logic programming systems. Speed was always our second
concern.

We assume a knowledge of Prolog and AProlog, their semantics, and their basic algorithms:
logical variable, search-stack, unification, A-unification [18], deduction rules, and uniform proofs [32,
30]. We adopt an architectural presentation: in section 3, we present the kernel subsystem that
is in charge of the elementary representation problems. in section 4, we present a software layer
which is both a specialisation and an extension of the kernel, finally, in section 5, we present the
compilation scheme. We conclude in section 6.

3 MALI

MALI [6, 38] (Mémoire Adaptée aux Langages Indéterministes — memory for non-deterministic
languages) can be specified as the abstract data type stack of mutable first-order terms. This
abstract data type encompasses the representation of the state of every logic programming language
that performs a depth-first search in a search-tree.

MALI is the name of a general principle that has several implementations. The name of the
implementation we used in Prolog/Mali is MALIv06. '

We present what MALI brings to the overall system, and, to avoid any ambiguity, what it leaves
undone.

3.1 What MALI brings to Prolog/MALI

3.1.1 A data-structure

MALI brings an abstract data-type which we call MALI’s term. MALI’s terms may be described
more concretely as graphs with nodes that can be reversibly substituted. MALI’s terms are organ-

'We thank the committee member who updated our knowledge-base.
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ised in a term-stack which is itself a term. A collection of node constructors is offered, among them
atoms (i.e. leaves), compound nodes (i.e. cons or tuples), and levels (i.e. term-stack constructors).
Some of the compound node constructors are called mutable constructors, and the terms constructed
with them are called muterms. Mutable nodes can be subject to reversible substitutions, according
to a discipline that is close to the substitution of logical variables in Prolog. According to the disci-
pline, muterms, substitutions, and the term-stack are in the same relationship as logical variables,
substitutions, and the search-stack of Prolog. For every kind of node constructor, commands and
operations exist for creating and reading them, and for accessing their subnodes (if any). Com-
mands also exist for substituting terms for muterms, and for manipulating the term-stack (pushing,
popping, and pruning the term-stack).

Every node constructor can be given an elementary typing via the use of sorts. This makes it
possible to “decompile” the representation of an application term. For instance, Prolog’s integers
and constants can be both represented by MALI’s atoms, which must be discriminated by their
sorts.

In the sequel, we note? (le S R N) a term-stack® of sort S, top value? R and substack N,
(at S V) an atom of sort S and value V, ([m]co S) a [mutable] nullary compound term of sort S,
(Imlc2 S T1 T2) a [mutable] binary compound term of sort S and subterms T1 and T2, and
(ImJtu S N T1 ... Tn) a [mutable] compound term of sort S and N subterms T1 to Tn. We use a
labelled notation, label@term and label, to note different occurrences of the same term. A term
may have several labels through substitution, 1abel1@label20term. Terms with labels in common
share the same representation; they must be compatible up to a substitution. Terms with different
labels (or no label) are different even if they have the same notation; to apply a substitution to one
has effect on the others only through occurrences of shared subterms.

It should be clear from this short description that one of the intended usages of muterms and
the term-stack is the implementation of logical variables and of a search-stack. However, this is the
only commitment with logic programming, and other usages are possible. MALI knows nothing
about the basic mechanisms of Prolog (resolution, unification), or about AProlog’s deduction rules
and A-terms.

3.1.2 A memory management

MALT’s terms need memory for their representation. This memory is automatically managed
in a way that is optimal with respect to the level of knowledge that is available to MALI. The
restriction means that application-dependent accessibility properties are not taken into account by
MALI They can be taken into account indirectly by a proper mapping of the application structures
onto MALI’s terms.

We call usefulness logic the relation that describes which run-time data-structures are useful in
a given programming language independently from any particular application. The usefulness logic
of the core of logic programming is that

2The notation is only a convenience for commenting on MALI’s term; it is not part of the programming interface.

3A level in MALIv06’s jargon.
*A root, in MALIv06’s jargon.
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Every useful term is accessible from some search-node under the binding environment
of the same search-node.

To compare, the usefulness logic of the core of functional programming says that
Every useful term is accessible from some rool;

binding environments are not mentioned. So, if one uses a functional programming system for
implementing a logic programming system and nothing special is done for memory management,
the usefulness logic that is actually implemented cannot be more precise than

Every useful term is accessible from some search-node under some binding environment.

It is usually worse and considers the union of all the binding environments.

The two important features of MALI’s memory management are early reset and muterm shunt-
ing. Early reset causes substitutions to be undone® by the memory manager seeing that some
muterm is never accessible when substituted. Muterm shunting means that substitutions, which
are created reversible, may be made definitive® seeing that some substituted muterm is never ac-
cessible when not substituted. These two features are described at great length in the MALIv06
tutorial [38]. _

Commands exist for controlling memory management: supplying MALI with new memory
resources, taking useless resources from MALI, or starting a garbage collection.

3.1.3 Debugging tools

MALI offers debugging tools for assisting a user in the development of an application. Debugging
tools allow to check preconditions of commands, to display components of MALI’s state, and to
trace commands.

It is important that at every level of an architecture (software or hardware) debugging tools are
available. It makes the complexity of composing layers tractable. We will not dwell too long on
this subject in other sections; it is enough to know that the specialised intermediate machine (see
section 4) also has debugging tools for checking a fair use of everything it defines. The Prolog/Mali
system also has debugging tools, but the ultimate level is the level of the AProlog applications
which should also come with their debugging tools. This is up to the discipline of AProlog users.

3.2 What MALI leaves undone
3.2.1 A memory policy

We distinguish the management of memory inside an application, which aims at improving the use
of some memory supplies, and the management of memory at the interface with a host system,
which aims at configuring the supplies. We call memory policy the set of decisions related to
memory supplies. The decisions range from the amount of memory supplied to MALI, the way this

®Without waiting for backtracking to undo these substitutions. Hence the name “Early reset”.
®Roughly, the effect is to collapse chains of substitutions. Hence the name “Muterm shunting”.
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memory amount evolves, to the amount of computing power dedicated to memory management
(= the frequence of the calls to the garbage collector).

A memory policy can be very sophisticated because it deals with many interrelated parameters.
For instance, it is likely that, in order to diminish the computing power dedicated to memory
management, the total memory allocated to MALI must be increased. However, supplying more
memory to MALI may deci:ase the availability of the host system.

Elementary commands for designing a sophisticated memory policy are available in MALI, but
no policy is specified.

3.2.2 Application level terms and execution scheme (unification, resolution, ...)

The only commitment of MALI with logic programming is the term-stack and the muterm sub-
stitution. Everything remains to be done as for the representation of the data-structures of an
application. The implementor must find a mapping from its application terms onto MALI’s terms.
In AProlog for instance, the representation of simply typed A-terms, their unification and nor-
malisation must be mapped on MALI’s terms, and on procedures using MALI’s commands and
operations.

The only hint for mapping application terms and their operations is that it is clearly intended
that muterms and the term-stack can be used for representing logical variables and a search-stack.

MALI offers an efficient memory management but brings no solution to the time efficiency. The
packaging of MALIv06 is designed to hinder as little as possible any effort to yield speed efficiency.

3.2.3 Program representation

MALI has no notion of program. It is not even intended that an application level program should
be represented in MALI. This is a totally independent issue.

4 A specialised intermediate machine

We have designed a specialised intermediate machine (SIM?), of the level of the WAM [39, 3], for
filling parts of the gap between MALI and AProlog.

The SIM is a specialisation of MALI because it forces some interpretation on MALI’s terms.
It is also an extension of MALI because it defines new notions that have no equivalent in MALI
(e.g. unification, continuations). As a specialisation of MALI, the SIM defines specialised node
constructors, and commands and operations for creating, reading, and traversing them. As an
extension, it defines commands for implementing the new notions for every specialised node con-
structors they apply to.

The SIM still says nothing of what will be a program, and what decisions have to be made for
ensuring an efficient usage of the machine. This is up to the compilation scheme.

We review what the SIM brings to the overall system.

“SIM is not a brand name for this specialised intermediate machine; it only designates this layer in a software
architecture using MALIL
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4.1 JAProlog terms

To choose a representation for terms in the context of AProlog is a new problem because the
requirements of logic programming (Prolog technology), of simply typed A-calculus, and of uniform
proofs of hereditary Harrop formulas must be met at the same time.

Prolog technology requires the representation of logical variables and substitutions. It also
requires that substitutions be reversible because the search for a proof is done by a depth-first
traversal of a search-tree.

Simply typed A-calculus requires the representation of abstraction and application, the rep-
resentation of types, and the capability to compute at least long head-normal forms because the
unification procedure needs them. To meet the first requirements, long head-normalisation should
be reversible too.

Proving hereditary Harrop sequents is required to represent universally quantified variables and
to check the correction of signatures. It also requires the handling of implied clauses but this has
little to do with our representation of terms.

We only describe our implementation decisions. The reasons for the decisions are discussed in
a technical report by the same authors [8], and in the thesis of the first author [7].

4.1.1 Types

One of the differences between Prolog and AProlog is that the terms of AProlog must be typed for
A-unification to be well defined. Huet’s procedure deals with simply typed A-terms, but AProlog

extends simple types with type variables (type schemes). This results in generic polymorphism.
Follows a sample declaration for polymorphic homogeneous lists and a polymorphic ternary
relation on them.

kind list type -> type.
type [] (list A).
type ’.’ A -> (list A) -> (list 4).

type append (list A) -> (list A) -> (list A) -> o.
The list [1,2] can be represented in MALIv06 like

(c2 S_LIST (at S_INT 1) (c2 S_LIST (at S_INT 2) (cO S_NIL))) .
The type A -> (1ist A) -> (list A) can be represented in MALIvO06 like

(c2 S_ARROW
AQ(mcO S_UNK_T)
(c2 S_ARROW 1istAQ@(tu S_APPL_T 2 (at S_SYMB_T 1list) A) listAd)) .

Type unknown A is represented as a mutable nullary compound because it must be reversibly
substitutable, and it has no other information associated to it. Note the sharing of (1ist A)
indicated by the use of label 1istaA.

The idea of generic polymorphism in (A)Prolog is that

Types of different occurrences of a constant are independent instances of its type scheme.

Types of different occurrences of (any kind of ) a variable are equal.
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In (A)Prolog, one must also choose whether a clause of the program can be selected on grounds
of the type of its predicate symbol or not. We have chosen to forbid selecting a clause on these
grounds. It means we follow the definitional genericity principle [23]:

Types of different body occurrences of a predicate constant are independent instances of
its type scheme, whereas types of different head occurrences are renamings of the type
scheme.

With this principle, type inference leads to a non-uniform semi-unification problem which has been
shown to be undecidable by Kfoury, Tiuryn and Urzyczyn [21]. In our implementation, types of
constants (predicative or not) are only checked, and types of (any kind of) variables are inferred.

The reason for sticking to definitional genericity is that it is the most natural when predicates
are seen as definitions and type schemes as abstractions of the definitions. It is also required for
allowing a simple but sound modular analysis of programs. We want to be able to type-check a
module using the type schemes of the modules it imports but not the modules themselves.

In AProlog, it is necessary to represent types at run-time for controlling unification, and some
conditions are missing for having a semantic soundness result of the kind “Well typed programs
cannot go wrong”®.

The problem wi: semantics soundness is that nothing restricts AProlog constants to have the
type preserving property [15]:

Every type variable in a type scheme should appear in the result type (the type to the
right of the right-most =>).

The advantage of having the type preserving property is that the types of the subterms of a term
built with a type preserving constant can be inferred from the type of the term. The disadvantage
is that it is not flexible enough for representing dynamic types [1].

Types for “not going wrong” We call forgotten type variables the type variables that do not
occur in the result type of a non-preserving type scheme. We call forgotten types the instances of
the forgotten type variables. Only forgotten types need to be represented at run-time for avoiding
“going wrong”. They must be attached as supplementary arguments to the term constructors
that are not type preserving. These pseudo-arguments must always be unified before the regular
arguments. This makes A-unification problems always well-typed.

In fact, what is implemented is the representation and unification of terms of a polymorphic
type system [5]. It is as if a symbol defined as

kind dummy type.
type <forget - => dummy.

were defined as

type forget_ ’PI’ A\ (4 -> dummy).

®In this context, “going wrong” means “trying to solve ill-tvped unification problems”.
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where *PI’ is the product type quantifier, and a term like (forget 1) were (forget_ int 1). The
term (forget_ int 1) can be represented in MALIVOG6 like

(tu S_APPL 3 (at S_SYMB forget_) (at S_SYMB_T int) (at S_INT 1)) .

Note that, unlike Typed Prolog [31, 23], there is no special syntax in AProlog for declaring
predicate constants. They are only distinguishable by their result type, o. So, every predicate
constant forgets every type variable in its type because its result type contains no type variable. It
can be shown that if the predicates obey the definitional genericity principle, unification of these
forgotten types will always succeed; type unification of types forgotten by predicate constants is only
required for conveying types along the computation. In a system that does not need that conveying
(say, standard Prolog), the forgotten types of predicate constants need not be represented [31, 15].
In AProlog, conveying the types is required for controlling unification.

Types for controlling projection in unification Let us first recall the core of Huet’s A-
unification procedure [18].

For a pair < AT - (F' §,), AT - (@ #;) >, where F'is a logical variable (a flezible head) and @ is
not a logical variable (a rigid head), at most p+1 substitutions are produced by two rules.

1. If @ is a constant, the imitation rule produces F — Au - (@ E).

2. Yor each 0 < 7 < p such that 7(s;) =7 — ...7, — 7((F'5,)), the projection rule produces

Every Ej in E stands for (Hy @), where Hy is a new logical variable with the appropriate type.

The projection rule is controlled by a type condition (2. above). For the condition being testable
at run-time it is enough that logical variables are equipped with their types.

Note that the types of logical variables themselves need never be unified because when a unifi-
cation problem is to be solved then it is well-typed (i.e. the two terms of the problem have identical
types). This is a side-effect of unifying first the forgotten types in the pseudo-arguments and then
the regular arguments.

In AProlog, nothing prevents having a type with a variable result type. This makes the checking
of the type condition unsafe: there can be no argument satisfying the condition in some binding
environment while projection is possible in a more precise binding environment. The only safe
solution is to suspend unification until the result type get known. However, the traditional solution
is to commit the result type to be a constant [35]. We believe that nothing satisfactory will be
done before these flexible types are-better understood.

Types for new logical variables It is easy to attach a type to logical variables coming from the
program: it is an outcome of the type inference/checking. But the imitation and projection rules
of A-unification introduce new logical variables that correspond to nothing in the source program
(the Hy’s). They must be attached a type anyway. They all have types v; — ... — v, — 77 where
the v;’s are the types of the arguments of the flexible head, and ?? depends on the rule.
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In case of projection, the 77 of every new logical variable H; is 7; (see above in the condition
controlling projection). In case of imitation, the ?? is the type of the corresponding argument of
the rigid head. So, it remains to be able to infer the types of rigid heads in unification probkems.

There are three kinds of rigid heads: A-variables (but they cannot be imitated), function con-
stants, and universal variables (they are introduced for solving universally quantified goals). First,
we attach their type to every universal variable. Second, we observe that the type scheme of a
constant, plus the forgotten types attached to it, plus the result type®, give enough information
for reconstructing the full type of the constant. A type reconstructing function is generated at
compile-time from every type scheme declaration. It gets the forgotten types from the constant
head and the result type from the flexible head, and it returns the type of the constant head.

4.1.2 JAProlog terms

Terms are represented using the full copy technique (as opposed to structure-sharing or a mix of
structure-sharing and copy) for memory management reasons: this gives the most precise alloca-
tion/deallocation operations for any type of control. and AProlog needs to depart from the standard
control.

A novelty of AProlog is that terms need normalisation. In Prolog/Mali, normalisation alters
the representation of term for sharing reduction effort, and also for memory management. A-terms
are represented by graphs, and normalisation is implemented as graph-reduction.

Abstractions and applications  We will see that logical variables are not the only application
level structures that can be represented by MALI's muterms.

Abstractions and applications are represented by reversibly mutable graphs, so that it is possible
to physically replace a redex by its reduced form in the graph. This provides sharing of the reduction
effort. Reversibly means that mutations (reductions) can be undone when backtracking. This is
the result of inserting graph reduction in a Prolog context.

Substituting new representations for older ones in a reversible way forces to store all the history
of every term representation. However, MALI's memory management, especially muterm shunt-
ing, will remove every useless old representation. Muterm shunting shortens the history of term
representations.

Terms are represented as much as possible in their long head-normal form. So, abstractions
and applications are in fact tuples of nested elementary abstractions and applications. The term
Ansz - (s (n s z)) can be represented in MALIvOG like

(mtu S_ABST 4
n@(cO S_VAR) s@(cO S_VAR) z@(cO S_VAR)
(mtu S_REDEX 2 s (mtu S_REDEX 3 n s z)))

The applications are potential redexes, hence the sort S_REDEX.

9In the context of unification, it can be found in the flexible head.
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First-order terms We call informally first-order terms the rigid terms whose head is a constant.
They are distinguished as much as possible because they are definitely in long head-normal form
and they can be unified by a cheaper procedure.

Universal variables and logical variables In the following, we say that a logical variable
captures a term if it is bound to a value that contains the term. So, a logical variable is able to
capture terms of any type provided they are properly wrapped in a binding value.

Universal variables are among the new constructs of AProlog that enforce checking scoping
conditions. A universal variable can be captured by every logical variable of its scope, whereas
it cannot be captured outside its scope. le. in context ...Vz...3U ... Vy..., universal variable z
can be captured by logical variable U, but y cannot. A-variables are essentially universal, they
are always bound in the rightmost part of the context. So, they can never be captured by logical
variables. Constants are also essentially universal, but they are always bound in the leftmost part
of the context. So, they can always be captured by logical variables.

Scopes of universal variables are represented by their nesting level. A nesting level is attached to
every logical variable and every universal variable, and a register contains the value of the current
nesting level. When a universally quantified goal is executed, the nesting level register is first
incremented, and then a new universal variable is created with the new nesting level value. Every
further creation of logical variables within the scope of this goal but out of the scope of any nested
universal quantification will be done with the new nesting level value. We assume that the initial

nesting level is 0.
Given that logical variables and universal variables must also carry their types, they can be
represented in MALIv06 like

(mc2 S_UNK type (at S_SIG nesting_level))
(c2 S_UVAR type (at S_SIG nesting_level))

When an attempt is made to substitute a term for a logical variable, the scopes of the term and
all its subterms are checked using the nesting levels. If the term contains universal variables of a
higher nesting level than the logical variable then the substitution is illegal. If the term contains
logical variables of a higher nesting level than the substituted logical variable then their nesting
levels should be lowered to the nesting level of the substituted logical variable. If a universal
variable or a logical variable with a higher nesting level is in fact in an argument of a flexible term
then the scope-checking must be suspended because the problematical universal variable or logical
variable may disappear as a side-effect of another substitution. For instance, X! « (U! 1 Y?) is
a problematical substitution!?, but after substitution U! — Azy - (F! z) is applied, it is no more
problematical.

We have seen that logical variables cannot capture A-variable, and can only capture universal
variables whose scope they belong to. A flexible term can be seen as a generalisation of the logical
variable which is explicitly allowed to capture supplementary terms (the arguments). For instance,
the flexible term above is a generalised logical variable that is implicitly allowed to capture the
universal variable of level 1 and every constant, and is explicitly allowed to capture 1, which is only

10The nesting levels are written as superscripts.
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redundant because it wa already implicit, and Y2, which is not redundant because of the nesting
level of U!.

One of the effects of substituting a term to a logical variable is to diminish the allowance of
a generalised logical variable (see the same flexible term after substitution U! « Azy - (F! z) is
applied). Allowance cannot increase because the binding value of a logical variable must be in its
allowance.

The main consequence is that no decision related to the occurrence of some patterns can be
complete when involving flexible terms. We have exposed it for scope-checking, but it is also true
for the occurrence-check in unification (X — ¢ is a legal substitution only if X ¢ FV(t)). If some
term has an occurrence in a flexible term. a substitution may take it away.

4.1.3 Reduction

Reduction is implemented as graph-reduction. Since abstractions and applications are not repre-
sented one at a time but as tuples, reduction considers simultaneously several 3-redexes. This saves
term traversing and duplication, hence time and memory.

The basic scheme is to duplicate the left-most part of a redex, and to replace A-variables occur-
rences by the arguments. A critical improvement over the basic scheme is to recognise combinators
which are subterms of the left-most part of redexes; thev need not be duplicated. Every logical
variable, every goal argument, and every instance of a term that is a combinator is a combinator.
This shows that many terms are combinators and that once a combinator is detected it is safe to tag
it as such. Tagging amounts to having more sorts for representing the terms of the cross-product
(combinator/non-combinator)x (abstraction/application).

This improvement is fundamental and changes the complexity of useful AProlog predicates [9].
It is not committed to our architecture; it only has to do with reduction.

4.1.4 MX-unification

The now conventional names for the different procedures of A-unification are SIMPL, MATCH and
TRIV. We add UNIF1 and a specialised unification command of the SIM for every kind of term
constructors. The main idea is to consider the different unification procedures as as much sieves.
If a unification problem cannot be handled by a procedure it is passed to the next one.

Specialised unification commands A sequence of specialised unification commands is gen-
erated by the compiler for every clause head. Specialised unification commands can be seen as
resulting from a partial evaluation of the general unification procedure. In case there is not enough
information in the head (e.g. a second occurrence of a logical variable), the control is passed to
procedure UNIF1. This is much like what is done in standard Prolog systems. In case the head
term is higher-order, they only build a representation of the unification problem and pass it to

SIMPL.

UNIF1 A first-order unification procedure, UNIF1. is used as much as possible on the so-called
“first-order terms” (terms with sort S_APPL) until a higher-order term is met.
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SIMPL When a higher-order term pops up in UNIF1 or in the specialised unification commands,
one switchs to procedure SIMPL. The outcome of SIMPL is a set of flexible-rigid pairs which, if it
is not empty, is passed to procedure MATCH. If it is empty, a success is reported.

Procedure SIMPL may report a failure if a clash of constants or A-variables occurs.

MATCH Procedure MATCH is the non-deterministic part of A-unification. It is described as
the core of Huet’s procedure in section 4.1.1.

Its non-determinism and the one coming from the proof-search are merged in a single search
process. To do the merging easily, we write the control of MATCH in AProlog. Only the great lines
of MATCH are written in AProlog: the non-deterministic choice between imitation and projections.
The actual imitation and projection rules are implemented as deterministic built-in predicates.

Suspensions Flexible-flexible pairs cannot usually be solved as such because they have too many
arbitrary solutions. They are suspended. We use the versatility of MALI’s muterms for encoding
the suspended flexible-flexible pairs within the flexible heads as a constraint. As soon as one of the
flexible heads becomes bound, its constraints are checked. This is similar to the attributed variable
technique described by Le Huitouze [24].

TRIV A flexible-rigid pair is not passed directly to procedure MATCH, nor is a flexible-flexible
pair automatically suspended. They are first passed to procedure TRIV, which tries to solve them
in a fast deterministic way. TRIV applies various heuristics; if none works the pair is actually
passed to MATCH or suspended.

The heuristics aim at finding pairs of the form < X,t > under various disguises. If such a pair
is discovered and logical variable X does not occur in term ¢t then X « ¢ is the solution to the
unification problem. In a way similar to the scope-checking in section 4.1.2, the occurrence-check is
more complicated than for the first-order case because not all occurrences of X in t are dangerous.
If one is found and it is dangerous then unification fails. If it is not dangerous then TRIV passes
the pair to MATCH.

Some disguises under which a good TRIV procedure must recognise a trivial pair are

1. < Az.(X z),t >, which is n-equivalent to & trivial pair,

2. and < X! w*t! .. ut7 ¢t >, where the superscripts represent the scope nesting, and the u*’s
are universal variables; it is equivalent to < X'*7,¢ > for a new logical variable X’. In this
case, the solution substitution is X' — Azy...2; - [0'*! — 21]...[u*t? — z;]t for taking into
account the disguise.

The second disguise is very frequent because a lot of AProlog programming is about exchanging
universal variables and A-variables (i.e. essentially universal quantification at the formula level and
essentially universal quantification at the term level). The following predicate is an example of the
exchanging trick:

type list2flist (list A) -> ((list A) -> (1list A)) -> o.
list2flist L FL :~ pi list\(conc L 1list (FL list)) .
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The predicate relates the standard representation of a list (say [1,2,3]), and its functional repre-
sentation (z\ [1,2,312]) [9].

Folding representations The logic of unification is to find a substitution making two terms
equal. If they are equal then they can share the same representation. We have seen that both
abstractions and non-first-order applications are represented by muterms. So, it is easy to make
the two terms share the same representation by substituting one for the other. The effect is to fold
the representations because two terms with initially different representations end up to have the
same. This substitution must be reversible (like the others: solution substitution and A-reduction
substitution). Reversibility comes as a consequence of using muterms. Folding saves unification
effort because identity of representation is much easier to check than equality. It also saves memory,
hence garbage collection time.

Terms in unification problems must be in long head-normal form before being compared. After
applying the substitutions invented by imitation or projection, the flexible term may be no more
in long head-normal form. However, its new long head-normal form is easy to deduce from the
term and the substitution without using the S-reducer. So, imitation and projections invent a
substitution value, substitute it for the head of the flexible term, compute its new long head-normal
form, and substitute it for the flexible term.

For instance, unification problem < t1,t; >, where ¢ = Az-t3, t3=(U (z S1)), and
ty = Az - (2 Sy), yields three substitutions after one run of MATCH:

1. U <« Ay -y (projection substitution),

2. t3 «— (2 Sy) (for direct long head-normalisation of t; before passing it to SIMPL), and

3. t; « to (substituting equal for equal).

Remember that unknowns, abstractions, and potential redexes are all represented by muterms. So,
they are reversibly mutable.

The conclusion is that much more substitutions than the so-called solution substitutions are
done. The supplementary substitutions contribute to saving unification and reduction time, and

to saving memory.

4.1.5 Proof-search

Prolog control  The representation of the search-stack controlling the search process uses
MALD’s term-stack. It is considered as a failure continuation. Specialised commands are defined
for manipulating the failure continuation. The representation of the proof-stack controlling the
development of the proof tree also uses MALI. It is mapped on compound terms. It is considered
as a success continuation, and other commands are defined for manipulating it.

Since the term-stack and compound-terms are regular MALI’s terms, we have a uniform repre-
sentation of AProlog terms and control. This makes continuation capture (of both kinds) trivial. It
appears that implementing the Prolog cut merely requires to capture the failure continuation when
entering a clause (a reification) and reinstalling it (a reflection) when executing the cut predicate.
All this comes for free by using MALIL
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Given program

in (£ a). in (f b).

trans (f X) (g X).

out X :- ...

:~in I, trans I 0, /#*1%/ !, out O.

when label /*1#/ is reached, the resolution state can be represented in MALIv06 like

success_continuation =
cut_goal®(tu S_GOAL 3 (at S_SYMB cut)
eos@(le S_CHPT
(c2 S_ROOT (at S_INT 2)
(tu S_GOAL 2 (at S_SYMB end_of_search) (cO S_NIL))
)
out_goal@(tu S_GOAL 3 (at S_SYMB out)
Oan@(tu S_APPL 2 (at S_SYMB g) (at S_SYMB a))
eop@(tu S_GOAL 2 (at S_SYMB end_of_proof) (cO S_NIL))))

failure_continuation =
in2@(le S_CHPT
(c2 S_ROOT (at S_INT 2)
(tu S_GOAL 3 (at S_SYMB in) IQ@(mc2 S_UNK type (at S_SIG 0))
(tu S_GOAL 4 (at S_SYMB trans) I 0@(mc2 S_UNK type’ (at S_SIG 0))
cut_goal)))
eos)

Label 0O occurs in success_continuation and failure_continuation accompanied with different
terms. Terms in success_continuation differ by a substitution from terms with same labels
in failure_continuation, but they share the same representation anyway. We leave unspecified
the types type and type’ of unknowns I and 0. Note that the argument of goal ! is a substack of
the search-stack. Binary constructs of sort S_ROOT represent the roots of the choice-points. They
contain a clause number and a success continuation. After goal ! is executed, the state is

success_continuation = out_goal
failure_continuation = eos

In real-life, the first goal of a success continuation is dispatched into several registers. This saves
“consing” and “deconsing” the continuation.

Universally quantified goals They are implemented as we have said about universal variables.
The current nesting level is in fact a signature continuation. It has the same search-dynamism as
the success continuation. This means that it is saved (i.e. pushed on MALI’s term-stack) and
restored (i.e. popped from MALI’s term-stack) with the success continuation.
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Implication goals Implication is the other new construct of AProlog that enforces checking
scoping conditions. The premise of an implication goal must be added to the program for the
length of the proof of its conclusion.

Every premise is compiled as a clause whose logical variables are the proper logical variables
of the premise, plus the logical variables of the nesting clause that occur in the premise. Premises
are activated when their implication goals are executed. The scope of premises is controlled by a
program continuation [7] that is implemented as MALD’s terms, and has the same search-dynamism
as the success continuation and the signature continuation. The program continuation is made of
closures that enrich every active premise with a context corresponding to the logical variables of
the nesting clause that occur in the premise. .

Predicates that can be extended by implication are declared dynamic so that not every predicate
pays for implication. When a goal of a dynamic predicate is executed, one first searches the program
continuation for matching premises.

This scheme is similar to what Jayaraman and Nadathur propose [19]. The only difference is
that there is only one thing to say about the interferences with backtracking: it is automatically
done by MALL

4.1.6 A memory policy

The choice of a memory policy was left undefined at the level of MALI. It is still too soon to wire
it at the level of the SIM because the same machine will be used in AProlog applications with
totally different memory requirements (any combination of consumption rate and instantaneous
working space). Since generated applications are portable, the same machine will also be used in
different configurations of host systems (anv combination of CPU speed and sizes of main memory
and secondary memory).

We designed a memory policy which is both parameterisable and adaptative. The supplies
given to MALI, the part it actually uses, and other parameters are continuously monitored, and
evolution parameters are changed automatically. However, this may not be flexible enough and
every executable file resulting from the compilation of a Prolog/Mali program accepts conventional
arguments for configuring the memory policy to the users’s will.

5 A compilation scheme

AProlog programs are translated into C programs which serve as a glue for putting together se-
quences of SIM commands. The use of C is purely incidental, but its availability and portability
are good points. The C program is compiled with the regular C compiler/linker, producing an exe-
cutable file for the host system. The generated C program is responsible for realising the standard
interface (call/return conventions, input/output ports) with the host system.

The commands of the specialised intermediate machine are assembled so that when the gen-
erated program is executed, it has the intended proof-search behaviour. Many arrangements are
possible for producing the intended behaviour. Compiling becomes really valuable when special
source patterns exist for determining efficient arrangements. Efficient arrangements are in fact spe-
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cialisations of a general execution scheme. We list the patterns our compiler currently recognises
and the associated specialisations and savings.

5.1 Special static patterns
5.1.1 Forgotten types

We have seen that types must be represented to some extent at run-time. A naive solution would
be to represent the types of every term and subterm. The important pattern that improves the
representation of types is the occurrence of forgotten types in type declarations. They indicate
the only places in which types need to be represented for checking the well-typing of unification
problems.

Furthermore, the type checking/inference done at compile-time indicates which types are iden-
tical and can share representation.

Type declarations are translated into type reconstruction functions (also coded in C).

5.1.2 Combinators

pB-reduction requires duplicating left members of redexes. It is easy to see that combinators need
not be duplicated and that their representation can be shared.

Since substitution values are always combinators, all instances of combinators of the source
program are combinators. So, it is worth recognising them at compile-time. Our experiments
show that it is a very important pattern, and that using it properly changes the complexity of
programs [9].

5.1.3 First-order applications and constants

The general unification procedure of AProlog is Huet’s procedure augmented with dynamic type
checking. However, first-order terms deserve a more direct unification procedure. So, these patterns
are compiled rather classically. The representation of first-order applications is chosen to be easily
recognised so that, at run-time, unification and 3-reduction are improved.

5.1.4 [n-normalisation

Source clauses are #n-normalised before generation. This provides a macro-like feature which may
improve the programming style. Furthermore, first-order applications are put in 7-long form. This
makes dynamic long head-normalisation less necessary.

n-expansion must be done carefully so that it does not create artificially large 3-redexes. So,
abstractions that are created by n-expansions are tagged, and [3-redexes built with them are re-
duced using equality (A ,z.(E z) F') =g (E F). New sorts are required for representing the terms of
the cross-product (combinator/non-combinator)x (eta-expanded/non-eta-expanded). Again, it is a
very important pattern that changes the complexity of programs [8].
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5.1.5 A weak substitute for clause indexing

Clause indexing is the exploitation of the clause heads contents for computing more direct clause
selection procedures. It is not yet implemented in Prolog/Mali.

Usually, when control enters a clause that is not the last clause of a predicate, a choice-point is
created (or an already existing choice-point is updated). It can be a waste of time and memory if
a succession of choice-point creations and choice-point consumptions is used to select a clause in a
predicate. Clause indexing helps selecting more directly the proper clause.

The lack of clause indexing is somewhat compensated by delayed creation of choice-points.
Delayed creation of choice-points amounts to indicating that a choice-point is to be created instead
of creating it. The creation must be resumed as soon as a logical variable is substituted, or when
unification succeeds (if no logical variable is substituted). If a failure occurs while the choice-point

creation is still delayed, failure is merely implemented as a jump.

More interestingly, substitutions of a head-normal-form to a non-normal form do not count
as substitutions of logical variables. So, they do not trigger the choice-point creation. The neat
effect is that a goal argument will be reduced only once for all the attempts at unifying a clause
head, whereas if the choice-point were created as soon as ordered then the goal argument would be
reduced for every unification attempt, and unreduced at every backtrack. For instance, in

test 0 :~ do_something.
test 1 :- do_something_else.
query :- N = s\z\ (s(s(s(s(s(s(s 2))))))), M =1, test (N x\x M).

redex (s\z\(s(s(s(s(s(s(s 2))))))) x\x 1) is reduced only once instead of twice. Note that the
brute force solution comnsisting in reducing a goal before unifying

1. kills lazyness,

2. and does not eliminate the need for normalising during unification because substitutions might
build redexes.

So, delayed creation of choice-point gives a partial solution to a critical problem that appears every
time normalisation of tegms or awakening of constraints are possible.

5.2 The translation

AProlog programs are translated into C on a predicate-to-function basis. Every predicate is imple-
mented as a function of the continuations (success, signature. program, and failure) that returns
new values for the continuations.

The functions never call each other; recursion is taken into account by the success continuation.
Functions are called by, and return to, a motor, which can be considered the last remnant of an
interpreter. Some static patterns, such as left-recursion, allow to avoid going through the motor.

As we have seen in section 4.1.1, type schemes are translated into type reconstruction functions.
Furthermore, every constant (predicate and function constants. and type constructors) is translated
into a C structure containing their external representation, their arity, their predicate function or
type reconstruction function, if needed, and any useful information.
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6 Conclusions

6.1 Prolog/Mali

The Prolog/Mali compiler is written in AProlog and the run-time libraries are written in AProlog
and in C. The Prolog/Mali system has been completely bootstrapped. It implements all the core
of AProlog plus various extensions. One of the most notable extensions is the continuation capture
capability. It is used for implementing the cut and a catch/throw escape system.

Prolog/Mali is freely available, and used in several research teams in domains such as automated
theorem proving, automated learning, and meta-programming. Some of the benchmarks used for
comparing Prolog/Mali with other implementations come from these teams.

6.2 Comparisons with other works
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Figure 1: Comparison of time complexities when reversing a function-list (list-length X run-times
in seconds, log-log scale)

It has not been possible to compare our system with the other most recent attempts for im-
plementing AProlog (Nadathur, Jayaraman, Felty). because of the lack of availability of complete
systems. However, papers and technical reports by Nadathur and Jayaraman [33, 20, 19] show
that their approach and ours are somewhat different and difficult to compare on the paper. In few
words, they choose to base their design on a WAM augmented for handling AProlog’s specifics.
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Figure 2: Comparison of run-times when executing a tactical theorem prover (Prolog/Mali run-
times in seconds X speed-ratio)

They represent A-terms and reduction in an environment-based fashion. Note that the differences
may be blurred by optimisations that apply techniques from one paradigm for improving the other.

A technical report by Kwon, Nadathur and Wilson [22] proposes a handling of types at run-
time which is similar to ours, except that forgotten types are not the only types represented in
constants. Note that their basic technical choice. and Jayaraman’s. is to extend a structure-sharing
implementation of the WAM: it also applies to the representation of types.

The only AProlog system with which we have made extensive comparisons is eLP. It is already
an “old” system. eLP is an interpreted system written in Lisp. The fact that it is interpreted
could have explained a constant speed factor between eLP and Prolog/Mali. However, what is
observed is a difference in complexity that interpretation costs cannot explain alone. We compared
Prolog/Mali and eLP in a black-box mode, knowing nothing of the implementation of eLP. The
comparison has been done using special purpose programs for exhibiting qualitative differences,
and also using regular programs from AProlog users.

The memory management improvement over eLP is dramatic for any kind of program. It is
also better than many implementations of standard Prolog. The Lisp system that supports eLP
has its own memory management, which might be efficient as far as Lisp evaluation is concerned.
But it does not know about logic programming usefulness logic, and does nothing when early reset
and muterm shunting are in order. It is a definitely bad idea to leave a non logic programming
system in charge of logic programming memory management. Note that this does not forbid
implementing logic programming in a foreign language; the only thing is that logic programming
memory management has to be redone in that language.

Special purpose programs show an arbitrary speed-up of Prolog/Mali over eLP’s. The com-
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plexity of both unification and reduction is higher in eLP. We believe that the systematic sharing
and folding of representations, and the detection of combinators play a critical part in the better
complexity of Prolog/Mali. Delaying the creation of choice-points also improves the complexity of
search. Figure 1 shows the behaviours of eLP and Prolog/Mali when executing the program that
naively reverses a function list. Times are given in seconds as a function of the length of a list.
Scales are logarithmic on both axes. Continuous lines correspond to the ideal linear or quadratic
case. The slopes of the lines, 1 and 2, indicate a linear complexity for the first and a quadratic
complexity for the second.

Regular programs (mainly a demonstrator with tacticals, and a demonstrator with a learning
component) show a speed-up between 25 and 250. Interestingly enough, for a given program, the
speed-up grows with the time required for executing a query. This shows that eLP does not scale up
very well. Figure 2 shows the speed-up of Prolog/Mali over eLP for a set of small theorem proving
problems. Every point correspond to a particular problem. Execution times with Prolog/Mali are
on the X-axis and the speed-ups (Prolog/Mali on eLP) are given on the Y-axis.

Finally, we compared Prolog/Mali with modern (fast) implementations of standard Prolog.
When using regular programs (mainly an early version of our compiler), Prolog/Mali is less than
10 times slower than Prolog (= 5 on the average). Special purpose programs could show arbitrary
differences (e.g. we have not yet implemented clause indexing in Prolog/Mali). This comparison is
a little bit unfair for Prolog/Mali, and for AProlog in general, because it executes the first-order
Horn clauses fragment of AProlog with a higher-order hereditary Harrop formulas technology. When
what the user requires is exclusive to AProlog, the standard Prolog programmer has to implement
it at the Prolog level; it is certainly less efficient, and less safe too, than what a AProlog system
offers.

6.3 Further work

Although our implementation of AProlog enjoys nice complexity properties, and its performances
are encouraging, it is rather slow when it is compared with the current state of the art for standard
Prolog. In its present state the control of search is compiled but unification of higher-order terms
is not and there is no clause indexing. Our current implementation task is to devise a compilation
scheme for unification and indexing so as to bring the performance level of the standard part closer
to the current state of the art.

To improve performances, more static analysis ought to be performed. For instance, it is
important to detect when the full mechanism of Huet’s unification is not needed. The L, [25]
fragment of AProlog has a unitary and decidable unification theory. Belonging to L, is easy to
test at run time but it could be more efficient to detect that some predicate or some argument will
always be in Ly. Note that the L\ property generalises every pattern that the TRIV procedure

currently recognises.

Last observation is that the type system deserves further study. It should be studied for itself
because it is not flexible enough. It should also be studied for its interaction with compilation
(indexing and projection). By flexibility, we do not mean permissivity, but only the ability to deal
with complex situations. The lack of flexibility is in fact nothing special to AProlog, it can already
be observed in trying to type built-in predicates read and name in Typed Prolog [31, 23]. It is only
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more noticeable in AProlog than in Typed Prolog because types are mandatory whereas they are
only a bonus in Typed Prolog. Predicates read and name can only be simply typed like

type read
-> o.

type mname
(list int) -> _ -> o.

These predicates with these typings are not definitionally generic, and the arguments with the
anonymous types cannot be used soundly in any specific context because their types are related
with nothing. It seems that we need higher-order types such as

type read
'PI’ A\ (A -> o).
type name
(list int) -> ’PI’ A\ (A -> o).

6.4 Remarks on focusing on memory management

Our main implementation concern has been memory management. We always tried to have mem-
ory management problems solved before time efficiency problems. This is reflected in the software
architecture of Prolog/Mali, in which the kernel (MALI) knows almost everything about memory
management but nothing on the procedures that will be used, the specialised abstract machine
knows less about memory management, and a little bit more about the procedures, and the gen-
erated code knowns about the procedures (it is part of them) but is really naive as far as memory
management is concerned.

However, a reasonable time efficiency has been achieved, and still more can be gained with
further efforts.

This architecture can be used for implementing many other kinds of logic programming systems.
It cannot compete for implementing standard Prolog systems because very efficient and specialised
techniques have already been designed. It is perfectly fit as soon as complex data-structure and
control are in order. An implementation redoing a specialised version of Mali’s memory management
from scratch could always be faster but will certainly be much more complex.
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1 Abstract

Languages such as A-Prolog and Elf advocate an approach to program manipulation based on
higher order abstract syntax, with substitution built in to the language evaluator. Recently sub-
stitution has received fresh attention with concrete versions of the A-calculus where substitutions
are made explicit as terms in the language. In this paper we show how explicit substitutions may
be introduced into a language for manipulating higher order abstract syntax. The implementation
of full substitution in the evaluator may be avoided by using a metalanguage which supports a
generalization of Miller’s patterns. We briefly comment on the motivation for such an approach to
substitutions.

2 Introduction
“I don’t really like deBruijn numbers myself.” N. G. deBruijn.

The Ao-calculus [1] has recently been proposed as a formalism for reasoning about implementa-
tions of the A-calculus. This formalism is based on a concrete formulation of the A-calculus where
variables are replaced by deBruijn numbers [5], and where substitutions are made explicit in the
(two-sorted) term language. Applications of this calculus include the derivation of a Krivine-like
abstract machine and a type-checker for the second-order A-calculus. A similar system (AccL) has
been independently developed by Field [9], who has also developed a labelled version of his system
to reason about optimality. Another similar system has been proposed by Nadathur and Wilson as
a foundation for implementations of A-Prolog [17]..

In this paper we propose a similar system which incorporates explicit substitutions into the
A-calculus. However in contrast to the first-order approaches mentioned above, our system is based
on higher-order abstract syntaz [16, 8]: rather than representing variables concretely as deBruijn
numbers, we represent them instead as variables in the metalanguage, with variable binding in
the object language A-calculus represented by A-abstraction in the metalanguage. We formulate
typing and equality rules for this calculus where applications of “free” function variables employ
an extension of a restriction discovered by Miller [15] (see also [18, 19]). Our extension enjoys the
same pleasing properties of decidability and most general unifiers that Miller’s patterns ensure (the

!Supported in part by the NSERC grant OGP0105568.
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details are worked out in a companion paper [7]). We make essential use of our generalization of
patterns to product types in what follows.

Since our interest is in specifying and implementing type-checkers for languages with higher-
order type systems (e.g. Quest [3], Pebble [2]), we present a type-checker based on explicit higher-
order substitutions. Viewed as a (determinate) logic program, this type-checker can be implemented
directly in a language which supports products, extended patterns and polymorphic (non-uniformly
parameterized) data types.

With the reader’s indulgence, we use variations of the same A-calculus for both metalanguage
and object language in this paper. The core A-calculus is Luo’s Extended Calculus of Constructions
[14], a system with predicative general products (dependent function types) and general sums (de-
pendent sum types), a cumulative hierarchy of type universes, and impredicative logical quantifiers.
We have designed an L)-like logic programming language, based on placing syntactic restrictions
on this calculus, which ensure decidable unification and a complete operational semantics relative
to a realizability semantics. The type-checking algorithm provided in Section 6 is implementable
with minor modifications in this metalanguage. The object language is Luo’s system restricted to
general products and type universes, where the main issues arise. Thus the type-checker we develop
as a metalanguage program may be considered as a type-checker for the metalanguage.

Regarding the usefulness of this approach, we hope that it will aid in the development of auto-
mated reasoning and programming environment tools based on higher-order abstract syntax. For
example it may serve as the basis for providing explicit substitutions as “classes” in a metalanguage
with an appropriate notion of “inheritance.” Finally we conjecture that further enrichments of the
metalanguage may strengthen the power of the formalism for reasoning about reduction strategies;
for example the addition of linear connectives may enable us to reason in the metalanguage about
sharing [13, 10], a deficiency with the Ao-calculus [4, 9].

3 Luo’s Extended Calculus of Constructions

The core A-calculus we will be using for both metalanguage and object language is Luo’s Extended
Calculus of Constructions. We will not concern ourselves too much with the structure of the
metalanguage (details are provided elsewhere [6]). The salient features are:

1. a special constant Type representing the “kind™ of all types;

2. a dependent function type Ilz : A - B, including quantification over types (terms of kind
Type);

3. A-abstraction for representing object language terms with variable binding, with Az : A- M
e€ellz: A-B;

4. application M(N) for M € Illz: A- B. N € 4; and

5. products (pairs), with product type A x B and left and right projections 71(M) and 7o(M).
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For readability we will adopt the abbreviation M(Ny;...;Ny,) for (...(M(N1))... Ny) (more tra-
ditionally written as (M Ny...Ny)). Also [n] will denote the set {1,...,n}. We will adopt the
traditional abbreviation that A— B denotes the function type Ilz : A - B where z ¢ FV(B).

To ensure decidable unification, Miller has proposed restricting applications of a “free” function
variable F' to have the form F(zi,...,z,), where the z;’s are A-bound and distinct [15] (see also
(18, 19]). With the introduction of product types, this restriction can be generalized to allow
applications of the form

F(pl(xl)ﬂ cee vpn(mn))

where each p; is a sequence of projections applied to a A-bound variable z; (i.e.
pi(zy) =7, (... (7, (2i))...)), and where moreover if z; = z;,7 # j, then neither p; nor p; are
prefixes of each other. Note in particular that this allows repeated occurences of a A-bound vari-
able in a pattern. Decidability of unification and most general unifiers are maintained with these
generalized patterns [7]. We make essential use of these generalized patterns in composing higher
order substitutions, discussed in the next section.

The foundations for this metalanguage lie in Luo’s Extended Calculus of Constructions [14].
The major difference between ECC and the metalanguage just described is that the former explicitly
stratifies types into a cumulative hierarchy of type universes. For terms of the metalanguage we will
leave this stratification implicit [12]. However we make this stratification explicit when we take (a
subset of ) Luo’s ECC as the object language. We will provide a slightly non-traditional presentation
of a subsystem of ECC (restricted to dependent function types and type universes) using higher
order abstract syntax. This will serve to demonstrate the use of higher-order substitutions both
for implementing B-reduction and for type-checking with dependent types?. A representation for
terms of our ECC subset is given by the following metalanguage signature:

Term : type
type : Nat — Term
pi : Term — (Term — Term) — Term
abs : Term — (Term — Term) — Term
apply : Term — Term — Term

Terms in the object language have the form:
type(:), pi(4; B), abs(A; M), apply(M,N)

representing respectively (the name of ) a type universe, the dependent function type, A-abstraction
and application.

Figure 1 in the Appendix gives the typing rules for the object language. To keep the number
of rules to a minimum we present the system using equality judgements I' > M = N € A, with the
abbreviation:

IpMeAd ¥ TpM=MecAa

2 Although we could have used e.g. the second order A-calculus as a possibly more familiar example for type-
checking, our presentation is shortened using ECC because of the common structure for terms and types.
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We will use judgements of the following forms:

Environments I' == nil | [',2: A
Judgements J 1= T'env | TDM=NeA | TPM<INEeEA

Note that the following rule is derivable from CuM:

FrbM=M©ecA TpbAetype(i) T b A=A € type()
reM=M¢eA

Eq

We will refer to the system in Figure 1 as AS.

The equality rules, oriented as a rewrite system, are obviously confluent and Church-Rosser3.
Denote the judgement that M rewrites to N by I' b M ~3 N € A, and let I' Fgcc F denote
derivability of the judgement I' > F using the rules of A3. Then Luo has verified the following
properties for ECC:

Proposition 3.1 The following properties are true of ECC [14]:

Church-Rosser If T b Ny =No€e A, T b Ny € Aand T > Ny € A, then there is some M such
thatT' b Ny~g M€ AandT > Ny~ M € A,

Subject Reduction If T b M eAand bM~3N €A, thenT b N € A.
Strong Normalization IfT b M € A then M is strongly normalizable.
Decidable Type-Checking Type checking, convertibility and cumulativity are decidable.

Minimal Types Any well-typed term M of ECC has a minimal type A such that (1)T b M € A
and (2) for any A’ such that T > M € A', we have I' > A < A € type(i) for some i € w.

In the next section it will be useful to consider reduction on untyped terms of A3; we will denote
this by M —3 N. Note that the Church-Rosser property still holds for untyped reduction due to
the absence of critical pairs.

4 ECC With Substitutions

The formulation of the A8 object language in the previous section relied in several places on the use
of 3-reduction to implement substitution. In this section we remove this reliance on 8-reduction in
the metalanguage by making substitutions explicit in the object language. For brevity we refer to
the resulting system as ABo.

8We have omitted the equality rule:

T b M € pi(A; B)

ETa I' b abs(A; Az - apply(M:z)) = M € IlI(A; B)

since confluence fails with a naive equality relation (because of cumulativity).
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We introduce a new type constructor Subst into the object language for substitutions. In
our system substitutions will be trees of (value,type) pairs (rather than lists as in the Ao-calculus
and AccL). Thus the (métalanguage) type of a substitution is parameterized by a product type
reflecting the structure of the substitution. Note that we are making non-trivial use of both product
types and polymorphism in the definition of substitutions. The additions to the object language
signature of the previous section are*:

Subst : type — type

clos’ : IIS:type-(S — Term) — Subst(S) — Term

map” : TIIS; :type-IIS;:type- (S; — Subst(S2)) — Subst(S;) — Subst(S;)
(-] : Term — Term — Subst(Term)

_o " : TIS;:type-IIS;: type-Subst(S;) — Subst(S2) — Subst(S; X S3)

Here the subst term constructor represents the application of a substitution to a term. Basic
substitutions are built using the [_,_] constructor. Thus whereas in A3 we had

[,a:A b M(z)€ B(z) 'bNeA

I' > apply(abs(A;M); N)= M(N)€ B(N)

in ABo the rule is formulated as

I''z:A > M(z)€ B(x) I'bNeA

[' > apply(abs(A4;M); N) = clos(M;[N,A]) € clos(B;[N, A])

BETA

BETA

These clos terms are similar to the higher-order closures introduced by Hannan and Miller [11].
For this approach to be useful we must be able to maintain these closures in the form

clos(Az - t(Mq(z);...; My(2));s) where t is the outermost term constructor (not clos). Therefore
we have the following rule for composing substitutions:

U p clos(Az - M(m(z); 72(z)); $2 omap(s); s3)) € C
I' > clos(Ax - clos(M(z);s1(z)); s2) ~ clos(Az - M(mi(z); m2(x)); s2 omap(sy;s2)) € C

SUBSTSUBST

This rule makes use of the two other constructors for substitutions: _o _ forms the composition
of two substitutions, while map applies a substitution to another substitution (In Ao-calculus and
AccL, these constructors are combined into a single composition operator, with a reduction rule
mapping the second substitution over the first). For the purposes of higher-order abstract syntax,
the crucial point is that whereas the original term M has two free variables being substituted for
by two separate substitutions, the resulting term has one free variable being substituted for by a
single composite substitution, with the previous free variables specialized to projections out of this
composite substitution. The rules for applying a substitution (“projecting out of an environment”)
then rely on matching against the projections inserted by the composition rule:

SussTL I b s; € Subst(5) I' pclos(M;s;) € B
I p clos(Az- M(m{2));8 082) ~clos(M;s1) € B
SuBsTR I > 51 € Subst () I' >clos(M;s2) € B

T b clos(Az - M(ma(z));s1082) ~ clos(M;sz) € B

*The quoting annotation ' is borrowed from LEAP [20], and signifies inference of an implicit (type) parameter
based on the types of the remaining arguments.
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Figure 2 gives the basic type rules for ABo. Aside from the introduction of explicit substitutions,
these rules do not differ much from the original type rules in Figure 1. The type rule which is
noticeable by its absence is a rule for typing closures. In fact since our substitutions are essentially
untyped at the object level such a rule is not sound with respect to the original system. Instead (as
with the second order Ao-calculus [1]) we present rules for pushing substitutions inside of terms and
typing the result; in general deciding well-typedness is inextricably tied with applying substitutions.
We conjecture that such a closure rule would be sound in a system where dependent product types
and LF-like encodings of terms were used to represent explicitly typed substitutions.

Figure 3 gives the rules for permuting substitutions with term constructors (including the
CLosSUBST rule for composing substitutions). Figure 5 gives the equivalence rules for substitutions,
including rules for pushing substitutions inside of other substitutions. Here again we have a rule
(MaPSuBST) for composing substitutions, analogous to CLOSSUBST.

The rules BETa, CLosConsT, CrosVar CrosL, CLosR, CrLosP1, CLosABs, CLOSAPP,
CrLosSuBsT, MAPTERM, MAPCoMP and MAPSUBST constitute a higher-order rewrite system
(HRS) as defined by Nipkow®[18]. We now follow a line of reasoning similar to that for the Ao-
calculus [1] to verify the confluence of this system. To this purpose we separate the HRS into two
subsystems: AB (constituting of only the BETA rule) and Ao (constituting of the remaining rules).
We denote (untyped) reduction under ABo, AB and Ao by —pg,, —p and —,, respectively. Recall
that untyped S3-reduction over terms of Af is denoted by — .

The type rules for object-language terms are given relative to a type environment I', with any
free variables in an object language term bound in I'. When considering the term equivalence
rules as a HRS, the meta-variables in the schematic rewrite rules are considered free and the “free”
object language variables are A-bound in the metalanguage representation. When reasoning about
the correctness of the HRS, we will assume that there are no free meta-variables in terms (any free
object language variables are bound in I'). A metalanguage term M with free variables in I' may
be considered as an abbreviation for AI'- M, so in this sense we are restricting ourselves to “closed”
terms.

Lemma 4.1 (Termination of Ag) The HRS Ao is Noetherian i.e. terminating.

PRrOOF: We adapt Field’s termination proof for AccL. To reason about termination we will use a
lexicographic semantic path ordering, although with a slightly non-standard approach. In particular
we assume given, in addition to the usual term constructors, a countably infinite set of variables
X= {z:}icw from which all A-bound variables are taken. We define the following precedence on
constructors:

clos =,map »,apply >,abs >,pi »,_0_>,[_, ]

The atomic terms are of the form 7, (...(7;, (2))...) for ¢ € A’; we make these equivalent under
the equivalence ~,and less than all of the other constructurs under the precedence <,.

®With the generalization that patterns are extended to products, and the restriction that right-hand sides are also
patterns. We conjecture that Nipkow’s Higher Order Critical Pairs Lemma still holds for this system.
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The following measure gives a rough estimate of the eventual size of a term or substitution after
normalization of substitutions:

def

|z | 1
|m(M) | =M
|apply(M;N)| = [ M|+|N|+1
|abs(A;Az-M)| € [A[+|M|+1
| pi(A; Az - B) | ef [A|+|B|+1
| clos(Az - M;s) | f [M]-|s]
|[M,A]] % M
[ s1 089 | def max(| s1 |.] s2|)
| map(Az - s1;82) | W lsi|-]s2]

For object language terms M = t;(M,,) and N = ty(N,), define the precedence ordering M>;N
by the lexicographic combination of >, and eventual size under o-normalization:

M~N <= ti-toV(tixm A M |>|N|)

Finally =, is extended to a simplification ordering >:

M=t4(M,) > N =t(N,)
if
1. M;>N for some i € [m], or
2. M>,N and M >N, for all j € [n], or
3. M~yN, (My,...,Mp)r.(N1,...,Np,) and M>N; for all j € [n].

Here >, is the lexicographic extension of > to sequences, with Az - M>N if M>N, M=z - N if
M>N,and Az - M>Az - Nif M>N.
We can then verify that > is a simplification ordering, and that M >N where M and N are left
and right hand sides, respectively, of any rule in the HRS.
O

Lemma 4.2 (Confluence of Ac) Ao is confluent on o-closed termsi.e. ifI'-, M € A, M -2 N,
and M —7 N, then there exists an N such that Ny —; N and Ny —} N.

Proor: We verify local confluence by an examination of higher order critical pairs [18]. Confluence
then follows from termination. The difficult case is for the critical pair formed by CrLosL and
CLOSSUBST in
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clos(Az - clos(M(mi());s1(m1())); 520 85)
We verify by induction on (maximal length of o-reduction sequences, size of term) that:
1. map(Az - s(m1(z)); $1 0 s2) = map(s;s;)
2. clos(Az - M(my(z); ma(z)); s2 o map(s1; s2)) =
clos(Ay - M(mmi(y); m2(y)); (s2 0 83) o map(sy; s2))

The base cases are for atomic terms of the form M = Az - Ay -7, (...7;, (2)...) for z € {z,y},
M =Xz -dy-zfor z ¢ {z,y}, and M = Az - Ay - type(i). 0

We now let o(M) (o(s)) denote the (unique) normal form for the term M (substitution s) under
the Ac HRS. The remainder of the proof of confluence for ABeo follows very closely that for the
Ao-calculus, in particular using Hardin’s interpretation technique and confluence for Ag.

We verify that the HRS ABo is a correct implementation of substitution. The following rules
are for the judgement form I' > {N/2}M — M":

VARI F,y:A,I" D{]V/'L}y———ﬁ’y I#y
VAR2 T b {Nalze—= N
Tee I' > {N/z}Type(:) = Type(?)
App I > {N/e}M; = M} T p{N/z}M; = M}
I' > {N/z}apply(M,, M;) = apply(M;, M;)
aps L P N/zjA= A T.y: A p {N/2}(M(y)) = M'(y)
I' > {N/z}abs(A; M) = abs(A"; M')
p; LD {V/a}Ad= 4" T.y: & b {N/2}(B(y) = B'(y)

I > {N/z}pi(A; B) = pi(A’; B')

We can then verify the following lemma by induction on the structure of a term M (or equivalently
by induction on a derivation in the inference system just defined):

Lemma 4.3 Suppose ',z : Argcec M € B. IfTH{N/2}M — M’ then
o(clos(Az - M;[N,A])) = M’
Corollary 4.1 Suppose I'tpcc M € A and T Fpce N € A If M —5 N then M =%, N.

Proor: By the definition of 8-reduction and the previous lemma, it suffices to perform a Beta-
reduction and then normalize with respect to Aci.e. if M —3 N then3M'-M —p M’ and M' =} N.
a
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Corollary 4.2 B-reduction is confluent on Ao normal forms.
Lemma 4.4
1. For closed terms M and N, if M —p N then (M) —} o(N).
2. For closed substitutions s and t, if s —p t then o(s) —} o(t).
Theorem 1 ABo is confluent on closed terms.

Proor: Using Hardin’s interpretation technique [1] and Lemma 4.1, Lemma 4.2, Corollary 4.2
and Lemma 4.4. Hardin’s technique amounts to verifying the following diagram (where the vertical
arrows represent reduction to o-normal form):

(BetaU o)~ (BetauU o)*

8" B

a

This crucial result is the basis for the type-checking algorithm presented in the next section.
Finally we formulate a statement of correctness for ABo relative to Ag:

Theorem 2 (Soundness of ABo)
1. Ift, T ~ T env then o(T') = o(I') and Fgce (1) env.
2. If T o M ~ N € A theno(T) bgce o(M) = 0(N) € o(A).
3. IfTF, M XN € A theno(I')Fgce o(M) X a(N) € a(A).
4. If Tk, s ~t € Subst(S) then
(a) if S = Term then o(s) = [M, A] = o(t) for some M, A such that o(T') Fgcc M € A.

(b) otherwise S = (51 X S2) for some S;. Sy: then o(s) = s; 08, = 0o(t) for some s1, sg
such that T+, s; € Subst(Sy) and I' b, s, € Subst(S5,).

It is unclear how to obtain an analogous completeness result. Although it has been suggested that
this can be done for the Ao-calculus by rewriting closures to BETA-redices, this does not seem to
adequately handle definitional equality in the type system.
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5 A Type-Checking Algorithm

Finally we briefly present a type-checking algorithm for A3 based on the system presented in the
previous section, and state without proof the conditions for its correctness. Figure 6 presents the
type-checker as a collection of inference rules, where closures are type-checked essentially by pushing
substitutions inside of terms and type-checking the result.

These rules use numerous auxiliary algorithms. The rules for checking for cumulativity and
convertibility (in Figures 7 and 8, respectively) are very similar, and amount to interleaving re-
ductions to WHNF with recursive checking of subterms. Figures 9 and 11 give the algorithms for
reducing terms and substitutions, respectively, to WHNF. Finally Figure 10 gives the algorithm for
type-checking substitutions.

In contrast to the type system of ABo, the type-checking algorithm does not “validate” the
environment for each use of a variable. Rather it assumes an initial valid environment and then
maintains the validity of the environment as terms are added to it. Also the WHNF reduction
algorithms do not type-check their result, and rely for their correctness on the following:

Lemma 5.1

1.IfTFo M e Aand M —%, N thenT'F, N € A.

2. IfT'F, s € Subst(S) and s —%, t then ' F, t € Subst(S).

3. IfTF; M € A thenT' -, A € Type(i).

4. If Tk, clos(M;s) € A then T I, s € Subst(S) for some S.

For the judgement formsI' p M € AT p AXA T > M~ NT pM~ N,T b s¢€Subst(S5)
andT Ds~tletTkgy M € AT kg ASA  Thyy M & N, T'Fgg M~ N, T Fgy s € Subst(S)
and I k49 s~ t, respectively, denote derivability according to the inference rules of the type-
checking algorithm. The statement of soundness for the type-checker is then given by
Theorem 3 Suppose -, I' ~ T env. Then:

1. IfThge M € AthenT -, M € A.

2. If T'bqiy A € Type(i), I Foyg A” € Type(i) and T' by A < A" thenT F, A X A’ € Type(i).

3 IfTragy M e A, Ty NeAandT gy M — N thenT -, M ~ N € A.

4. IfTrgaMeAand T kg M~ N thenT H, M ~ N € A,

5. IfT Fgig s € Subst(S) then I' b, s € Subst(5).

6. IfT Foig s € Subst(S) and I' ko9 s~ t then I', s ~ t € Subst(S).
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6 Conclusions

We have presented an approach to incorporating explicit substitutions into L-like languages, based
on a generalization of Miller’s patterns to product types. Although there appears to be some promise
with the approach, ultimately its usefulness may depend on implementational considerations. In
particular the form of restricted 3-reductions allowed in the metalanguage appear somewhat more
complicated to implement than So-reduction [15]. Although there are advantages to having substi-
tutions outside of the inference engine in A-Prolog-like languages, it remains to be seen what the
performance penalty for this might be. However provided this performance penalty is not too great,
there are important pragmatic advantages to providing substitutions outside of the programming
language evaluator. Among these are that applications that do not use substitutions should not
pay the price for their provision, and also that applications may be provided in a more flexible
way (e.g. as “classes”) allowing them to be tailored for specific applications. This is important for
example in providing “defined constants” in a theorem-proving environment, which are crucial for
controlling the size of terms during comparison and printing.

Acknowledgement: Paul Taylor’s diagram package was used to draw the diagram on Page 9.

7 Appendix
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ENVNIL nil env
=A" T )
ENVEXT L ﬁ ~ :AA Eenzpe(l) (z new)
VAR Iz: AT env
Tz:ATVpzrx=2z€ A
TYPE T env
I' > Type(é) = Type(i) € Type(s(¢))
- ' > A=A €Type(i) I'z:A D> B(a)= B'(z) € Type(i)
[ b pi(A; B) = pi(A’; B') € Type(?)
ABs IF'>A=A € Type(i) I'iz: A > M(a)=M'(z)€ B(z)
[ > abs(A; M) = abs(A’; M') € pi(A; B)
Arp I'bM=M e€pi(A:B) TbN=N¢A
I' b apply(M; N) = apply(M'; N') € B(N)
BETA Iz: A b M(z)€ B(z) 'bNeA
I' b apply(abs(A; M); N) = M(N) € B(N)
Cum I'bM=M~ecA TpbAeType(i) T > A=A € Type(i)
TpM=MeA
Sym TbM=M=¢ecA
IrbM=MeA
Fr'bMi=M,eA TbMy=Mz€ A
TRANS T oM =Ms€A
I' > A=A € Type(i)
CumEqQ T b A=< A € Type(i)
I' > A <Ay € Type(i) I' > A, < A3z € Type(i)
CUMTRANS T b A; < A; € Type(i)
I' env . .
ComTees T Type(1) = Type(s(1)] € Type(s) (s(5) <)
CuMP! I' b A" < A€ Type(i) T',z:A p B(z) X B'(z) € Type(i)

I b pi(4; B) 2 pi(A’; B') € Type(7)

Figure 1: AS: Luo’s Extended Calculus of Constructions
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VAR

TYPE

P1

ABS

Aprp

BETA

CuMm

Env

SYM

TRANS

CuMEqQ

CuMTRANS

CuMTYPE

CuMPI

I'z: AT env
Tz:AlVpba~z€A

' > Type(:) ~ Type(¢) € Type(s(i))
I' b A~ A’ € Type(i) T,2:A b B(z) ~ B'(z) € Type(i)
I' > pi(4; B) ~ pi(A’; B') € Type(7)
I' > A~ A €Type(i) T,z:A D> M(a)~ M'(2) € B(z)
[ > abs(A; M) ~ abs(A’; M’) € pi(A; B)
I'>M~ M €pi(A; B)
T > apply(M; N)~ apply(M'; N') € clos(B;[N, A])
I'z:Apb M(z)~ M(z)€ B(z)
I b apply(abs(A; M); N) ~ clos(M;[N,A]) € clos(B;[N, A])
I'bM~MeA TpA ~ A €Type(r) T' > A=< A € Type(i)
> M~MeA .
rbM~MeA T~T env
I'sM~MeA
I'>M~MeA
M ~MceA
I'bMi~MyeA TpMy~Mz€ A
' My ~Mz€eA
I' > A~ A" € Type(i)
I' > A=< A € Type(i)
I' > Ay = Ay € Type(?) T b Az < Az € Type(z)
I' b A; <X Az € Type(2)

F'>N~NeA

I'bN~NcA4

I' b Type(i) <X Type(s(7)) € Type(J)
I > A"< A€eType(i) T,2: A b B(z) X B'(z) € Type(?)
I' > pi(A; B) X pi(A"t B') € Type(i)

Figure 2: ABo: ECC With Explicit Substitutions

(s(¢) < J)
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I >s~s €Subst(S) T b clos(M;s')€ A

CrosCong T b clos(M;s) ~ clos(M.s) € A
I bsesubst(S) T'>MeA
CrosConst [ bclos(Ay-M;s)~Me A
I b [M, A] € Subst(Term)
CLosVar I' b clos(Ay-y; [M,A)~ M€ A
CLosL I' b sy € Subst(S5) I' >clos(M;s,) € B
I' b clos(Az - M(m(x));s1082) ~ clos(M;s;) € B
CLOSR I' > s; € Subst(S5) [ b clos(M;s;)€e B
I' b clos(Az - M(7ma(2));81082) ~ clos(M;s2) € B
CLosP1 I' b pi(clos(A;s); Ay - clos(Az - B(z;y);s)) € C
I' b clos(Az - pi(A(z); B(z));s) ~ pi(clos(A;s); Ay - clos(Az - B(z;y);s)) € C
CLOSABS I > abs(clos(A4;s); Ay - clos(Az - M(z;y);s)) € C
I' b clos(Az - abs(A(z); M(z));s) ~ abs(clos(A;s); Ay - clos(Az - M(z;y);5)) € C
I' > apply(clos(AM;s);clos(N;s)) € C
CrosApe I' b clos(Az - apply(M(z); N(z));s) ~ apply(clos(M; s);clos(N;s)) € C
CLOSSUBST I' b clos(Az - M(mi(2); ma(z)); s2 omap(s;;s2)) € C

T b clos(Az - clos(M(2);s1(2)); 82) ~ clos(Az - M (7 (x): ma(2)); s2 omap(s;;s2)) € C

Figure 3: ABo(cont’d): Substitution Rules for Terms
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ENVNIL nil ~ nil env
I'~T"env T p A~ A€ Type(i)
EnvEXT (T,z:A)~ (I",z: A’) env (@ new)
I' ~T' env
ENVSYM T T env
ENVTRANS I'i~I's env I'; ~T3 env

I'y ~T3 env
Figure 4: ABo(cont’d): Environment Equivalence Rules

I sy~ sy €Subst(S7) I > map(sy;sy) € Subst(Sy)

MapCone I' > map(s;;s2) ~ map(s;;sh) € Subst(S57)
F'bA~BeType(t) 'bPM~NcA
SUBSTTERM I' > [M, A] ~ [N, B] € Subst(Term)
I' b sy ~1t; €Subst(S;) I B sy~ ty €Subst(5y)
SussTCouMP ' sosy~1t;0ty €Subst(S; X S3)
MAPTERM I' > [clos(M; s),clos(A;s)] € Subst(Term)
T b map(Az - [M(z), A(z)];s) ~ [clos(M; s),clos(A; s)] € Subst(Term)
I' > map(sy;s)omap(sy;s) € Subst(S5; x S2)
M
apComp ' > map(Az - s1(x) 0 sa(2);8) ~ map(sy; s)omap(sy;s) € Subst(S; x S7)
MAPSUBST I' b map(Az - s1(m1(x); m2(2)); s omap(sz; s)) € Subst(S)
T & map(Az -map(s1(z); s2(z)); s) ~ map(Az - s1(m1(z); m2(2)); s o map(ss2; s)) € Subst(S)
SUBSTSYM [bs~i€ SubSt(S,)
I' >t~ s€Subst(S)
SUBSTTRANS I' > sy ~ s, €Subst(S) T B sy~ s3 € Subst(§)
I' b sy ~ s3 € Subst(S)
~e ~/ !
SUBSTENY 'ps ,f € Subst(S) T ~ T’ env
I > s~ 1€ Subst(S)

Figure 5: ABa(cont’d): Equivalence Rules for Substitutions
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VAR Iz:AI'bzrzeA
T . .
e I > Type(i) € Type(s(i))
F'>Aed I'yz: A > B(z) € B'(z)
Pi I' > A"~ Type(i) T,z:A b B'(x)~ Type(j)
I' b pi(A, B) € Type(max(i, j)
ABs F'b>Ae A" T b A~ Type(i) T',z:A b M(zx)€ B(z)
I' b abs(A, M) € pi(A. B)
App I'bMeB TbB~pi(A,B) TbNed TpA<A
T b apply(M; N) € clos(B;[N, A7)
CLos I' bsesSubst(S) I'bMeA
I' >clos(Az-M;s)e A
I'bs~[M,A] TbMeA
CLosVar I' bclos(Az-z;[M,A]) € A
CLosL I'bs~s108; T p sy €Subst(S) T pclos(M;s;)€E A
I' & clos(Az - M(mi(z));8) € A
CLOSR I'bs~sj0sy T b>s; €Subst(S) T bclos(M;sy)€e A

I' b clos(Az - M(ma(2));s) € A
I bclos(4;s)€ A" T,z: A b clos(B(z);s) € B'(z)
CLosP1 I' b A’ ~ Type(?) I'z: A p B'(z)~ Type(J)
I' b clos(Ay - pi(A(y). B(y));s) € Type(max(, )
I' bclos(A;s)€ A T p A ~ Type(i) TI',z:A pclos(M(z);s) € B(z)

CrosAss I' > clos(Ay - abs(A(y); M(y)); s) € pi(A; B)
CLosApp L Pclos(Mis)€B I > B ~ Pl(A:B) I bclos(N;s)€d T A <A
T b clos(Az -apply(M(z); N(z));s) € clos(B;[clos(N;s), A])
CLOSSUBST I' b clos(Az - M(m(2)ima(2)); s2 OmaP(Sl, s2))€C

I' b clos(Ax - clos(M(z);s1(2)):sp) € C

Figure 6: Type Checking Algorithm for ECC
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CumTYPE . o
I'> A~ Type(i) T > A"~ Type(y) 1<
b A<A

CuMP1

F'>M~pi(4;B) T b M ~pi(A;B) T A XA TI'z: A b B(z) X B'(2)
I b pi(4; B) Xpi(4"; B")

CuMABS

[ b M~ abs(A;; M]) T > My~ abs(Ag; M) T'> Ay — Ay Toa: Ay b M{(z) « My(z)
T'p> M <M

CuMAPP
T b M~ apply(My; Ma) T B N~ apply(N:iN2) T My — N; T b My — N,
'>M<N
CuMVAR
Fz:AI'bM~z TNz: AT BN~z
Tz2:ATVpM<N
Figure 7: Cumulativity Algorithm for ECC
I' > A~ Type(i) T p A’ ~ Type(i)
EQTYPE T oA A
EoP '>M~pi(A;B) T M ~pi(d'B) TpA' —A T'z:4 b B(z) - B(z)
Q I' b pi(A; B) — pi(A’; B)
EoABS ' M|~ abs(Al;]\/f{) I' > My ~ abs(AQ;]Mé) ' A — Ay Tiz: A b M{(:L‘) — Mé(.’l))
Q F B AZ[l —_ M2
I' > M~ apply(Mi;Mz) T > N~ apply(Ni;Np) T Mo N T bM< N
EqQAvrpP
I'bM—~N
; ! d ~ x: ! ~
EQVAR z:Al'pM~z T,2: A VD N~z

Fz2:AT"bM-—=N

Figure 8: Term Equivalence Algorithm for ECC
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REDVAR Fz:AlVpbz~12
REDTYPE T b Type(i) ~ Type(i)
RepP1 I' b pi(4; B)~ pi(4; B)
REDABS T b abs(A; M)~ abs(A; M)
REDAPPVAR Iz: AT I[;prfif(‘:\;zj\‘/{) : zpply(a:; N)
REDAPPABS ' > M~ absé/tfli';lyl(ﬂﬁz j:\};i]\]{‘[;;ﬂ[N, A~ M"
RepArpAre TS T T spehs ety (7 )
REDCLosCoNST S Cll;;/\];_j_’\ﬂ}?j),v M
REDCLOSVAR S Ic‘li;bz;;[;\:];ﬂ, M
[oss oo o oo iy~ i
REDCLOSR = '\1: 5; Zfzs(I/;x[% ;;(onsg((zzg).;g('i);ﬂ?') ~ X
REDCLOSPL e pi(A(): Bla)) 5) ~ pilclos(Ais) Ay~ clos(hz Bz 9);5)
REDCLOSABS I' b clos(Az - abs(A(z); M(2)); s) ~ abs(clos(A4;s); Ay - clos(Az - M(z;y);s))
REDCLOSAPP I' p clos(Az -apply(M(a): N(2));s) ~ apply(clos(M;s); clos(N;s))
REDCLOSCOMP [' b clos(Az - M(7m1(2);m2(2)); s2 omap(sy;s2)) ~ M’

I' & clos(Az - clos(M(x); s1(z)); s2) ~ M’

Figure 9: WHNF Reduction Algorithm for Terms
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(v )
[N

FrbAceA I'bA~Type(d) TDMEB TbA-B

SUBSTTERM I' > [M, A] € Subst(Term)
[ b s; € Subst(S;) I D sy € Subst(S,)
SussTCoMP I' b sy 08; € Subst(5] X S2)
. ' ' i - c5) o
MAPTERM T pclos(A;s)e A T p A’ ~ Type(i) F P> clos(M;s) € B T pclos(A;s) — B
I' > Az -map([M(z), A(z)];s) € Subst(Term)
I' b map(s;;s) € Subst(51) T D map(sz;s) € Subst(S2)
MarCoump I' b map(Az - s1(2) o s2(z); s) € Subst(S1 X S2)
I' > map(Az - s1(m1(2); 7o(2)); s omap(se; s)) € Subst(S)
MAPSUBST I' > map(Az - map(si(a); s2(z)); s) € Subst(S)
Figure 10: Type Inference for Substitutions
REDMAPTERM I' b map(Az - [M(z), A(2)]; s) ~ [clos(M;s), clos(A;s)]
RepMapComp I' b map(Az - s1(2) 0 s2(z); 8) ~ map(s1; s) omap(sy;s)
. . . . ~> /
REDMAPCOMPOSE I' b map(Az - s1(mi(z); mo(x)); somap(sg;s)) ~ s

I' > map(Az -map(s;(2); s2(z));8) ~

Figure 11: WHNF Reduction Algorithm for Substitutions
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Defining Object-Level Parsers in AProlog
FExtended Abstract

Amy Felty
AT&T Bell Laboratories
600 Mountain Ave.
Murray Hill, NJ 07974 USA

feltyQresearch.att.com

1 Introduction

The higher-order logic programming language AProlog contains the simply-typed A-terms as its
basic data structures. These terms can be used to elegantly express the higher-order abstract
syntaz [12, 8] of objects that include notions of bound variables such as formulas, proofs, and
programs. Current implementations of AProlog, however, have no provision for a programmer to
provide a concrete syntaz for a particular object-level language. Such a capability is desirable, for
example, in implementing an interactive theorem prover. Providing the user with a familiar syntax
for the logic being implemented can greatly enhance interaction.

In this abstract, we propose an approach to providing programmer-defined concrete syntax.
A simple grammar specification language will be used to describe grammar rules that translate
the programmer’s object-level concrete syntax to AProlog syntax. On the left hand side of each
grammar rule, we include a term describing how to build the abstract syntax for the rule as a
whole from the components on the right hand side. These terms represent an intermediate form
approximating the higher-order syntax. They can be viewed as untyped A-terms, extended to
handle occurrences of both bound and free (logic) variables that are encountered in the object-level
input.

From a grammar specification, we want to automatically generate a parser for an object language
that can then be accessed by the AProlog programmer. There are many ways to generate such a
parser. For illustration purposes, we will describe a technique using the Yacc parser generator
[5] that was used in performing some initial experiments using the experimental Standard ML
implementation (LP-SML) [2]. The implementation described here will generate parsers that use
a two-step approach to parsing where the first step translates concrete syntax to an intermediate
syntax which corresponds to the usual notion of parse trees, also called first-order abstract syntaz.
The second step, which translates first-order to higher-order abstract syntax will be presented as
a AProlog program. Although a one phase approach implemented directly in ML may be more
efficient, presenting the second phase as a AProlog program plays two roles. First, it provides a
clear specification for what needs to be implemented in any one-phase approach, making operations
such as those needed to handle variables and constants explicit. Second, it illustrates the use of
A-terms for expressing and manipulating higher-order abstract svntax in AProlog.

To illustrate the grammar specification language and its implementation, we will use a simple
object language as an example throughout this paper. Our object language will be first-order



88 Proceedings of the 1992 AProlog Workshop

formulas. In the next section, we discuss higher-order syntax and introduce constants for expressing
the higher-order syntax of our first-order object language. These constants are used to build the
terms that are manipulated internally by a AProlog program, for example an interactive theorem
prover for first-order logic. We then define a concrete syntax for such formulas that will be used
by a user interacting with such a theorem prover. Then, in Section 3, we present the grammar
specification language. Since part of the implementation will be described via a AProlog program,
we describe this language and an interpreter for it in Section 4. In Section 5, we discuss the
implementation of parsers from grammar specifications, and present the non-logical primitives
added to AProlog to incorporate parsers. In Section 6, we present the AProlog program for the
second phase of parsing, and in Section 7 we conclude.

2 Abstract Syntax in AProlog

The terms of AProlog are essentially those of the simply typed A-calculus. We assume a fixed set
of primitive types. Function types are constructed using the binary infix symbol ->; if 7 and o
are types, then sois 7 => 0. The type constructor -> associates to the right. If 7o is a primitive
type then the type ™y => -+ => 7, => 719 has 71,..., T, as argument types and 7o as target type.
For each type 7, we assume that there are demumerably many constants and variables of that
type. Simply typed A-terms are built in the usual way using constants, variables, applications,
and abstractions. Equality between A-terms is taken to mean @7n-convertibility. We shall assume
that the reader is familiar with the usual notions and properties of substitution and a, G, and 75
conversion for the simply typed A-calculus. See [4] for a fuller discussion of these basic properties.

In this paper, we adopt the syntax of the LP-SML implementation of AProlog. Free variables
are represented by tokens with an upper case initial letter and constants are represented by tokens
with a lower case initial letter. Bound variables can begin with either an upper or lower case letter.
A-abstraction is represented using backslash as an infix symbol. Terms are most accurately thought
of as being representatives of 315-conversion equivalence classes of terms. For example, the terms
XN(E X), YN(E Y), (FAY\(F Y) £) and £ all represent the same class of terms.

Primitive types are introduced using kind declarations and constants are introduced using type
declarations. For example, the following declarations introduce a new type and a binary functional
constant.

kind i type.
type £ i->1i->i1i.

To represent a first-order logic, we introduce two primitive types: form for object-level formulas
and tm for first-order terms. We then introduce constants for the object-level connectives as follows.

kind tm type.
kind form type.

type and form -> form -> form.
type or form -> form -> form.
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type imp form -> form -> form.
type neg form -> form.

type forall (tm -> form) -> form.
type exists (tm -> form) -> form.

type false form.

By declaring forall and exists to take functional arguments, we have defined object-level binding
of variables by quantifiers in terms of A-abstraction, the meta-level binding operator. Thus, bound
variables of the object language are identified with bound variables of the metalanguage of type
tm. This representation of formulas was first introduced by Church [1]. We can also introduce
constants at the meta-level to represent constants, function symbols, propositions, and predicates
of first-order logic. For example, for a logic containing a constant ¢, a unary function symbol f, a
unary predicate p, a binary predicate ¢, and a proposition r, we give the following declarations.

type c tm.

type f tm -> tm.

type P tm -> form.

type q tm -> tm -> form.
type r form.

Using these definitions, the first-order formula Va(p(f(2)) D ¢(c,z)), for example, is represented
by the A-term:

(forall X\ (imp (p (f X)) (q ¢ Z)))

In our example, we will assume that a user interacts with a program such as a theorem prover
using a more familiar concrete syntax that will be transformed internally to the above syntax. The
concrete syntax we adopt here will closely resemble the usual syntax. In particular, we replace
the commonly used symbols A, V, D, =, ¥, 3, L with the ascii strings &, or, =>, not, all, some,
false, respectively. In addition, we will use a dot after a quantifier and bound variable, which may
sometimes replace the parentheses around the quantified expression. For instance, when entering
the formula in the example above to a theorem prover, a user would type:

all x. p(£(x)) => q(c,2)

In our grammar specification language, we must include a provision for specifying the class of atoms
of the metalanguage to which a particular identifier of the concrete syntax may belong. We choose
to allow concrete syntax to contain any one of the three atomic expressions in the metalanguage:
constants, free (logic) variables, or bound variables. As we will see, bound variables will be treated
the same as constants, and thus we will have only two categories of atoms. During parsing of
a particular input, the class to which each individual identifier belongs is determined. For our
first-order logic, we will restrict occurrences of function symbols, predicates, and propositions to
be constants, while atomic first-order terms can be either constants or variables. In the example
above, x in the expression f(x) will be parsed to a bound variable occurrence, Z to a free variable,
and c to a constant, while the predicates p and g and the function symbol £ all correspond to
constants of the metalanguage.
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(lefty == ((class-name) (l-term))

(I-term) = ((atom) (string))

| ({atom) (ident))

| (ident)

| (app (I-term) (l-term))

| (abs (ident) {l-term))
(atom) = const | var | cv
(r-elem) == ({class-name) {ident))

| ((lex-name) (string))
|  ({lex-name) (ident))

Figure 1: Grammar for Specifying Parsers

3 A Language for Specifying Parsers

A grammar for a particular object language is specified as a set of rules of the form (left) --> (right).
Figure 1 specifies the form that the left and right sides of each grammar rule must take. The left
hand side must be a (class-name) followed by an (l-term) which gives the form of the abstract
syntax. This abstract syntax tree is built from the individual components found on the right hand
side. The right side of a grammar rule is a list of elements described by (r-elem) above. An (r-elem)
has one of three forms. If it is of the first form shown in the figure, the {class-name) indicates that
the rules for the appropriate class must be used to parse the next token(s) from the input to ob-
tain an item of this class. If successful, the term obtained will “instantiate” the identifier (ident)
following {class-name). The remaining two forms handle literals or tokens in the input stream. A
(lez-name) identifies a class of objects from the lexical analyzer. We do not go into detail about
the lexical analysis phase in this paper, but just note that (lez-name) is provided to handle the
interface between this phase and the parsing phase. We could simplify this interface by just allow-
in  “ne (lez-name) called 1iteral or token. for example. In our example we will have two such
cl: s so that we may distinguish between symbols and identifiers. When the argument following
(le. :ame) is a string, the input must match the string exactly. The strings "all" and "." in the
syntax of universally quantified formulas will be examples of such tokens occurring in our grammar
for first-order logic. When the argument following (lez-name) is an identifier, the next token in the
input stream will instantiate this identifier as long as it is from the class specified by (lez-name).

The terms representing the abstract syntax tree have the form specified by the (Il-term) grammar.
They can be viewed as untyped A-terms extended with constructors used to indicate classes for
atoms. Expressions for atoms are specified by the first two clauses of the grammar. The constants
const and var take as arguments objects that will correspond to constants or variables, respectively,
of the metalanguage. The keyword cv takes an argument that is permitted to be either a constant
or variable. These constants and variables are represented either by a string or an identifier. A
string specifies a specific constant or variable. An (/-term) can also be simply an identifier or can
be an application or abstraction built using app and abs. Any identifier occurring in an (I-term)
on the left of a grammar rule must also appear on the right in an (r-elem).
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(formula A) --> (form_imp 4)

(form_imp (app (app (const "imp") A) B)) --> (form_and A) (symbol "=>")
(form_imp B)

(form_imp A) --> (form_and A)

(form_and (app (app (const "and") A) B)) --> (form_and A) (symbol “&")
(form_atom B)

(form_and A) --> (form_atom A)

(form_atom (app (const "forall") (abs X A))) --> (symbol "all") (ident X)

(symbol ".") (formula A)

(form_atom A) --> (symbol "(") (formula A) (symbol ")'")

(form_atom (const 4)) --> (ident A)

(form_atom A) --> (pre_ap 4) (symbol ")")

(pre_ap (app (const P) M)) --> (ident P) (symbol "(") (term M)

(pre_ap (app P M)) --> (pre_ap P) (symbol ",") (term M)

(term M) --> (symbol "(") (term M) (symbol ")")

(term (cv M)) --> (ident M)

(term M) --> (pre_ap M) (symbol ")")

Figure 2: A Grammar for First-Order Logic

Figure 2 contains a grammar specification of a parser for our first-order logic using this language.
We only consider conjunction, implication, and universal quantification here. The other connectives
are handled similarly. This grammar illustrates how precedence and associativity can be handled
in this framework. Here, conjunction binds tighter than implication, and implication is right-
associative, while conjunction is left-associative. Each of the constants symbol and ident appearing
on the right hand side in the rules is a lexical class (or (lez-name)) for symbols and identifiers,
respectively. These two classes are defined as regular expressions in the lexical analyzer. We do
not give their specifications here. There are four classes for formulas in the grammar. The first is
for the general category of formulas and is defined by the first rule in the figure: A is a formula
if A belongs to the form_imp class. This latter class handles implications and its associativity.
The first of the two rules for this class state that a formula is an implication if it has a formula
with no top-level implication on the left, and a formula possibly with a top-level implication on
the right. In the abstract syntax term on the left, an implication is represented as the constant
imp applied to its two formula arguments. The kevword const is used in this term to indicate
that its argument corresponds to a constant of the metalanguage. The second rule for form_imp
handles the case when there is no top-level implication. Formulas with no top-level implication are
described by the form_and class. The fact that this class is a subclass of form_imp insures that
implication does not bind as tightly as conjunction. This class is similar to form_imp except that
the associativity is reversed. In this case. form_atom is the subclass for formulas with no top-level
& or =>. A form_atom is either universally quantified or is an atomic formula. The first rule for
this class handles universal quantification. In a particular instance, the identifier that is assigned
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to X may have occurrences in the structure assigned to A. The fact that these occurrences should be
considered bound is recorded on the left by using the abs construct. In the second rule, we allow
atomic formulas to be parenthesized. The third rule handles propositions. Since we stated in the
previous section that we restrict propositions to be meta-level constants, the keyword const is used
on the left side. The fourth and last rule of this class handles predicates applied to one or more
arguments, as defined by the pre_ap class, and is terminated by a right parenthesis. A member of
the pre_ap class can either be a predicate symbol followed by a left parenthesis and a member of
the term class for terms of our first-order logic, or a pre_ap followed by a comma and then a term.
A term as specified by the term class can occur inside parentheses, it can be atomic, in which case
it may correspond to a constant or variable of the metalanguage, or it can be a function symbol
applied to one or more arguments. The pre_ap class handles the third case in the same way that
it handles predicates. The keyword const is used on the right of the first rule of the pre_app class
since both function symbols and predicates must be constants.

4 JAProlog

Formulas are introduced into AProlog by including a primitive type o for propositions, and intro-
ducing suitable constants with their types for the logical conectives and quantifiers. In particular,
we introduce constants for conjunction (, ), disjunctions (; ), and implication (=>) having type o ->
o -> o. The constants for universal quantification (pi) and existential quantification (sigma) are
given type (A -> o) -> o for each type replacing the “type variable” A. A function symbol whose
target type is o, other than a logical constant, will be considered a predicate. A A-term of type o
such that the head of its #7n-long form is not a logical constant will be called an atomic formula.

We define two classes of propositions, called goal formulas and definite clauses (or just clauses).
Let A be a syntactic variable for atomic formulas. G a syntactic variable for goal formulas, and D
a syntactic variable for definite clauses. These two classes of formulas are defined by the following
mutual recursion.

G:=A|Gy,Gy| G1;Gy | sigma 2\G | pi 2\G | D=>G

D:=A|pi 2\D|G=>A

A logic program is a finite set of definite clauses. When we write definite clauses, we will omit
outermost universal quantifiers. In addition. the outermost implication, if there is one, will be
written using :- which denotes the converse of implication. In a definite clause of the form A:-G,
the atomic formula A is called the head of the clause. and G is called the body. There is one final
restriction on definite clauses: the head of a definite clause must have a constant as its head. The
heads of atomic goal formulas on the other hand may be either variable or constant.

A complete non-deterministic search procedure based on intuitionistic provability can be defined
by the following six search operations [9]. In these operations, P is the current program and G is
the current goal.

AND: If G is (G1,G2) then try to show that both G; and G follow from P.
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OR: If G is (G1;G?) then try to show that either G or G follows from P.

INSTANCE: If G is (sigma z\G’) then try to show that there is some term ¢ of the same type
as « such that [t/z]G’ is provable from P.

GENERIC: If G has the form (pi z\G’) then pick a new parameter ¢ and try to prove [¢/z]G’
from P.

AUGMENT: If G has the form (D=>G") then proceed to attempt to prove G’ from P U {D}.

BACKCHAIN: If G is atomic, we consider the current program. If there is a universal instance
of a program clause which is equal to & then we have found a proof. If there is a program
clause with a universal instance of the form G':-G’ then try to prove G’ from P.

The AProlog interpreter makes choices which are left unspecified by the high-level description of
the non-deterministic interpreter, many of which are similar to those routinely used in Prolog. The
order in which conjuncts and disjuncts are attempted and the order for backchaining over definite
clauses is determined exactly as in conventional Prolog: conjuncts and disjuncts are attempted in
the order they are presented. Definite clauses are backchained over in the order they are listed in
P using a depth-first search paradigm to handle failures. In the extended language, clauses can be
added dynamically by the AUGMENT operation. We specify that new clauses get added to the top
of the list.

In the INSTANCE operation, the Prolog implementation technique of instantiating the existential
quantifier with a logic (free) variable which is later “filled in” using unification is employed. Thus
instead of picking a term ¢, the INSTANCE search operation will introduce a new logic variable as the
substitution term. A similar use of logic variables is made in'implementing BACKCHAIN: a clause
from P is chosen and an instance is made by replacing all outermost universally quantified variables
with new logic variables. This universal instance of the clause is then unified with the current goal.
This operation may partially or fully instantiate the new logic variables. The addition of logic
variables in our setting requires higher-order unification since these variables can occur inside A-
terms.

The presence of logic variables requires that GENERIC be implemented slightly differently than
is described above. In particular, if the goal or the current program P contains logic variables, the
new constant introduced by this operation must not appear in the terms eventually instantiated
for those logic variables.

AProlog permits a degree of polymorphism by allowing type declarations to contain type vari-
ables (written as capital letters). We will make use of this polymorphism in our program for
translating first-order to higher-order syntax. This program will be used to translate objects of
arbitrary type.

5 AProlog Primitives for Parsing

In generating parsers from grammar specifications, it is possible to employ one of the well-studied
parsing methods or use existing parser generator tools [13, 7. 5, 6, 3, 11]. Choosing to use a
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particular method will have impact on what kinds of grammars may be accepted as well as on
efficiency of the resulting parser. As an example, we choose the Yacc parser generator 5], and thus
implement LALR grammars. We use the ML-Lex and ML-Yacc tools to implement lexical analyzers
and parsers, respectively. These tools are the ML versions of the unix lex and yacc utilities.

The first phase of the procedure uses the ML-Lex tool for generating lexical analyzers which
transform an input stream to a list of tokens. We will say very little about this phase here. In LP-
SML, a lexical analyzer for a user-defined object language can be derived in a straightforward way
from the ML-Lex specification for AProlog syntax. In our example, we choose to parse identifiers
in the same way that AProlog does, so we take this information directly from the existing ML-
Lex specification. We must then add rules for the literal strings representing the connectives of
first-order logic.

Any specification in our grammar specification language can be transformed in a straightforward
manner to input to ML-Yacc. We view the constants app, abs, etc., as constructors for AProlog
terms representing a first-order approximation of the desired higher-order syntax. The ML-Yacc
phase of parsing will build the internal representation of these AProlog terms. For the final phase of
parsing, in the next section, we present a AProlog program that transforms this first-order syntax
to higher-order syntax. Since AProlog terms are tvped, we must make sure that a term obtained
from a translation from concrete syntax is correctly typed. As we will see, type checking is handled
by the final phase of parsing.

In order to accommodate user-defined parsers, we provide two new commands, use_parser used
to generate and load a parser, and parse used to call the parser on particular expressions in an
object language. They have the following tvpes.

type use_parser string -> o.
type parse string -> string -> (4 -> o) -> o.

The argument to use_parser is the name of the file containing the grammar specification. For
example, if the grammar for first-order logic in Figure 2 were in a file called fol.gram, the command
(use_parser "fol") will read in the file. create the specification of the lexical analyzer and use
ML-lex to generate it, and create the Yacc specification and use ML-Yacc to generate the parser
which translates concrete syntax to intermediate terms. A goal of the form (parse Parser In
G) uses the parser named by Parser on the input In. In writing the interactive component of a
program such as a theorem prover in AProlog, the programmer will make use of standard read and
write predicates as in Prolog. Here, we assume that input can be obtained from read predicates in
the form of a string which can then be passed on to the parse command. If the parse fails on the
string In, the goal fails. Otherwise, an output term Out is obtained representing the higher-order
abstract syntax of the input term, and then the goal (G Out) is attempted. Here, the type of Out
is unified with the type of the bound variable in G and an error is signalled if this type-unification
fails.

During execution of a AProlog program. new constants will be generated dynamically by the
GENERIC operation and new logic variables will be generated by INSTANCE and BACKCHAIN. In an
interactive session, we will want to make at least some of these constants and variables accessible
to the user, so that they may be accepted as input by user-defined parsers. For the purposes of this
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paper, we will assume that there is some method by which names are established for new constants
and variables, and only those with established names can be accessed by the user. For example,
one way in which logic variables can get established names is by being printed out to the screen
by an output command. More specifically, if a term to be output to the screen contains a logic
variable that does not already have a name, a name is chosen that does not conflict with the names
of currently existing variables and is established for that variable.

Establishing the correspondence of the objects in the input stream to actual constants and
variables with established names will take place during the second phase of parsing. To make this
correspondence for variables, we will make use of a non-logical AProlog primitive fvar of type A
-> string -> o. A goal of the form (fvar V Name) will succeed if V is a logic variable with the
established name Name. It will also succeed if V is a variable with no established name. If there is
some other variable V? with established name Name, V will be set equal to V’. Otherwise, the name
Name will be established for V.

Logically, any variable found in a user’s input that doesn’t already exist with an established
name can be viewed as a new one generated by INSTANCE. In a goal of the form (parse Parser
In G), if the resulting term Out has n new variables X;,...,X, that didn’t already have established
names, then consider the term Out’ with bound variables X;,...,X, and body Out. Then, the goal
we solve after a successful parse is actually:

(Z\(sigma X;\(...(sigma X,\(G (Z X;..Xn)))--:))) Out’.

6 Translating First-Order to Higher-Order Syntax

We introduce the type iterm for the intermediate terms that are constructed by the Yacc-generated
parser. The constants app, abs, etc., introduced in our grammar clauses will be considered con-
structors for terms of this type. They have the following types.

type app iterm -> iterm -> iterm.
type abs string -> iterm -> iterm.
type const string -> iterm.
type var string -> iterm.
type cv string -> iterm.

In addition, we have the following predicates that will be used in implementing the syntax
translation.

type nameof A -> string -> o.
type trans iterm -> A -> o.

The nameof predicate handles the translation of constants and occurrences of bound variables in
object-language terms. It relates a meta-level constant to the string containing its name. A type
variable is used for the first argument since these constants can be of any type. Before translation
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of a particular term, we start with one nameof clause for every constant in the environment with
an established name. We also need to know the type of each constant, so we must include type dec-
larations. Dynamically generated constants that have no established name need not be considered
since they have no external representation visible to the user. Constants with established names
include at least all those declared by the programmer. Thus, when parsing a formula of first-order
logic, for example, we must include at least the following declarations and clauses.

kind form type.

kind tm type.

type and form -> form -> form.
type imp form -> form -> form.
type forall (tm -> form) -> form.
type ¢ tm.

type f tm -> tm.

type p tm -> form.

type q tm -> tm -> form.
type r form.

nameof and "and'".
nameof imp "imp".
nameof forall "forall".
nameof ¢ "c¢".

nameof f "f".
nameof p "p".
nameof q "q".
nameof r "r".

A nameof clause will be added dynamically for each binding occurrence of a variable that is en-
countered during parsing. Then, as parsing proceeds, each argument toconst or cv will be checked
against the existing nameof pairs. For an argument to const, if it does not match anything, the
parse fails. An argument to cv, if it is not a constant, will be interpreted as a free variable. The
trans predicate used for the general translation takes two arguments. The first is the input. It is
the result of the parse by the Yacc-generated parser, and thus is the intermediate first-order syntax.
The second argument is the resulting term in the desired higher-order syntax. The translation is
defined by the following clauses.

trans (app M N) (P Q) :- trans M P, trans N Q.
trans (abs X M) N :- pi ¢\ (nameof X ¢ => trans M (N ¢)).

trans (const M) N :- nameof N M, !.
trans (var M) N :- fvar N M.
trans (cv M) N :- nameof N M, !.

trans (cv M) N :- freevar N M.
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The first two clauses handle application and abstraction. In an application, each argument is
translated and the result of the first translation is directly applied to the second. Note that types
must match in order for this clause to succeed. P must have a functional type and Q must have the
appropriate argument type. Otherwise, the translation fails. The clause for abstraction transforms
an intermediate term with occurrences of string representation of a bound variable to a term of the
metalanguage containing an actual abstraction. In this clause, the GENERIC operation is used to
introduce a new constant, say c, to play the role of the bound variable. The AUGMENT operation
adds the atomic clause relating the string representation of the bound variable to this constant.
This clause is available while translating the body M. It will be used to replace all occurrences of
the string X in the intermediate term M to the constant c. If successful, the result of the translation
must match the template (N c). N will be the term obtained by abstracting out all occurrences
of c. It is important that the new clause added by AUGMENT be added to the top of the list of
nameof clauses. If a bound variable is introduced with the same name as an existing constant, it
is important that all occurrences within the scope of the bound variable get parsed as occurrences
of this bound variable and not as the already existing constant.

The last four clauses pertain to translation of atoms. The non-logical feature cut (!) of AProlog
is needed in these clauses. It is used to eliminate backtracking points. It is a goal which always
succeeds and commits the interpreter to all choices made since the parent goal was unified with
the head of the clause in which the cut occurs. Here, we do not want backtracking to cause an
identifier to be interpreted as more than one kind of atom. The first clause uses nameof to translate
constants or occurrences of bound variables. The next clause translates free variables using the
fvar primitive to determine if the variable occurs in the current context, and to generate a new
one when it doesn’t. The result of the translation is the already existing or the new variable. The
next two clauses handle an atom that can be either a constant or variable. The order in which
they are attempted is important. First, it must be checked whether it occurs within the scope of a
bound variable or is a constant. If not, it is a logic variable.

We end this section by discussing how the last phase of parsing fits in with the rest. As stated
in the previous section, a goal of the form (parse Parser In G) uses the parser named by Parser
on the input string In. It does so in three steps. First, it will run the lexical analyzer, and
second, it will run the Yacc-generated parser on In to obtain a term, say Mid, the intermediate
syntax representation of the input. Let parser be the name of a AProlog module containing all
the code presented in this section except the clauses specific to the first-order logic example. Let
constants be the module containing the type declarations and nameof clauses for all the constants
with established names in the current environment. The final step of the parse command is an
attempt to solve the following goal.

parser ==> (constants ==> ((trans Mid Out),(G Out)))

The ==> symbol is the meta-level connective that instructs the interpreter to load the module
named on the left of the arrow into memory and add all of the clauses in this module to the current
program. Note that the parser module is a static object. while the constants module must be
created dynamically since it will depend on the environment at the time the parse command is
invoked.
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7 Conclusion

We have proposed a high-level specification language for integrating object-language parsers into
AProlog. For illustration purposes, we described a two phase method of implementing this facility.
There are several other possibilities. For example, still using the ML-Yacc facility, a one phase
approach can be implemented directly in ML and may be more efficient. To do so, instead of
building the AProlog terms of type iterm, we can view the constants app, abs, etc., as ML functions
which take their arguments and directly form the internal ML representation of the appropriate
higher-order syntax. The operations handled by the trans program must now be handled by these
functions. Thus, for example, these functions must distinguish between constants, bound variables,
and free variables and keep track of their scope, recognize occurrences of free (logic) variables that
exist in the current environment, add to the current environment any new logic variables that occur
in a successfully parsed term, and verify that the resulting term is well-typed.

Another possibility is to consider a form of definite clause grammars as in Prolog [11]. In fact,
the grammar specification in Figure 2 already has a form much like a definite clause grammar. In
[10], an extension of definite clause grammars to handle scoping constructs is described. It would
be straightforward to implement our grammar in the manner described in that paper. In doing
so, we obtain a AProlog program to parse a list of tokens to a term of type iterm, where the left
hand sides of rules in Figure 2 correspond to the heads of clauses and the right to the body. The
list of elements on the right become a conjunction of subgoals. In fact, we can modify such a
program so that it incorporates the trans program and performs parsing from a list of tokens to
higher-order syntax in a single phase. However. a AProlog program obtained from this grammar
cannot be executed directly. To see why, note that there is a rule for the form.and class where
the first element on the right also requires a term from the form_and class. In the corresponding
program, form_and will be a predicate and using the clause corresponding to this rule will cause
infinite branching in the search. This is a common problem in a grammar with infix operators. It
is possible to change the grammar to obtain an executable parser, though care must be taken in
doing so.

In this paper, we have introduced a parse command to explicitly call a parser on a given input.
At the point such a call is made, only the syntax of the given object language can be parsed.
Object-level terms cannot contain arbitrary AProlog syntax inside them. In some cases, it may
be desirable to mix the two syntaxes. For example, the programmer may want to write programs
that use object-level syntax inside clauses, and may not want to have to invoke a parse command
explicitly to do so. For instance, a user should at least be able to specify new infix symbols. To
handle this, some method for integrating the existing AProlog parser with user-defined parsers will
be needed.
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1 Abstract

In this paper a modular deductive database language based on embedded implications is presented.
Our language can be considered a subset of A-Prolog [23]. Its notion of embedded implication
can best be compared to that of the module system of A-Prolog. We allow negation-as—failure
in subgoals of a rule or query as well as in the consequence of an embedded implication. The
main motivation for the definition of our language has been the desire to make a notion of local
definitions available for deductive database systems having a bottom—up query evaluation strategy,
e.g. the LOLA-system [7].

Mapl := { maplist([],[]).
maplist([XIL],[YIR]) :- £(X,Y), maplist(L,R). }
Conv = { convert{In,Out) :- ( maplist(In,Out) <= Mapl ).

£(U,V) :- look_up(U,V). }

Figure 1: Sample programs Mapl and Conv in basic syntax

2 Basic Language

A BNF-style grammar of our basic syntax is shown in figure 2. Rules are implicitly universally
quantified. This applies also to the rules referenced by an implicational subgoal. Only programs,
i.e. sets of universally closed formulas, are allowed in the antecedents of implicational subgoals.
This is a major restriction’ as compared to A-Prolog [23] and the languages proposed e.g. in [19],
[16], [12], [5]. Neither in rules nor in goals multiple consequences or nested implications are allowed.
However, such programs and goals can easily be transformed into the basic syntax. Program names
simply serve as placeholders for the corresponding rule sets. In particular, we do not allow mutual
program references. Sample programs? in basic syntax are shown in figure 1.

!Work is underway to define a less restrictive syntax that still preserves bottom-up evaluability.
2To the sample programs shown in this paper in general a variant of the Magic Set Transformation [2], [3] has to
be applied to generate safe, i.e. bottom-up evaluable. rules.
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{query) = := (body).
(program) = (rule-set)
(rule-set) = { (rule)* }
(rule) = {(head).
| (head) :- (body).
(body) = (subgoal) {, (subgoal) }*
{subgoal) = (i-subgoal)
| {literal)

( (literal) <= (reference) {, (reference)}* )
(program-reference)

(i-subgoal)
(reference)

{program-reference) (program-name)
| (program)
(literal) = (atom)
|  $not (atom)
{atom) = (predicate-symbol)
| (predicate-symbol} ( (term) {, (term)}* )
(term) = {variable)
| {function-symbol)
| {(function-symbol) ( (term) {, (term)}* )
(predicate-symbol) = {functor)
{function-symbol) = {functor)
{functor) = {a-z} (string)
(variable) = {4-2|_} (string)
(program-name) = { 4-2} (string)
(string) = {a-z|A-Z]0o-9|8|_}"

Optional parts are enclosed in the meta—symbols [...] and groups are enclosed in the meta—symbols {...}.
Repetition of a group is indicated by {...}*. The meta-symbols should be distinguished from the four syntax
elements [, ], {, and }, respectively.

Figure 2: BNF-style Grammar of Basic Syntax

3 Bottom-Up Evaluation

As opposed to A-Prolog [23] and most other query languages with embedded implications proposed
in the literature (e.g. [19], [4], [5]), our language does not have a Prolog-like top-down evaluation
strategy.

Instead, a top—down query compilation into an evaluating relational expression is applied in analogy
to the ordinary deductive database case (For more details see e.g. [26], [7]). In a subsequent bottom-
up query evaluation phase, the proper set of answer tuples is computed in a set—at—a—time fashion.
Our query evaluation scheme thus generalizes the evaluation scheme of most deductive database
systems because embedded implications can be handled. Many researchers consider bottom-up
evaluation superior over Prolog-like top—down evaluation if large quantities of data have to be pro-
cessed, which will typically occur in database-like applications, e.g. in traffic information systems.
In the presence of context extensions as introduced by embedded implications, a combination of
resolution and context extension has to be applied in the top-down compilation step. Context
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extension may precede the resolution step, if the predicate symbols are labelled by an appropriate
context identifier, e.g. the lexicographically ordered list of names of the programs forming the
context. In figure 3 the different program contexts encountered during processing the sample
query :- ( convert(In,Out) <= Conv ). are made visible by labelling the predicate symbols.
However, it is not necessary that the context extension step precedes the actual query compilation.
The results presented in [9] indicate how to interleave labelling and compilation for deductive
database programs with embedded implications. For more details see [8] and [9).

Conv,con,| =
{ converticon(In,0ut) :- maplistic,, yapy (IN,0ut).
f|cone| (U, V) 1= 100K UP|gony (U, V). }

Conv|Conv,Hap1| =
{ convert|cony mapr| (In,0ut) :- maplist gy, wapy (In,0ut).

£ |conv Map1| (U, V) 1= 100K UP|cony map1( (U, V). }

HapllConv,Hapll =
{ mapliSt|Conv,Hap1| (Q, 0.
maplistlcomyhpll ( [X I L] N [Y l R] ) e flConv‘Hapll (X ’ Y) Y
mapliSthonv,Hapll (L’R’) . }

Figure 3: Program contexts made visible by labelling predicate symbols

4 Perfect Model Semantics

The operational semantics of programs in basic syntax as sketched above is an almost direct im-
plementation of an iterated fixpoint semantics [1] or perfect model semantics [24], that has been
defined for stratifiable programs with negation-as-failure and embedded implications in [8]: Fol-
lowing the line of [19] we define the generalized Herbrand interpretations and a validity relation
H between generalized interpretations and goals. The immediate consequence operator Ty, of a
set W of programs maps the set of generalized Herbrand interpretations onto itself. As a major
difference to [19], we do not require at this point that generalized Herbrand interpretations are
internally monotonic (see below). It can be shown that generalized interpretations in our slightly
more general sense as well as the generalized immediate consequence operator have the essential
model theoretic properties just as in the ordinary deductive database case (cf. [1]). Consequently,
a minimal fixpoint of Ty is a minimal model with respect to f= of the set of programs W.

A natural ordering is imposed on a set W of programs by their implicational depth, i.e. the
length of reference chains to other programs3. Therefore we can horizontally partition a set of
programs into a sequence of i-strata Wi, i.e. sets of programs with equal implicational depth
k. It can be observed that the elements of an i-stratum do not refer to each other and thus

3Note, that program names are allowed in the antecedents of embedded implications.
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may be processed simulaneously. By stratifiability with respect to negation every single program
in an i-stratum W; can be partitioned into an ordered set of n-strata. We can think of the
collection of n—strata as partitioning every W; in vertical direction. By every such vertical partition
a corresponding immediate consequence operator is defined. In analogy to the fixpoint procedure
for ordinary deductive database programs, we compute a sequence of minimal fixpoints of the
immediate consequence operators proceeding from the rightmost i-stratum W, to the leftmost i-
stratum, and, within each i-stratum W, starting at the lowest n-strata and proceeding to the
highest n—strata. Using the techniques of [1] it can be shown that a minimal generalized model of
W is computed which, indeed, is the perfect generalized Herbrand model [24]. See [8] and [9] for
more details.

5 Negation—As—Failure

Negation—as—failure is known to be problematic in ordinary deductive database programs due to its
intrinsic nonmonotonic behaviour. On the other hand, deductive database programs often have to
rely on implicit negative information. i.e. a form of negation-as—failure, because there are situations
in which one simply does not have explicit negative information available. For instance, one would
like to avoid to explicitly state an inequality axiom for every pair of constants introduced by base
relations®.

The situation grows more difficult if rules or queries have implicational subgoals. Sets of programs
have to be processed simultaneously to account for references to other programs (cf. [6]). If we
allow an unrestricted use of negation—as—failure the generalized Herbrand interpretations generated
by the immediate consequence operators are not in general internally monotonic (cf. [19]). From
the more procedural point of view it might appear quite natural to get a smaller set of true formulas
when more information becomes available in an extended context. However, from a logical point
of view the use of negation—as—failure should be restricted in a way that the internal monotonicity
of the generalized perfect model is preserved. An extension of our syntax and semantics allowing
to quantify over free variables of a module is currently under investigation. In many cases, this
extension should make it possible to shift negation—as—failure down to the base relations where its
use can be controlled.

As a more logical justification of negation—as—failure we refer the reader to the literature on cir-
cumscription (e.g. [15], [17], [14]) which has been used since long by the Al community to formalize
nonmonotonic reasoning.

6 Modules and Static Scoping

Our semantics of embedded implications induces a dynamic scoping rule for predicates. While this
behavior is suitable for hypothetical reasoning, it is clear that from a software engineering point of
view static scoping should be preferred [18], [21]. Consequently, the basic syntax of our language is

*See e.g. the definition of the not_member-predicate in figure 5 and its use in the definition of path.
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$module (module-name) :
(module-interface) (module-implementation)
[ {import-declarations) ]
[ {(export-declarations) ]
[ (local-declarations) ]
[ (module-imports) ]

{module)

{module-interface)

(module-implementation)

( rule-set )
(import-declarations) = $import

{ (declaration) }*
(export-declarations) n= $export

{ (declaration) }*
(local-declarations) n= $local

{ (declaration} }*
{module-imports) = $import_modules

{ <= {module-reference) . }*
(declaration) = ( predicate-schema ).

{predicate-schema)
{module-reference)
(output-argument-list)
(input-argument-list)
{(argument-list)

{predicate-symbol) ( { < (functor) > }* )
(output-arguments) {module-name} (input-arguments)
(argument-list)

(argument-list)

0
L

(argument-spec) { , (argument-spec) }* ]
(predicate-symbol)

| {predicate-symbol): =(predicate-symbol)
(program-name)

{(argument-spec) n=

{module-name) n=

Rules for basic syntax modified as follows
(reference) = (module-reference)
| (program-reference)

Figure 4: BNF-style Grammar of Module Syntax

extended by a notion of module parameterization and predicate encapsulation. A BNF grammar
of the module syntax is shown in figure 4. Sample modules can be found in figure 6 and figure 5.

A module consists of an interface and an implementation. In the interface, the import and export
predicate symbols have to be declared®. The implementation part starts with declarations of the
local predicate symbols and a list of references to the imported modules. By importing a module,
the definitions of (some of) its exported predicates are made visible in the importing module.
Consider the following declaration occurring in module Graphs of figure 5.

$import_modules
<= [len:=length,nmemb:=not_member]Lists[].

®Currently, only the arity of predicate symbols is declared. The symbols occurring in a predicate schema are
dummy attribute names. It is planned, however, to extend declarations to type declarations, e.g. as proposed in [22].
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$module Graphs:
$import
1:= edge(<node>,<node>).
$export
::= connected(<node>,<node>).
::= path(<node>,<node>,<list_of_nodes>).
$local
::= nmemb(<item>,<list_of_items>).
::= len(<list_of_items>,<peano_integer>).
$import_modules
<= [len:=length,nmemb:=not_member]Lists[].
{
connected(X,Y) :- edge(X,Y).
connected(X,Y) :- edge(X,Z), connected(Z,Y).
path(X,Y,[X,Y]) :- edge(X,Y).
path(X,Y, [XIP]) :- edge(X,Z), path(Z,Y,P), nmemb(X,P).
}

$module Lists:
$export
::= append(<list_of_items>,<list_of_items>,<list_of_items>).
::= member(<item>,<list_of_items>).
not_member (<item>,<list_of_items>).
length(<list>,<peano_integer>).

$local

::= equal(<item>,<item>).
{
append([],L,L).
append([X|L1], L2, [X|L3]) :- append(L1,L2,L3).
member (X, [XIL]).
member (X, [YIL]) :- member(X,L).
not_member (X, [J).
not_member(X, [YIL]) :- $not equal(X,Y), not_member(X,L).
length([],0).
length([XIL],s(N)) :- length(L,N).
equal(X,X).
}

Figure 5: Modules Graphs and Lists

The programmer states that the predicate symbol length of module Lists shall be visible within
Graphs as the predicate len, and that not_member shall be visible as nmemb. Semantically, module
import can be understood as a default module reference which is automatically added to the
(possibly empty) premise of every subgoal occurring in a rule of the importing module [19]. The
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$module Mapl:
$import
1:= f(Items,Items).
$export
::= maplist(list(Items),list(Items)).
{
maplist([1,0).
maplist([X|L],[YIR]) :- £(X,Y), maplist(L,R).
}

$module Conv:
$import
::= look_up(Items,Items).
$export
::= convert(list(Items),list(Items)).
$local
::= map(list(Items),list(Items)).
{
convert(In,Out) :- (map(In,Out) <= [map:=maplist]Mapl(f:=look_up]l).
}

$module Table:
$export
::= look_up(peano_integer,number).
{ look_up(0,0).
look_up(s(0),1).
3

Figure 6: Sample modules Mapl, Conv, and Table

first connected-rule of module Graphs, for instance, is transformed into®

connected(X,Y) :- (edge <= {len(U,V) :-length(U,V).
nmemb(U,V) :- not_member(U,V).},
Lists_Rules)

where Lists_Rules denotes the rules of module Lists.

The local declarations are followed by a set of rules defining the exported and the local predicates.
Imported predicates must not be defined within the importing module. In the module syntax, an
implicational subgoal may have module references in its premise. A module reference is a program
name surrounded by an input and an output argument list of the form [p; := ¢1,...,p; 1= q1], i.e.
a list consisting of argument specifications p; := ¢; where p; and ¢; are predicate symbols.

The following scoping and parameterization rules apply to our module language:

%In addition, every symbol of a module is labelled to provide for encapsulation. See also the section on unique
module labelling below.



108 Proceedings of the 1992 AProlog Workshop

e Predicate symbols, regardless whether imported, exported, or local, are in general invisible
outside the module, in which they are declared.

e Module parameterization is governed by the argument specifications occurring in the argu-
ment lists of a module reference. Only by an input (output) argument specification can
the imported (exported) predicate symbols of a module be accessed. Access is realized by
automatically generated linking rules (see below).

Syntactically, the predicate symbol, that is closer to the module name, is the module param-
eter, and the symbol, that is closer to the enclosing module or query, is the actual argument
symbol. Local predicate symbols can not be accessed at all from outside the module.

In the module reference [map:=maplist]Mapl[f:=1look_up], for instance, the predicate sym-
bol look_up is the actual argument for the input parameter predicate £, and map is the output
predicate symbol serving as an actual argument of the output parameter predicate maplist
(see figure 6). As for imported modules, embedded implications with module references are
transformed into an embedded implication in basic svntax. The convert-rule of module Conv
shown in figure 6, for instance, is transformed into '

convert(In,Out) :- ( map(In,Out) <= {map(X,Y) :- maplist(X,Y).
£(X,Y) :- look_up(X,Y).},
Mapl_Rules }.

where Mapl_Rules denotes the set of rules of module Mapl. Note, that these are already in
basic syntax.

If a parameter predicate symbol p is literally the same as its actual argument, the correspond-
ing argument specification p:=p may be abbreviated to p.

e The enclosing module” is the scope of all symbols either used as actual arguments in module
references, or occurring in the conclusion of an implicational subgoal, or occuring in unnamed
rule sets, that are part of the premise of an implicational subgoal. These symbols must be
declared as local predicate symbols of the enclosing module.

e Program names without argument lists occurring in the premise of an implicational subgoal
are treated like unnamed rule sets®.

By a simple transformation the appropriate module instances can be obtained at preprocessing or
compilation time. To this end, for each reference to a program a unique label is generated from
the program name. The predicate symbols occurring in the program are subsequently prefixed by
the so obtained unique symbol. Parameter passing is provided through special linking rules which
the transformation generates from the user—defined input and output argument lists of a module
reference. The labelled and transformed queries and modules are in the basic syntax and can be
processed accordingly. For a more detailed description of the module syntax see [10] and [11].

"By convention, the enclosing module of a top-level query is the {empty) dummy module Top.
8Note, that unnamed rule sets and program names without argument lists are dvnamically scoped within the
enclosing module. By this feature hypothetical reasoning can be realized.
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Assume, for example, that to an occurrence of the Conv—module has been assigned the label 0. Then
every symbol of this module occurrence is labelled by 0, and every module reference occurring in
Conv is assigned a new label, say 1. This process is continued until no new module reference
is found®. After labelling and transformation into basic syntax, the convert-rule of the current

module Conv reads as

convert_0(In,0ut) :- ( map_0(In,Out) <= {map_0(X,Y) :- maplist_1(X,Y).
f_1(X,Y) :- look_up_0(X,Y).},
Mapl_Rules_1 ).

where Mapl_1 denotes the set of rules of module Mapl after labelling each symbol by the label 1.
In this example no further labelling is required since Mapl does not contain module references.

In a language with higher order quantification the desired closure properties of a module M can
be described by the formula ([13],[20]) Vin, ...Vin,,Jout, ...3out,, M, expressing that the input
predicates inq,...,in,, are to be treated as formal parameters and, furthermore, that the output
predicates out,...,out, may depend on the in,,...,in,. If the existential quantification is re-
placed by Skolem functions the higher order unification as introduced e.g. in [13] and [20]) gives
the desired result. Qur renaming transformation has essentially the same effect.

By the above scoping rules it should not be possible to access local predicates from outside a
module. This can be achieved by shifting the rules defining local predicates into the premises of
the body literals of the rules defining exported predicates as proposed in [19].

If modules are separately compiled into relation valued functions, we do not need the above de-
scribed transformations. Instead, an appropriate parameterization is chosen for the generated
evaluating functions. However, the transformation approach as well as the higher order unification
approach show, that static scoping can be achieved without deviating very much from the pure
logic language with embedded implications.

7 Implementation

A prototype system based on a preprocessor, that performs context extension by a source-to-
source transformation has been implemented on top of the experimental deductive database system
LOLA™ developed at the Technische Universitat Miinchen (TUM) [7].

8 Future Work

Currently, work is underway to define an appropriate form of negation-as—failure. In addition, we
investigate the incremental compilation of modules and the combination of functional and logic
programming obtained this way. Another direction of future research is the declarative formulation

®Note, that cyclic module references are not allowed.

°The LOLA project is a subproject of the joint effort “Objektbanken fiir Experten” between several german
universities. It is funded by the German governmental institution “Deutsche Forschungsgemeinschaft” (DFG) under
contract Ba 722/3-3 “Effiziente Verfahren zur logischen Deduktion uber Objektbanken”.



o Proceedings of the 1992 A Prolog Workshop

of constraints controlling the configuration of modules, which could be based on the notion of a
module’s signature as proposed e.g. in [25] .
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Abstract

This paper discusses the mechanical transformation of an unambiguous context-free grammar
(CFG) into a definite-clause grammar (DCG) using a finite set of examples, each of which is a
pair (s, m), where s is a sentence belonging to the language defined by the CFG and m is a
semantic representation (meaning) of s. The resulting DCG would be such that it could be exe-
cuted to compute the semantics for every sentence of the original DCG. Our proposed approach
is based upon two key assumptions: (a) the semantic representation language is the simply-typed
A-calculus; and (b) the semantic representation of a sentence is a function (expressed in the typed
A-calculus) of the semantic representations of its parts (compositionality). With these assumptions
we show that a higher-order DCG can be systematically constructed using a unification procedure
for typed A-terms. The needed procedure differs from the one given by Huet in that the types
for variables are not completely known in advance; and it differs from the one used in AProlog in
that there is an additional source of nondeterminism in enumerating projection substitutions. We
believe that such a system would simplify the task of building DCGs when the semantic represen-
tation involved quantified terms, and could be a useful tool for generating natural query language
front-ends for various applications.

1 Motivation

The goal of this work is to develop a system that will take as input an unambiguous context-free
grammar (CFG) and a finite set of pairs (s, m), where s is a sentence belonging to the language
defined by the CFG and m is the semantic representation (meaning) of s, and will produce as
output a definite clause grammar (DCG) (Pereira and Warren 1980, Pereira and Shieber 1987)
capable of computing the semantic representations for all sentences of the CFG. We envisage that
the system would actually work interactively, by querving the user for the semantic representations
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for a series of key sentences (which it determines according to some scheme) and reporting back
to the user the synthesized DCG after each sentence until the user accepts the DCG. In order
to narrow the search space of possible solutions, we adopt the following two constraints: (1) the
semantic representation language is the simply typed A-calculus; (2) the semantic representation
of a sentence is some function (expressed in the typed A-calculus) of the semantic representations of
the phrases that constitute the sentence (compositionality). Under these assumptions we believe
that, if there is a DCG satisfying the input pairs, it is possible to systematically search for it; if
there is no solution, the search may sometimes be nonterminating.

The motivation for our work stems from the fact that it is not easy to manually modify a
CFG to obtain a DCG especially when the semantic representations involved quantified terms (as
in natural languages). However, by the compositionality principle, the semantic representation of
a sentence can be systematically obtained from those of its constituent phrases. Hence, it seems
feasible, in principle, to have the computer assist a human in the transition from a CFG to a DCG.
A potential use of our proposed system is that it might facilitate rapid prototyping of natural-
language interfaces to databases, since the interface could be obtained by defining the syntax along
with typical input sentences and their semantic representations. OQur proposed use of the simply-
typed A-calculus not only has precedent for natural language semantics (Dowty et al 81, Miller and
Nadathur 86), the availability of a unification procedure for simply-typed terms (Huet 75) allows
us to reduce the problem of generalization from examples to a unification problem. However, as we
shall see later, certain important changes to Huet’s procedure are needed in our context, since the
types for variables are not completely known in advance.

The remainder of this paper is structured as follows: section 2 outlines the synthesis procedure;
section 3 briefly discusses aspects of the synthesis procedure, especially compositionality, termina-
tion, multiple solutions, and types; section 4 illustrates the procedure with an example; and section
5 presents the current status and prospects of this work and brief comments on closely related
work. Familiarity with the typed A-calculus and Huet’s unification procedure is assumed.

2 Synthesis of DCGs from CFGs and Examples

In the pseudo-code below, we assume, for simplicity of presentation, that a CFG rule has either
a single terminal on its rhs or a sequence of one or more nonterminals (in practice, we permit
both terminals and nonterminals on the rhs). As in Prolog DCGs, nonterminals are identifiers
beginning with a lowercase letter, and terminals are such identifiers surrounded by [ and ]. As in
AProlog (Nadathur and Miller 88), (F X) stands for function application and X\E stands for AX.E
(A-abstraction). We assume that application is left-associative, i.e., (F X Y) is short-hand for ((F
X) Y). The basic scheme is given below, the top-level procedure being SYNTH.

Procedure SYNTH(G)

The procedure SYNTH takes as input a CFG and constructs a higher-order DCG after obtaining
the semantic representations for sample sentences interactively.

1. Let G be an unambiguous CFG having n rules, with start svmbol s.
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2. Construct the higher-order DCG as follows:
a. If the i-th CFG rule is a; =-> b;1...b,, the i-th DCG rule will be
(VV] .. .Vk‘) ai((Fi Vl - .Vk‘.),ak‘._*_l) -—> bil(Vlyail), e bik.‘(Vk,aaik,-)’
b. If the ¢-th CFG rule is a; -=> [t], the i-th DCG rule will be
a;i(Fy, air) --> [t].
For the sake of clarity, we maintain the types for the function variables Fy,..., F}, explicitly:
In 2a, the type of V; is a; and the type of F} is a;; — ... — @i, — @j(k;41)- It is important

to note that the function variables Fi,..., F,, as well as the type variables ;5,1 =1,...,n,
j=1,...,k; are free variables of the DCG, i.e., they are not universally quantified like the

variables V;.

3. Solve for the variables F; in the above DCG as follows.
E — ¢; done — false; 1 —1;
WHILE not done DO

a. Generate a set of new sentences se;;, 1 < j < k;, for some finite k; (selection strategy for
these sentences is omitted here). For each se,,, input from the user its semantic representation
n;j, a simply-typed term of type ¢;,.

b. Execute the goal s(M,t;;, se;;,[]), 1 < j < ki, using the constructed DCG of step 2. For
each se;;, let m;;, 1 < j < k;, be the computed answer for variable M.

c. E— EU{m;;=mn;; : 1 <5<k}

d. Call SOLVE(E), whose definition is given below. If successful, SOLVE nondetermin-
istically returns one of the multiple maximally general unifiers which are possible. Assign
done «— true if either unification fails, or unification succeeds and all sentences of the CFG
have been enumerated, or unification succeeds and the user accepts the resulting DCG after
replacing all variables F; in the DCG of step 2 according to one of the unifiers of £ and
reducing all A-terms to their normal forms.

e.t—1+4+1
END WHILE

4. If unification failed in step 3d, print “no solution”, else print the DCG found.

Procedure SOLVE(E)

Procedure SOLVE tries to solve the set of higher-order equations E by attempting to find substi-
tutions for the free function variables occurring in E.

1. F —~ E; F—{F :i=1...n} o — o (the empty substitution)



116 Proceedings of the 1992 A Prolog Workshop

2. WHILE E # ¢ DO

a. Select equation e = (€1, ez) from E, and call SUBST(e)—note that e; is flexible and e,
is rigid. If SUBST succeeds, it returns a substitution term t for the variable V at the head
position of e;. (Definition is SUBST is given below.)

b. ¢ — o{(V,t)} (composition of substitutions); £ — Eo. Reduce all terms in E and o to
their normal form.

c. E — DECOMP(FE) (definition of DECOMP is discussed below).
END WHILE

3. Return o | F (the restriction of o to the variables F').

Procedure SUBST(e)

Let e = {e1, e2)!, where

e1 = Aup ... AU (f s1 82 ... Sp),
€2 = Avp ... Av, (@ 1y 1o ... ty),

and the (simple) type of @ is completely known, say é; — ... — 8, — 3, but the type of f may not
be completely known—only the number of arguments of f would in general be known. Procedure
SUBST nondeterministically selects and returns an imitation or a projection substitution for the
head of ey, provided that the appropriate type constraints are met.

Imitation substitution: applicable only if @ is a constant

fe=Awy ... Awp (@ (hy wy ... wp) ... (hg w1 ... w,)), where the type of w; is ;, provided
the type of f can be unified with vy — ... — 7, — 3. Each new function variable h; is
assigned a type 71 — ... — 7, — &, fori =1.....¢.

Projection substitutions:

f = Awp.. Adwp.(w; (hy wy ... wp) ... (hpwy ... wy)), for each 1 < ¢ < p, provided the
type (i) of w; can be unified with ¢; — ... — ¢, — 3, and the type of f can be unified with
71 — ... — 7p — B. Each new function variable h, is assigned a type y; — ... — 7, — ¢,
fori=1,...,.L

While only one imitation substitution is possible, for projection substitutions, there is nondeter-
minism in the choice of w; as well as the choice of number of arguments, {. The latter arises because
the type v; of w; may not be completely known.

'If 5 has fewer prefix variables than ez, we assume ¢, is y-expanded so that they have the same number of prefix
variables. If it has more prefix variables than of €>. theu there is no unifving substitution.
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Procedure DECOMP(E)

E is a set of equations (or disagreement pairs). This procedure is similar to Huet’s SIMPL (Huet
1975), except that the types of function variables are determined as the structure of the terms is
recursively traversed. We omit presenting the details of this type propagation in this paper, since
the needed procedure is similar to that used in AProlog. Note that the right-hand sides of all
equations will be closed terms, with known (simple) types, hence this procedure plays a crucial role
in propagating type information.

3 Discussion of the Synthesis Technique

We clarify several facets of the synthesis procedure just described:

1. Compositionality: The compositionality principle is expressed in step 2 of procedure SYNTH
by assuming that, in a CFG rule a --> b;...b, the meaning of the nonterminal a is some
function F of the meanings of the nonterminals by ... by, where F' is expressible in the typed
A-calculus. When terminal symbols are present along with one or more nonterminals on the
rhs of a rule, our methodology assumes that the meaning is independent of these terminal
symbols; if the semantics of any such terminal [¢] is to be taken into account, it should be
replaced by a new nonterminal n, and a new rule n --> [t] added to the CFG.

2. Types: One of the crucial issues in this synthesis is the determination of types for the free
function variables. The lack of complete knowledge of these types in advance marks an
important point of departure from Huet’s procedure. While the unification procedure of
AProlog must also work with polymorphic types, a crucial difference in our work is that there
is an additional source of nondeterminism in procedure SUBST in enumerating projection
substitutions. In practice, the needed types tend not to be very complex, and therefore the
additional nondeterminism may not be a practical problem. Furthermore, since large DCGs
would be synthesized in a modular fashion, the number of unknown variables processed could
be kept reasonably small. It seems very reasonable to restrict the user-supplied semantic
representations to closed A-terms, in which case we only need a matching procedure, rather
than a unification procedure. When it is known that terms are of second-order type, we have
the pleasant property that there is a finite matching algorithm (Huet and Lang 78). Recently,
even third-order matching was also shown to be decidable (Dowek 92), although this decision
procedure cannot be directly used to generate matching substitions.

2. Termination: In step 3 of SYNTH, we incrementally generate a set of equations, where each
equation relates the user’s chosen semantic representation for a sentence and the semantic
representation that would be derived from the higher-order DCG for this sentence. There are
three possible outcomes in solving these equations: failure, success, and nontermination. In
case of failure, there is no higher-order DC'G satisfving the given semantic representations.
In case of successful unification and if the CFG generates a finite language, then successful
termination is achieved when all sentences have been enumerated. Since the unification
procedure is only recursively enumerable. the search may sometimes proceed indefinitely
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when there is no solution. If we restricted attention to matching, our problem would reduce
to general higher-order matching (beyond order 3), whose decidability is still unknown.

3. Multiple Solutions: Since the unification of typed A-terms could result in multiple maximally
general unifiers (i.e., most general unifiers do not always exist), multiple DCG solutions are
possible at any stage. We are currently examining criteria that the sample sentences must
satisfy so that a unique solution is produced, in the sense that the DCGs corresponding to
all other solutions exhibit the same input/output behavior.

4 Example

We illustrate the synthesis by “stepping through™ procedure SYNTH for a very simple example.
For readability, we indicate the types only selectively in this derivation.

(Step 1.) Assume the CFG is as follows:

s -=> pn, iv.

pn --> [shrdlu].
pn --> [eliza].
iv --> [runs].
iv --> [halts].

(Step 2.) The DCG resulting from step 2 would be as follows:

s((F1 A B)) --> pn(4),iv(B).
pn(F2) --> [shrdlu].

pn(F3) --> [eliza].

iv(F4) --> [runs].

iv(F5) --> [halts].

(Step 3a.) Using the CFG from step 1, the system generates the following sample sentences:
[shrdlu,runs], [eliza,runs], and [shrdlu, halts], for which the user provides the correspond-
ing semantic representations: (run shrdlu), (run eliza). and (halt shrdlu), where 7(run)
=1 — o0, 7(halt) = i — o, 7(shrdlu) = ¢, and 7(eliza) = .

(Step 3b.) Executing each of these sentences on the enhanced CFG (step 2), the following terms
are obtained: (F1 F2 F4), (F1 F3 F4), and (F1 F2 F5).

(Step 3c.) We obtain the following set of higher-order equations:

{(F1 F2 F4) = (run shrdlu),
(F1 F3 F4) = (run eliza),
(F1 F2 F5) = (halt shrdlu)}.

(Step 3d.) The above equation-set is passed on to procedure SOLVE, which in turn calls SUBST
to obtain a substitution for F1, since F1 is at the head position of the first equation—assumed to
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be the chosen equation. There is only one applicable imitation substitution, K\L\(run (H1 X L)),
since F1 has two arguments and run has one argument. However, this substitution fails to satisfy
the third equation. Hence, a projection substitution must be chosen. Since the type of F1 is
ay — az — o, the projection substitution must take two arguments. The simplest projection
substitutions in this case would be K\L\L or K\L\K, both of which would eventually lead to failure.

The substitution that eventually succeeds is:

F1 <- K\L\ (L (H1 K L))

Replacing all occurrences of F1 in the above equations with its substitution and simplifying
those terms using the A-conversion rules leads to the following set of equations:

(run shrdlu),
(run eliza),
(halt shrdlu)}

{(F4 (H1 F2 F4))
(F4 (H1 F3 F4))
(F5 (H1 F2 F5))

DECOMP has no effect in this case since the heads of all left-hand side terms are flexible. However,
as a result of the type constraints that come with the substitution term for F1, the type of F4,
namely, ag, is unified with ag — o, which in turn instantiates the type of F1 to a; — (a3 — o) — o.

Now F4 is the head of the first equation and SUBST is called to provide a substitution for it.
Since the type of F4 is az — o, the following imitation substitution is applicable:

F4 <- K\ (run (H2 K))

The type constraints that come with this substitution term imply that the type of the argument
(H2 K) of run is the same as the type of the corresponding argument of run in the right-hand side

terms, namely 1.
Replacing all occurrences of F4 by its substitution and reducing all terms to their normal form

results in the following set of equations:

(run shrdlu),
(run eliza),

{{zun (H2 (H1 F2 K\(run (H2 K)))))
(run (H2 (H1 F3 K\(run (H2 K)))))
(FS (H1 F2 F5)) = (halt shrdlu)}

Applying DECOMP to the above equation set we get:

{(H2 (H1 F2 K\(xrun (H2 K)))) shrdlu,
(H2 (H1 F3 K\(run (H2 K)))) = eliza,
(F5 (H1 F2 F5)) = (halt shrdlu)}

Next, SUBST may choose projection substitution K\K for H2 which transforms the equations
to:

{(H1 F2 run) shrdlu,
(H1 F3 run) eliza,
(F5 (H1 F2 F5)) = (halt shrdlu)}
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Again, DECOMP has no effect and we proceed to the next iteration of SOLVE. The next sub-
stitution chosen by SUBST should be the projection substitution K\L\K for H1, which would
yield:

{F2 shrdlu,
F3 eliza,
(F5 F2) = (halt shrdlu)}

This implies that both F2 and F3 are of type ¢, which implies H1 is of type ¢ — (i — 0) — i. Thisin
turn instantjates the type of H2 to ¢ — i, and the type of F4 to i — o. Therefore, F1 will have
type ¢ — (¢ — 0) — o. The obvious choice for F2 and F3 now is shrdlu and eliza, respectively,
which leaves only one equation:

{(F5 shrdlu) = (halt shrdlu)}
The type of F5 is easily inferred to be i — 0. F5 will be replaced by K\(halt (H3 K)):
{(H3 shrdlu) = (shrdlu)}

The projection substitution K\K for H3 completes the derivation. The final substitutions with
their types are:

F1: (i = (¢ = 0) — 0) = K\L\(L k)
F4: (t — 0) = run

H2: (i — i) = K\K

Hi: (¢ - (1 — o) — i) = K\L\K

F2: ¢ = shrdlu

F3:: = eliza

F5: (1 — 0) = halt

H3: (¢ — o) = K\K

(Step 4.) Substituting these in the grammar from step 2 yields the following higher-order DCG:

sC(K\L\(L K) A B)) --> pn(A),iv(B).
pn(shrdlu) --> [shrdlu].

pn(eliza) --> [eliza].

iv(run) --> [runs].

iv(halt) --> [halts].

5 Status and Further Work

An implementation of our synthesis procedure has been completed. Using this implementation, we
have successfully synthesized larger DCGs than the one shown in this paper, and we are examining
the synthe-is of a DCG for the natural query language of Chat-80 (Warren and Pereira 1982). There
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are several interesting theoretical and practical issues that we have not addressed here: enumeration
order for sample sentences and their effect on the synthesis; methodology for writing grammars and
semantic representations so that solutions can be efficiently found; constraints from different types
of grammars and semantic representations; efficient implementation of higher-order matching and
search control; and partial execution of the higher-order DCG, to convert it into a first-order DCG
for more efficient execution—we have explored this topic to some extent in (Haas 93).

The techniques needed to develop our proposed system can also lead to a new approach to
machine learning as well as program synthesis from examples, by combining higher-order unification
with learning from examples. The recent work of Hagiya (Hagiya 90, Hagiya 91) represents an
interesting step in this direction. Finally, we note that it appears possible to augment the input
CFG with parameters that specify context sensitive features such as number and gender agreement,
without affecting the scheme described in this paper. The restriction to unambiguous CFGs is
also not an absolute requirement, and it appears possible to extend our approach to ambiguous
grammars, which is crucial for general natural language applications.
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1 Abstract

Finding the most specific generalization of first-order terms is well understood, but the generaliza-
tion of higher-order terms remains unsolved. We provide a framework for the second-order case
by using a categorical structure for terms and identifying a class of useful generalizations called
relevant generalizations. We show that complete sets of maximally specific generalizations exist
and are computable. Such generalizations have an important application for proof modification in
automated proof systems.

2 Introduction

Automated proof development systems, including program verification systems, program construc-
tion systems, and program transformation systems [4, 10, 2, 15] face the problem of how to incor-
porate modifications. Having constructed a proof for a theorem (or, a program for a specification)
as a combination of manual and automated effort, we would certainly not wish to redo the entire
effort when the theorem is slightly modified. There is no great damage in redoing the automated
part of the proof, but redoing the manual part of the proof manually could be too cumbersome.
An ideal automated system should be able to compare the old and new theorems, keep track of the
differences, and apply the steps of the old proof to the new theorem as long as they are applicable.
We call such a system a replay system.

A fundamental problem in building replay systems is drawing analogies between the old and
new theorems. The problem can be restated in terms of anti-unification {14, 16]. Given two terms
t and u, find the most specific generalization g of the two terms together with the attendant
substitutions # : ¢ — ¢t and ¢ : ¢ — u. The triple (g,6,0), called the anti-unifier of ¢t and u,
contains the information necessary to relate the subterms of ¢ and u.

If t and u are first-order terms, their first-order anti-unifier can be computed using well-known
techniques {14, 16, 8]. However, in modern proof systems the formulas and terms involved are
higher-order 7, 11, 10, 4]. Secondly, even if the terms are first-order, the first-order anti-unifier
does not contain enough information to relate all corresponding subterms. For instance, if a formula
A is replaced by a conjunction A A B, the first-order anti-unifier gives the trivial generalization x,
loosing the information that A appears in both the formulas. Another common modification often
made is to add parameters to functions and predicates. However, the first-order anti-unifier of f(1)

'The work by Hasker was supported in part by a grant from Motorola Corp.
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and g(t,u) is again trivial. Thus, higher-order generalization is necessary to compute analogies in
a replay system.

Surprisingly, even though the first-order anti-unification algorithms has been known since [14,
16], its higher-order counterpart does not seem to have received attention. Recently, [12] gave
an algorithm for anti-unifiers for a special class of terms called patterns (terms restricted so that
only abstraction variables can appear as arguments of a free variable), but the general case is yet
unsolved. The pattern restriction precludes using such anti-unifiers in replay systems because it
generates nearly the same anti-unifier as in the first-order case. In fact, the difficulties in generalizing
higher-order terms while allowing for common subterms are considerable. While first-order terms
form a complete lattice with unifiers as infs and anti-unifiers as sups, higher-order terms do not
even posses infs. Huet’s [8] “algorithm” computes a complete set of minimal unifiers, but the set
can be infinite. For the opposite direction of upper bounds, we show that complete sets do not
exist, in general. In fact, we believe that the naive notion of “more general than” used in the
first-order case is not meaningful for higher-order terms.

In this paper, we consider the problem of generalization restricted to second-order terms. We
define the notion of generality using a categorical framework with substitutions as morphisms be-
tween terms. Complete sets of generalizations do not exist even in this setting, but we note that this
is due to certain trivial generalizations. By restricting attention to nontrivial generalizations (called
relevant generalizations), we find that complete sets exist and have interesting properties. We also
show that the complete sets are computable and give a semi-practical algorithm for computing
them.

3 Notation

We will generalize simply-typed A-terms [3]. If C = ¢, is the set of constants and V = @, V; the
variables, then a term is well-typed if it is consistent with the rules

CGCT ”Ce‘:r

c: T T:T
t:r—7 w:t PR I A o

tu:t’ et — 1

We use the convention that constants are set in type and variables in italics. We assume all terms
are well-typed.
The order of a type 7 is defined as

order(D;) = 1
order(r — ') = max(1 + order(7),order(7’))

The order of a term is just the order of its type. In this paper, we assume all terms are first or
second-order, so all constants are in Cp,_... _p, and all variables in Vp, . _p  forn,m > 1.

We assume the usual a, 3, and 5 conversion rules. All equivalences between A-terms and
substitutions over A-terms are assumed to be modulo A-conversion. Application associates to the
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left and — to the right; parentheses are often dropped when they are not needed. By the Church-
Rosser and strong normalization properties of typed A-calculus (see, e.g, [5]), every term of type
D, —...— D, — D,y can be written in the form?

AT1. AT - Az hugug .. Uy

where each z; is distinct, h € C, U V;, and each u; is in normal form. We call h the head and @
the arguments. Following [8], we say that a term is flexible if its head is a free variable and rigid
otherwise (i.e, if it is a constant or a bound variable). We will abbreviate terms in normal form
as Azy -+ Tn.h(u1,...,uy) or even as AZ,.h(T, ) where T, denotes the sequence rq,...,z,. If nis
0, then T3 is the empty sequence, and if n is arbitrary (but finite) we denote the sequence as just
T. The identity function Az.z is abbreviated as 7 and the general projection function AT;.xi as
7. The set of free variables in the term t is FV(t), and the set of bound variables is BY(t). The
context of u in ¢ is denoted t[u] or alternatively as t{a — u] if its position is relevant.

A substitution € is a finite map from variables to type-equivalent terms with the domain de-
noted as dom(#) and free variables in the range as ran(f). ;; denotes the identity substitution.
Application of 8 onto term ¢ is variously denoted by 6(¢) and 6 : ¢t — u (where u = 6(t)). The
composition of two substitutions is defined as 8 o o0 = At.8(co(t)). To make substitutions easier to
read, we will often leave the variables being bound implicit: if the substitution 6 is being applied
to term u, we may write it as [6(z1),....60(z,)] where {(a1,...,2,) are the free variables listed in
the order they occur when reading v from left to right.

4 The category of generalizations

First-order generalizations can be compared using the preorder v < v <= 36.0 : v — u. This
ordering is adequate because the substitution is unique, but in the higher-order case it often is not.
Category theory provides a framework which supports distinguishing between substitutions.

In this section we examine the category of terms show that it is inadequate. This leads to the
category of generalizations and a discussion of its inadequacies.

Definition 4.1 Given a type 7, the category T, has as objects terms of type 7. The arrows of
T, are given by substitutions 8 : ¢ — u« such that dom(8) = FV(t), ran(0) = FV(u), and 0(t) = u.
The composition is substitution composition and the identity arrows are identity substitutions.

We often leave the type subscript 7 implicit. When 8 : t — u we say that t is more general than u
(or conversely, u is more specific than t). But, # indicates in what way ¢ is more general than u.
For first-order terms, T is a preorder; i.e, there is at most one substitution between any two terms.
For second-order terms, this is not the case; for example,

[Az.g(z,a)] and [Az.g(z,2)]: fa — g(a,a)

That is, for the second order case, a term may generalize another in multiple ways. This is the
motivation for considering categories instead of preorders.

?Note that such forms are in normal form with respect to 3, but not 7.
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Definition 4.2 If a € T is a term, the category G(a)—of generalizations of a—has as its objects
substitutions § : t — a for t € T. A (generalization) morphism p: (61 : t; — a) — (02 : 12 — a) is
a substitution p : t; — t2 such that the following triangle commutes:

)

tp———+a

ty
(G(a) is often called the “slice category” T,/a.)?
This definition can be extended to generalizations of multiple terms. We show the binary case:

Definition 4.3 If aj,a; € T, the category G(ai,a2) has as its objects pairs of substitutions
(8 :t — a1,02 : t — a3). A morphism

pi(fy:t—a1,6:t—ag) — (07:u— ay,00:u — ag)

is a substitution p : ¢ — w that is a generalization morphism in both G(¢;) and G(az). That is,
the following diagram commutes:

a1 02

0, 62
t

As an aside, note that G{a;,a;) is the pullback G(e;) X1 G(az) in Cat. That is, if src is the
forgetful functor, the diagram

T2
G(ay,ay) — Glay)

™ sre

src

G(ay) T,

commutes.

3Note that T, can itself be treated as a slice categorv Type/r where Type is the category of types [9, 6].
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Examples 4.4 The following examples illustrate that generalizations which include common sub-

Dc (o] hec E] Ec
hc

These generalizations are not isomorphic because the only substitution from hc to z, {h — Ay.z},
is not a generalization morphism. In comparison, [12] disallows the more specific of the two gener-
alizations because hc is not a valid pattern. The only generalization meeting the pattern restriction
is ([Dc] : ¢ — Dc, [Ec] : @ — Ec), thus patterns do not capture common subterms.

terms are more specific:

Az.P(z) AQ(z) [A] Az f(P(2).Q(2)) Vi Az.P(z)V Q(z)

Ayz. f(y.Q(z
AR v ae)

[Ayz.y AQ(2)]
Ar.g(P(z), )
These are not isomorphic because there is no substitution from Az.f(P(z),Q(z)) to Az.g(P(z), ).

Examples 4.5 It is also instructive to examine generalizations which are unrelated by morphisms.
The first illustrates that for two generalizations to be related, subterms must be used consistently:

[Az.D(z,b)]: fa — D(a,b) and [Az.D(a,z)]:gb — D(a,b)

These are unrelated because any generalization morphism would have to eliminate the a (from
fa) or b (from gb). The second example illustrates that different substitutions give rise to unique

generalizations:
[Azy.E(z,z,y)] : Az.f(z,2) — Az.E(z, 2, 2)

[Aey E(y,z,x)]: Az.9(z,2) — Az.E(z, 2, 2)

These are unrelated because the substitutions project distinct arguments.

Two generalizations g1 and g, are isomorphic, written ¢; = ¢, if there are p : g1 — g2 and
Pop : g2 — ¢1 such that pop,, = 0,4 = p,, 0 p. We can show that isomorphisms are renamings.

Definition 4.6 ([12]) 0 is a renaming iff for all f € dom(8), 6(f) = AT.h(z’) where h is a variable
and 2’ is a permutation of T.

Lemma 4.7 g1 = g2 by p: 91 — 92 and p,, : g2 — g1 iff p and p,,, are renamings.

This follows from the observation that whenever 8(a(f)) = f and o(f) = AT.t, t must be flexible
and all z; € T occur in t.
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Observation 4.8 ([a] : f — a) is initial in G(a).

This is because there is only one substitution between AZ.f(Z) and any term. Since ;4 is a left
identity,

Observation 4.9 0;; : a — a is terminal in G(a).

However, the morphisms of G(a) are not always unique:
Example 4.10

[7]

Az.h(z) ——— Az.2

[h, 7], or
(7, h] [m, 7]

Az f(g(z))

Another difficulty is that G is not well-behaved with respect to maximal objects. Ideally, the
maximally specific generalizations of any two terms « and b would be the maximal objects of G(a, b).
However, the maximal objects are often undefined. The following examples show that the sources
of maximal objects have unbounded depth and width. We also show that the arbitrarily large terms
are not isomorphic to smaller terms, thus defining maximal objects up to an isomorphism would
not be sufficient.

Example 4.11 Consider G(Da,Eb), where ¢ and b are arbitrary terms:

2 1 2
e D7l e
[Do wf] fod [Eo 71’%]
hia,b)

Note that the two generalizations are not isomorphic because there is no generalization morphism
in the opposite direction. If p was such a morphism. then head(p(f)) = h or p(f) = 7, but neither
choice allows both sides to commute simultaneously. Similarly, ¢ can be mapped to f’ o ¢’ and so
on. A generalization morphism in the opposite direction can be found after a few repetitions of the
pattern, but the generalizations remain nonisomorphic.

Example 4.12 G(c,d) contains

72 72
o eae (73

Dayz. f(r. )] |[[Ary.gla,y,e)]
(2] 73]

fle.d)
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Again, these are not isomorphic. This example can also be generalized to an arbitrary number of
subterms in place of e. A similar situation occurs when bound variables are repeated arbitrarily
often:

Example 4.13 G(Az.Dz,Az.Ez) contains

A .D Auvw.Ew
Az.Dz [Puvw.Duj Az.g(z,z, ) [ ] Az.Ex

Avwvw. flu,w Auv.g(u,u,v
[Auv.Du] [ JCwwell | o L [Auv.Ev]

Az. fla.x)

5 Relevant generalizations

These examples show that while G may be more a suitable category in which to find maximal
generalizations than T, it is not ideal. We can improve on G by restricting attention to only those
generalizations which are relevant, where relevance means that each subterm is useful in forming
the generalization. In particular, the following definitions permit variables only when they are
necessary and permit rigid subterms only when they are actually used.

Example 4.11 suggests disallowing nested flexible subterms. We use the following definitions:

Definition 5.1 A generalization 6 : t — a is said to be redundant if t has a subterm of the form
f(...,g(...),...) and 6(f) # f or 8(g) # g. We say that a generalization is condensed if it is not
redundant.

A variable in a condensed generalization must occur either at the outermost position or as an
argument of a constant. This bounds the depth of terms.

Examples 4.12 and 4.13 illustrate that we must limit the number of times subterms can appear.
The solution is to disallow most substitutions which eliminate subterms.

Definition 5.2 A substitution 6 : t{f(%)] — « is said to eliminate ui if 8(f) = AT.M and zj does
not occur in M.

That is, a subterm of f(%) is eliminated if 6(f) is independent of the corresponding abstraction.
This is a generalization of the definition of elimination introduced in [13].

Definition 5.3 A subterm wu; of t{H(@)] is uneliminable if
. ur € BV(t), or
. up € BY(t) and up = up for k' # k.

Definition 5.4 A generalization § : t — a in G(a) is cluttered if for some f € dom(8), 6(f)
eliminates an uneliminable subterm.
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By disallowing cluttered generalizations, we bound the width of terms. However, some general-
izations which eliminate bound variables are allowed so that Azy.z and Azy.y can be generalized

(using Azy.f(z,y))-

Definition 5.5 A generalization g € G(a) is said to be relevant if it is condensed and not cluttered.
Let R(a) be the full subcategory of G(a) consisting of relevant generalizations. Similarly, let R(a, b)
be the full subcategory of G(a,b) consisting of pairs of relevant generalizations.

Examples 5.6 The following generalizations are irrelevant:

Az.last(rev(z)) Az.head(2)
\ / This is redundant because of the
[last,rev] [7.head] bindings of f and g.
Az.fg(z))
append(x,1) cons(x.1)

This is cluttered because the sub-
[Az.append(x, 1)] term cons(x,1) is not eliminable.

g(cons(x,1))

Az.zerop(z Az.z =2

This is cluttered because z is not
[zerop o 7¥] eliminable.

Az.f(z, )
If we ignore renamings,
Lemma 5.7 R(a) is finite.

This is because the number of constants is limited by the size of @, which limits the number of free
variables (since each must be separated by a constant), and the sum of the two limits the number
of bound variables. Since R(a,b) contains onlyv pairs of objects from both R(a) and R(b),

Corollary 5.8 R(a,b) is finite.

Since the most specific generalization may not be unique, we define the set of maximally specific
generalizations:

Definition 5.9 MSG(a, b) is the least set of generalizations in R(a, b) such that Vg € R(a,b),3g"' €
MSG(a,b) such that g — ¢’ (up to an isomorphism).
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Note that the least set exists because if ¢ — ¢} and g — g5 where g; < g3, then g} and g are
isomorphic by Lemma 4.7.

Examples 5.10 Some maximal (relevant) generalizations:

Az.len(nodes(z)) Az.len(fringe(z))

This is maximally specific
. because len is the only
[nodes] [fringe] common constant.

Az.len( f(z))

sqr(2) sqr(sqr(2))
This illustrates how mul-
tiple maximal objects can
[7] (sq1] arise when there are dif-

ferent possible pairings.
f(sqr(2)) or sqr(g(2))

Az.z + 2z +C(2) Az.x = C(2)* x — C(2) Different ways of instan-
tiating can also lead to
multiple generalizations.

[Aabc.a+ b+ ] [Aabc.a—cxb—C(2)] OT Note that there are more

[Aabe.a=cxb=c] generalizations as well.

Az.f(z,2,C(2))

5.1 Properties of R

G is not a preorder because its morphisms are not always unique. In this section, we show that
R is a preorder. This property is interesting in itself and also helps in showing the correctness of
our algorithm to compute the complete set of most specific generalizations. All the results of this
section extend to the binary case (and multiple term cases) because the morphisms of R(a,b) are

a subset of the morphisms of R(a) and R(b).

Lemma 5.11 Whenever g1, g2 € R(a) and p: g1 — g2, p: s7c(g1) — src(gz) is relevant.

Proof Let g1 be 81 : ¢} — a and ¢gp be 6, : to — a. If p: t; — {; is not relevant, p eliminates a
subterm w of t;. But then 6, o p eliminates w; this contradicts 6; 0 p = ;. O

Theorem 5.12 R(a) is a preorder.
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We need to show that there is at most one morphism between any two generalizations.* Consider

the commutative diagram
g

U ——mm a

pi| |P2

t[f(w)]
in R(a) and let f() be the outermost subterm of ¢ such that f is a free variable and p;( f) # p2(f).
Observe that since p; : ¢t — u and py : t — w are relevant, there is at least one occurrence of p;( f(@))
and po(f(@)) in u. Also observe that this occurrence must be the same for both p; and p; since
f is the outermost variable for which p; and p; differ. Call this occurrence u'. The key lemma for
showing that f does not exist is

Lemma 5.13 If p1(f) = #7, then po( f) = 7.
Proof Since p; :t — u is relevant, each @ other than w; must be eliminable, so they are all
projections different from each other and different from w,. There are three cases:

1. head(w;) is a constant: w; is uneliminable, so po( f) = 7]
2. head(w;) is a free variable: this case is impossible because p; : t — a is condensed.

3. w; € BV(1): v’ = w;, so since there is no other w, = w;, p2(f) = 7.

This along with the existence of a u' = p1(f(T)) gives us

Lemma 5.14 head(pi(f)) = head(pa(f)).

Proof of 5.12 We show p,(f) = p2(f). Suppose pi(f) = AT.K (M) for some constant K. Then
p2(f) is AZ.K(N) by Lemma 5.14, and we use induction on the depth of substitutions (using a
multiset ordering) to show M = N by constructing the commutative diagram

g

*Note that renamings are not allowed.
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in R(a) such that p; = p} o ¢ and p; = p} o ¢. The following function is used to ensure §' : v — a
is relevant:

Definition 5.15

projected(Ty,t) =
the (z;,,...,z; ) such that each z;, € {7z}, all jk < jk41, and z;, occursin t
Then let
0(f) = XT,.K(P)

v; = projected(T,, AM;) U projected(T;, N;)

¢ = {f — AT W (b (). ..., hm(’/m))}

p’l = M \ fU {h] — A My, .o hyy — /\l/m.Mm}

p’2 = pz\fU{h.lb—/\lll.]\frl,...,hml—-/\l/m.Nm}

01 = H\fu{hl+—/\1/1.P1,...,hm»—>/\um.Pm}

(where each h,, is a free variable occurring nowhere else). Note that projected(Z, P;) must be a
subsequence of v; since o cannot introduce abstractions. Furthermore, if N; eliminates z; in v;,
then w; is eliminable. This is because if z; does not appear in N;, it must be eliminated by o from
M;, so it must be in the scope of a free variable f” in M;. Since 0 : v — a is uncluttered and w; is
eliminated by o(f”), w; must be eliminable. Thus ¢’ : v — a is relevant and we can use induction
to show p}(f) = ph(f):

A similar argument is used when the head of both pi(f) and py(f) is a free variable, g, except
that the details must be modified to ensure ' : v — a is condensed. Observe that the arguments to g
must be rigid terms (unless p1(f) = f and py(g) = ¢, in which case p2(f) = f and p2(¢) = g because
p2 : v — u is relevant). Thus pi(f) = AT5.9(M,,) and po(f) = XZ7.9(N,.) where M; = Gi(Tip
and N; = H;(Sig,). We first show that for each k, Hy = Gy. Since cop; = 6 = 0o po,
o(go{...,Gk,...)) = o(go(...,H....)) and so o(G}) = o(Hy). Thus Gy = H} since both are
rigid.

We use induction to show that the rest of pi(f) and po(f) are the same. Assuming 6(f) is
AT g(H1(r 5o 5T p )s e oos Hin(Th 1o a7y )), let

N
™, Pm

Vi projected(T,, r;,) U projected (T, s, ;)
¢ = {f—ATn.g(Hi(h110n1), o hap (1 p,)),. .o,

Hm(h'm,l(’/m.l Joonn, hm,pm(l/m,pm)))}

pi = p\fU{hi1— Ayirige. ... L e
Py = p2\ fFU{hi1— Anasia, oo Rompn — Amop -Smopm |
v o= ¢(1)
¢ = 0\ fufhi1~— AVLLTY gy ey R, — AV pon o o }
Again p| = p} by induction, hence p; = ps. O

Since morphisms are unique and #;; is a morphism from anyv generalization to itself,
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Corollary 5.16 R(a) is a partial order.
This allows us to introduce the following notation:

Definition 5.17 Whenever ¢g; — g2 is in R(a), we say g; is less specific (or, equivalently, more
general) than go. This is written as ¢; < gp. Furthermore, we write g; < g2 if go — ¢; is not in
R(a). '

6 Computing MSG

R(a,b) is finite, so since second-order matching is decidable and A-terms are recursively enumerable,
we can compute MSG(a,b) by generating R(a,b) and comparing all its objects against each other.
Thus, MSG(e, b) is computable, albeit inefficiently. A more practical algorithm is suggested by the
observation that when the substitutions contain a common subterm, then they can be made more
specific by factoring out the common term.

The steps for specializing generalizations of ¢ and b are given by the following rewrite relation
—. The algorithm is restricted to generalizing ground terms; non-ground terms can be handled
by “freezing” the variables; that is, replacing them by unique constants. The — steps maintain

the invariants
6 :t—a

02 t—b

(6, :t — a, 0 :t — b) is relevant

ifg1 — g2, 91 < g2
To compute MSG(a,b), we start with the initial object of R(a,b) and continue specializing the
generalization until no — step is applicable. To simplify the notation, we represent each general-
ization (6, : t — a, 0, : t — b) by the triple (¢, 8, 02).

Delete-variable Variables with the same binding in both substitutions can be removed:

(4,6, U{f — M},6,U{f — M} — ({f— M}1),61,65)

Merge Likewise, variables with the same bindings within each substitution can be merged:

(t, {{g— f}(t),
QU{f— Mg M), — 6 U{fr M),
02U{f>->]\7,g+—-]\"}> 02U{f"—‘N})

Delete-abstraction Subterms which are not projected by either substitution can be eliminated:

(t, {f = Az=7.f(Z,9)}(1),
U{f— \TzgM}. — 6, U {f — ATg.M },
O, U{f — AZzg.N}) G, U{f — ATg.N})

where z does not occur in either M or N.
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Factor-constant Constants that appear in both substitutions can be factored. This step is
complicated because it must introduce new function variables for generalizing the subterms and it
must not create cluttered terms.

({f = AT fI(K(h1(n1),-- -, hn(vn)), w0)}(2),

(t, 6, U{f — Azvrg.M[Va € &,a < 2|,
01 U {f — )\Tﬁl[lf(ﬁ)]}, _— h] g /\V].ul, ey h? — )\un.un},
62 U{f = XZ.N[K(v)]}) B2 U{f' — Azo.N[VB € 8,8 < z],

h] — /\1/1.1)1, ey hn — /\Vn.'l)n})

where

K 1s a constant,

n  is the arity of I,

h; occurs no where else (for 1 < ¢ < n),

& is a nonempty subset of the positions at which K(@) occurs in M,

,@ is a nonempty subset of the positions at which K(7) occurs in N,

vo = projected(T,M[Va € &,a — z])U projected(T, N[V € B,8 — z])
(see Definition 5.15 for projected), and

vy = projected(T,u;) U projected(T, vy ).

If the new 61 or 8 of some hy (or f') would eliminate an uneliminable subterm, then this step is
not applicable (with the chosen & and 3) because it would form a cluttered generalization.

Factor-abstraction Repeated bound variables can be factored in much the same way as con-
stants except that there is no need to introduce new free variables:

(t, {f — AT.f'(2,.T)}(1),
brU{f = ATM[z)]}, — OHU{f — AT MNa€é ,a2]},
6, U{f — AT.N[z,]}) G, U{f — AzT.N|VB € 3,0 — z]})

where z; is in 7, x; occurs in at least one other position in both M and N, and & and B are proper,
nonempty subsets of the positions at which z; occurs. (& and 8 must be proper subsets so that the
new generalization is not cluttered.)

Using —, the set MSG can be computed by gen defined as

gen(a,0) = {g](f.lal.[) —" g. and Fg'g — g’}

where —* is the transitive closure of —.

This algorithm is expensive because it requires exponential time and recomputes the same
generalizations in different ways. Furthermore, some pairs of terms have an exponential number of
generalizations, so there is no polynomial-time algorithm based on the size of the input. It is not
yet clear if a polynomial-time algorithm exists based on the number of generalizations.

The proof this algorithm’s correctness depends upon showing that the set of — rules completely
specifies when one generalization is strictly less instantiated than another. First we give some
lemmas:
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Lemma 6.1 If g; € R(a,b) and g1 — g2, then g2 € R(a,b).

Lemma 6.2 Whenever g3, g, € R(a,b) and g, — ¢2, 1 < 92.

Proof Observe that each step is of the form (t,6,,60,) — (p(t), 8}, 65) where p is a generalization
morphism. This shows g; < g2. Furthermore, p is not a renaming substitution, so by Theorem 5.12
there is no pop, : g2 — 1. O

Finally, we show that — steps do not reduce the number of possible generalizations. That is,
given a specific generalization, the set of — steps completely covers all maximal generalizations
which are more instantiated than the given one.

Lemma 6.3 Whenever g, € MSG(a,b), g: € R(a.b). and g; < g, there is a g, € R(a,b) and a
gy = gi, such that ¢; — g, and g, < g,.
Proof Assume

gt = <012t—(L, 021—’1))
gu = {o1:u—a, op:u—0Db)

(61:v—a, ¢ : v —b)

i~
<
I

Then the following diagram illustrates this lemma:

3]

a3

U

61

Pt

t

Choose an f € domp, such that p,(f) is not a renaming substitution unless all substitutions are
renamings. Let

b2(f) = AyN

Furthermore, assume that if A\T.H (@) is a renaming substitution, then H € domp, and p,(H) = H.
Observe that such an f exists because g; < ¢g,. We will show that for any AZ.H (W), there is a —-
step which generates an appropriate ¢,. In most cases. we only identify which step is applicable;
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refer to the algorithm for the details of constructing g, and p,. Note that if there is a step to create
gu, then g, € R(a,b) by Lemma 6.1.
There are three cases based on the form of H.

1. Hisz;in T: 61(f) = ¢1(pu(f)) = mi = ¢2(pu(f)) = 62 f), so Delete-variable is applicable.

2. H is a constant K: head(6,) = head(¢1(p,(f))) = K = head(d2(p,(f))) = head(8;), so
Factor-constant is applicable.

3. H is a free variable (say ¢): Since we are only interested in finding an isomorphism of g, we
can reorder the arguments to g as ¢(®y,.... &g Wiyr,- .., Wn) (With corresponding reorderings
to ¢1(g) and ¢2(g)) such that & is the smallest integer for which wi41 # Tg41.

If £ = n, then 61(f) = é1(pu(f)) = #1(g) and by assumption 61(g) = ¢1(pu(g)) = #1(9)-
Thus 6,(f) = 01(g). Likewise, 02( f) = 62(¢g). Hence the Merge step is applicable.

If £ < n, then there are four cases depending upon the form of wy4q:

(a) wg4q is flexible: this would make g, redundant, a contradiction.

(b) wgy1 = x; for ¢ < k: y; occurs more than once in both M and N and so a Factor-
abstraction step is applicable. Pick & and 3 such that the occurrences of y; in o;(f”)
and oy(f’) match those in ¢1(g) and ¢;(g).

(¢) wgyy = zi for ¢ > k + 1: yi4q does not occur in either M or N and so a Delete-
abstraction step is applicable.

(d) w41 = IK'(3) where I\ is a constant: because g, is not cluttered, &' must occur in both
M and N, thus a Factor-constant step is applicable. Again, pick & and 3 such that
the occurrences of " in o1(f') and o2( f’) match those in ¢1(g) and ¢2(g).

Theorem 6.4 (Soundness) If g € gen(a,b), then g € MSG(a,b).
Proof By Lemmas 6.1 and 6.2, if g € gen(a,b) then g € R(a,b). g is maximal by Lemma 6.3. O

Theorem 6.5 (Completeness) If g is in MSG(a, d). then there is a generalization ¢’ in gen(a,b)
which is isomorphic to g.

Proof By Observation 4.8, we know that go is less specific than any generalization of @ and b, so
by Lemma 6.3 we know that for any ¢ there is a sequence of — steps from g to some ¢’ isomorphic
to g. This sequence is finite because < is well-founded and ¢g; — ¢, implies ¢; < g2. O
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7 Conclusion

We provide a framework for unsolved problem of generalizing second-order terms. Our solution is
based on viewing the structure of terms as a category rather than a partial order. The categorical
view allows us to capture how one term generalizes another, which is not possible in the conventional

structure of complete lattices [14, 16].
Second-order generalization seems eminently useful for generalizing first-order terms in a useful
fashion. For instance, A and A A B have the maximal generalization

([x]: f(A) — A, [Az.z AB]: f(A) — AAB)

showing that A is replaced by a conjunction in going to A A B. This information is lost in the
corresponding first-order most specific generalization. Similarly, going to third and higher orders
would improve the quality of generalization. More importantly, base terms of higher orders also
necessitate going to higher orders. We intend to pursue this in future work.
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Abstract

Writing algebraic specifications that are to be executed as rewrite systems is similar to functional
programming. There are some differences, however. Algebraic specification languages allow left-
hand sides of equations to be complex first-order patterns that would not be allowed in functional
languages. Functional languages, on the other hand, have powerful higher-order features not of-
fered by algebraic specification languages. Some functional languages combine higher-order func-
tions with linear first-order patterns involving free data type constructors, thus offering a limited
(but highly expressive) mixture of functional programming and algebraic specification. A more
ambitious integration of the two is obtained by allowing both signatures and equations in algebraic
specifications to be higher-order. Operational experiments with such higher-order algebraic specifi-
cations can be performed by translating them to AProlog, an extension of Prolog to polymorphically
typed A-terms based on higher-order unification.

1 Introduction

1.1 Higher-order algebraic specifications

Conventional algebraic data type specifications consist of a first-order signature and a set of equa-
tions. Equations may contain first-order variables, which are implicitly or explicitly universally
quantified. The signature defines the abstract syntax of a language of terms whose semantics is
given by the equations. Such specifications are usually implemented by interpreting them as (first-
order) term rewriting systems (see the survey by Klop [13]). Each equation is interpreted as a
left-to-right rewrite rule and the resulting rewrite system is used to evaluate terms by reducing
them to normal form (if any). The annoying fact that this asymmetric interpretation of inherently
symmetric equations may lead to rewrite systems that are incomplete with respect to equational
deduction from the original specification does not concern us here.

Writing algebraic specifications that are to be executed as rewrite systems is similar to functional
programming. There are some differences, however. Algebraic specification languages allow left-

1Supported in part by the European Communities under ESPRIT project 2177 (Generation of Interactive Pro-
gramming Environments 1I—GIPE II).
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hand sides of equations to be complex first-order patterns that would not be allowed in functional
languages. Functional languages, on the other hand, have powerful higher-order features not offered
by algebraic specification languages.

Some functional languages (e.g., Hope [1, 2]) combine higher-order functions with linear first-
order patterns involving free data type constructors, thus offering a limited (but highly expressive)
mixture of functional programming and algebraic specification. A more ambitious integration of the
two is obtained by allowing both signatures and equations in algebraic specifications to be higher-
order. The higher-order signature defines the abstract syntax of a language of typed A-terms whose
semantics is given by the equations. Parsaye-Ghomi has been one of the first to study this approach
(21]. :
More recently, Jouannaud and Okada {12] have advocated the development and implementation
of higher-order algebraic specification languages and, having frequently felt the need for higher-
order equations in algebraic specifications ourselves, we thought it would be interesting to be
able to perform operational experiments with them. Higher-order term rewriting requires, first
of all, higher-order matching, which is the special case of higher-order unification in which one of
the terms involved does not contain free variables. Two readily available systems incorporating
higher-order unification are AProlog [20], an extension of Prolog to typed A-terms, and the generic
theorem prover Isabelle [22]. Since we had some experience with schemes for translating first-order
algebraic specifications to Prolog (see the surveys by Drosten [7] and Bouma and Walters [4]), we
chose AProlog as our target system.

It would be nice if the notion of initial algebra specification, which has unequivocal meaning
in the first-order case [16], had an equally unequivocal higher-order analogue. This does not seem
to be the case, however, since it depends on the precise notion of higher-order model one prefers.
Meinke and Méller, for instance, assume models to be extensional higher-order algebras [15, 18], and
Meinke shows that in this setting higher-order initial algebra specification is strictly more powerful
than its first-order counterpart [14]. Poigné, on the other hand, considers both extensional and
intensional models [23]. Although these questions are beyond our present scope, the precise notion
of initial algebra semantics adopted affects the degree of incompleteness of our implementation
scheme.

1.2 Higher-order term rewriting

Higher-order term rewriting, the mechanism we use to execute higher-order algebraic specifications,
is more powerful, but also less manageable than its first-order counterpart. The following examples
illustrate some of its possibilities and problems.

I. Consider the signature

sorts s, bool

functions
a:s
f,g:8—s
if:bool X s Xxs— s
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IL

variables
X,Y:s
F : s — s (second-order variable)

B, B’ : bool
and the second-order equation
if(B, F(X), F(Y)) = F(if(B,X,Y)). (1)
The left-hand side of (1) matches
if(B". g(f()). g(f( f(a))))

in three different ways, namely, for

F=AVg(f(V)) X=ua Y = f(a) B=5H
F=MgV) X=fa) Y=f(fla)) B=H
F= V.V X = g(fla)) Y =g(f(f(a)) B=B.

Thus, whereas a first-order match has at most a single solution, a higher-order match may
have many. It may even have solutions that leave some of the variables in the left-hand side of
the rewrite rule uninstantiated, something that cannot happen in the first-order case either.
For instance, the left-hand side of (1) matches

if(B'.a,a)

for
F=)MN2W¢ X=X Y=Y B=F
F=AM2WYVY X=a Y=a B=PFH.

The first solution leaves X and Y uninstantiated. If (1) is interpreted as a left-to-right rewrite
rule, this is no problem since both variables are eliminated by S-reduction after substitution
of the solution in the right-hand side:

. 1 - B

if(B.a.a) 2 v, x.v) 2 a
A solution instantiating F' to AV.V exists for any i f-term and is, at least in this case, alge-
braically harmless. The danger of non-termination it entails can be averted by adopting a
parallel reduction strategy treating all solutions on an equal basis, or by a simple loop check.
For reasons of efficiency we have chosen the latter alternative.

Consider the second-order equations

map(F.nil) = nil (2)

map{ F,cons(X,L)) = cons(F(X),map(F,L)) (3)
map(A\V.V.L) = L (4)
map(F,map(G. L)) = map(AV.F(G(V)). L) (5)

with the signature from example (I) plus the additional declarations
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sort [st
functions
nil : st
cons : 8 X lst — lst
map : (s — s) X Ist — lst
variables
X, V:s
L:lst
F,G : s — s (second-order variables).

Equations (2) and (3) define the map-function for the basic list constructor cases. They
could have been written in virtually the same way in Hope [1, Chapter 6]. Equations (4) and
(5) are plausible identities for the map-function. These would not be allowed in Hope since
their left-hand sides involve arguments AV.V and map(G, L) which are not constructor terms.
From the viewpoint of higher-order matching these are harmless, however.

Although it did not happen in example (I), variables in the left-hand side of a higher-order
rewrite rule that are left uninstantiated after matching may enter the reduct. We borrow the
following example from Nipkow’s paper on higher-order critical pairs [19]. The rewrite rule

f(g(F(X), F(a))) — f(X)

can be applied to the term f(g(a,a)) in two ways, one of which instantiates F to AV.a and
leaves X uninstantiated, thus yielding the result f(X).

To get rid of this problem and to eliminate ambiguous rules such as (1), Nipkow (following
Miller [17]) restricts left-hand sides of rules to so-called higher-order patterns (HOPs). A
HOP is a term in #-normal form such that each free variable occurring in it is applied only
to (zero or more) terms that are n-equivalent to distinct bound variables. The left-hand sides
of equations (2)-(5) are HOPs, but the left-hand side of (1) is not since it contains a free
variable F whose argument X is not a bound variable. Jouannaud and Okada’s notion of
general schema [12, Section 4.4] does not include equation (1) either.

To leave as much room for experiment as possible, we do not impose any a priori restriction,
but equations that may cause uninstantiated variables to enter the reduct are not necessarily
treated correctly by our AProlog code and should be avoided.

Whereas first-order term rewriting requires subterm matching, higher-order rewriting can do
without explicit subterm lookup if each equation ¢; = ¢; is extended to H(t;) = H(tz) with H
a polymorphic higher-order variable not free in 7; or 2. In this case, higher-order matching of
the extended left-hand side with the full input term performs the subterm lookup implicitly.
Like before, useless instantiations of / to AX.s, where s does not contain X, can be rejected
by a simple loop check. The matching strategv used does not matter as long as the rewrite
system is confluent and terminating (apart from the trivial loops caught by the loop check).
This approach is used in Section 2.1. Tactics for higher-order rewriting are discussed by Felty

8.
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1.3 AProlog

AProlog is an extension of Prolog to typed A-terms [20]. Basically, the functions declared in a
AProlog program generate a domain of polymorphically typed A-terms, and polymorphic higher-
order unification takes the place of first-order unification in the proof procedure.

Since A-terms may be subject to a-, 8-, and 7-reduction, the term domain underlying a AProlog
program is not purely syntactic. Furthermore, unlike first-order unification, higher-order unification
is neither decidable nor unitary. As a consequence, in AProlog backtracking to an alternative unifier
of the same pair of terms may occur and the search for a higher-order unifier may go on forever.

Higher-order matching, the special case of higher-order unification we need, was conjectured to
be decidable in the simply typed case (no polymorphism) by Huet [11], but this is still an open
problem. The third-order case was recently shown to be decidable by Dowek [5]. On the other
hand, Dowek also showed that strongly polymorphic higher-order matching is undecidable [6].
AProlog supports ML-style polymorphism. so we included it in our notion of higher-order algebraic
specification as well, in accordance with Parsaye-Ghomi’s original proposal [21]. As far as we know,
the “intermediate” case of higher-order matching in combination with ML-style polymorphism has
not yet been settled, so it may still turn out to be decidable. In the version of AProlog we used?
the implementation of polymorphic higher-order unification was incomplete and this caused some
problems. These will be explained in due course. Examples of higher-order matches with multiple
solutions, none of them subsumed by any of the other ones, were given in Section 1.2. In our
AProlog code, backtracking to an alternative solution may occur as a result of loop checking.

This rudimentary knowledge of AProlog in combination with a basic understanding of Prolog
(see, for instance, Bratko’s book [3]) suffices to understand the next section.

2 Translating higher-order algebraic specifications to AProlog

2.1 A very simple scheme

Consider the following higher-order algebraic specification:

module N
sorts nat,bool,lst(A)
functions
zero : nat
succe : nat — nat
add : nat X nat — nat
t, f : bool
if:bool x AXx A— A
nil : Ist(A)
cons : A x Ist(A) — Ist(A)
compose : (B —- C)X(A—B)— A—C
map : (A — B) x Ist(A) — Ist(B)

2Version 2.7 (October 1988). It was obtained by anonymous ftp from duke.cs.duke.edu.
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equations
add(X,zero) = X (6)
add(X, suec(Y)) = succladd(X,Y)) (7)
ift,X,)Y) = X (8)
if(f,X,Y) = Y (9)
if(B, F(X), F(Y)) = F(Gf(B,X.,Y)) (10)
compose(F,G) = AX.F(G(X)) (11)
map(F,nil) = nil (12)
map(F,cons(X,L)) = cons(F(X),map(F,L)) (13)
maep(AV.V,L) = L (14)
map(F,map(G,L)) = map(compose(F,G), L) . (15)

Identifiers whose first character is a capital letter are variables. Their type is not declared
explicitly (although it might have been), but is determined by the context in which they occur. For
instance, X has type nat in (6), but polymorphic type A (with 4 a type variable) in (8).

In addition to the two carriers corresponding to sorts nat and bool, the higher-order initial
algebra of N has an infinite number of first-order carriers corresponding to {st(7) for any monotype
7. In particular, 7 may be a functional monotype such as nat — nat or another [st-monotype.
The higher-order carriers (function spaces) of the initial algebra consist of the appropriately typed
functions definable in terms of the signature of N.

Equations (10) and (12)—(15) are polymorphic versions of (1) and (2)—-(5) respectively. Equation
(11) defines functional composition. Equations (10). (14), and (15) merit special attention. These
are the ones that are allowed in the higher-order algebraic framework, but not in Hope. As was
pointed out in Section 1.2, the left-hand side of (10) is highly non-deterministic. The left-hand
sides of (14) and (15) are HOPs of a simple kind, but not constructor cases.

Using the scheme outlined in example (IV) of Section 1.2, we translate N to the following
AProlog module:

module 1pN.

kind nat type.

kind bool type.

kind 1st type -> type.

type zero nat.

type succ nat -> nat.

type add nat -> nat -> nat.
type t bool.

type £ bool.

type if bool -> A -> A -> A.
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type nil (1st A).
type cons A -> (1st A) -> (1st 4).
type map (A -> B) -> (1st A) -> (1st B).

type compose (B -> C) -> (A -> B) -> A -> C.

type reduce A -> A -> o.
type extrule A -> A -> o.

extrule (H (add X zero)) (H X). W (6a)
extrule (H (add X (succ Y))) (H (succ (add X Y))). W (Ta)
extrule (H (if t X Y)) (H X). Wk (8a)
extrule (H (if f X Y)) (H Y). W4 (9a)
extrule (H (if B (F X) (F Y))) (H(F (if BX Y))). Wik (10a)
extrule (H (compose F G)) (H X\ (F GXIN). W% (11a)
extrule (H (map F nil)) (H nil). WA (12a)
extrule (H (map F (cons X L))) (H (cons (F X) (map F L))). %% (13a)
extrule (H (map X \ X L)) (HL). W (14a)
extrule (H (map F (map G L))) (H (map (compose F G) L)). W4 (15a)

reduce X Y :- extrule X Z,
not(X = Z), %%% loop check - X,Z ground
reduce Z Y. WL (16)
reduce X X. WAL C17)

Arguments of predicates are separated by spaces rather than commas in AProlog, and the
argument list of a predicate is not delimited by brackets. The syntax of A-terms is similar to that
of Lisp. Every predicate or function is at most unary, so larger arities have to be reduced to arity
1 by currying, that is, by replacing types s; X --- X s — sp in the algebraic specification with
types s1 -> ... -> sk -> s0 in AProlog. As usual. the type constructor -> is right-associative.
Predicates always have type --- -> o.

Kind declarations are used to introduce type constructors. The three kind declarations in the
first lines of 1pN introduce the zero-adic tvpe constructors nat and bool, and the monadic type
constructor 1st. These correspond to the sorts nat, bool, and Ist(A) of N. Thus, apart from
the dectarations of the auxiliary predicates extrule and reduce, the correspondence between the
signatures of N and 1pN is straightforward. The translation of equations is equally straightforward.
Put in the context of a new higher-order variable H, the left- and right-hand side of an equation
become the first and second argument of the corresponding extrule fact. Note that AX.---in the
right-hand side of (11) becomes (X \ - in AProlog. In addition to the extrule facts correspond-
ing to the equations of NV, the body of 1pN consists of the clauses (16) and (17) for reduce. These
are independent of V.

The normal form of a term ¢ in the term language defined by the signature of N is obtained by
submitting to 1pN the question

?- reduce tt NF.
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where tt is the corresponding term in the term language of 1pN. Since free variables in ¢ (if any)
should not be instantiated during rewriting, they do not correspond to AProlog variables in tt, but
are modelled by generic constants (simulated variables) x,y,... in the following examples. Thus,
even if ¢ contains free variables, tt is a ground term.

Rewriting proceeds as follows. The reduce predicate attempts to apply extrule and, if suc-
cessful, calls itself recursively on the reduct after performing the loop check not(X = Z), where not
is the negation-as-failure predicate and = denotes higher-order unification. The loop check rejects
algebraically correct but operationally useless matches (cf. Section 1.2, examples (I) and (IV)).
When it is evaluated, the values of both X and Z are ground terms because (i) the translated input
term tt is always ground, and (ii) the equations are assumed to be such that their interpretation
as left-to-right rewrite rules does not cause uninstantiated variables to enter the reduct (cf. Section
1.2, example (III)).

The rewrite strategy of 1pN is determined primarily by the fact that S-reduction is a built-
in rewrite rule that is performed implicitly by AProlog during unification, and by the order of
the extrule facts. Redexes for rule 7, are reduced before redexes for rule r, if m < n. The
redex selection strategy for each individual rule is determined by AProlog’s higher-order unification
strategy. The latter can be influenced to some extent by the setting of the projfirst switch of
the AProlog system. If set to on, the higher-order unification machinery prefers projection over
imitation. This reduces the amount of backtracking caused by imitative solutions that are rejected
by the loop check, and promotes the simultaneous reduction of syntactically identical redexes.

We reproduce a short sample run of the AProlog system using 1pN:

?- use 1pN.

1pN

yes

?- switch projfirst on. W% slightly more efficient in this

yes 4% application than projfirst off

?- switch tvw off. 4% no type variable instantiation warnings
yes

?- reduce (if y (cons f nil) (cons t nil)) NF.

W44 y is a generic constant - see above
NF = cons (if y f t) nil
yes

?- reduce (if y (add (succ zero) (succ zero)) (succ (succ zero))) NF.
%A% y is a generic constant - see above

NF = succ (succ zero)

yes

?- reduce (if y (if y1 x0 x1) (if y1 x2 x1)) NF.
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NF = if y1 (if y x0 x2) x1 . Y% see [9, Section 3.3]

yes
?- reduce ((compose (X \ (add X X)) (X \ (add X X))) (succ zero)) NF.

NF = succ (succ (succ (succ zero)))
yes

?- reduce (map (X \ (add X X)) (cons zero (cons (succ zero) nil))) NF.

NF = cons zero {(cons (succ (succ zero)) nil)
yes

?- reduce (map (X \ (compose succ X)) (cons succ nil)) NF.

NF = cons Var1612 \ (succ (succ Vari1612)) nil .
yes

?- reduce (map (X \ zero) (map succ 1)) NF.

%% 1 is a generic constant - see above
NF = map (Var347 \ zero) 1 .
yes

?7- reduce (Y \ (add Y zero)) NF.

NF = Y \ (add Y zero) . %A% no rewriting under abstraction;
yes W4 first argument of (6a) does not
%%Y% match - see Section 2.3

?- reduce (if y succ succ) NF.

NF = if y succ succ . %% NF = succ expected - see below
yes

The last example is not reduced properly because the implementation of polymorphic higher-
order unification in the version of AProlog we used was incomplete. When matching if y succ
succ with the left-hand side of (10a), the polytype A1 -> nat -> nat initially inferred for H is
never instantiated to (nat -> nat) -> nat -> nat. The reason is that the system limits A1 to
“primitive” types to keep the search space within bounds. It is interesting to see how the matching
behaves in this case:

7- switch tvw on. %4% give type variable instantiation warnings
yes
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?- switch printtypes on. %% print types of terms
yes

?- if y succ succ = (H (if B (F X) (F Y))).
%A% "=" denotes higher-order unification
Trying to project on an argument with type
Al
Do you want to go on? (y/n)y
Assuming for the moment that target type is primitive

H = Var24 : A1 \ Var25 : nat \
(if y Var26 : nat \ (succ Var26) Var27 : nat \ (succ Var27) Var25)
B =B : bool
X=X : A1
F=F: Al -> A2
Y=Y : Al ;
no

The only solution found leaves all variables in the left-hand side of (10a) except H uninstantiated
and is rejected by the loop check. The expected solution is found if the more precise type (nat ->
nat) -> nat -> nat is associated with H in an ad hoc fashion:

?- if y succ succ = (H : (nat -> nat) -> nat -> nat (if B (F X) (F Y))).

H = Var26 : nat -> nat \ Var27 : nat \ (Var26 Var27)
B=y
X=X: At
F = Var28 : A1 \ Var29 : nat \ (succ Var29)
Y=Y : Al ;
H = Var54 : nat -> nat \ Var55 : nat \
(if y Var56 : nat \ (succ Var56) Var57 : nat \ (succ VarS57) Var5s)
B =B : bool
X=X: 1
F=F : Al -> nat -> nat
Y=Y : Al ;
no

The first solution yields the expected reduct when substituted in the right-hand side of (10a). The
second solution is a more precisely tvped version of the useless one found previously.



Jan Heering 151

Finally, we give an example showing that 1pN is not confluent for terms containing free variables.
An alternative normal form can be obtained by backtracking. Note that 1pN does not do this
automatically.

?7- reduce (if y (add x zero) (add x (succ zero))) NF.
%A% x and y are generic constants

NF = if y x (succ x) ; %%Y% first normal form
NF = if y x (succ (add x zero)) ;

%%% not a normal form
NF = add x (if y zero (succ zero)) ;

%44 second normal form
no

The general translation scheme should be clear from 1pN. The auxiliary names reduce, extrule
and H should be chosen carefully to avoid clashes with user-defined names. Similarly, overloading of
names that have a predefined meaning in AProlog (true,false,list,...) should be avoided. Apart
from the above-mentioned incompleteness problem and the possible non-termination of higher-order
matching (which we have not encountered so far), the scheme is correct for higher-order rewrite
systems that do not introduce new variables in the reduct, and that are terminating with the simple
loop check shown as well as confluent. For rewrite systems lacking the latter property, the input
term may have other normal forms besides the one computed.

2.2 Improving efficiency by adding specialized code

Some efficiency can be gained by combining the above method with one of the first-order schemes
discussed in [4, 7]. To illustrate the general idea, we take Drosten and Ehrich’s first-order scheme.
In this case the AProlog code generated for N becomes:

module 1pN2.

import 1pN. WA% see Section 2.1
type reduce2 A->A->o0.
type analyze A -> A ->o0.
type prenormalize A -> A -> o.
type rule A->4A->o0.
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rule (add X zero) X. Wh% (6b)
rule (add X (succ Y)) (succ (add X Y)). W% (7b)
rule (if t X Y) X. W% (8b)
rule (if £ X Y) Y. 4% (9b)
rule (if B (F X) (F Y)) (F (it BXY)). WA% (10b)
rule (compose F G) (X \ (F (G X))). WAL (11b)
rule (map F nil) nil. W% (12b)
rule (map F (cons X L)) (cons (F X) (map F L)). W4 (13b)
rule (map X \ X L) L. Wi (14b)
rule (map F (map G L)) (map (compose F G) L). Whh (15b)
analyze (succ I1) K :- analyze Il K1,

prenormalize (succ Ki) K. %A% (18)
analyze (add I1 I2) K :- analyze Il K1, analyze I2 K2,

prenormalize (add K1 K2) K. ML (19)
analyze (if I1 12 I3) K :- analyze I1 K1, analyze I2 K2, analyze I3 K3,

prenormalize (if K1 K2 K3) K. W (20)
analyze (compose I1 I2) K :- analyze Il K1, analyze I2 K2,

prenormalize (compose K1 XK2) K. AL (21)
analyze (cons I1 I2) K :- analyze I1 Ki, analyze I2 K2,

prenormalize (cons K1 K2) K. WL (22)
analyze (map I1 I2) K :- analyze I1 K1, analyze I2 K2,

prenormalize (map K1 K2) K. W (23)
analyze X K :- prenormalize X K. W (24)
prenormalize X Y :- rule X Z,

not(X = Z), %44 loop check

analyze Z Y. Wk (25)

prenormalize X X. Wk (26)
reduce2 X Y :- analyze X Z, reduce Z Y. WL (27)

%% reduce is defined in 1pN

1pN2 extends 1pN with code that is very similar to the Prolog code that would be generated by
Drosten and Ehrich’s scheme for N had it been a first-order specification. For each p-ary function
S in the signature of N (p >= 1), 1pN2 contains a clause

analyze (f I1 ... Ip) K :- analyze I1 Ki, ... , analyze Ip Kp,
prenormalize (f K1 ... Kp).

Clause (24) catches everything not matched by the first argument of the preceding analyze cases.
The facts (6b)-(15b) correspond directly to the equations (G)-(15). Clause (27) links the new
code to the old code imported from 1pN. The clauses (24)-(27) are independent of N.
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The normal form of a term ¢ in the term language defined by the signature of N is obtained by
submitting to 1pN2 the question

?- reduce2 tt NF.

where tt is the corresponding term in the term language of 1pN2 (which is the same as that of
1pN). Like before, free variables in ¢ have to be replaced by generic constants in tt (see Section
2.1).

On the examples we tried, 1pN2 was from 1 to 5 times faster than 1pN. It may actually be
slightly slower if analyze is unable to perform any reductions. Consider, for instance, the term

(compose succ succ) zero.

The first argument of (21) does not match (its type is not even compatible), so the work done by
analyze is wasted and the reduction to succ (succ zero) is performed by reduce using (11a)
with

H = Var : nat -> nat \ (Var zero)
F succ
G succ .

On the other hand, the reduction of

map (X \ (compose succ X)) (cons succ nil)
to

cons Var \ (succ (succ Var)) nil

is speeded up by a factor of 5. Whereas 1pN spends a large amount of time on useless matches,
1pN2 performs the reduction in a highly deterministic manner using analyze.

2.3 Reduction under abstraction and partial evaluation

Evaluation of programs whose input values are only partially given is called partial evaluation
(see the annotated bibliography [24]). In the setting of first-order algebraic specification, partial
evaluation corresponds to reduction of first-order terms containing free variables [9]. In Section 2.1
we gave several examples of this in the setting of higher-order algebraic specification. In fact, the
equations

f(B,F(X), F(Y)) = FUf(B.X.Y))
map(AV.V. L)y = L
map(F,map(G. L)) = map(AV.F(G(V)), L),
which played a role in some of the examples, are not needed for ordinary evaluation, but may be

useful for partial evaluation. Needless to say, more equations of this kind could have been added
to the specification N.
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In the higher-order setting, partial evaluation not only corresponds to reduction of open terms,
however, but also to reduction under abstraction. The two are related by the abstraction rule

Fi =1,
FAX.G = AX Sy’

which has no analogue in the first-order case. For instance, according to the abstraction rule one
would expect an implementation of N to reduce AY.add(Y,zero) to AY:nat.Y, since add(Y, zero)
reduces to Y : nat by equation (6). The two implementations discussed so far do not do this,
however:

?- reduce (add y zero) NF. %A% y is a generic constant

NF =y . Y%% OK, but ...
yes

?- reduce (Y \ (add Y zero)) NF.

NF = Y \ (add Y zero) . A4 first argument of (6a) does not match
yes

?7- reduce2 (Y \ (add Y zero)) NF.

NF = Y \ (add Y zero) . W4% the analyze-predicate of 1pN2 does not descend
yes %A% into abstractions

We note that the fact that 1pN and 1pN2 do not perform reduction under abstraction is in accordance
with common functional programming practice.
Picking up an abstraction in the style of 1pN would require higher-order matching with

H(AX.U(X)),

but the incomplete instantiation of type variables during unification mentioned in Section 2.1
precludes this approach. Instead, we add a case to the definition of the analyze-predicate in 1pN2
just before (24):

analyze (X \ (U X)) (X \ (VX)) :- pi C \ (reduce2 (U C) (V C)). WAL (24-)

When it recognizes an abstraction (X \ (U X)). analyze uses AProlog’s built-in pi-predicate to
convert it to a generic instance (U C) in the universal goal reduce2 (U €) (V C). (Universal
goals in AProlog are discussed by Nadathur and Miller in {20, pp. 817-818].) After normalization
by reduce2, the resulting normal form (V C) is turned into an abstraction (X \ (V X)). For
instance,
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?- reduce2 (L \ (map (X \ (add X zero)) L)) NF.
%% application of (24-), (23), (6b), and (14b)
W4% yields the identity function of type
%A% lst nat -> 1lst nat:
NF = Var335 : 1lst nat \ Var335 .
yes

Like (24)-(27), clause (24-) is independent of N.

We conclude this section by pointing out that reduction of polymorphic abstractions is prone
to divergence. For instance, reduction of the identity function (X : A \ X) of polymorphic type
A -> A leads to an infinite loop. Clause (24-) remains applicable after each generic instantiation.

3 Further work

From a logical viewpoint, higher-order algebraic specification constitutes a natural integration of
first-order algebraic specification and higher-order functional programming. We intend to perform
further experiments with it using the implementation schemes discussed in this paper and perhaps
more efficient ones still to be developed (see, for instance, [10]). Since polymorphic typing has been
the main source of problems so far, it requires special attention.
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with Linear Logic Context Management
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Introduction

The announcement for this workshop began with a passage about the utility of higher-order hered-
itary Harrop formulas for many applications, and the very existence of the workshop is a partial
correctness proof of the passage. Nevertheless, there are applications for which the intuitionistic
management of proof contexts (or, concretely, program databases) provided by AProlog has been
unable to provide natural, logical solutions. Many such problems, such as how to program the
Prolog bag_of predicate — which would require a way of augmenting the database such that the
changes survive a failure — seem unlikely to yield to logical analysis in any system related to
hereditary Harrop formulas. Others, however, can be addressed by relatively simple modifications
of the logic underlying AProlog.

In 1990 two problems motivated Dale Miller and me to examine the possibility of designing a
logic programming language based on a fragment of Girard’s linear logic [2] similar to the hereditary
Harrop formula fragment of intuitionistic logic.

The first problem involved representing the notion of mutable object state within logic pro-
gramming [3]. While it is simple to use representative predicates to store the state of an object in
the datrabase (or proof context), it is not possible to model the modification of state, since the only
change to the database allowed in AProlog is that of stack-like augmentation through the use of
impi:cations in goals. Thus, if the state of a switch is stored using the predicates off and on, and
the program T includes the (slightly) higher-order clauses:

- VG [toggle(G) C (on A (off D G))]
" | VG.[toggle(G) C (off A(on D G))]

IThe author has been funded by ONR N00014-88-K-0633, NSF CCR-91-02753, and DARPA N00014-85-K-0018
through the University of Pennsylvania.
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provided that y is not free in the lower sequent.
Figure 1: A proof system for the connectives top, 1, &, —o, =, !, ®, @, V, and 3.

then the proof of the goal off D toggle(G) might proceed as follows:

F.oﬁ,o'n——:G .
T.off — off T,0ff — on>OG /\RR
T,off — off Aon D G)
T, off — toggle(G)
I' — off D toggle(G)

So, rather than being toggled, the switch has indeterminate state during the proof of G. The
problem is the implicit use, in the appplication of the AR rule, of the contraction rule of intuitionistic
logic which allows the original state of the switch to be copied to both sides of the proof tree.

By considering linear management of proof contexts, in which the use of contraction and weak-
ening is restricted to formulas marked with the ! operator, this and several other similar problems
can be properly modeled. For instance. if the horn clauses above are replaced with the following
linear logic formulas:

I - VG [toggle(G) o— (on @ (off — G))]}
] YVG.[toggle(G) o— (off @ (on — G))]}
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then the proof of the equivalent goal, off —o toggle(G') proceeds as:

T, on—»G
off — off I‘——»on—oG@
[, off — off ® (on — G)
—OL

T, off — toggle(G)
I' — off —o toggle(G)

with the desired result that the switch is in the toggled position during the proof of G.

In two recent papers Miller and I have discussed at length the design of a logic programming
language based on such formulas [4, 6]. Inference rules for the operators of the language are given
in Figure 1. While these rules are not the standard ones of linear logic, they are equivalent to a
fragment of linear logic. In this system a proof context consists of two parts: the intuitionistic part
(on the left of the semi-colon), in which arbitrary implicit contraction and weakening are allowed,
and the linear part (on the right of the semi-colon), in which those rules are barred.

Concrete Syntax and Relationship with AProlog

An important aspect of the Lolli project was the hope that the language could be designed as
a modular refinement of AProlog. That is, any purely AProlog program should run ‘unmodified’
within Lolli? and behave in the expected way.

Since the logical operators of the two languages are different, this embedding requires defining
a mapping of formulas of intuitionistic logic into the new system. Girard gave such a mapping in
the first paper on linear logic [2]. However, given that we are working in the restricted setting of
hereditary Harrop formulas it is possible to define a more parsimonious, albeit more complicated,
one. This translation, was introduced in a previous paper [6], and is in the form of two mutually
recursive functions, one applied to formulas in negative positions (ie. program clauses), and the
other to formulas in positive positions (ie. queries).

(A)*Y = (A)” = A, where A is atomic

(true)t =1 (true)" =T
(Bi A Ba)t = (Bt 'J(Bz)
(B1 A By)™ = (B)” &(By)~
(B1 D By)t = (B ) = (B2)*
(B1 D B2)™ =(B * —o (By)”
(V2.B)* =Va.(B)*
(Vz.B)~ :\7’ (B)
(B1V By)t = (B1)t @ (Bt
(Fz.B)t = 32.(B)*

2The current implementation of Lolli is an essentially first-order language (ie., while it allows quantification over
predicates, formulas, and terms, it does not implement A-terms or higher-order unification), so this section should be
read as referring to the similar fragment of AProlog.
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The intuitionistic sequent (over just these operators) I' — (' is then mapped to the sequent
I'";0 — G, which has a proof if and only if the original sequent did.

Given the AProlog syntax for hereditary Harrop formula programs, this mapping suggests a
concrete syntax for the operators of the language, which is given in the following table:

[ Operator | Parity | Syntax ||

T + erase
1 + true
& + [
- &
@ + s
@ + ;
—0 + -0
= + =>
- <=
z T .y
V2.B + forall x\B°
- forall x\B*
dz.B + exists x\B*

As with AProlog, terms and atoms are written in a curried form and the standard quantifier
assumptions are made. It is straightforward to confirm that existing Prolog and AProlog programs
are written, and run, as expected. For instance, the AProlog query:

pi X\ pi Y\

(memb X (X::Y)) =>
pi X\ pi Y\ pi 2\

(memb X (Y::2) :- neq X Y, memb X Z) =>
memb G (a::b::nil).

represents the formula:

AG.[(VX VY. memb(X,X ::Y)) D
(VXYY VZ.(memb(X,Y 1 Z) C (neq(X,Y ) A memb(X, Z)))) D
memb(G,a b 2 nil))

which, when translated into the new system using the ()% translation, becomes:

3G (VX VY. memb(X. X 1 Y)) =
(VXYY VZ.(memb(X.Y 1 Z)o— (neg(X.Y)® memb(X, Z)))) =
memb(G.a b nil)]

which has the concrete syntax:

3The use of forall and exists as syntax for the explicit quantifiers represents a personal preference of this author.
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forall X\ forall Y\

(memb X (X::Y)) =>
forall X\ forall Y\ forall Z\

(memb X (Y::2) :- neq X Y, memb X Z) =>
memb G (a::b::nil).

And, when run, this query will have the same execution profile as the original AProlog query.

In contrast, programs which take advantage of the linear features of the system will of necessity
make use of the new elements of the syntax. So, for instance, the ill-performing intuitionistic
formulas defining the toggle predicate would be written (in AProlog and Lolli) as:

toggle G :- on, off => G.
toggle G :- off, on => G.

while the well-performing linear logic formulas would be written as:

toggle G :- on, off -o G.
toggle G :- off, on -o G.

In order for existing programs to work properly. it is assumed that the clauses in a module
are loaded into the unbounded (intuitionistic) portion of the proof context. The programmer can
override this assumption by preceding individual clauses with the LINEAR declaration. Thus, it is
possible to specify an initial setting for the switch within the program file, as in:

LINEAR on.

Note that the use of all uppercase for LINEAR, is not optional. Since the system uses curried
notation, this is the only way (short of ruling out its use in other forms) of recognizing that it is a
declaration, and not a predicate name. For consistency, and improved readability, this restriction
is also applied to the LOCAL and MODULE declarations described below.

Modules

Lolli programs are divided into modules in the same way as AProlog programs. By convention,
enforced by the interpreter, files carry the extension *.11°, and, by analogy to the AProlog ==> op-
erator, are loaded using the operator ‘--o". The command ‘load modulename’, which is equivalent
to ‘modulename --o top’, is also available.

A module may begin with a list of local constant declarations, such as:

LOCAL a B c.
LOCAL d.

with multiple constants separated by spaces. or listed in separate declarations. Because Lolli is
essentially first-order, types and kinds, and their declarations, are not needed or supported. A
future release of Lolli may support L\-unification [7]. but will likely still be type-free. Note that
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since constants are untyped, predicate names may be reused at different arities, as in ordinary

Prolog.
The AProlog module system has been extended to allow for parameterized modules. That is,
the module declaration is of the form:

MODULE modname param_1 ... param_n.

where modname matches the root of the file name, and the parameters are variables to be unified
placewise with the terms in the loading goal. Note that while the formal parameters are variables,
they are generally intended to be viewed as constants within the module, and as such may begin
with lowercase characters if the programmer so chooses. Thus, if the module is declared:

"MODULE foo a B.

and is loaded with ‘foo ¢ d --o top’, then the clauses in foo.11 are loaded with all instances of
a and B instantiated to c and d respectively.
The logical status of the module system can be summarized as follows, the declaration:

MODULE mod z;...Z,.
LOCAL y1...Ym -

H].’L'l e TnY1 e Ym21y - 2y -

LINEAR H;Zi...Za¥1--.-Ym21, ---Zq, -

Hyzy oo 2oy o Ym21, -« - 2gp -

associates to mod the parameters z; ...2,, the local constants y; ...ym, and the clauses Hy ... Hp,
which may contain free occurrences of the variables 27 ...2, and constants y; ...ym. Each clause
H; may also contain free occurances of the otherwise undeclared variables z;, ...2,. When the
module is loaded within a goal formula, using the syntax mod t...t,--o B, that goal is considered
only as short-hand for the goal

forall y;\...forall y,\|
forall z,\...forall zg, \(Hiti...ta¥1 .. .Ym31, .. .3 ) =>

forall zy,\...forall z, \(Hty...tay1...Ym21,---24,) -O

forall zy,\...forall z, \(Hpti...ln¥1.. . Ym=1,---2g,) => BJ.

Here, we overload the symbols %,...,%,, to be constants in the LOCAL declaration and bound
variables in the displayed formula above. In general. this overloading should not cause problems.




Joshua S. Hodas 165

Also, in this example, it is assumed that the formula B and the terms t;,...,¢, do not contain
occurrences of y1,...,¥m. Finally, it is assumed that y1...ym, t1...tn, Z1...25, and 21, ...z, are
all pairwise disjoint.

The implementation of parameterized modules was driven by the need to be able to handle
the object-oriented programming examples from an earlier paper [3], where they were used to pass
initialization information to objects. Nevertheless they have proved useful in a number of instances.
For example, the following module defines the shell of a multiset rewriting system, along the lines
of the example given in [4, 6]. The rewrite rules themselves, however, are in a separate module,
whose name is passed to this one as a parameter when this module is loaded. In order to ensure
the soundness of the rewriter, a local predicate name is used to store the multiset in the database.
That name is, in turn, passed to the rules module when it is loaded. The shell is given by:

MODULE rewrite rulemodule.
LOCAL hyp.

collect nil.
collect (X::L) :- hyp X, collect L.

unpack nil G :- G.
unpack (X::L) G :- hyp X -o unpack L G.

rewrite L K :- unpack L ((rulemodule hyp) --o (rewrite (collect K))).

while a rule module might be of the form:

MODULE rulesi hyp.

rewrite G :- G.

rewrite G :- hyp 4, ((hyp 2, hyp 2) -o rewrite G).
rewrite G :- hyp 4, ((hyp 3, hyp 1) -o rewrite G).
rewrite G :- hyp 3, ((hyp 2, hyp 1) -o rewrite G).
rewrite G :- hyp 2, ((hyp 1, hyp 1) -o rewrite G).

and a sample query would be:
?- rewrite rulesl --o rewrite (3::nil) L.
?7L674 <- (3 :: nil) .;

?L674 <- (2 :: 1 :: nil) .;
7L674 <~ (1 :: 2 :: nil)
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Implementation

Lolli is currently available in two implementations. The first is a simple Prolog meta-interpreter
given in [4, 6] and reproduced in Figure 2. The code as given implements only the propositional
fragment of the language (with a few differences from the concrete syntax described above), but
is useful for experimenting with the core of the underlying logic. The meta-interpreter could be
trivially extended to the first-order language by re-implementing it in AProlog. Other than the
change of syntax, that system would differ only in the addition of two clauses to handle quantifi-
cation. Unfortunately, the lack of op declarations in AProlog would make the system a little more

unwieldy.

The author has also developed a relatively rich implementation of Lolli in Standard ML of
New Jersey (which should port to any ML which can handle MLYACC and MLLEX). That im-
plementation supports the full language as described here, in addition to a reasonable selection
of evaluable predicates and one extra-logical control structure (guard expressions). That imple-
mentation was inspired by (and built on a core of code from) Elliott and Pfenning’s article on
implementing AProlog-like languages in a functional setting [1]. The full implementation of Lolli,
with documentation, many example programs, and DVI files for several relevant papers, is available
by anonymous ftp from ftp.cis.upenn.edu (130.91.6.8) in the directory /pub/Lolli. If you
retrieve the system, please send mail to hodas@saul.cis.upenn.edu so that you may be informed

of updates.

Conclusion

The Lolli project is an ongoing one, and the language is by no means frozen. On the other hand,
the collection of program examples is growing [4, 6, 5], and this shows that the logic fragment
chosen represents a useful extension of the traditional hereditary Harrop formulas of AProlog.
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true/0
erase/0
bang/1

Ea kL L

:= op(145,xfy,->).
:- op(145,xfy,=>).

:= op(140,xfy,& ).

The logic being interpreted contains the following logical connectives:
a constant (empty tensor, written as 1 in the logic)
a constant (erasure, written as Top in the logic)

the modal, written as {} in the paper.

linear implication, written as -o in the paper
intuitionistic implication

additive conjunction

%
%

i~ op(140,xfy,x ). % multiplicative conjunction (tensor)
%

:= op(150,xfy,::). % non-empty list comstructor

interp(G) :- prove(nil, nil, G).

isG(true). isR(erase) .

isG(erase). isR(B) :- isA(B).

isG(B) :~ isA(B). isR(B1 & B2) :- isR(B1), isR(B2).
isG(B1 -> B2) :- isR(B1), isG(B2). isR(B1 -> B2) :- isG(B1), isR(B2).
isG(B1 => B2) :- isR(B1), isG(B2). isR(B1 => B2) :- isG(B1), isR(B2).

isG(B1 & B2) :- isG(B1), isG(B2).
isG(B1 x B2) :- isG(B1), isG(B2).
isG(bang(B)) :- isG(B).

prove(I,I, true).

prove(I,0, erase) :- subcontext(0,I).
prove(I,0, G1 & G2) :- prove(I,0,G1), prove(I,0,G2).
prove(I,0, R -> G) :- prove(R :: I, del :: 0,G).

prove(I,0, R => G) :- prove(bang(R) :: I, bang(R) :: 0,G).
prove(I,0, Gt x G2) :- prove(I,M,G1), prove(M,0,G2).
prove(I,I, bang(G)) :- prove(I,I,G).

prove(I,0, &) :- isA(A), pickR(I,M,R), bc(M,0,A,R).

be(I,IA, A).

bc(I,0,A, G -> R) :- bc(I,M,A,R), prove(M,0,G).
bc(I,0,A, G => R) :- bc(I,0,A,R), prove(0,0,6).
be(I,0,4, R1 & R2) :- be(I,0,4,R1); be(I,0,A,R2).

pickR(bang(R)::I, bang(R)::I, R).
pickR(R::I, del::I, R) :- isR(R).
pickR(S::1I, S::0, R) :- pickR(I,O,R).

subcontext(S::0, S::I) :- subcontext(0,I).
subcontext (nil, nil).

% The following code provides the hooks into application programs.
:- op(150,yfx,<-). ¥% the converse of the linear implication

%4 Applications using this interpreter are specified using the <-/2 functor (denoting the converse
% of linear implication). We shall assume that clauses so specified are implicitly banged (belong
% to the unbounded part of the initial context) and that the first argument to -> is atomic. The
% following clause is the hook to clauses specified using <-.

prove(I,0, A) :- isA(A), A <- G, prove(I,0,G).
% A few input/output non-logicals.
prove(I,I, write(X)) :- write(X). prove(I,I, read(X)) :- read(X).
% The following is a flexible specification of isA/1

notA(write(_)). notA(read(_)). notA(nl). notA(erase). notA(true). notA(del).

notA(_ & ). mnotA(_ x ). mnotA(_ -> ). notA(_ => _). notA(bang( )).
isA(A) :- \+(notA(4)).

Figure 2: A Prolog implementation of Lolli

prove(I,I, nl) :- nl.

167

subcontext(del::0, R ::I) :- isR(R), subcontext(0,I).
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1 Abstract

Higher-Order Hereditary Harrop (HOHH) formulas have been seriously studied in the latest years
as a basis for higher-order logic programming languages, resulting in several implementations. Yet,
no alternative to SLD-resolution has been developed for these languages, while for instance some
Bottom-Up strategy would allow extensions of Prolog applications in such domains as language
analysis, deductive databases or software engineering.

We studied a restriction of the higher-order language Ly, which we named [y, and for which we
could define a sound and complete Bottom-Up resolution strategy. This strategy turns out to be
very simple, the unification taking care of all the constraints due to quantification over function
variables. We believe that this is a first step towards fully exploiting higher-order logic in several
application fields. As an example, we study the use of the Magic Set method, developed in the
database community and which, when applied to Horn Clauses, solves the problem occurring in a
naive Bottom-Up resolution of computing a great deal of useless facts. We present here an extension
of the Magic Set method to our higher-order language /.

2 Introduction

The perspective of higher-order logic programming languages has been deeply studied lately. Their
interest as meta-programming languages and more perspicuous formalisms has been established and
argued by many authors. It was proved that Higher-Order Hereditary Harrop (HOHH) formulas
formed a good basis for such a language, since its higher-order features still accept uniform proofs
[12] and thus support a proof strategy extending SLD-resolution (used in Prolog).

As a result, the language A-Prolog was developed [13] implementing HOHH formulas. Gérard
Huet’s results on higher-order unification made it possible to handle the unification involved in
the proving procedure. Several implementations of A-Prolog have been given such as Prolog/Mali,
eLF, ...The problems due to undecidability and possible lack of a most general unifier in higher-
order unification have been eliminated in L), a restriction of A-Prolog, with an acceptable loss of
expressive power. Being a logic programming language with A-abstraction, function variables, and
simple unification [10], L) both presents higher-order nice features and is likely to support efficient
implementations.

Yet it still suffers from the lack of an alternative to the extension of SLD-resolution originally
presented: to our knowledge, no real attempt to a Bottom-Up resolution strategy has been con-

!This work was partially supported by a grant from a European Software Factory (ESF) project.
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sidered. In such domains as language analysis [21], deductive databases [2] or software engineering
[18], Horn Clauses are efficiently used with some kind of Bottom-Up strategy which is complete and
more suitable to the concerned application. The extension of such a strategy to Ly would allow
to apply its higher-order logic in these fields, resulting in appropriate implementations of meth-
ods already studied for A-Prolog by Eugene Rollins and Jeannette Wing [20] as well as Francois
Rouaix [19] for search in libraries, and Dale Miller and Gopalan Nadathur in language analysis [11].

As a first step to this aim, we have studied a fragment of Ly, which we called Iy. We discuss

the choice of this fragment of HOHH at the end of the paper. This logic programming language
supports A-abstraction, function variables and quantification, but does not authorize implication in
clause bodies (which Ly does). The main reason for this restriction is that dealing with implication
in clause bodies requires some process introducing and discharging assumptions, which is quite
difficult to achieve in a Bottom-Up resolution. As a restriction of L), [ also makes use of its
simple and decidable unification algorithm.
We proved that a sound and complete Bottom-Up strategy was possible for L, resulting in a simple
interpreter [7]. While SLD-resolution requires the use of guantifier prefizes to encode the different
constraints over quantified function variables, our interpreter notably presents the advantage not
to need any quantifier prefiz.

This Bottom-Up interpreter represents a first step towards offering higher-order logic features
to fields for which SLD is not the most adequate evaluation procedure. For instance, in database
systems, it is for computational reasons advantageous to consider set-oriented query-processing
procedures. But naive Bottom-Up strategies tend to do a great deal of unnecessary work. A nice
solution developed first in the database community [4] and then extended to logic programming
and the Horn Clauses formalism [17] is the method of Magic Sets. This method transforms a logic
program P and a goal into another program M agic (P) which, when evaluated Bottom-Up, mimics
the SLD-resolution of P. This method therefore solves the problem of useless computations in a
Bottom-Up strategy. We have studied an extension of the Magic Set method to our language [,
which could present the same advantages. Unfortunately, the direct extension of Magic Sets to [)
is not possible since it leads to transformed programs which are no more in [, (nor even in L)). We
propose a sound and complete method relying on the basic principles of the Magic Set method, and
which, when evaluating the transformed program Bottom-Up, mimics a SLD-strategy prediction
and performs a Bottom-Up resolution from the relevant axioms. This method computes more facts
than an exact SLD-resolution, but significantly restricts the space search of a naive Bottom-Up
evaluation.

This paper is organized as follows: in section 2. we briefly describe the language !, and we
outline the interpreter originally developed for L) in [10] and extending first-order SLD-resolution.
We then sketch in section 3 how I, can support a simple Bottom-Up interpreter. More details
on this part may be found in [7]. In section 4, we present the main result of this paper, namely
some extension of the Magic Set method to our higher-order language /). Introducing a partial
notion of subsumption between prefixed terms. we show how this method rewrites a program into
another which, when evaluated Bottom-Up. mimics a Top-Down prediction mixed with a Bottom-
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Up resolution. We prove this method sound and complete. We finally discuss some possible
extensions to our language.

3 The higher-order logic programming language [,

We present here the constraints induced by the higher-order logic nature of the variables, and the
logic programs used in Iy. We sketch the interpreter deduced from Dale Miller’s one for L. The
reader familiar with Ly may skip this section.

Clauses used in [, are the usual Horn clauses extended with function variables, A-expressions
and universal quantification. A condition on the syntax of terms ensures the decidability and the
existence of a most general unifier (m.g.u.) in case of success of the unification algorithm. This
allows to apply a proof method which can be conceived as an extension of the SLD-resolution used
in Prolog (and will sometimes also be referred as SLD in the rest of the paper). Complete details
may be found in [10].

3.1 Extended Horn Clauses

In L), terms are simply-typed A-terms. As it is of no great incidence in our purpose and for the
sake of simplicity, we will consider here untyped A-terms. We deal in /) with Horn Clauses extended
in three ways:

e )-expressions, which means we can use A-abstraction to represent functions and that the
interpreter is able to synthesize A-functions.

¢ function variables, which means we can use free variables to represent functions, and have
them instantiated either by functions originally defined in the program or by synthesized
A-functions.

e universal quantifications, which have different interpretations according to where in the clauses
they are used:

Consider for instance the following logic program:

Query — Va P(f(z))
Yy (Ply) — Q(y))

In this example, the quantified variable 2 is placed on the right of «—. It is then
said to be essentially universal: the goal requires we prove P(f(z)) for all . The
usual treatment of this case is to replace 2 by an eigen-variable, i.e. a new constant.
This essentially universal variable therefore cannot be instantiated. For this reason,
variables bound by a A-abstraction, which cannot be instantiated either, will also
be said essentially universal.
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The quantified variable y situated on the left of « is said to be essentially existen-
tial: on the contrary of z, it may be instantiated in order to prove a goal, in this

case by f(z).
The authorized definite clauses therefore have the following form:
Vi (Va4 A — Va7 By AVZ: (Va71Ba1..)))
where

- ¥ represent a set of essentially existential variables which may appear in any term of the
quantified formulae A, By, ...

- a4 are also essentially existential variables, but which appear only in A.

- the &} are essentially universal variables which may appear in each of the formulae quantified
by V3. ’

Moreover a condition denoted by (#) is set on the form of the terms: in any application
(zt1ty...t,) where z is an essentially existential variable, the #;’s are required to be distinct essen-
tially universal variables, quantified on the right (in the scope) of z. This guarantees the decidability
of the unification and the existence of a (in some sense) unique m.g.u. {10].

The following example using these extensions gives an idea of the problems they raise:
Example 1 Consider the following program:

VzVIVEYm  (append (cons x 1) k (cons @ m) — append | k m)
Yk (append nil k k)

and the goal formula Query — Vy (append (cons a nil) y Z).
Notice that the unknown Z is implicitly quantified by 3Z Vy, which means Z cannot depend on y.

Then an SLD-like resolution would roughly proceed this way:
We replace the essentially universal variable y by an eigen-variable § and prove the goal

(append (cons a nil) § Z)

We unify this formula with the head of the first clause, obtaining the substitution

T— a
I — nil
k— g

Z — cons am

and the new goal: (append nil § (cons a m)).




Alain Hui-Bon-Hoa 173

Unifying this new goal with the head of the second clause, we get the final substitution

T a
l— nil
k— g
me

Z— consady

This would lead to a solution for the initial goal (contrary to the intuition), if we hadn’t first
specified that Z could not be instantiated by a term containing y. Therefore the resolution
leads to no solution, which was the correct and expected answer.

If we had considered instead the goal formula Query — Vy (append (cons a nil) y (Hy)),
where H is a function variable, the same resolution would have lead to two solutions:

H— Jueconsay
and H+— Aueconsau

Again, the condition on H eliminates the first solution and we get the expected higher-order answer:
H— Au e cons au

This example shows that a correct resolution of our programs needs to retain

- which variables are essentially existential and which are essentially universal.

- their order of appearance during the resolution, so that we can define for each essentially
existential variable the appropriate essentially universal variables its substitution terms may
contain.

This will be done in the SLD interpreter by quantifier prefixes, and in the following, we will
underline these prefixes of quantifiers indicating whether a variable is essentially existential or
universal, to tell them from the syntactic svinbols in the formulae.

3.2 An SLD interpreter

We formalize here the method used in the previous example. The interpreter is a restriction of
Dale Miller’s one for Ly: the strategy extends SLD-resolution, the constraints over the variables
are encoded in quantifier prefixes. The unification algorithm is sketched on an example.

To present the interpreter, we introduce a simple meta-logic containing the logical constants
A, T (true), L (false), ¥, and 3. The atomic propositions of this meta-logic are then either the
constants T or L, or a sequent judgement P = (. or an equality judgement ¢ = s. The sequent
Jjudgement intuitively corresponds to the notion of goal to prove and the equality judgement to that
of unification.
The interpreter deals with closed quantified formulas of the meta-logic, the constraints over the
variables being encoded by these meta-level quantifications:
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for instance, Q = 3z,Vx,Vazdz, retains that 2, and z4 are essentially existential vari-
ables while zo and z3 are essentially universal ones; moreover z4 is in the scope of z,
and z3 (i.e. its substitution terms may contain z2 and z3) while z; is not.

The resolution is initialized with Qo (P = G) where Qg contains the constants of the program
P followed by the unknown variables in G, the initial goal. It ends when there is only a logical
constant left, T meaning a success and L a failure.

The interpreter then appears as rules over this meta-logic:
AND A sequent of the form P = G A Gy is replaced with the conjunction of sequents

(P=Gy) A(P=G)

GENERIC A sequent of the form (P = Va () is replaced with the sequent

Y& (P =[x — 3]G)

where Z is a new symbol.
BACKCHAIN A sequent of the form P = A is replaced with the sequent

3737 (A= B) A (P = D))

if the program contains a clause VZ(VigB — D)
If no such clause exists, then we have a failure in the search branch, which we represent by replacing
the above sequent by the constant L.

Quantified equality judgements are treated by unification. Provided the correctness of the
unification algorithm, this interpreter can be proved sound and complete [10].
In the following we will keep the same notation z, even when it should be replaced by the eigen-
variable Z.

3.3 Unification in [,

Though general higher-order unification was proved undecidable [6], in the case of L) and thus
of I), the condition (#) required on the terms leads to a correct and decidable algorithm [9],
which provides us with a m.g.u. in case of success of the unification. For some reasons which
will become clearer in section 4, and because this restores a symmetry in the presentation, we
prefer to view this unification as one between two prefixed terms @4 A and Iz B, while it is
originally and usually presented as an unification of the two terms A and B under the mixed prefix
Qa3¥p. Thus UNIFY (Q4 A,32B B) will be computed using the traditional algorithm denoted by

Unify(Qad&s, A = B).
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This view also presents the advantage to separate clearly the resolution part from the unification
one: the algorithm then does not consist in appending the quantifiers of a head of a clause 3Zg
to that of a goal Q4, but to encode the scope constraints of each variable, thus to reveal the
dependencies between the most “flexible” ones 3Zp and the essentially universal ones in @ 4.

We sketch this algorithm on an example:

Example 2 Consider the problem UNIFY (Vm3aVyV2Vw f(zy)z ,3udv f(Aaeu)v). The algorithm
proceeds this way:

we first write it under the form
VmIzVyVzVwIuv flzy)z = f(Aaeu)r

as the functional symbols are essentially universal and identical, we compare their arguments
TY = Aasu

=7

YmIzVyVzVwIudv

A- abstraction is treated by using the extensionality property M = Az e Mz
Tya = u

= Z

VmIzVyVzVwIuIvva

we then reveal the dependencies of Ju over essentially universal variables by raising it up to z
— ol
YmIzIu'VyVzVwIvVea { rya N wy=w u— w'yzw

the irrelevant argument variables are then suppressed by pruning over z and w

Ym3z3u"VyVzVwIvVa { e { w— Wyzw
v =

=z u — Ayzweu'y
we finally get the substitution o :
U — ,ully
VmIu'"'VyVzVwVa T Ayaeu'y

V= Zz

This solution is @ m.g.u. in the sense that any closed unifier is an instance of o
respecting the constraints encoded by Ym3Iu'VyV:VuwVa

We have so far obtained a higher-order programming language with an interpreter using an
SLD-resolution similar to that used in PROLOG. The constraints between variables are captured
by quantifier prefixes which memorize which variables are essentially existential and which are
essentially universal, and order them so that a variable is contained in the scope of the variables
on its left in the prefix.
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4 A Bottom-Up interpreter for [,

4.1 Motivations and intuitions

A first motivation for a Bottom-Up interpreter is theoretical: the good properties of the HOHH
with respects to uniform proofs allowed the design of a goal directed strategy for proofs, resulting
in the SLD method. It is thus interesting to draw the parallel between the languages that stemmed
from HOHH and Horn Clauses as far as possible, notably concerning the availability of alternative
resolution strategies.

Moreover a Bottom-Up interpreter can be useful in a variety of domains, as can be seen with
Horn Clauses applications: in natural language parsing, whose formalism was proved very close
to that of logic programming [15], people usually start from the token chain to be analyzed and
deduce its structure (Bottom-Up approach) rather than compute a possible structure and try it
on the chain (Top-Down approach). In deductive databases, a Bottom-Up strategy, close to the
least fixed point semantics, makes use of set-oriented query-answering procedures, which are more
efficient ways of processing queries in this field [1. 2]. Moreover it presents the important property
of being operationally complete.

We have therefore been interested in studying a Bottom-Up interpreter for {5. Although the
principle is quite simple, relying on the modus ponens rule

(p —qgAT) 7
(p — q)

its application to our higher-order language is a little tricky for two main reasons:

1. The modus ponens schemata applies to a conjunction of atoms (i.e. , of particular formulas
we are able to unify). [, bodies of clauses contain nested quantifications and conjunctions, so
we may have to deal with conjunctions of arbitrarily complex formulas.

2. The quantification of functional variables involves possible constraints over them: this prob-
lem is addressed by quantifier prefixes in SLD, but has to be considered specifically in a
Bottom-Up strategy.

We designed a Bottom-Up interpreter [7], which turns out to be as simple as the one for Horn
Clauses. The way we solved the problems described above relies on an analogy between [y quantified
atoms and Horn Clause atoms. We exploit this analogy to extend the Bottom-Up resolution for
Horn Clauses to /). An intuition of this extension is given here; more precisions will be given in
the rest of the chapter, and a complete justification may be found in [7]:

Universal quantifiers may be distributed over conjunctions in bodies of clauses, and we
obtain logically equivalent formulas. according to the tautology:

Vr (A A B) & (Va A) A (Vo B)
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By applying inductively this transformation, we obtain programs of clauses whose bodies
are conjunctions of quantified atoms. We may then formally apply the modus ponens
schemata, using higher-order unification of prefixed terms (as we presented it in 2.3).
The prefix for a quantified atomic goal may be easily computed by appending the list
of the universally quantified variables to the list of its (essentially) existential variables
(remember this prefix is only an encoding of the variables present in the term). This
schemata may be represented by the following rule:

VE(F4A — V§B) ViC
Vz'o(A)

if UNIFY (32V§ B = 3@ C) = (Q,0)

where I’ contains the (essentially existential) variables in o( A)

This formal mechanism will be proved correct and looks very simple. In particular, one may
notice that no quantifier prefix needs to be kept during the resolution; it is synthesized at each
unification step. The reason is that, in a Top-Down resolution, constraints over variables have to
be dynamically accumulated and propagated along the search tree, as bindings are. In a Bottom-
up strategy, on the other hand, we reason from facts and derive other facts which we may then
re-use without knowing their origins. As axioms and heads of clauses only contain essentially ex-
istential variables, no constraint is set on them and thus no constraint need be propagated during
the computation. Quantifier prefixes are only needed in the unification step, to specify the scope
constraints on the variables in the terms to unify. As these constraints are local, they may be
statically computed.

The following example gives an intuition of the Bottom-Up procedure applied to the same
program as in example 1:

Example 3 Let P be the program

VaVIVEYm  (append (cons x 1) k (cons 2 m) — append | k m)
Vi (append nil k k)

and G the goal Query — Yy (append (cons a nil) y (Hy)).

A Bottom-Up resolution would proceed this way:

Starting from the aziom, we chain it with the other clause, obtaining the new aziom:
VzVk (append (cons x nil) k (cons z k))

We chain the new aziom with the desired goal by the unification:
UNIFY (3HVy append (cons a nil) y (Hy) = Ja3k append (cons z nil) k (cons z k))

which identifies x to a and k to y (which is correct as to the scope constraint) and gives:
H — Auecons a u
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4.2 The Bottom-Up interpreter

The simplicity of this interpreter relies on this remark:
Consider the particular case of a clause of the following form, where A and B are atomic:

VZ (Vi4 A — V§B)

where

T represent a set of essentially existential variables appearing either in B or in both A

and B.
T4 are also essentially existential variables, but which appear only in A.
¥ are essentially universal variables appearing only in B.

Now if we consider a chaining step with the axiom Ji (', we have to realize the unification
UNIFY (37384Vy B = Ju C)
which is computed by
Unify (37374Vy3d . C = B)
The following remarks hold:

e the T4 are left unchanged since they do not appear in the terms to unify. In fact they may
even be completely removed from the unification, which we will do hereafter.

e the 7 are not in the scope of the essentially universal §. Therefore they cannot be substituted
by terms containing variables in the scope of the §. The only essentially existential variables
appearing in those substitution terms are then some a or some u’ which was raised from a u
(and therefore not in the scope of an essentially universal y).

e a variable from % may be substituted by terms containing some of the essentially universal ¥,
but then it cannot appear in any substitution term of one of the .

The resulting substitution o then does not affect the ¥4 and can instantiate the & only with terms
containing no essentially universal variables i or any variable under the scope of a y. As a conse-
quence, o(A) does only contain essentially existential variables, under the scope of no y.

Omitting the quantifiers corresponding to essentially existential variables, as is usually done in
A-Prolog, we thus obtain the following rule presented as a sequent:

(A <= V§yB) C . e o= _
vy if UNIFY (33§ B ,3i C) = (Q,0)

We therefore obtain a calculus principle very near to that of the first order case, except that
the unification is higher-order.
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This result can easily be generalized to all kinds of clauses of [y, including nested use of quan-
tification and conjunction, on the basis of the following logic equivalences:

(BAC)D A) = (CD(BDA))
(V2 (BAC))DA) = ((Va BAVz C)D A)

More details may be found in [7], justifying the following forward chaining procedure:
Clauses of the general form
V¥ (V24 A — V¥ (Vii D1 A Vi Dy))
are first transformed into the equivalent ones
V& (V&a A — ViVy1 Dy A YiV§ Do)
to which we apply the following rule:

(A — VgV Dy AN VN, Dy) B
o(A) — V§Vi o(Dy)

if Unify (3%p,Y9¥j D2 = 3ig B) = (Q,0)

This Bottom-Up procedure can be easily proved sound and complete using the deduction rules.

We thus obtain a very simple Bottom-Up interpreter which is very close to the one defined for
first order Horn Clauses. Miraculously, all the higher-order features are handled by the higher-order
unification which, in the case of [, presents no problem of termination or uniqueness of the m.g.u.

As the rest of the paper is devoted to an application of the Bottom-Up strategy, we will hereafter
assume that the clauses of the [, programs are written in their expanded form (i.e. bodies of the
clauses are conjunction of universally quantified atomic goals).

5 An application: Higher-Order Magic Sets

5.1 First-order Magic Sets

In some fields like deductive databases, computational reasons make it more advantageous to con-
sider forward chaining strategies. Unfortunately, a straightforward Bottom-Up resolution tends to
compute many facts useless for the goal to prove. We show this on an example where, unlike usual
database conventions, we do not separate intensional and extensional parts.

Example 4 Consider the following Horn Clauses program:
path(X,Y) — edge(X.Y)
path(X,Y) «— edge(X,Z), path(Z.Y")
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edge(a,b).

edge(b,c).

edge(d,e).

edge(e, f).
and let the query be

Query — path(a,Y).
The Bottom-Up processing of this query will compute the complete edge relation and then select
the appropriate instances, i.e. all the paths which may be related will be computed, while only those

starting from a were required.

On the other hand, SLD resolution presents the advantage of reducing the space of search since

the procedure is goal-directed.
To solve this problem, a nice solution was supplied first for databases [4] and then for general Horn

clauses [17] by C. Beeri and R. Ramakrishnan, consisting in rewriting a program P and a query G
into a program which, when computed Bottom-Up, mimics a Top-Down evaluation. The rewriting
is performed as indicated below:

First-Order Magic Set transformation:
Let P be a [y logic program, G be a goal.
Then Magic(P) is the program obtained by:

o (magic.G.) € Magic(P)
o if (D « G;...G,) € P, then (D — magic.D, Gy...G,) € Magic(P)

o if(D « G1...G,) € P, then (magic.GG; — magic.D, Gy1...Gi—1) € Magic(P) for each
1<i<n

An intuition of the isomorphism between applying an SLD-resolution and evaluating the Magic
program Bottom-Up may be found in [14].

Example 5 This Magic Set transformation produces the following program from the one above,

introducing the new predicates magic_path and magic_edge:
path(X,Y) — magic_path(X,Y), edge(X,Y)
path(X,Y) « magic_path(X,Y), edge(X,Z), path(Z,Y)
edge(a,b) — magicedge(a,b)
edge(b,c) — magic_edge(b,c)
edge(d,e) — magic_edge(d,e)
edge(e, f) — magic_edge(e, f)
magic_edge(X,Y) — magic_path(X
magic.edge(X,Z) — magic_path(X
magic_path(Z,Y) — magic.edge(X
magic_path(a, 7).

where the prefix magic could be intuitivcly read as “call”,

Y)
,’)
. edge(XN. Z)

N
N
.

et
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The computed facts are then the following ones, where the solutions are framed:

magic-edge(a, Z) magic.edge(a,Y)

edge(a,b)

path(a,b) magic_path(b, Z)

magic_edge(b,Z) magic_edge(b,U)

edge(b, ¢)

path(b, c) magic_path(c, Z)

path (a,c) magic_edge(c, Z) magic_edge(c,V')

This time, the irrelevant paths concerning the points e, f and g are not computed.

Thus this transformation solves the problem of restricting the set of facts computed during a
Bottom-Up resolution.

We study here an extension of this method to our language [, using the Bottom-Up resolution
presented in the precedent section.

5.2 Impossibility of a direct extension

A first natural attempt consists in a direct extension of the first-order Magic Set method to {y.
This leads to a failure, because quantification prevents from rewriting into correct /) clauses.

Example 6 Consider the simple program:

B(a,Y).

A(Z) « Vz B(Z,p(z)).
Then a direct application of the Magic Set rewriting would give the following program, with the new
predicates magic.A and magic.B:

B(a,Y) «— magic.B(a,Y)

A(Z) «— magic,A(Z), Yo B(Z,p(x))

. — magic_A(Z)

The trouble with the second clause is that we do not know how to transform a quantified goal:
knowing that the desired term in the head of the clause should intuitively mean “try to prove
B(Z,p(x)) for all 7, we have to cope with the following problems:

- On one hand, the universal quantification cannot be put out of the magic term (something
like V2 magic_B(Z,p(z))), since such a quantification in a head of a clause would mean that
z is essentially existential, while we want it to be essentially universal.

- On the other hand, to encode that we have to consider the goal Va B(Z, p(z))in its whole (with
z being essentially universal), we can try to rewrite it into the magic term magic_B(Z, p(z)),
where & is an eigen-variable standing for the essentially universal 2. But we then have to
encode that Z is not under the scope of &. which would require means out of our setting.

- Some magic_forall_B(AzeZ, AzeB(2)) does catch the scope constraint, but cannot be later
unified with magic_B(a,Y) in the clause B{«.Y ) — magic_B(a,Y) derived from the axiom.
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In short, since no scope constraints can be expressed over variables in the head of our /) clauses
(in particular, heads of clauses may only contain free essentially existential variables), the Magic
Set method cannot be directly extended to .

5.3 Some kind of Magic for [,

The obvious solution to the problem of having essentially universal variables in heads of the clauses
in the rewritten program is to rewrite without essentially universal variables. Transforming terms
containing essentially universal variables into terms containing only essentially existential variables,
in a way we will define below, implies a loss of information. Therefore the whole procedure leads to
the simulation of a resolution mixing two steps: an approximative SLD resolution which achieves a
prediction, and a Bottom-Up evaluation from the restricted set of axioms delimited by the predic-
tion. This procedure was inspired by Francois Barthélemy’s works on mixed resolution strategies
[3]. The proof of this result will be given at the end of the section.

Example 7 Let’s consider the following program:
p(X,)Y) — Vuq¢(Z,Y,u), r(X,2Z)
with the azioms
Q(el » f/\,v Y)
g(e1, X, e2).
r(a,e1).
and r(b,ey), r(b,e2), ...,r(b,€y).
and the query Query «— Vo p(a, Hz).

Then a Bottom-Up evaluation proving from right to left would compute all the facts derived
from the r(b,e;), which may be numerous and are of no use to prove Vz p(a, Hz).

To solve this problem, we propose to evaluate the following derived program:

0) magicp(a, H*) (seed)

1)  Success(Vx p(a,Hz)) — Va pla,Hz) (added clause)

2) p(X,Y) — magicp(X,Y), Vu ¢(Z.Y.u), n(X.Z)

3) magicqg(Z,Y,U*) — magicp(X,Y), r(X,Z) (derived from the first clause)

4) magicr(X,Z) — magicp(X.Y)
5) gqlen, fX,Y) — magicqgler, fX.Y)
6) qles, fX,e2) — magicgler, fX.e3)
7) r(a,e1) — magicr(a,ey)

8) r(b,e1) — magicr(b,ep) (derived from the azioms)
9) r(b,eq) — magic.r(b,eq)

r(b,e,) «— magic_r(b,e,)
where Success is the predicate giving the final result.
and H* and U*are “predictive” essentially ezxistential variables introduced to stand respectively
for Hz and uw which contain essentially universal variables.



Alain Hui-Bon-Hoa 183

The computed facts are:

i) magic.p(a, H*) (the seed 0)

1)  magicr(a,Z) (from i and §)
it1)  r(a,er) (from ii and 7)
iv) magicg(er, H*,U™) (from i, iii and 3)
v) gler, fX,U%) (from i, iv and 5)
vi) qle1, fX,e2) (from i, iv and 6)
vit)  pla, fX) (from 1 and v)
vitt) Success(Vz p(a, fz)) {(from vii and 0)

Notice that:

o the proofs starting from the r(b,e;) and which are irrelevant for this goal have been ignored in
the Bottom-Up evaluation of this Magic Set transformed program.

e however some unnecessary facts, like q(e1, fX,e2) whose third argument cannot be later uni-
fied with an essentially universal x, may be computed due to the inaccuracy introduced by the
predictive essentially existential variable U~.

o the computation in its whole is sound and complete.

We now formalize the method used to transform our program: [, clauses are assumed to be
written under their expanded form (cf section 3) D — G, ...G,, where the G;’s are universally
quantified atomic formulas.

We introduce a mapping g on a term with a quantifier prefix, which we will sometimes also
consider as a substitution on a prefixed term, the following way:

p is defined by p(M) = v(M), where v{7} is defined as follows:

i (Aye M) = v1Z¥ (M)
H ifp=0
vIZ(Hy . ) = ¢ HAB (). o8 (tp) if H is a constant or H €
H*Z if not, H* being a new essentially existential variable

It is important to notice that ju is not a substitution in the usual sense (respecting a
quantifier prefix), since it also transforms essentially universal variables. This mapping
i is likely to perform the “predictive transformation” on terms so that the resulting
program may be correctly computed Bottom-Up. Thus no essentially universal variable
must remain except those that can be encoded directly in the terms (i.e. the constants
and the variables bound by a A-abstraction). Therefore the resulting terms only contain
free essentially existential variables. The basic idea of this mapping is to transform
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any essentially universal variable into a new essentially existential one. To respect
the condition (#) set on [, terms, essentially existential terms will be eliminated and
replaced roughly by a new essentially existential variable. In fact, to preserve the
correctness of the rewriting procedure, {Z'} keeps a trace of all the variables bound by a
A-abstraction up to the current step of decomposition of the term, and these arguments
are kept, so that H*Z may actually “represent” Ht, ...t, (this notion will be formalized

later).
We then have the following result:

Theorem 1 (Higher-Order Magic Sets) Let P be a l\ logic program and G be a goal,
and let Magic(P) be the program obtained by:

o (Success(G) — G) € Magic(P)
e if (D — G;...Gp) €P, then (D — magic.D, Gy...G,) € Magic(P)

e if (D — Gi...G.) €P, then (w(magic-G;) — magic.D, Gy...Gi-) € Magic(P) for
each1<i<n
o (p(magic.G).) € Magic(P)

Then a Bottom-Up evaluation of Magic(P) is sound and complete, and mimics a Bottom-Up
evaluation from SLD-predicted azioms of P.

Some remarks may be done:

e This theorem is similar in its formulation to the one for first-order Horn Clauses, up to the
introduction of the predictive substitution j. Besides, when applied to Horn clauses terms, u
behaves like the identity substitution, and our theorem restricts to the usual first order Magic
Sets method.

e Prediction might also be considered for first-order terms, but is made necessary here because
of the impossibility of describing scoping constraints in heads of clause.

e i is a particular case of predictive substitution. Obviously, replacing each p(magic_G;) by an
essentially existential variable also leads to a sound and complete procedure, the difference
being that the prediction is even less accurate. Thus a general notion of predictive mapping
may be defined, resulting in a more general formulation of the Magic Set method.

To this aim, we introduce here a partial definition of subsumption between prefixed terms:

Definition 1 3§ B s said to be subsuming the prefived term Qa A if there exists a substitution o
on the variables §¥ of B such that
o3I B) = QA

which stands for the equality under a quantifier prefiz:
Quai (a(B) = 4)

where the § are the variables of § nol instantiated by o.
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Remark: As for first order terms, if 3§ B subsumes Q4 A , the ¢ may be obtained by
their unification (which writes Unify(Q 3% , B = A)), when we choose only variables
in y to be the ones to be instantiated.

Definition 2 A mapping of (essentially ezistential and universal) variables ® will be called a pre-
dictive mapping for a set of prefized terms if (M) only contains essentially existential free variables
and subsumes M for each term M of the set.

Of course, mapping on variables canonically extends to mapping on terms, which was implicitly
done in the above definition.

The mapping u defined above is a predictive mapping for the terms of the program P considered.
Its corresponding o may be defined as follows:

for each H* obtained from a term Ht;...1, by a w8 o (H*) = Aje(Hty .. )T — 7.
This substitution ¢ actually fits the conditions since it suppresses any essentially universal variable
not bound by a A-abstraction, and respect a(puM) = M.

Extending the previous theorem to general predictive mapping, we obtain the following result:

Theorem 2 (General Higher-Order Magic Sets) Let P be a [\ logic program, G be a goal,
and ® a predictive mapping for the terms of P,
and let Magic(P) be the program obtained by:

o (Success(G) — G) € Magic(P)
o if (D — G1...G,) €P, then (D — magic.D, G1...G,) € Magic(P)

o if(D — G,...G,) € P, then (d(magic.G;) — magic.D, Gy...G;_1) € Magic(P) for
each1<i1<n

o (®(magic.G).) € Magic(P)

Then a Bottom-Up evaluation of Magic(P) is sound and complete, and mimics a Bottom-Up
evaluation from SLD-predicted azioms of P.

5.4 Correctness of the general Higher-Order Magic Set method

Magic Sets often look mysterious. A good understanding of this higher-order Magic Set method (as
well as first-order Magic Sets) may be obtained using a very general formalism based on Dynamic
Programming evaluation of Logical Push-Down Automata developed by Bernard Lang for Horn
Clauses[8]. In this setting, it appears clearly that the Magic program is nothing but the encoding
of the evaluation of the initial program using a specific sound and complete strategy (namely, SLD-
evaluating an approximated program and performing exact Bottom-Up resolution on the focused
set of axioms).

We sketch here the proof for the theorem concerning the general Higher-Order Magic Set
method, derived from this analysis. The result mainly relies on a sound and complete proving
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procedure M’, mizing Top-Down prediction and Bottom-Up evaluation. As a first intuitive ap-
proach, we show the soundness and completeness of a rather similar proving procedure M, where
Bottom-Up evaluation follows Top-Down prediction. We begin with some simple results:

Lemma 1 If 3§ B subsumes Q4 A then every Q a-closed instance of A (i.e. an instantiation of
the essentzally existential variables in A respecting the scoping constraints in Q4) is a Iy-closed
instance of B.

Proof: This lemma is trivially derived from the definition 1 of subsumption.

Lemma 2 If 37 B subsumes @4 A then every proof (in the sense of Sequent Calculus) from a [y
logic program P of a Q a-closed instance of Q4 A is a proof of a closed instance of 3§ B.

Proof: This is straightforward from lemma 1.

This lemma of course applies to a program P with a predictive mapping ®. To simplify the
writing, we extend canonically such a & applying on quantified terms (or atomic formulas) to a
mapping over general formulas:

(G A Ge) = (2(G1)) A (B(G2))

o(Va G) = Va &(G)

The previous lemma then yields the following one:

Lemma 3 Having a complete proving procedure and a predictive mapping ® for a program P,
proving ®(Q G) from P is complete for proving Q G from P.

Proof: From lemma 2, we deduce that the set of answers of a program P for the query @ G (i.e.
of provable Q-closed instances of G) is contained in the set of answers for the query ®(Q G). Thus
answering to <I)(Q G) provides us with a complete set of answers for the query @ G.

As a consequence, since SLD-resolution is a sound and complete proving procedure, the SLD-
evaluation of ®(Q) G) from the program P is complete for proving ) G. This corresponds to a first
step of SLD—preZﬁction Predy (i.e. a complete but not necessa,rily_sound resolution) on the goal.
This prediction may be extended if we apply this method to each subgoal called by Predp, which
leads to:

Lemma 4 Considering a program P. « goal G and « predictive mapping ® for P, the method Pred
consisting in SLD-proving ®(G) from the transformed program ®(P), where all the formulas in the
bodies of clause have been transformed by ®. is a complete procedure for proving G from the program

P.
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This transformed program ®(P) implements prediction at each step of an SLD-resolution. The
proof may be obtained by induction on the size of the proof tree for an SLD-answer to a given goal.
We may then deduce the following result:

Theorem 3 (A sound and complete strategy) We obtain a sound and complete proving pro-
cedure M for a program P and a goal G by applying the prediction method Pred followed by a
Bottom-Up computation from the axioms involved in the prediction.

Proof: By lemma 4, the prediction M is complete for proving G and thus guarantees that there
is no Bottom-Up proof for G using an axiom not involved in M. This gives the completeness of
the method M’. Soundness is obtained by applying the usual Bottom-Up proving procedure to the
program P, starting only from the relevant axioms.

This proving procedure may be refined by mixing the prediction and the Bottom-Up resolution,
instead of applying them successively: each time a predictive subgoal ®(G) is proved, a Bottom-Up
step is computed trying to unify the predicted fact with G. In case of success, the substitution thus
obtained is transmitted to the remaining predictive subgoals, thus restricting even more the search
space. This strategy may be viewed as an extension of Earley Deduction [5].

The sets of subgoals and facts may be defined by the following mutually recursive formulas, derived
from Nilsson’s simplified expression of Carnegie Mellish’s work [14]:

Call = Init U U {69(G:) | Bo € Call, By,...,Bi_; € Succ and
—®(G1),..,@(G),....2(Gn)ER(T
A0 =B (G1)B(Ge)or WG )ER(F) mgu(Ag...Gi—1,Bo...Bi_1) =0 # 1}

Sucec = U {6(Ao) | Bo € Call, By,...,B, € Succ and
Ao—G1,,Gn€F mgu(Ao...Gn,Bo...By) =60 # 1}

Init contains the initial goals, and Swuce is initialized with the axioms of P.

Theorem 4 (Another sound and complete strategy) We obtain a sound and complete prov-
ing procedure M’ for a program P and a goal G by applying the prediction method Pred mized with
a Bottom-Up computation as described above.

Before we attack the proof of this theorem. we need the following lemma:

Lemma 5 If 3y B subsumes JUNT A, then for each JuVi-substitution T whose substitution terms
does not contain essentially universally variables quantified in a prefiz, 7(3§ B) subsumes T(3@VV A).

This property concerns interesting particular cases of subsumption, since the quantified terms
Ja@VY A are those representing quantified atomic goals in /3. The 7 concerned are the restrictions
to the variables of A of the unifiers obtained by chaining A with a clause head.

Proof: since the substitution terms only contain essentially existential variables, 7(37 B) appears
under the form 3§’ B’, so it is correct to consider our (partial) subsumption. T

The proof of this lemma relies on an induction on the structure of the term B: we modify o such
that o(3§ B) = 3@V¥ A to obtain ¢’ such that o'7(3y B) = r(3ivi A)
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e if B is a (necessarily essentially existential) variable,

— either B occurs in A, then necessarily A = B, so 7(A) = 7(B), and no ¢’ is needed.

— or B does not occur in A, then B is not instantiated by 7, and we choose ¢/( B) = 7(M)

ifo(B)=M.
e if B is a functional term

— if B is essentially universal, then its head symbol must be a constant or a variable A-
abstracted before. In both cases, A must also be a functional term with the same head
symbol. We may then apply the induction hypothesis to the arguments.

~ if B is essentially existential, then the condition (#) states that the arguments in B are
essentially universal variables quantified in the scope of the head of B: B = uy; ...yn.
In this case, the y; are necessarily previously A-abstracted variables. The discussion is
then similar to the case where B is a variable: if v occurs in A then u is not modified by
o and thus we must have A = B. If it does not, then we choose o’'(u) = A2y ...z, ¢« T(A).

e if B is a A-abstraction Az « B’, then so must be A, say A = Ay o A'.
We apply the induction hypothesis to B’ and A’[y — 2], where z is considered as an essentially
universal variable quantified in the scopes of the previous variables.

Proof of theorem 4: The soundness of the procedure is obvious since facts are proved by
genuine Bottom-Up computations (the method M’ only leads these computations). We prove the
completeness of M’ the following way: considering a program P, a predictive mapping ®, we note
®(P) the program obtained by applying ® to the clause bodies, and we reason by induction on the
size S of an SLD-proof tree for an answer p to a goal G:

If S =1, then p(G) is an instance of an axiom A of P. This axiom is also in ®(P), since
only bodies of clause are modified. So, by lemma 3, we deduce p(G) as an answer for
the predictive goal ®(Q) D). As p(G) also unifies with @ G in the Bottom-Up step, it
appears as a M "-answer for QG. -

Induction hypothesis: we assume the result to be true up to S: for each goal with an
answer whose SLD-proof tree has a size inferior or equal to S, applying the method M’
with a predictive mapping ® is complete.

We consider now a goal G for which an answer p exists, whose SLD-proof tree has the
size S 4+ 1. We separate the cases according to the last rule used in the proofs. Since [,
(as a restriction of L) supports uniform proofs [12], this last rule is a right-introduction
rule until we deal with an atomic goal. For /5. this restricts to the following cases:

- if we use a right-A-Introduction (corresponding to the AND case of the SLD inter-
preter), then @ G is of the form (Q; G1)A(Q2 G2}, and P provides us with proofs
for p(G1) and p(G>).

Using M', we first try to prove Q; (1, and we consider the predictive goal
®(Q1 G1). Applying the induction hypothesis, we deduce the completeness of
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the procedure for this goal, and thus that some answer T is computed by M’, such
that p(G1) is a Q-instance of 7(G1). p(G1) is thus a M’-answer for @1 G1.

The procedure M’ then considers the predictive goal p®(Q2 G2). By lemma 5,
p®(Q2 G2) subsumes p(Q2 G2). We may then apply the induction hypothesis to
the goal @, p(G3), with the predictive mapping @ :: [p(G2) — p®(G2)]. The com-
pleteness obtained guarantees that p(G) also constitutes a M'-answer for Q2 Go.
Thus 7(G) is also a M’ answer to G.

- since we assume that the quantifiers have been distributed to atomic goals, as was
suggested in 3.2, right-V-introductions (corresponding to the AUGMENT rule of
the SLD-interpreter) are always followed by left-=-introduction (corresponding to
the BACKCHAIN rule of the SLD-interpreter). One unique proof may encompass
this case and that of only using the BACKCHAIN rule, because it may be con-
sidered as a BACKCHAINing over quantified formulae (using the unification over
quantified terms presented in 2.3). This proof stands as follows:

In the SLD-proof, @ G is first unified with some head A of a clause A — G'. Using
M’ we consider the predictive goal ® Q G). By lemma 3, considering ®(Q G)
is complete for proving @ G. So Q G also unifies with A via o, and p(G’) is an
SLD-answer to o{(G').

Besides, by lemma 5, c®(G’) subsumes o(G’). Therefore, we may apply the in-
duction hypothesis to o(G’) with the predictive mapping @ :: [0(G') — o®(G’)],
and deduce the completeness of proving a(G’). As a consequence, p(G’) is also a
M'-answer to o(G’).

So p(G) appears as an answer for the predictive goal ®(Q G). A last Bottom-Up
step is then computed by A’ unifying the facts obtained with Q G. This step of
course preserves the completeness of proving Q G, and p(G’) may be chained back
to Q G, giving p(G) as a M'-answer to G.

The General Higher-Order Magic Sets theorem may be deduced by showing that the Magic
Set method is actually a Bottom-Up implementation of this resolution procedure M’: the call of
subgoals in the Top-Down predictive phase is encoded into the predicates magic_X. The proof is
straightforward.

A better and more general proof may be obtained, as we said, using the formalism of LPDA:
compiling P with the logic M’ and a Bottom-Up control yields the general higher-order Magic Set
method. This view is unfortunately too long to present here.

6 Conclusions

In the purpose of extending the possible use of Ly to some application fields, we have studied
a restriction /) which allows function variables and universal quantification. We showed that a
Bottom-Up strategy is available for this language. This strategy is sound and complete, and very
simple, since the unification takes care of all the higher-order features.

Bottom-Up approaches present the advantages of heing complete, and suitable for parallel execu-
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tion. They are also sometimes more adapted to the kind of reasoning used in the concerned domain.
For instance, this restriction ) suffices to implement semantic interpretation [16)], the treatment of
(linear) implication being explicitly described in the program. This example is typically a case of
a program containing a left-recursive clause, and for which Bottom-Up is more efficient: an SLD-
resolution will arbitrarily often apply the rule for discharging assumptions, even though there may
be not enough assumption introductions in the tree below. Conversely, in a Bottom-Up resolution,
assumptions will be introduced before they are discharged.

As an application, we have studied the possibility of extending the Magic Set method developed
for first-order Horn Clauses [17] to the higher-order language /. This method solves the problem of
Bottom-Up approaches of computing many unnecessary facts by simulating an SLD-resolution by a
Bottom-Up evaluation of a transformed program. We showed that direct extension was not possible.
But, provided some loss of information in an SLD-prediction, we may propose an adaptation of
the method to [, which restricts the space of search all the more significantly as the prediction
may be accurate. This higher-order Magic Set method also relies on the Bottom-Up computation
of a program which may be deduced from the original one by a simple transformation. It may be
applied with different predictive mappings. Yet, there is no way to obtain an exact prediction since
scoping constraints cannot be expressed in heads of clause. This therefore represents an obligatory
inaccuracy which notably occurs in the following cases:

e an essentially universal variable is replaced by an essentially existential one, which may then
be instantiated during the prediction.

» an essentially existential variable appearing both in the head and the body of a clause may be
replaced by another one in the body (for instance if we had (X y), with y universally quantified
in the body). The direct correlation between the two variables is lost in the prediction.

The problem of optimizing this prediction remains open to discussions and refinements, and we
may ask just how much this Higher-Order Magic Set method may be really interesting. A first the-
oretical answer is that, although the prediction phase cannot be made exact, this method actually
leads to a reduction of the facts computed. Implementation and tests are needed for a complete
answer.

Anyway we believe that at least this theoretical setting may represent a first step towards devel-
oping L) to extend first-order Horn Clauses applications.

7 Extensions

The presentation we made here both of Bottom-Up evaluation and of some Magic Set transformation
concerns the language [,. We consider now the possibility of extending these results to larger sets
of terms and formulas:

e Extending the terms: the unification involved in [, makes use of a restricted form of 3-
conversion, namely fo-conversion [10]. This is the reason for its good properties. Now full
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fBn-unification may in fact be considered since the Bottom-Up procedure only relies on the
property of essentially existential variables in a clause, whether in the head or in the body,
to be out of the scopes of the essentially universal ones. Bottom-Up resolution could then
also apply to the same set of formulas, where the condition (#) on the essentially existential
terms is removed. It even makes the predictive mapping in the Magic Set method easier to
be found, since essentially universal variables may be directly transformed into essentially
existential ones (lemma 5 would yet have to be proved again with this extension, if we want
to guarantee the completeness of the Higher-Order Magic Set method).

On the other hand, full Bn-unification is only semi-decidable, and the completeness gained
with a Bottom-Up resolution may be lost in such a unification.

e Extending the logic: to reach the whole logic in HOHH, we first need to allow embedded mixed
quantifications in the clause bodies. The existential quantification (p?) is not authorized in L
since it may introduce terms offending the condition (#). If we extend our terms as described
above, we may add this predicate pi provided we (statically) skolemize all the clause bodies. If
not, we would have essentially existential variables under the scope of an essentially universal
one, and for example, it would be harder to treat a goal such as Vz3y (P(z,y) A Q(z,y)).

The main difficulty is then to include embedded implications. Such a feature is problematic
since it requires introducing and discharging assumptions, and thus retaining some “history”
for each fact computed. Some solution may perhaps be obtained by extending the Magic Sets
prediction to encompass implication and guide the Bottom-Up search: The transformation
would then need to be applied dynamically. We must admit we have not explored this
perspective yet.
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We have been investigating methods for efficient implementation of the logic of hereditary
Harrop formulas. There are several similarities in the structure of this logic and the logic of Horn
clauses that have convinced us of the wisdom of using a WAM-like model as the basis for our work.
However, the logic of interest extends Horn clause logic in several significant respects and methods
for dealing with these have to be developed. In particular, four facets of the logic can be identified
for which new implementation techniques have to be devised:

(1) the presence of the two new primitives. GENERIC and AUGMENT, for controlling the pat-
tern of search,

(2) the presence of lambda terms and the need to perform lambda conversion on these terms,

(3) the embedding of higher-order unification with its branching characteristic within the normal
Prolog computation regime, and

(4) the use of polymorphic typing that. within logic programming, lead to a need for processing
types at run-time.

We have developed a sequence of schemes for dealing with these new features that, in our opinion,
fit gracefully into the general structure of the WAM [4, 9, 10, 12]. In each of these efforts, we have
focused on one specific aspect and described the mechanisms, usually in addition to those already
present in the WAM, for implementing that aspect. The purpose of the paper being described is to
consolidate these various discussions into one abstract machine that implements the entire logic of
hereditary Harrop formulas; as such, it serves as a blueprint for an implementation that is currently
being carried out. In this extended abstract we outline only the problems and the broad method
of treatment. The full paper will contain a detailed description of the components of this machine
and its complete instruction set.

The search primitive GENERIC arises from the inclusion of universal quantifiers in goals. The
operational semantics of this logical symbol involves introducing a new constant and then solving
the goal resulting from instantiating the quantifier with this constant. This interpretation cannot
be implemented exactly as described because of the presence of existential quantifiers. The latter
involves guessing an appropriate instance. and the only reasonable implementation is to postpone

!'Work on this paper has been supported by the NSF grant CCR-89-05825.
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the guessing till it can be determined through unification. The problem then is that when a guess
is made, it might violate the newness constraint on the constant used for universal quantifiers.
As a concrete example, it should not be possible to solve the goal J2Vyp(z,y) from the program
{Vzp(z,z)}. The technique generally used to deal with this problem is to skolemize the universal
quantifiers before attempting to solve the goal. However, a static skolemization will not work in
the context of hereditary Harrop formulas. As an example, the goal ((Vzp(z) D ¢) D Jy(p(y) D q))
must not succeed, but would succeed under the usual understanding of the static skolemization
process. A dynamic form of skolemization can be used and several related methods for solving this
problem have been outlined in [7]. However, these methods do not blend easily into the design
of an abstract machine and a compilation scheme. Fortunately, there is a method that is readily
implementable. This method (discussed in [1] and [3] and proved correct in [8]) involves thinking of
a hierarchy of “Herbrand universes” and tagging variables and constants based on the universe they
belong to. The tag on a variable indicates that it can be instantiated only by a term belonging to
the universe at that level. The tags thus constrain unification and conspire to ensure the correctness
of bindings. From the perspective of our machine, tags are easily representable as an extra field
with variables and constants. Universal and existential quantifiers compile into simple instructions
that set tags for variables and possibly increment a universal tag index. The checking of tags
blends readily into the compiled code generated for unification — the instructions (for the first-
order case) remain the same but possibly involve a simple additional operation. The interpretive
phase of unification (embodied in the unify_value instruction in the WAM) involves a check for
tag compatibility when a variable is ultimately bound. However this can be incorporated into the
“occurs-check” that the WAM must do to ensure correctness. (Just as in the WAM, situations can
be described where this check may be elided).

The AUGMENT primitive arises from permitting implications in goals. The operational seman-
tics of this symbol is as follows: to solve the goal D D G, we add D to the program (the syntax of D
is restricted for this to be possible) and then attempt to solve G. From the perspective of providing
a reasonable implementation of this operation, there are three issues to be dealt with. First, we
have to deal with changing sets of program clauses. For example, solving (D, D G1) A (D2 D G3)
from a program P involves using programs P, P U {D;} and P U {D,}. A reasonable means for
managing these different program contexts — such as creating each one by adding and removing
parts of code — is necessary. Second, we would like to compile (and share compiled code for) pro-
gram clauses that appear on the left of implications. This requirement is complicated by the fact
that slightly different versions of a program clause may be needed at different points. For example,
consider using the program clause Va(((D(z) D G) A p(z)) D p(f(z))) for solving 3yp(f(f(v))),
assuming p is a predicate name, f is a function symbol, D is some program clause and G is a
goal. (We assume that a program clause is provided for p for the base case of the recursion). Now
two clauses will need to be added to the program: D(f(y)) and D(y) in the course of solving the
query. There is nevertheless a considerable amount of structure that is common between these two
clauses and we would like our implementation to permit this to be shared: this is essential if we
are to compile the code for D in any sense. The final problem deals with backtracking. Consider
solving a goal such as 32((D; D Gy(2)) A Ga(z)). Assume that we have succeeded in solving the
goal (D1 D G1(z)). However, the instantiation determined for z is such that the attempt to solve
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Go(z) fails. We then have to backtrack to trying to find another solution to D; D G1(z). Within
the WAM framework, this involves returning to some subgoal of G1(z). Notice, however, that the
program in existence at that point has to be reconstructed. Some simple and efficient means for
doing this is needed.

Our machine embodies a solution to all these problems posed by AUGMENT. The problem with
slightly different versions of program clauses is solved by using the idea of a closure: a program
clause is represented by code and bindings for variables. The bindings are determined by some
specified environment record in the sense of the WAM. The compiled code for the clause contains
initialization instructions that work relative to this environment record. Mechanisms are included
for making the appropriate environment record available when the code is to be executed. The
changing program contexts are realized by using a stack based representation of available program
clauses. The compiled code for an implication gives rise to an implication point record on the
local stack. The implication point record adds clauses essentially by defining a new access function
to clauses available at the point of its creation. Some work has to be done in order to set up
this record at run-time, but a considerable amount of the task can be compiled. The action with
regard to backtracking is simply to resurrect an earlier access function. The usual WAM devices
serve to determine whether or not an access function will be required subsequent to a successful
computation, preserving the scheme for reclaiming parts of the local stack. (The overall scheme
combines ideas in [3] and [5] and is described completely in [9]).

Given that lambda terms are a central part of the logic of higher-order hereditary Harrop
formulas, an efficient implementation requires a good representation to be devised for these terms.
In determining what is a good representation, a distinction must be made between a situation
where these terms are used as a means for computing as in functional programming languages
and where they are used as data structures. In the latter case the representation must make the
structures of terms readily apparent. Further, the ability to determine equality or unifiability
modulo lambda conversion should be supported. In particular, it should be easy to ascertain
whether two terms are identical except for a difference in bound variable names and the operation
of B-reduction on terms should also receive an efficient implementation. In our context, the latter
aspect dictates a representation that allows substitutions to be performed lazily. Thus, consider
the task of determining whether the terms (AzAyAz((z y) s)) (Aww) and (AzAyAz((z 2) 1)) (Aww)
are equal, assuming that s and ¢ are complex terms. It may be concluded that they are not, by
observing that these terms reduce to (AyAz(y s')) and (AyAz(z t')), where s’ and ¢’ result from s
and t by appropriate substitutions. Notice that it is not really necessary to determine the exact
form of &' and t’ before reaching this conclusion, and a means for performing substitutions lazily
can save a potentially costly operation. In implementing this idea, the notion of environments from
functional programming can be used. However, the details of such a scheme are considerably more
intricate here because, as is clear from the example considered, reductions may have to be done
embedded within abstractions and substitutions must also be percolated into such contexts. A
scheme has been worked out that takes these factors into account and also makes the checking of
a-convertibility easy by being based on de Bruijn’s nameless representation for lambda terms [12].
Our machine embodies a version of this representation.

The notion of unification that is pertinent to higher-order hereditary Harrop formulas is based
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on equality modulo A-conversion. The resulting computation is quite different from that in Prolog,
particularly in that most general unifiers do not exist anymore. A procedure for finding unifiers
has been described by Huet [2]. This procedure has two phases that are applied repeatedly. One of
these phases simplifies the structure of the terms to be unified, eventually either determining that
no unifiers can exist or producing a set of pairs of terms whose unifiers are identical to the unifiers of
the initial pair. In the latter case, the set produced is one for which a unifier can be readily provided,
i.e. it is a solved set, or one of a finite number of possibilities may be tried to progress the search
towards finding a unifier. From an implementation prespective, the structure of this procedure
dictates that sets of pairs of terms that have to be unified, the so-called disagreement sets, have to
be represented explicitly. The representation must satisfy certain characteristics to yield an efficient
implementation. One requirement arises from the fact that disagreement sets change incrementally
as unification proceeds, with large parts being preserved between sets. Thus a representation that
exhibits a large amount of sharing between sets is desirable. Another requirement is that, in light
of backtracking, it should be possible to reinstate previous sets rapidly. Our machine embodies a
scheme for maintaining disagreement sets that appears to meet these criteria. In essence the scheme
maintains a stack of disagreement pairs and a linked list through the stack indicates the “current”
disagreement set. Reinstatement of a previous set upon backtracking is facilitated by making the
list doubly linked and using a trailing mechanism that is in several respects similar to that used
in Prolog implementations for resetting state. Another requirement that Huet’s procedure imposes
is the ability to handle branching within unification. This is catered to within our machine by
conducting a depth-first search, using a branch point record to encode the alternatives that are as
yet unexplored in its state. These new records are akin to the choice point record of the WAM and
similarly enable a rapid return to an earlier state followed by the choice of an alternative search
path. Finally, although branching in unification may eventually be necessary, experimental evidence
suggests that it might often be avoided by some simple processing steps [6]. Our implementation is
sensitive to this fact at several levels. First, the processing structure permits the easy application of
such steps. Second, the creation of branch point records and the explicit encoding of disagreement
sets is delayed until after these steps have been applied. Third, specific operations are considered
towards eliminating branching. With regard to the last aspect, our implementation permits a
treatment of first-order like unification problems through the usual mechanisms of the WAM and
can deal with these problems almost entirely through compiled code.

The last issue pertains to typing. It may at first seem somewhat intriguing that types should
play a role in determining the run-time support of a language. The reason for this, as discussed in
[11], is twofold: the behavior and outcome of the unification process is influenced by the types of
various expressions and, because of a polymorphism that is permitted in the language, the actual
types involved are only known in the course of execution. Now, it is desirable to reduce the runtime
processing of types to the greatest possible extent in a good implementation. A look at the typing
regimen used in conjunction with hereditary Harrop formulas shows that a clever representation
of types and a careful use of information present during compilation can considerably reduce the
time and space required for type analysis. The essential idea is that by virtue of type declarations
a “skeleton” is known for the type of every primitive symbol at runtime and this skeleton can be
shared across several incarnations of the symbol. Further, it is actually possible to compile the type
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analysis that is required due to the refinement to “leaves” in this skeleton in parts of the program.
This type analysis is in fact a form of first order unification that the WAM machinery is adept
at carrying out. A proper meshing of the unification instructions for types with that for terms is
required (involving answering questions such as when type comparison must be initiated and when
types have to be written as opposed to checked for compatibility). These details have been worked
out and are embodied in our machine. At a level of detail, this requires the addition of a heap,
called a type heap, for the processing of types in our machine. These can be merged into the usual
heap. However their separation adds a desirable flexibility to the processing scheme.
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1 Abstract

Issues concerning the implementation of a notion of modules in the higher-order logic programming
language AProlog are examined. A program in this language is a composite of type declarations
and procedure definitions. The module construct that is considered permits large collections of
such declarations and definitions to be decomposed into smaller units. Mechanisms are provided
for controlling the interaction of these units and for restricting the visibility of names used within
any unit. The typical interaction between modules has both a static and a dynamic nature. The
parsing of expressions in a module might require declarations in a module that it interacts with,
and this information must be available during compilation. Procedure definitions within a module
might utilize procedures presented in other modules and support must be provided for making the
appropriate invocation during execution. Our concern here is largely with the dynamic aspects
of module interaction. We describe a method for compiling each module into an independent
fragment of code. Static interactions prevent the compilation of interacting modules from being
completely decoupled. However, using the idea of an interface definition presented here, a fair
degree of independence can be achieved even at this level. The dynamic semantics of the module
construct involve enhancing existing program contexts with the procedures defined in particular
modules. A method is presented for achieving this effect through a linking process applied to the
compiled code generated for each module. A direct implementation of the dynamic semantics leads
to considerable redundancy in search. We present a way in which this redundancy can be controlled,
prove the correctness of our approach and describe run-time structures for incorporating this idea
into the overall implementation.

2 Introduction

This paper concerns the implementation of a notion of modules in the logic programming language
AProlog. Logic programming has traditionally lacked devices for structuring the space of names and
procedure definitions: within this paradigm. programs are generally viewed as monolithic collections
of procedure definitions, with the names of constants and data constructors being implicitly defined
and visible everywhere in the program. Although the absence of such facilities is not seriously felt

'Work on this paper has been supported by the NSF grant CCR-89-05825.
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in the development of small programs, structuring mechanisms become essential for programming-
in-the-large. This fact has spurred investigations into mechanisms for constructing programs in
a modular fashion (e.g., see [11, 14, 19, 20]) and has also resulted in structuring devices being
included in some implementations of a Prolog-like language on an ad hoc basis. Most proposals put
forth have, at the lowest level, been based on the use of the logic of Horn clauses. This logic does
not directly support the realization of structuring devices, and consequently these have had to be
built in at an extra-logical level. The logic of hereditary Harrop formulas, a recently discovered
extension to Horn clause logic [13], is interesting in this respect because it contains logical primitives
for controlling the visibility of names and the availability of predicate definitions. The language
AProlog is based on this extended logic and thus provides logical support for several interesting
scoping constructs [10, 11]. The notion of modules whose implementation we describe in this paper
is in fact based on these new mechanisms.

The language AProlog is in reality a typed language. One manifestation of this fact is that
programs in this language consist of two components: a set of type declarations and a set of
procedure definitions. The module concept that we consider is relevant to a structuring of programs
with respect to both components. In a simplistic sense, a module corresponds to a named collection
of type declarations and procedure definitions. This view of modules reveals that the use of this
structuring notion has both static and dynamic effects. The typical use that might be expected
of any module is that of making it contents available in some fashion within a program context
such as another module. The main impact of making the declarations in a module visible must
clearly be a static one: to take one example, the type associated with some constant by the module
in question may be needed for parsing expressions in the new context. The effect with regard to
predicate definitions is, on the other hand, largely dynamic. Thus, procedure definitions in the new
context might contain invocations to procedures defined in the “imported” module. The important
question to be resolved, then, is that of how a reference to code is to be resolved in a situation
where the available code is changing dynamically.

From the perspective of implementing the module notion, the main concern is really with the
dynamic aspects. In particular, our interest is largely in a method for compiling the definitions
appearing in modules and in the run-time structures needed for implementing the prescribed se-
mantics for this construct. We examine these questions in detail in this paper and suggest solutions
to them. Now, AProlog has several new features in comparison with a language such as Prolog and
a complete treatment of compilation requires methods to be presented for handling these features
as well. We have studied the implementation issues arising out the other extensions in recent work
and have detailed solutions to them [7, 16, 17]. We outline the nature of these solutions here but do
not present them in detail. In a broad sense, our solutions to the other probiems can be embedded
in a machine like the Warren Abstract Machine (WAM) [21]. We start with this machine and
describe further enhancements to it that serve to implement the dynamic aspects of the module
notion. There are several interesting characteristics to the scheme we ultimately suggest for this
purpose, and these include the following:

(i) A notion of separate compilation for modules is supported. As we explained above, there is a
potential for static interaction between modules that makes completely independent compila-
tion impossible. However, this situation is no different from that in any other programming
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language. We propose the idea of an interface definition to overcome this problem. Relative
to such definitions, we show that the separate compilation goal can actually be achieved.

(ii) A notion of linking is described and implemented. The dynamic use of modules effectively
reduces to solving goals of the form M ==> G where M is a module name. The expected
action is to enhance an existing program context with the definitions in M before solving G.
The symbol ==> can, in a certain sense be viewed as a primitive for linking the compiled code
generated for a module into a program context. Using ideas from [8] and [16] we show how
this primitive can be implemented.

(iii) A method for controlling redundancy in search is described. The dynamic semantics presented
for modules in [11] can lead to the definitions in a module being added several times to a
program context, leading to considerable redundancy in solving goals. We present a sense in
which this redundancy can be eliminated, prove the correctness of our approach and show how
this idea can be incorporated into the overall implementation. The general idea in avoiding
redundancy has been used in earlier implementations of AProlog [2, 9]. However, ours is, to
our knowledge, the first proof of its correctness and the embedding of the idea within our
compilation model is interesting in its own right.

The remainder of this paper is structured as follows. We describe the language of AProlog
without the module feature in the next section, focussing eventually on the general structure of
an implementation for this “core”. In Section 4, we present the module notion that is the subject
of this paper and outline the main issues in its implementation. In Section 5, we present our
first implementation scheme. This scheme permits separate compilation and contains the run-time
devices needed for linking. However, it has the drawback that it is may add several copies of a
module to a program context leading to the mentioned redundancy in search. We discuss this issue
in detail in Section 6 and show a way in which redundancy can be controlled. In Section 7 we use
this idea in describing mechanisms that can be incorporated into the basic scheme of Section 5 to
ensure that only one copy of a module is available in a program context at any time. Section 8
concludes the paper.

3 The Core Language

We describe in this section the part of the AProlog language that can be thought of as its core.
Our presentation will be at two levels: we shall describe the logical underpinnings of the language
and also attempt to describe it at the level of a usable programming language. Both aspects are
required in later sections. The exposition at a logical level are needed to understand the semantics
of the modules notion and to justify optimizations in its implementation. The presentation of the
programming language is necessary to understand the value of modules as a pragmatic structuring
construct.
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1.1 Syntax

The logical language that underlies AProlog is ultimately derived from Church’s simple theory of
types [1]. This language is typed in the sense that every well-formed expression in it has a type
associated with it. The language of types that is actually used permits a form of polymorphism.
The type expressions are obtained from a set of sorts, a set of type variables and a set of type
constructors, each of which is specified with a unique arity. The rules for constructing types are
the following: (i) each sort and type variable is a type, (ii) if ¢ is an n-ary type constructor and
t1,...,t, are types, then (¢ t; ... t,) is a type, and (iii) if & and B are types then so is a — 3.
Types formed by using (iii) are called function types. In writing function types, parentheses can be
omitted by assuming that — is right associative. Type variables have a largely abbreviatory status
in the language: they can appear in the types associated with expressions, but at a conceptual
level such expressions can be used in a computation only after all the type variables appearing
in them have been instantiated by closed types. A type is closed if it contains no type variables.
However, these variables permit a succinct presentation of predicate definitions and, as we mention
later, their instantiations at run-time can often be delaved. Thus, type variables provide a sense of
polymorphism in AProlog.

At the level of concrete syntax, type variables are denoted by names that begin with an upper-
case letter. The set of sorts initially contains only o, the boolean type, and int, the type of integers,
and no type constructors are assumed. The user can define type constructors by using declarations
of the form

kind ¢ type — ... — type.

The arity of the constructor ¢ that is thus declared is one less than the number of occurrences of type
in the declaration. Noting that a sort might be viewed as a nullary type constructor, a declaration
of the above kind may also be used to add new sorts. As specific examples, the declarations

kind 1 type.
kind list  type — type.

add 7 to the set of sorts and define list as a unary constructor. The latter will be used below as a
means for constructing types corresponding to lists of objects of a homogeneous type .

The terms of the language are constructed from given sets of constant and variable symbols,
each of which is assumed to be specified with a type. The constants are categorized as the logical
and the nonlogical ones. The logical constants consist of the following:

true of type o, denoting the true proposition,

A of type 0 — 0 — o, representing conjunction.

% of type 0 — o — o, representing disjunction,

) of type 0 — o0 — o. representing implication,

sigma of type (A — 0) — o, representing existential quantification,

P of type (A — o) — o, representing universal quantification.
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The symbols sigma and p: have a polymorphic type associated with them. These symbols really
correspond to a family of constants, each indexed by a choice of ground instantiation for 7 and a
similar interpretation is intended for other polymorphic symbols.

In the machine presentation of nonlogical constants and variables, conventions similar to those
in Prolog are used: both variables and constants are represented by tokens formed out of sequences
of alphanumeric characters or sequences of “sign” characters, and those tokens that begin with
uppercase letters correspond to variables. The underlying logic requires a type to be associated
with each of these tokens. Symbols that consist solely of numeric characters are assumed to have
the type int. For other symbols, an association is achieved by declarations of the form

type constant type-expression.

Such a declaration identifies the type of constant with the corresponding type expression. As
examples, the declarations

type nil  (list A).
type A — (list A) — (list A).

define the constants nil and :: that function as constructors for homogeneous lists. Types of
constants and variables may also be indicated by writing them in juxtaposition and separated by
a colon. Thus the notation X : int corresponds to a variable X of type int.

The terms in our logical language are obtained from the constant and variable symbols by
using the mechanisms of function abstraction and application. In particular (i) each constant and
variable of type 7 is a term of type 7, (ii) if z is a variable of type 7 and ¢ is a term of type 7/, then
Azt is a term of type 7 — 7/, and (iii) if ¢; is a term of type (72 — 1) and ?; is a term of type 7o,
then (¢; t2) is a term of type 7;. A term obtained by virtue of (ii) is referred to as an abstraction
whose bound variable is 2 and whose scope is t. Similarly a term obtained by (iii) is called the
application of t; to ;.

Several conventions are adopted towards enhancing readability. Parentheses are often omitted
by assuming that application is left associative and that abstraction is right associative. The logical
constants A, V and D are written as right associative infix operators. It is often useful to extend
this treatment to nonlogical constants, and a device is included in AProlog for declaring specific
constants to be prefix, infix or postfix operators. Ior instance, the declaration

infiz 150 =z fy

achieves the same effect that the declaration op(150, 2 fy. ::) achieves in Prolog: it defines :: to be
a right associative infix operator of precedence 150.

An important notion is that of a positive term which is a term in which the symbol O does
not appear. We define an atomic formula or atom to be a term of type o that has the structure
(P t; ... t,) where P, the head of the atom, is either a nonlogical constant or a variable and
t1,...,tn, the arguments of the atom, are positive terms. Such a formula is referred to as a rigid
atom if its head is a nonlogical constant. and as a flexible atom otherwise. Using the symbol A
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to denote arbitrary atoms and A, to denote rigid atoms, the classes of G-, D- and E-formulas are
identified as follows:

G == true | A|(G1AG2) | (G1V G2) | sigma (AzG) |
pi (AzG) | (E D G)

D == A, |GDA,|pi(AzD)| (D1 A Dj)

E == D|sigma(i2E)

A curious aspect of these syntax rules is the use of the symbols pi and sigma. These symbols
represent universal and existential quantification respectively. The quantifiers that are used in
conventional presentations of logic play a dual role: in the expression Vz P, the quantifier has the
function of binding the variable z over the expression P in addition to that of making a predication of
the result. In the logical language considered here, these roles are separated between the abstraction
operation and appropriately chosen constants. Thus the expression Vo P is represented here by
(p? (Az P)). The former expression may be thought of as an abbreviation for the latter, and we use
this convention at a metalinguistic level below. A similar observation applies to the symbol sigma
and existential quantification.

The G- and D-formulas determine the programs and queries of AProlog. A program consists of
a list of closed D-formulas each element of which is referred to as a program clause, and a query or
goal is an closed G-formula?. In writing the program clauses in a program in AProlog, the universal
quantifiers appearing at the front are left implicit. A similar observation applies to the existential
quantifiers at the beginning of a query. There are some other conventions used in the machine
presentation of programs. Abstraction is depicted by \, written as an infix operator. Thus, the
expression AX (X :: nil) is represented by X\(X :: nil). The symbols A and Vv are denoted by , and
; as in Prolog. Implications appearing at the top-level in program clauses are written backwards
with :- being used in place of D, and the symbol D in goal formulas is written as =>. Finally, a
program is depicted by writing a sequence of program clauses, each clause being terminated by a
period. An example of the use of these conventions is provided by the following clauses defining
the familiar append predicate, assuming the types for nil and :: that were presented earlier.

(append nil L L).
(append H :: L1 L2 H :: L3) :- (append L1 L2 L3).

Notice that not all the needed type information has been presented in these clauses: the types of
the variables and of append have been omitted. These tvpes could be provided by using the devices
explained earlier. However, type declarations can be avoided in several situations since the desired
types can be reconstructed [15]. For example, the tvpe of append in the above program can be
determined to be (list A) — (list A) — (list A) — o. The type reconstruction algorithm that is
used is sensitive to the set of clauses contained in the program. For example, if the program above
included the clause

2This definition is more general than the one usually employed in that existential quantification is permitted over
D formulas appearing to the left of implications in goals. This feature does not add anything new at a logical level,
but is pragmatically useful as we see later. This extended definition is also used in [4].
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(append (1 :: nal) (2 :: nil) (1 :: 2 12 nal)).

as well, then the type determined for append would be (list int) — (list int) — (list int) — o
instead.

The example above shows the similarity of AProlog syntax to that of Prolog. The main difference
is a curried notation, which is convenient given the higher-order nature of the language. There are
similarities in the semantics as well as we discuss below.

1.1 Answering Queries from Programs

We present an operational semantics for AProlog by providing rules for solving a query in the
context of a given program. The rules depend on the top-level logical symbol in the query and have
the effect of producing a new query and a new program. Thus, the operational semantics induces a
notion of computational state given by a program and a query. We employ structures of the form
P — G where P is a listing of closed program clauses and G is a closed G-formula to represent
such a state. We refer to these structures as sequents, and the idea of solving a query from a set of
closed program clauses corresponds to that of constructing a derivation for an appropriate sequent.

Several auxiliary notions are needed in presenting the rules for constructing derivations. One
of these is the notion of equality assumed in our language. Two terms are considered equal if
they can be made identical using the rules of A-conversion. We assume a familiarity on the part
of the reader with a presentation of these rules such as that found in [5]. We need a substitution
operation on formulas. Formally, we think of a substitution as a finite set of pairs of the form
(z,t) where z is a variable and t is a term whose type is identical to that of z; the substitution
is said to be closed if the second component of each pair in it is closed. Given a substitution
{{zi, t:)]1 < i < n}, we write F[ty/21,....1,/2,] to denote the application of this substitution to
F. Such an application must be done carefully to avoid the usual capture problems. The needed
qualifications can be captured succinctly by using the A-conversion rules: Flt;/zq,...,tn/2y] is
equal to the term ((Azy...Az,F) t; ... t,). We also need to talk about type instances of terms.
These are obtained by making substitutions for type variables that appear in the term. Finally, we
are particularly interested in terms that do not have any type variables in them and we call such
terms type variable free.

The various notions described above are used in defining the idea of an instance of a program
clause.

Definition 1 An instance of a closed program clause D is given as follows:

(i) If D is of the form A, or G D A,. then any type variable free type instance of D is an instance
of D.

(it) If D is of the form Dy A Dy then an instance of D1 or of Dj is an instance of D.

(iit) If D is of the form Ya Dy, then an instance of Di[t/x] for any closed positive term t of the
same type as x is an instance of D.
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The restriction to (closed) positive terms forces an instance of a program clause to itself be a
program clause. In fact, instances of program clauses have a very simple structure: they are all of
the form A, or G D A,.

In describing the derivation rules, and thus the operational semantics of our language, we restrict
our attention to type variable free queries. We present a more general notion of computation later
based on this restricted definition of derivation.

Definition 2 Let G be a type variable free query and let P be a program. Then a derivation is
constructed for P — G by using one of the following rules:

SUCCESS By noting the G is equal to an instance of a program clause in P.

BACKCHAIN By picking an instance of a program clause in P of the form G, D G and con-

structing a derivation for P — G;.

AND If G is equal to Gy A G3. by constructing derivations for the sequents P — G,
and P — G-z.

OR If G 15 equal to Gy V G, by constructing a derivation for either P — Gy or
P — Gg.

INSTANCE  IfG is equal to 32 Gy, by constructing a derivation for the sequent P — G1[t/z],
where t is a closed positive term of the same type as x.

GENERIC  IfG is equal toV2G1, by constructing a derivation for the sequent P — Gi[c/z],
where ¢ is a nonlogical constant of the same type as x that does not appear in Vz G
or in the formulas in P.

AUGMENT If G is equal to (1 ...32,D) D G, by constructing a derivation for the sequent
Dley/zy,...,cn/2,]), P — G, where, for 1 <i < n, ¢; is a nonlogical constant of
the same type as x; that does not appear in (321 ...3z,D) D G or in the formulas
in P.

To understand the operational semantics induced by these rules, let us assume a program given
by the following clauses

(rev L1 L2) :-
(((rev_auz nil L2),
(pi (X\(pé (L2\(pi (L2\
((reveauz X :: L1 L2) := (reveauxr L1 X 2 L2))))))

=> (rev_aux L1 nil)).

and consider solving the query (rev 1::2::nil 2::1:: nil). The first rule that must be used in a
derivation is BACKCHAIN. Using it reduces the problem to that of solving the query
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((rev_auz nil 2 :: 1 12 nil),
(pi (X\(pi (L1\(pi (L2\

((reveauz X :: L1 L2) := (rev_aux L1 X : L2)))))))))
=> (revauz 1:: 2 :: nil nil)

from the same program. The AUGMENT rule is now applicable and using it essentially causes the
program to be enhanced with the clauses

(rev_auz nil 2 :: 1 :: nil).
(reveauz X :: L1 L2) :- (revauae L1 X :: L2).

prior to solving the query (rev.aua 1 :: 2 :x nil nil). Using the BACKCHAIN rule twice in
conjunction with the last clause produces the goal (rev_auz nil 2 :: 1 :: nil). The derivation
attempt now succeeds because the goal is an instance of program clause.

The above example indicates the programming interpretation given to logical formulas and sym-
bols by the operational semantics. Program clauses of the form Va2, ...Vz, A, and Vz,...Vz,(G D
A,) function in a sense as procedure definitions: the head of A, represents the name of the proce-
dure and, in the latter case, the body of the clause, G, corresponds to the body of the procedure.
From an operational perspective, every program clause is equivalent to a conjunction of clauses in
this special form, and a program is equivalent to a list of such clauses. Thus both correspond to
a collection of procedure definitions. Goals correspond to search requests with the logical symbols
appearing in them functioning as primitives for specifying the search structure. Thus, in searching
for a derivation, A gives rise to an AND branch, V to an OR branch and sigma to an OR branch
parameterized by a substitution. These symbols are used in a similar fashion in Prolog. The sym-
bols D and pt, on the other hand, do not appear in Prolog goals. The treatment of these symbols
is interesting from a programming viewpoint. The first symbol has the effect of augmenting an ex-
isting program for a limited part of the computation. Thus, this symbol corresponds to a primitive
for giving program clauses a scope. The symbol pi similarly corresponds to a primitive for giving
names a scope; processing this symbol requires a new name to be introduced for a portion of the
search. A closer look at the operational semantics reveals a similarity between the interpretation of
pt and the treatment given to existential quantifiers in E-formulas through the AUGMENT rule.
This is not very surprising since the formulas Va(D(z) D G) and (J2D(z)) D G are equivalent
in most logical contexts, assuming » does not appear free in G. From a pragmatic perspective,
then, the existential quantifier in £-formulas enables a name to be made local to a set of procedure
definitions, i.e., it provides a means for information hiding.

A computation in AProlog corresponds to constructing a derivation for a query from a given
program. We are generally interested in extracting a value from a computation. In the present
context, this can be made clear as follows.

Definition 3 Let P be a collection of program clauses and let G be a type variable free query
of the form Jzy...32,Gy; the variables xy.....2, are assumed to be implicitly quantified here.
An answer to G in the context of P is «a closed substitution {(x;.4;)|1 < i < n} such that
P — Gi[t1i/z1,. .. ta/2n] has a derivation.
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In general our queries may have type variables in them. The answers to such a query are given
by the answers to each of its type variable free type instances.

Our ultimate interest is in a procedure for carrving out computations of the kind described above
and for extracting results from these. The rules for constructing derivations provide a structure for
such a procedure but additional mechanisms are needed. One problem involves instantiations for
type variables. There is usually insufficient information for choosing instantiations for these at the
points indicated. This problem can be overcome by allowing type variables into the computation
and by using unification to incrementally determine their instantiations. A similar problem arises
with existential quantifiers in queries. For example, solving a query of the form 3zG requires
a closed term ¢ to be produced that makes G[t/z] solvable. The usual mechanism employed in
these cases is to replace z with a logic variable, i.e., a place-holder, and to let an appropriate
instantiation be determined by unification. However, this mechanism must be used with care in
the present situation. First, the unification procedure that is used must incorporate our enriched
notion of equality, i.e., higher-order unification [6] must be used. Second, the treatment of universal
quantifiers requires unification to respect certain constraints. For example, consider the query
JaVyp(z,y), where p is a predicate constant. Using the mechanisms outlined, this query will be
transformed into p(X, ¢), where ¢ is a new constant and X is a logic variable. Notice, however, that
X must not be instantiated with a term that contains ¢ in it. A solution to this problem is to add
a numeric tag to every constant and variable and to use these tags in constraining the unification
process [3, 18].

A suitable abstract interpreter can be developed for AProlog based on the above ideas®. In
actually implementing this interpreter, two additional questions arise. First, there is some nonde-
terminism involved: in solving an atomic goal, a choice has to be made between program clauses
and in solving G V G a decision has to be made between solving G, and G;. The usual device
employed here is to use a depth-first search with backtracking. The second question concerns the
implementation of implications in queries. To understand the various problems that arise here, let
us consider a query of the form (D O G;)AG5. This query results in the query D D G which must
be solved by adding (the clauses in) D to the program, solving the clauses in G and then removing
D. The addition of code follows a stack based discipline and can be implemented as such. However,
if a compilation model is used, some effort is involved in spelling out a scheme for achieving the
addition and deletion of code. Moreover the “program clauses” that are added might now contain
logic variables in them. Thus, consider solving the goal 3L(rev 1:: 2 :: nil L) using the clause for
rev presented earlier in this section. The program would at a certain stage have to be augmented
with the clause (rev_auz nil L) where L is now a logic variable. In general, we need now to think of
procedures as blocks of code and bindings for some variables. Continuing now with the solution of
the query (D D G1) A G, the goal G, will be attempted after the first conjunct is solved. A failure
in solving this goal might require an alternative solution to G; to be generated. Notice, however,
that an attempt to find such a solution must be made in a context where the program once again
contains D. An implementation of our language must support the needed context switching ability.

Implementation techniques have been devised for solving the various problems mentioned above

3 Actually, the proper treatment of type variables in a computation is still an open issue. However, a discussion of
this matter is orthogonal to our present purposes.



Keehang Kwon, Gopalan Nadathur and Debra Sue Wilson 211

[7,16,17], resulting in an abstract machine and a compilation scheme for the core language described
in this section. We do not discuss this explicitly here, and will rely on the reader’s intuition and
indulgence when alluding to these ideas later in the paper. However, the discussion of modules will
require a closer acquaintance with the scheme used for implementing implications in queries, and
we then supply some further details.

Before concluding this section, it is interesting to note the connection between our notion of
computation and deduction in a logical context. The following proposition describes this connection.

Proposition 4 Let P be a program and let P’ be the collection of all the type variable free type
instances of formulas in P. Further, let G be a type variable free query. Then there is a derivation
for P — G if and only if G follows from P’ in intuitionistic logic.

Only the only if part of this proposition is non-trivial. For the most part, this follows from the
existence of uniform proofs for sequents of the kind we are interested in; see, e.g., [13] and [18]
for details. One additional point to note is the treatment of existential quantifiers in £-formulas.
However, this causes no problem because the introduction of existential quantifiers in assumptions
can always be made the last step in intuitionistic proofs.

4 Modules

The language described thus far only permits programs that are a monolithic collection of kind,
type, and operator declarations together with a set of procedure definitions. Modules provide a
means for structuring the space of declarations and also for tailoring the definitions of procedures
depending on the context. The ultimate purpose of this feature is to allow programs to be built up
from logical segments which are in some sense separate.

At the very lowest level, the module feature allows a name to be associated with a collection
of declarations and program clauses. An example of the use of this construct is provided by the
following sequence of declarations that in effect attaches the name lists with the list constructors
and some basic list-handling predicates:

module lists.

infiz 150 zfy.

kind list type — type.

type nil  (list A).

type A — (list A) — (list A).

(append nil L L).
(append (H :: L1) L2 (H :: L3)) := (append L1 L2 L3).

(member H (H :: L)).
(member X (H :: L)) := (member X L).

(length 0 nul).
(length N (H :: L) :- ((length N1 L). N 1s N1+ 1).
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One way to think of this module declaration is as a declaration of a list “data type”. This data
type can be made available in specific contexts by using the name lists in a manner that we describe
presently. This discussion will bring out the intended purpose of the modules feature. However,
there is one use that can already be noted. Looking at the lists module above, we see that the
types of the predicates defined in it have not been provided. These types can be reconstructed, but,
as we noted in Section 3, the types “inferred” depend on the set of available program clauses. The
module boundary provides a notion of scope that is relevant to this reconstruction process: looked
at differently, the types of all the symbols appearing in the clauses in a module are completely
determined once the module is parsed.

The meaning of the module feature is brought out by considering its use in programming. In
the presence of modules, we enhance our goals to include a new kind of expression called a module
implication. These are expressions of the form M ==> G, where M is a module name. Goals of the
new sort have the intuitive effect of adding M to the program before solving G. In making this
precise, however, the effect of M on two different components have to be made clear: on the type,
kind and operator declarations and on the procedure definitions.

The effect on the space of declarations that we assume here is simple. All the associations
present in M become available on adding Af to the context. This is really a static effect in that it
provides a context in which to parse the goal (7 in a larger goal A ==> G. As a concrete example,
consider the goal

lists ==> (append 1 ::2::nil 3 :nil L).

In parsing this query, there is a need to determine the types of append and of ::. The semantics
attributed to the modules feature requires the types associated with these tokens in the module
lists to be assumed for this purpose. This appears to be the most natural course, given that we
expect the definition of append provided in lists to be useful in solving this query.

From the perspective of procedure definitions, we assume the semantics for modules that is
presented in [11]. Within this framework, the dynamic aspects of the module feature are explained
by a translation into the core language. Thus, a module is thought of as the conjunction of the
program clauses appearing in it. For instance, the lists module corresponds to the conjunction of
the clauses for append, member and length. Under this interpretation, a module corresponds to a
D-formula as described in the last section. Now if module M corresponds to the formula D, the
query M ==> G is thought of as the goal D => G. The run-time treatment of module implication
is then determined by the AUGMENT rule presented in the last section. In particular, solving the
goal M ==> G calls for solving the goal (i after adding the predicate definitions in the module M
to the existing program.

The analogy between a module and a data type raises the question of whether some aspects of
an implementation might be hidden. Our language permits constant names to be made local to a
module, thus allowing for the hiding of a data structure. To achieve this effect, a declaration of the
form

local constant,...,constant.

can be placed within a module. The names of the constants listed then become unavailable outside
the module. For example, adding the declaration



Keehang Kwon, Gopalan Nadathur and Debra Sue Wilson 213

local

to the lists module has the effect of hiding the list constructor ::.

The static effect of the local construct is easy to understand: only some names are available
when the module is added to a context. From a dynamic perspective, another issue arises. Can
constants defined to be local eventually become visible outside through computed answers? The
expectation is that they should not become so visible. This effect can be achieved by thinking
of local constants really as variables quantified existentially over the scope of the conjunction of
program clauses in the module. As an example, consider the following module

module store.

local emp, stk.

kind store type — type.

type emp (store A).

type stk A — (store A) — (store A).
initialize emp.

(enter X S (stk X 5)).

(remove X (stk X S) S5).

This module implements a store data type with initializing, adding and removing operations. At a
level of detail, the store is implemented as a stack. However, the intention of the local declarations
is to hide the actual representation of the store. Now, from the perspective of dynamic effects, the
module corresponds to the formula

Emp3Stk(
(tnitialize Emp) ,
(pt (X\(p? (S\(enter X S (Sth X 5)))))),
(pt (X\(p? (S\(remove X (Stk X §) .5)))))).

This formula has the structure of an E-formula and in fact every module corresponds in the sense
explained to an E-formula. Referring to this formula as EStore, let us consider solving a goal of
the form 3X(Store ==> G(X)). The semantics of this goal requires solving the goal 3X (E Store
=> G(X)). Under the usual treatment of existential quantifiers, this results in the goal (EStore
=> G(X)) where X is now a logic variable. Using the AUGMENT rule, this goal is solved by
instantiating the existential quantifiers at the front of EStore, adding the resulting D-formula to
the program and then solving G(X). The important point to note now is that any substitution
that is considered for X must not have the constants supplied for Emp and Stk appearing in it.
Thus the semantics attributed to modules and local declarations achieves the intended dynamic
effect.

While module implication is useful for making modules available at the top-level, modules may
themselves need to interact. For instance, a module that contains sorting predicates might need the
declarations and procedure definitions in the lists module and a module that implements graph-
search might similarly need the store and lists modules. The needed interaction is obtained in
AProlog by placing an import declaration in the module which needs other modules. The format
of such a declaration is the following:
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tmport M1,... . ME.

In a declaration of this sort, M1,..., Mk must be names of other modules that are referred to as
the imported modules. A declaration of this sort has, once again, a static and a dynamic effect
on the module in which it is placed, i.e., the importing module. The static effect is to make all
the declarations in the imported modules, save those hidden by local declarations, available in
the importing module. These declarations can be used in parsing the importing module and also
become part of the declarations provided by that module. The intended dynamic effect, on the
other hand, is to make the procedure definitions in the imported modules available for solving the
goals in the bodies of program clauses that appear in the importing module. This effect can actually
be explained by using module implication [11]. Let us assume that the clause P :- G appears in a

module that imports the modules M 1..... M. The dynamic semantics involves interpreting this
clause as the following one instead:

P: (M1==>...(MFkE==>G)).
Observe that using this clause involves solving the goal (M1 ==> ... (Mk ==> G)) that ultimately

causes the program to be enhanced with the clauses in M1,..., Mk before solving G.

The definition of the module graph_search presented in Figure 1 illustrates the usefulness of
the module interaction facility provided by import. The definitions of the predicates start_state,
final_state, soln and expand_node have not been presented here, but we anticipate the reader
can supply these. The important aspect to note is the use that is made of the declarations and
procedure definitions in the modules lists and store. For example, the type

(list A) — (store A) — (list A) — (store A) — o

will be reconstructed for add_states. This type uses type constructors defined in in the modules
lists and store. Similarly, the procedure member defined in lists and the procedures initialize,
enter and remove defined in store are used in the program clauses in the module graph_search.
A particularly interesting aspect is the interaction between the modules graph_search and store.
Notice that the “constants” emp and stk used in store are not visible in graph_search and cannot
be used explicitly in the procedures appearing there. Thus, importing store provides an abstract
notion of a store without opening up the actual implementation. For example, the current stack-
based realization of the store can be replaced by a queue-based one without any need to change the
graph_search module so long as the operations initialize, enter and remove are still supported.
This change will have an effect on the behavior of g_search though, changing it to a procedure that
conducts breadth-first search as opposed to the current depth-first search.

The pragmatic utility of the module feature and of the scoping ability provided by the new logical
symbols in our language is an important issue to consider and detailed discussions of this aspect
appear in [10] and [11]. Our interest in this paper is largely on implementation issues, especially
those arising out of the module notion. From this perspective, it is necessary to understand carefully
the dynamic interactions that can arise between modules through the use of the import statement.
We therefore present an example that illustrates some of these interactions. Figure 2 contains a
collection of interacting modules and Figure 3 exhibits the process of solving the query (m1 ==>
(p X)) given these definitions. In presenting this solution attempt, we use a linear format based
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module graph_search.
tmport lists, store.

(g-search Soln) :-
((init.open Open), (expand_graph Open nil Soln)).

(init_open Open) :-
((start_state State), (initialize Op).(enter State Op Open)).

(expand_graph Open Closed Soln) : -
(remove State Open ROp),
(((final_state State),(soln State Soln));
((ezxpand_node State N States),
(add_states N States ROp (State :: Closed) NOp),
(ezpand_graph NOp (State :: Closed) Soln))).

(add_states nil Open Closed Open).
(add_states (St :: RSts) Open C'losed NOpen) :-

((member St Closed), (add_states RSts Open Closed NOpen)).
(add_states (St :: RSts) Open Closed NOpen) :-

((enter St Open NOp),(add_states RSts NOp Closed NOpen)).

Figure 1: A Module Implementing Graph Search
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module m1. module m2. module m3.
import m2. import mJ. type r i — o.
(p X) - (g X), (L X).  (pb) (r ).

(t b). (¢ X):- (s X). (r b).

(s X):-(r X).

Figure 2: A Set of Interacting Modules

ml 7=

m2,ml 7-(

m3,m2,ml 7~ (s

m2,m3,m2,ml ?-(r X) X<-a SUCC

m2,ml 7-(ta) FAIL

m2,m3,m2,ml 7?-(r X) X<-b SUCC
m2.ml ?-(10h) suvcc

Figure 3: Solving (m1 ==> (p X)) Given the Modules in Figure 2

on the notion of derivation presented in Section 3 but augmented with the use of logic variables.
Further, we use lines of the following form

M1,...,Mn 7- G(X)

where G(X)is an atomic goal and M1, ..., Mn are module names. Such a line indicates that G(X)
is to be solved from a program given by the collection of clauses in M1,..., Mn. We refer to this
list of modules as a program context. Now, the attempt to solve this goal proceeds by trying to
match the goal with the head of some clause. If this attempt is successful, the line is annotated
by a binding for the logic variables, e.g., by an expression such as X <- a. In the case that the
match results in additional goals, the following lines pertain to the solution of these goals. If no
match is possible or if the match results directly in a success, the line is further annotated with the
word FAIL or SUCC. In the former case, the succeeding lines indicate the solution attempt after
backtracking and in the latter case they indicate an attempt to solve the remaining goals.

Let us consider now the attempt to solve the mentioned goal, (m2 ==> ((p X)). The initial
program context is empty, but dealing with the module implication causes ml to be added to it.
The goal to be solved now is (p X'). There is only one clause available for p and this is interpreted
as if it were

(p X) :- (m2==>((¢ X),(t X)))

since m1l imports m2. Module m2 is therefore added to the program context and the goal to be
solved reduces to (¢ X'), (¢t X). Although not relevant to the solution of the present goal, notice
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that module m2 also contains a clause for p. The new program context thus contains an enhanced
definition for this predicate and an implementation must be capable of combining code from different
sources to produce the desired effect. Tracing through the solution attempt a few more steps, we
see that the use of the second clause in module m1 results in an attempt to solve (r X). There are
two clauses for this predicate in the relevant program context and these are used in order. Note
that this interaction could not have been predicted from the static structure of m1 alone: there
is no compile-time indication that code in module m3 might be used in solving goals appearing
in the bodies of clauses in m1. A compilation scheme must therefore be sensitive to the fact that
the definition of procedures used within modules are determined dynamically. Continuing with the
solution attempt, (r X) is solved successfully with X being bound to the constant a. The task
now becomes one of solving the goal (¢ «). Notice that the program context for this goal includes
only m1 and m2, i.e., an implementation must support this kind of context switching. When this
goal fails, backtracking now requires an alternative solution to (» X') to be found. However, this
solution attempt must take place in a resurrected context, as indicated in the figure. Once again,
an implementation of the module feature must be capable of supporting this kind of reinstatement
of earlier contexts.

We consider in the next section the various implementation issues pertaining to the dynamic
behavior of modules that are raised by the above example. We note that a desirable feature of an
implementation scheme is that it should permit a separate compilation of each module; this is in
some sense indicative of the ability of this feature to split up a program into logically separate parts.
The scheme that we present for implementing the dynamic behavior exhibits this facet — separate
segments of compiled code are produced for each module and these are linked together dynamically
to produce a desired program context. However, the idea of separate compilation is somewhat more
problematic at the level of static interaction. The main issue is that the parsing of an importing
module requires the various type, kind and operator declarations in the imported modules, implying
a dependence in compilation. This kind of behavior is, however, not unique to our context. The
usual solution to this problem is to introduce the idea of an interface between modules. Specialized
to our context, this involves assigning a set of declarations to a module name. This assignment may
act in a prescriptive fashion on the actual set of declarations appearing in the module in the sense
that they may be required to conform to the “interface™ requirements. With regard to importation,
on the other hand, the interface declarations could control what is visible. One consequence of this
view is that the association of types with constants might be hidden. Such an occlusion must be
accompanied with a hiding of the constant itself and thus affects the dynamic behavior. However,
this behavior can be modelled by the use of implicit local declarations?!. A proper use of this
idea will require predicate definitions also to be hidden. This ability is not supported within the
current language: the ability to quantify existentially over predicate names requires an extension
of the syntax of D-formulas. The extension in syntax can be easily accomplished as indicated in
[4] and [10]. Although we do not treat this matter explicitly here. the desired extension does not
cause any semantical problems and. as indicated in [16]. can also be accommodated within our

*A related proposal is contained in [12]. However, the suggestion there is to determine the local declarations
dynamically, depending on the goal to be solved. This appears not to help with the “static” problem discussed here
and also makes it difficult to generate code for a module independent of its use.
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implementation scheme.

While the use of an interface as a method for prescribing interactions in this manner has several
interesting aspects, a more conservative view of it is also possible. The interface declarations may be
viewed simply as a distillate of the compilation of the module in question. Regardless of which view
is taken, we assume here that, when a module is being compiled, all the type, kind and operator
declarations obtainable from the imported modules are known. The scheme that we present in
the next section then generates the code for capturing the dynamic behavior of a module by using
only these interfaces and parsing the module in question. In this sense, our scheme is capable of
supporting the idea of separate compilation.

5 Implementing the Dynamic Semantics of Modules

The crucial issue that must be dealt with in an implementation of the dynamic aspects of modules
is the treatment of module implication. In particular, we are interested in the compilation of goals
of the form M ==> . Within a model that supports separate compilation, the production of code
from the predicate definitions appearing in A/ must be performed independently of this goal. The
compiled effect of this goal must then be to enhance the program context by adding the code in
M to it. Under this view, the symbol ==> becomes a primitive for linking code. The crucial issues
within an implementation thus become those of what structures are needed for realizing this linking
function and of what must be produced as a result of the compilation of a module to facilitate the
linking process at run-time.

We have developed a scheme elsewhere [16] for implementing goals that contain implications.
The dynamic semantics of module implication coupled with some features of the mentioned scheme
make it an apt one to adapt to the present context. The essence of our scheme is to view a program
as a composite of compiled code and a layered access function to this code. The execution of an
implication goal causes a new layer to be added to an existing access function. Thus, consider an
implication goal of the form (C4,...,.Cy) => G where, for 1 < i < n, (| is a closed program clause
of the form Vz,...Vz, A, or Vz;...Va,(G D 4,)°. Each (; corresponds to a partial definition of
a procedure that must be added to the front of the program while an attempt is made to solve G.
These clauses can be treated as an independent program segment and compiled in a manner similar
to that employed in the WAM. Let us suppose that the clauses define the predicates py,...,p,.
The compilation process then results in a segment of code with r entry points, each indexed with
the name of a predicate. In our context, compilation must also produce a procedure that we call
find_code that performs the following function: given a predicate name, this procedure returns the
appropriate entry point in the code segment if the name is one of py,...,p, and an indication of

®In the general case, every implication goal can be transformed into one of the form

Ql ‘X] I an—\-m((cll (-\‘J ------ \'m ) ----- C'n(~\’l ------ \‘m))=>c‘(-\‘] veeey J\Vm))
where Q, is Jor ¥V and C;(z1,...,Zm) is a program clause of the sort indicated but which may depend on the variables
Ti,...,Zm. Existential quantifiers may arise in considerations of module implication only if the module notion is

enriched to allow for parameterization. Universal quantifiers do arise indirectly through local declarations whose
treatment is considered later in this section.
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failure otherwise. This function can be implemented in several different ways such as through the
use of a hash-function, but the details will not concern us here. Returning now to the implication
goal, its execution results in a new access function that behaves as follows. Given a predicate name,
find_code is invoked with it. If this function succeeds, then the code location that it produces is the
desired result. Otherwise the code location is determined by using the access function in existence
earlier.

The process of enhancing a context described above is incomplete in one respect: the new clauses
provided for py,...,p, may in fact be adding to earlier existing definitions for these predicates. To
deal with this situation, the compilation process must produce code for each of these predicates
that does not fail eventually, but instead looks for code for the relevant predicate using the access
function existing earlier. Rather than carrving out this task each time it is needed, using an idea
from [8], it can be done once at the time the new program context is set up. The idea used is the
following. A vector of size r can be associated with the implication goal, with the ¢th entry in this
vector corresponding to the predicate p;. Now, the compilation of the body of the implication goal
creates a procedure called [ink_code whose purpose is to fill in this vector when the implication
goal is executed. This procedure essentially uses the name of each of the predicates and the earlier
existing access function to compute an entry point to available code or, in case the predicate is
previously undefined, to return the address of a failing procedure. To complement the creation of
this table, the last instruction in the code generated for each of the predicates p; must actually
result in a transfer to the location indicated by the appropriate table entry.

In the framework of a WAM-like implementation, the layered access function described above
can be realized by using what are called implication point records. These records are allocated on
the local stack and correspond essentially to layers in the access function. The components of such
a record, based on the discussions thus far, are the following:

(i) the address of the find_code procedure corresponding to the antecedent of the implication
goal,

(ii) a positive integer r indicating the number of predicates defined by the program clauses in the
antecedent,

(iii) a pointer to an enclosing implication point record, and thereby to the previous layer in the
access function, and

(iv) a vector of size r that indicates the next clause to try for each of the predicates defined in the
antecedent of the implication goal.

The program context existing at a particular stage is indicated by a pointer to a relevant implication
point record which is contained in a register called I. Now a goal such as (Cj,...,Cpn) => G is
compiled into code of the form

push_impl_point t
{ Compiled code for G }
pop_impl_point
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In this code, t is the address of a statically created table for the antecedent of the goal that indicates
the address of its find_code and link_code procedures and the number of predicates defined. The
push_impl_point instruction causes a new implication point record to be allocated. The first three
components of this record are set in a straightforward manner using the table indicated and the
contents of the I register. Filling in the last component involves running link_code using the access
function provided by the I register. The final action of the instruction is to set the I register to
point to the newly created implication point record. The effect of the pop_impl_point instruction
is to reset the program context. This is achieved simply by setting the I register to the address of
the enclosing implication point record, a value stored in the record the I register currently points
to.

There are a few points about the scheme described that are worth mentioning. First, under
this scheme the compilation of an atomic goal does not yield an instruction to transfer control to
a particular code address. Rather, the instruction produced must use an existing access function
(indicated by the I register) and an index generated from the name of the predicate to locate the
relevant code. Notice that this behavior is to be anticipated, given the dynamic nature of procedure
definitions. The second observation pertains to the resurrection of a context upon backtracking.
Under our scheme, the program context is reduced to the contents of a single register. By sav-
ing these contents in a WAM-like choice point record and by retaining implication point records
embedded within choice points, the necessary context switching can be easily achieved.

We turn finally to the implementation of module implication. Let us consider first the treatment
of a module implication of the form M ==> G where M is a module with no local declarations
and no import statements. From the perspective of dynamic semantics, M can be reduced to a
conjunction of closed D-formulas of the form Va;...Va, A, or Va;...Vz,(G D A;), t.e., of the
form just considered. Thus the scheme outlined above can beapplied almost without change to the
treatment of this kind of module implication. Under this scheme, the compilation of the module M
must produce code that implements the relevant find_code and link_code procedures in addition
to the compiled code for the various predicates defined. The linking operation corresponding to
==> effectively amounts to setting up an implication point record. The main task involved in this
regard is that of executing the link_code function which in a sense links the predicate definitions
in the module to those already existing in the program.

The handling of local declarations does not pose any major complications. The treatment of
a goal of the form F => G that is indicated by the operational semantics essentially requires the
existential quantifiers at the front of E to be replaced by new constants and the resulting D-formula
to be added to the existing program. Implementing this idea results in the local constants in E
being conceived of as constants but with a numeric tag that prevents them from appearing in terms
substituted for logic variables in G. At a level of detail, these constants can be identified with
cells in an implication point record and the push_impl_point instruction has the additional task of
allocating these cells and of tagging them with the appropriate numeric value.

The only remaining issue is the treatment of import declarations. Let us assume that a module
M imports the modules M 1,M2 and M3. From the perspective of dynamic semantics, this impor-
tation has an effect largely on the clauses appearing in M. Let P :- G be one of these clauses.
Based on the semantics of importing. this clause is to be interpreted as the clause
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P - (M1==> (M2==> (M3 ==>G))).

This translation actually indicates a straightforward method for implementing the effect of im-
portation: the body of the clause can be compiled into the code generated for G nested within a
sequence of push_impl_point and pop_impl_point instructions. Noting that module M may contain
several clauses, an improvement is possible in this basic scheme. We identify with a module two
additional functions that we call load_imports and unload_imports. In the case of module M,
executing the first of these corresponds conceptually to executing the sequence

push_tmpl_point M1
push_tmpl_point M2
push_impl_point M3

and, similarly, executing the second corresponds to executing a sequence of three pop_itmpl_point
instructions. The address of these two functions is included in the implication point record created
when a module is added to the program context. From the perspective of compilation, the code
that is generated for the clause considered now takes the following shape:

{Code for unifying the head of the clause }
push_import_point M

{Compiled code for goal G}
pop_import_point M

The push_import_point instruction in this sequence has the effect of invoking the load_imports
function corresponding to module A and the pop_import_point instruction similarly invokes the
unload_imports function.

The scheme described above assumes that the address of the compiled code.and the various
functions associated with a module can be indexed by the name of the module. This information
is organized into entries in a global table with each entry having the following components:

(i) 7, the number of predicates defined in the module,

(i1) the starting address for the compiled code segment for the predicates defined in the module;
find_code will return offsets from this address.

(iii) the address of the find_code routine for the module,

(iv) the address of the link_code routine for the module.

(v) the address of the load_imports routine for the module. and
(vi) the address of the unload_imports routine for the module.

In reality not every module is loaded into memory at the beginning of a program and hence not
every module has an entry in the global table. If a module that does not already reside in memory
is needed, then a loading process brings the various segments of code in and creates an appropriate
entry in the global table for the module. It should be clear by this point that the codes and
information needed for each module can be obtained by a compile-time analysis of that module
and the necessary interface definitions.
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6 Controlling redundancy in search

The semantics presented for module implication and for the import statement could result in the
same module being added several times to a program context. This has a potential drawback: it
may result in redundancy in the search for a solution to a goal and the same solution may also be
produced several times. To understanding this possibility, let us consider the following definition
of a module called sets which imports the module [ists presented in Section 4.

module sets.

tmport lists.

type subset (list A) — (list A) — o.

subset nil L.

(subset X :: L1 L2) :- ((member X L2),(subset L1 L2)).

Assume now that an attempt is made to solve the goal
sets ==> subset 1 12 id el 1023 nal.

Using the linear format described in Section 4. part of the effort in solving this goal is represented
by the following sequence:

sets  7- (subset 1::2:4:nil1:2:3::nid)
lists,sets 7- (member 1 1::2::3:nil) SUCC
lists,sets 7- (subset 2::4:nel 1::2::3:nil)
lists, lists,sets  7- (member 2'1::2::3 ::nil)
(member 22 ::3 ::ml)y SUCC
(subset 4 ::mil 1::2::3 2 mal)
(member 4 1::2::3 ::nel)

lists,lists, sets 7-
lists, lists, sets 7-
lists,lists, lists, sets  7-

It is easily seen that the attempt to solve the last goal in this sequence in the indicated program
context will fail. Notice however, that a considerable amount of redundant search will be performed
before this decision is reached: there are three copies of the module lists in the program context
and the clauses for member in each of these will be used in turn in the solution attempt. A
similar redundancy is manifest in the answers that are computed under the semantics provided.

For instance, the query
sets ==> subset S 1::2:: nil

will result in the substitution 1 :: 2 :: nil for S being generated twice through the use of the clauses
in two different copies of the module lists.

The extra copies of the module /lists. while leading to redundancy in search, do not result in
an ability to derive new goals or to find additional answers. Adding these copies also results in a
runtime overhead: given the implementation scheme of the previous section, the addition of each
copy results in the creation of an implication point record, thereby consuming both space and
time. A pragmatic question to ask, therefore. is whether the number of copies of any module in
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a program context can be restricted to just one. In answering this question there is an important
principle to adhere to. It is desirable that the logical semantics of our language not be altered.
In particular, we still want to be able to understand our language by using the derivation rules
presented in Section 3 and to understand the dynamic semantics of modules through the devices
discussed in Section 4. This principle is important because, as argued in [12], several interesting
tools for analyzing the behavior of programs depend on this kind of a logical understanding of
programming language constructs. In light of this principle, the question raised can be changed
to one of the following sort: is it possible to preserve the important observable aspects of the
given semantics while perhaps changing the details of the operational semantics so as to produce
a preferred computational behavior. An affirmative answer to this question permits us to have the
best of both worlds. The original semantics can be used for analyzing the interesting aspects of the
behavior of programs while an actual implementation can be based on a modified set of derivation
rules.

In the context being considered, the important aspects of program behavior are the set of
queries that can be solved and the answers that can be found to any given query. Both aspects
are completely determined by the set of sequents that have derivations. Thus, based on the above
discussion, we might contemplate changing the underlying derivation rules for our language so as
to reduce the number of derivations for any sequent while preserving the set of sequents that have
derivations. With this in mind, we observe that the main source of redundancy in the example
considered above is the AUGM ENT rule. Assume that we want to solve a goal of the form D =>
G. The AUGMENT rule requires D to be added to the program context before attempting to
solve G. Notice, however, that if D is already available in the program context, this addition is not
likely to make a derivation of G' possible where it earlier was not. A more interesting case is when
the implication goal is of the form (32, ...32,D) => G. In this case the AUGMENT rule requires
the addition of D{cy/21,...,¢cn/2y] (for a suitable choice of ¢;s) to the program prior to the attempt
to solve G. However, if the program already contains a clause of the form D[c}/z1,...,c/z,], the
addition is again redundant from the perspective of being able to solve G.

In the rest of the section we prove the observations contained in the previous paragraph. To-
wards this end, we define an alternative to the AUGMENT rule.

Definition 5 Let G be a type variable free query and let P be a program. Then the AUGMENT
rule is applicable if G is of the form (32, ...3x, D) => G’ and can be used to construct a derivation
for P — G as follows:

(i) If a formula of the form D[c|/zy.....c, [/x,] does not appear in P, then by constructing a
derivation for Dl[ci /21, ....co/an). P — G’ where. for | < i < n, ¢; is a nonlogical constant
of the same type as x; not appearing in the formulas in P.G.

(ii) If a formula of the form D[c}/x1,....c)/x,] appears in P, then by constructing a derivation
forP — G'.

Let us refer to the derivation rules presented earlier as DS1 and let DS2 be obtained from D51
by replacing AUGMENT with AUGMENT’. We say that a sequent has a derivation in DS1 (DS2)
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if a derivation can be constructed for it by using the rules in DS1 (respectively, DS52). We now
make the following observation about derivations in DS2.

Lemma 6 Let G be a type variable free query, let D be a program clause whose free variables are
included in z1,...,T, and let P; and Py be programs that between them contain a formula of the
form D[c}/zy,...,cl/zn] where, for 1 < i < n, c. is a nonlogical constant of the same type as z;.
Further, for 1 < i < n, let ¢; be a nonlogical constant of the same type as c; that do not appear
in D. Finally, let P{, P} and G’ be obtained from P, P, and G, respectively, by replacing, for
1 < i< n, ¢ with ¢;. Now, if P1,Dlc1/z1,...,¢n/20), P2 — G has a derivation of length | in
DS?2, then there must also be a derivation in DS2 for P;, Py — G’ that is of length | or less.

Proof. We prove the lemma by an induction on the length of the derivation in DS2 of the first
sequent. If this derivation is of length 1, it must have been obtained by using the SUCCESS rule.
Now, if G is equal to an instance of D[c;/zy,....c,/2,]). then G’ must be equal to an instance of
D[} /x,. .., ¢} /z,]. Further, if G is an instance of a clause in P; or in P, it must be the case that
G’ is an instance of a clause in P] or in P}. From these observations it follows that the SUCCESS
rule is applicable to P;, P — G’ as well and so this sequent also must have a derivation of length
1.

Suppose now that the derivation of Py. D{ci/x1.....cnf/n], P2 — G is of length ({+ 1). We
assume that the requirements of the lemma are satisfied by all sequents that have derivations of
length { or less and show this must also be the case for the sequent being considered. The argument
proceeds by examining the possible cases for the first rule used in the derivation in question.

Let us assume that this rule is an AND. In this case G must be of the form G, A G2 and
there must be derivations of length [ or less for the sequents Py, D{e1/2z1,...,¢n/2n],P2 — G,

and Py, Dley/z1,. .. ¢n/2n], P2 — G2. By hypothesis, there are derivations of length [ or less
for P{,P; — G and P;,P; — G2. Using these derivations together with an AN D rule, we
obtain one of length [ + 1 or less for P{,P; — G} AG). Now, G’ must be equal to the formula

G} A G5. Thus the desired conclusion is obtained in this case.

Arguments similar to that for AN D can be supplied for the cases when OR or INSTANCE is
the first rule used. In the case that GENERIC is used, G must be of the form YyG and there must
be a derivation of length ! for

Py, D[er/2q. .. .. cufrn)- P2 — Ghle/y]

for some nonlogical constant a of the same tvpe as y that does not appear in G, D[ey/z1,...,¢n/Zn]
or in the formulas in P; and P,. We can almost use an argument similar to that employed for
AND. The only problem is that « might be identical to some ¢ for 1 < ¢ < n. However, the
following fact is easily seen: a derivation of length [/ for a sequent = can be transformed into one of
identical length for a sequent obtained from = by replacing all occurrences of a nonlogical constant
b with some other (nonlogical) constant of the same tyvpe. Using this together with the “newness”
condition on a, we may assume that « is distinct from all the ¢/s. The argument in this case can
then be completed without trouble.

In the case that the first rule emploved is BACKCHAIN, a combination of the observations
used for SUCCESS and AND must be emploved. In particular. let G} be the result of replacing, for
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1 < i < n, all occurrences of ¢; by ¢; in Gy. Now, if Gy D G is an instance of D[c1/z1,...,¢n/Zn],
then G§ D G’ must be an instance of D[c}/z1,...,¢,/zy]. Further, if G; D G is an instance of a
program clause in P, then G} D G’ must also be an instance of the same clause. Finally, using the
hypothesis, if P1, D[c1/z1,...,¢n/2n], P2 — G has a derivation of length [/, then P;, P, — G}
has a derivation of length { or less. Using these various facts, it is easily seen that if the first rule
used in the derivation for Py, D[c1/21,...,¢cn/2n], P2 — G is BACKCHAIN, then a derivation
can be provided for P;,P; — G’ in which the last rule is once again a BACKCHAIN and, further,
this derivation will satisfy the length requirements.

Suppose now that the first rule used is AUGMENT' and that case (i) of this rule is the ap-
plicable one. Then G must be of the form (3y; ...3y, D1) D G7 and further, no formula of the

form Dq[a}/v1,...,al,/ym] must appear in Py, Dlc)/a;....,cn/2s], Po. By assumption, there is a
derivation of length / for
Dl[al/yl’ .. w(I'm/'ym]v Pls D[Cl/-TL “eea (377,/.’1,'”],7)2 I Gl

where, for 1 < ¢ < m, a; is a constant of appropriate tvpe and meeting the needed requirements of
newness. By an argument similar to that used in the case of BACKCHAIN, we can assume that
the a;s are distinct from the ¢;s and the ¢s. Then, using the induction hypothesis, there must be
a derivation of length [ or less for

Di[al/yl’ v "(1‘771/9771]~P{~,P£ I Gll

where D] and G} are obtained from D; and G by the replacement, for 1 < i < n, of ¢; by ¢}. Now,
if a formula of the form Djla)/y1,...,¢a},/ym] did not appear in P; or P,, then one of the form
Dilai/y1s-..,a,,/ym] cannot appear in P; or P5. Thus, the derivation of the indicated sequent can
be used together with an AUGMENT' rule to obtain one for P;,P; — (Iy1...3y-D7) D G5 a
newness condition has to be satisfied by a4, ..., «,y for the AUGMENT rule to be used, but this can
be seen to be the case, using particularly the assumption of distinctness from the ¢is. The derivation
of the last sequent is obviously of length (/ + 1) or less. Observing that (Jy;...3y,Dj) D G} is
the same formula as G’, the lemma is seen to hold in this case.

The only situation remaining to be considered is that when the first rule corresponds to case
(ii) of AUGMENT'. The argument in this case is similar to that employed for case (i) of the same
rule. The details are left to the reader.

0O

Using the above lemma we now show the equivalence of DS1 and DS?2 from the perspective of
derivability of sequents of the kind we are interested in.

Theorem 7 Let P be a program and let G be a type variable free query. There is a derivation for
P — G in DS1 if and only if there is a derivation for the same sequent in DS?2.

Proof. Consider first the forward direction of the theorem. The only reason why the derivation in
DS1 might not already be one in D52 is hecause the AUGMENT rule that is used is in some cases
not an instance of the AUGMENT’ rule. Coonsider the last occurrence of such a rule in the deriva-
tion. In this case, a derivation is constructed for a sequent of the form P’ — (3z;...3z,D') D G’
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from one for the sequent D'[c1/x1,...,¢cn/20), P — G’, where the ¢;s are appropriately chosen
constants. Given that we are considering the last occurrence of an errant rule, the derivation for the
latter sequent must be one in DS2 as well. Since the application of the AUGMENT rule being con-
sidered does not conform to the requirements of the AUGMENT rule, it must be the case that, for
some choice of constants ¢},...,c},, D'[¢{/z1,...,c,/z,] appears in P’. But then, using Lemma 6
and the fact that the constants ¢y, ..., ¢, must not appear in G’ or in the formulas in P’, we see that
P' — G’ has a derivation in DS2. Using this derivation together with case (i) of the AUGMENT’
rule, we obtain a derivation in DS2 for the original sequent, i.e., for P’ — (3z;...3z,D") D G.
We repeat this form of argument to ultimately transform the derivation in DS1 for P — G into
one in DS2.

To show the theorem in the reverse direction. we observe the following fact: for any program
P’, type variable free query G’ and program clause D’, if P’ — G’ has a derivation in DS1, then
D', P! — G' also has a derivation in DS1. Now, a derivation in DS2 may not be a derivation in
DS1 only because case (i) of AUGMENT' was used in some places. However, this can be corrected
by using the observation just made. In particular, we consider the last occurrence of an errant rule
in the derivation and convert it into an occurrence of the AUGMENT rule by using the above fact.
A repeated use of this transformation yields the theorem.

a

An easy consequence of the above theorem is the following:

Corollary 8 Let P be a program and let G be a query. The set of answers to G in the context of
P is independent of whether rules in DS1 or in D52 are used in constructing derivations.

We have thus shown that, from the perspective of solving queries and computing answers, it is
immaterial whether the rules in DS1 or those in DS2 are used to construct derivations. By virtue of
Proposition 4, we can in fact use the notion of intuitionistic derivability for the purpose of analyzing
programs in our language while using the rules in D52 to carry out computations. At a pragmatic
level, there is a definite benefit to using the AUGMENT’ rule instead of the AUGMENT rule in
solving queries, since considerable redundancy in search can be eliminated by this choice. We use
this observation to yield a more viable implementation of module implication and of the import
statement in the next section. We note that another approach to controlling the redundancy arising
out of the module semantics is suggested in [12]. However, this approach is less general than the
one considered here in that it applies only to import statements and not to module implications.
Moreover, the correctness of the approach is only conjectured in [12]. The observations in this
section can be used in a straightforward fashion to verifv this conjecture.

7 An Improved Implementation of Modules

We now consider an implementation of our language that uses the AUGMENT' rule instead
of the AUGMENT rule whenever possible. Under the new rule, solving an goal of the form
(3zy...3z,D) D G requires checking if there is already a clause of the form Dfc;/z1,...,cn/2y]
in the program. Clearly an efficient procedure for performing this test is a key factor in using
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the changed rule in an actual implementation. It is difficult to achieve this goal in general. One
problematic case is when the goal (321 ...32,D) D G arises as part of a larger goal and D contains
variables that are bound only in this larger context. Instantiations for these variables may be de-
termined in the course of execution, thus making it difficult to perform the desired test by a simple
runtime operation. In fact, the device of delaying instantiations might even make it impossible to
determine the outcome of the test at the time the implication goal is to be solved because “clauses”
in the program might contain logic variables. An example of this kind was seen in Section 3. The
attempt to solve the goal 3L(rev 1::2 :: nil L) resulted there in the clause (rev_auz nil L) being
added to the program. The precise shape of this clause clearly depends on the instantiation chosen
for L. A test of the sort needed by AUGMENT’ cannot be performed with regard to this clause
prior to this shape being determined.

The above discussion demonstrates that the optimization embodied in the AUGMENT rule can
be feasibly implemented only relative to a restricted class of program clauses, namely, clauses that
do not contain logic variables. Of particular interest from this perspective is a statically identifiable
closed E-formula that has the potential for appearing repeatedly in the antecedent of implication
goals. Given such a formula E, a mark can be associated with it that records whether or not the
current goal is dynamically embedded within the invocation of an implication goal of the form E
=> G. If it is so embedded and if the current goal is itself of the form E => G, then, in accordance
with the AUGMENT’ rule, the computation can proceed directly to solving G’ without affecting
additions to the program.

The dynamic semantics of module implication provides a particular case of the kind of formula
discussed above, namely the (closed) E-formula identified with a module. Thus, assume that we
are trying to solve the goal M ==> G. If we know that the module M has already appeared in the
antecedent of a module implication goal within which the current one is dynamically embedded,
then no enhancements to the program need be made. The implementation scheme presented in 5
provides a setting for incorporating this test in an efficient manner. The essential idea is that we
include an extra field called added in the record in the global table corresponding to each module.
This field determines whether or not the clauses in a particular module have been added to the
program in the path leading up to the current point in computation. When the goal M ==> G is
to be solved, the added field for M’s entry in the global table is checked. If this indicates that the
clauses in M has not previously been added. then the addition is performed and the status of the
field is changed. Otherwise the computation proceeds directly to solving G.

While the idea described above is simple, some details have to be paid attention to in its actual
implementation. One issue is the action to be taken on the completion of a module implication
goal. At a conceptual level, the successful solution of the goal M ==> G must be accompanied
by a removal of the code for M; this is accomplished in our earlier scheme by the instruction
pop_impl_point. However, given the current approach, an actual removal must complement only
an actual addition. To facilitate a determination of the right action to be taken, the added field
is implemented as a counter rather than as a boolean. This field is initialized to 0. Each time a
module is conceptually added to the program context. its added value is incremented. A conceptual
removal similarly causes this value to be decremented. An actual removal is performed only when
the counter value reaches 0.



228 Proceedings of the 1992 AProlog Workshop

The second issue that must be considered is the effect of backtracking. As we have noted, this
operation might require a return to a different program context. An important characteristic of
a program context now is the status of the added fields, and backtracking must set these back to
values that existed at an earlier computation point. To permit an accomplishment of this resetting
action, changes made to this field must be trailed. A naive implementation would trail the old
value every time a change needs to be made, i.e., every time a module is added or removed. A
considerable improvement on this can be obtained by trailing a value only if there is a possibility
to return to a state in which it is operative. Thus consider a goal of the form

m ==> (G1, (m ==> G2))

When the added field for m is incremented for the second time. there is a need to trail the old value
only if unexplored alternatives exist in the attempt to solve GG1. There is a simple way to determine
this within a WAM-like implementation. Let us suppose we record the address of the most recent
choice point at the time of processing the outermost (module) implication in the global table entry
corresponding to m. Now, when the embedded implication is processed, we compare the address of
the current most recent choice point with the recorded value. There is a backtracking point in the
solution of G1 only if the first is greater than the second. Similarly, consider the decrement that
is made to the added field when a goal of the form m ==> (G is completed. The old value needs to
be trailed only if choice points exist within the solution for G. A test identical to that described
above suffices to determine whether this is the case.

In order to implement the above idea, one more field must be added to the entries in the global
table for modules, i.e., one that records the most recent choice point prior to the latest change
to the added field. This field is called mrep and is initialized to the bottom of the stack. Notice
that this field needs to be updated each time added has to be trailed, and this change must also
be trailed. Accordingly, each cell in the trail introduced for managing the added values contains
three items: the name of a module. the old value of added, and the old contents of the mrep
field. Pointers to this trail must be maintained in choice points and the trail must be unwound
in the usual fashion upon backtracking. Module implication is compiled as before, although the
interpretation of push_impl_point m and pop_impl_point m changes. In particular, these can be
understood as though they are invocations to the procedures pushimpl(m) and popimpl(m) that
are presented in pseudo-code fashion in Figure 4. In this code we write m.mrep and m.added
to denote, respectively, the mrep and added fields in the global table entry corresponding to the
module m. We also recall that the B register in the WAM setting indicates the most recent choice
point.

There is an auxiliary benefit to two fields that has been added under the present scheme to
the records in the global table. As mentioned in Section 5, our implementation permits modules
to be loaded on demand, and hence does not require all modules to be available in main memory
during a computation. A question that arises is whether modules can also be unloaded to reclaim
code space. This unloading must be done carefully because a module not currently included in the
program context might still be required because of the possibility of backtracking. A quick check
of whether a module can be unloaded is obtained by examining the two new fields in the global
table entry for a module. If the mrep field points to the botton of the stack and added is 0, then
the module is not needed and can be unloaded.
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pushimpl(m)
begin
tf m.added = 0
then create an implication point record for m;
if momrep < B
then
begin
trail (m,m.mrep, m.added):
m.mrcp := B;
end;
m.added := m.added + 1
end,;

popimpl(m)
begin
if m.mrep < B
then
begin
trail (m, m.mrcp, m.added);
m.mrcp := B;
end;
m.added := m.added — 1;
tf m.added = 0 then
Set I to most recent implication point
in record pointed to by I
end

Figure 4: Adding and Removing Modules from Program Contexts
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The implementation of the dynamic effects of import can, in principle, be left unchanged.
However, a significant efficiency improvement can be obtained by noting the following: once a
clause from a module m has been used by virtue of the BACKCHAIN rule, there is no further need
to check if the modules imported by m have been added to the program context. To utilize this
idea, we include two more fields in each implication point record:

(i) A field called backchained that records the number of times a clause from the module to which
the implication point record corresponds has been backchained upon.

(ii) A field called mrcp that records the most recent choice point prior to the last change to
backchained.

When the implication point record is created. the backchained field is initialized to 0 and the mrep
field is set to point to the bottom of the stack. Whenever a clause from a module corresponding to
the implication point record is backchained upon, a conceptual addition of the imported modules
must be performed. An actual addition must be contemplated within the present scheme only
if the backchained field is 0. In any case, this field is incremented before the “body” of the
clause is invoked. The increment to backchained is complemented by. a decrement when the clause
body has been successfully solved. Finally, an actual removal of the imported modules from the
program context must be contemplated only when backchained becomes 0 again. For the purpose
of backtracking, it may be necessary to trail an old value of backchained each time this field is
updated. The mrep field is useful for this purpose. Essentially, we compare this field with the
address of the current most recent choice point, obtained in the WAM context from the B register.
If the latter is greater than the mrcp field, then the old value of backchained must be trailed. This
action must also be accompanied by a trailing of the existing mrcp value and the update of this
field to the address of the current most recent choice point.

The rationale for the various actions described for handling imports is analogous to that in the
case of module implication, and should be clear from the preceding discussions. At a level of detail,
another trail is needed for maintaining the old values of the backchained and mrep fields. The
cells in this trail correspond once again to triples: the address of the relevant implication point
record and the backchained and mrcp values. Pointers to this trail must also be maintained in
choice points and backtracking must cause the trail to be unwound. The compilation of clauses
in modules is performed as before: the code produced for the body of a clause in module m
must be embedded within the instructions push_import_point m and pop_import_point m. These
instructions can be understood as though they are invocations to the procedures pushimport(m)
and popimport(m) that are presented, in pseudo-code fashion, in Figure 5. Use is made in these
procedures of a register called CI that points within our implementation to the implication point
record from which the clause currently being considered is obtained. Further, we write CI.mrcp
and CI.backchained to denote the mrep and backchained fields in the implication point record that
CI points to.

It is important to note that once a clause from a module has been backchained upon, the two
instructions push_tmport_point and pop_import_point incur very little overhead with respect to
clauses in that module. In particular. at most two tests, a trailing and two updates are necessary



Keehang Kwon, Gopalan Nadathur and Debra Sue Wilson

pushimport(m)
begin
if CI.backchained = 0
then call load_tmports for m
tf CI.mrep < B
then
begin
trail (CI,CI.mrcp,CI.backchained);
CI.mrcp := B;
end;
CI.backchained := CI.backchained + 1
end;

popimport(m)
begin
if CI.mrep < B
then
begin
trail (CI,CI.mrepCIL.backchained);
Cl.mrep := B;
end,;
Cl.backchained := Cl.backchained — 1;
tf CI.backchained = 0 then
tnvoke unload_imports for m
end

Figure 5: Adding Imported Modules to a Program Context
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for each instruction. This is much less work than the creation of implication point records that
was necessary under a direct implementation of the operational semantics. Further, this overhead
appears to be acceptable even if these instructions are executed repeatedly.

We consider an example to illustrate the manner in which redundancy is controlled within the
changed implementation. Let us assume that the modules m0, m1 and m2 are defined as below.

module m0. module m1. module m2.
import ml, m2. tmport m2. kind 1 type.
type pi — o. type ¢ 1 — o. type a 1.
(pX):- (g X),(tX) (¢ X):-(r X). type b 1.
(r X):-(s X) (ra).

(s b).

(tb).

The attempt to solve the goal m0 ==> (p X') is presented below. We augment the linear format of
Section 4 as follows in this presentation: Each module in the program context is presented by a
pair consisting of its name and the value of the backchained field in the implication point record
created for it. At the end of each line, a list of pairs is presented that indicates module names and
the values of the added field in the global table entry for each of them.

(m0,0) ?- (pX) [(m0,1),(m1,0),(m2,0)]
(m2,0),(m1,0),(m0,1) ?7- (¢ X) [(m0,1),(m1,1),(m2,1)]
(m2,0),(m1,1),(m0,1) 7- (rX) X<a SUCC [(m0, 1) (m1,1),(m2,2)]
(m2,0),(m1,0),(m0,1) ?- (ta) FAIL [((m0,1),(m1,1),(m2,1)]
(m2,0),(m1,1),(m0,1) ?- (r X) [(m0,1),(m1,1),(m2,2)]
(m2,0),(m1,1),(m0,2) 7- (sX) X<-0b SUCC [(m0,1),(m1,1),(m2,2)]
(m2,0),(m1,0),(m0,1) ?- (tb) SUCC [(m0,1),(m1,1),(m2,1)]

An interesting point to note in this computation is that the clause (r @) in module m2 is used
only once in solving the subgoal (r X) even though there are conceptually two copies of m2 in
the program context when the subgoal is invoked. Similarly, an attempt to find another solution
to the query will fail, even though the same solution can be found five more times under a naive
interpretation of the given semantics.

8 Conclusion

We have examined a notion of modules for the logic programming language AProlog in this pa-
per. The notion considered provides a means for structuring the two components that determine
programs in this language: the type, kind and operator declarations and the procedure definitions.
Using a module typically involves making its contents available in some other context. As explained
in some detail, this operation has static and dvnamic effects within AProlog. Our focus here has
been on the implementation of the dvnamic aspects of modules. At a level of detail, we have
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proposed an implementation method that is based on a WAM-like machine and that has several
interesting features:

(i) It supports the idea of compiling modules separately. In particular, the compilation of a
module produces WAM-like code based on only the program clauses appearing in the module.

(ii) Interpreting a logical operation as a primitive for linking a module into a given program
context, it uses a compilation process to generate linking code and includes run-time structures
for accomplishing the linking function.

(iii) Based on a theoretical analysis of this notion, it includes mechanisms for reducing redundancy
inherent in the given dynamic semantics of the module feature. The redundancy check is based
on a two-level test that in the usual situation can be carried out with very little overhead.

There are several significant enrichments to a Prolog-like language that are embodied in AProlog
in addition to the module feature. A complete implementation of this language must include
mechanisms for dealing with all these features. As mentioned already, a detailed consideration
has been given to the features other than the module notion elsewhere, resulting in an abstract
machine for the core language described in Section 3. An actual implementation of this machine
is currently being undertaken. The mentioned machine is entirely compatible with the ideas for
handling modules that are presented in this paper and we plan to include these ideas within our
implementation effort in the near future.
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Introduction

The wave-rippling theorem proving method was introduced by Alan Bundy et al, to guide the
proofs of inductive theorems [1]. In implementing fragments of this work in AProlog!, we hope to
achieve the following:

1. To demonstrate that AProlog’s higher ordered logic of hereditary Harrop formulas can provide
a clear and declarative implementation of the wave-rippling method.

2. A better understanding of the wave-rippling method through this implementation.

3. To demonstrate the use of AProlog in specifving a meta language of tactics and tacticals used
in controlling theorem proving.

There are two dimensions to consider in building this theorem prover: how much guidance
(information concerning the manner and order of rule application) is inherent in the rewrite system
itself, and how much control should be offered by the meta-level theorem proving mechanism. One
must take care that control mechanisms of the theorem prover do not undermine the inherent
automation of the rules themselves, and vet still provide the means to control different degrees of
automatic rewrite.

Augmenting a rewrite system

Alan Bundy’s wave rippling method is an attempt at annotating rewrite rules with suggestions
on how a proof should be carried out [1]. This work was originally intended to solve inductive
problems but can be used to proof other kinds of theorems as well. For example, the following
rewrite rule for the successor operator in arithmetic: s(z)+ y = s(z + y) could be annotated with
wave fronts and become (wave s ) + y = (wave s (v + y)). Here, s is a constructor called the
wave front and z and (2 + y) are contents of the wave holes. The aim is to “ripple” the wave fronts
outward. If we were to prove by induction on  that (v + y)+ z = z 4+ (y + z), then the inductive

!Three problem domains: arithmetics, lists and sum-series are implemented in our system. They are representitive
of the spectrum of rippling applications. More domains will be addressed later.
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conclusion is (s(z)+ y) + z = s(z) + (y + z). We would like to show that this inductive conclusion
follows from the inductive hypothesis. This task is made easier if the conclusion was annotated
with wave fronts: ((wave s z) + y) + z = (wave s z) + (y + 2). After three application of the
wave ripple rule (wave s z) + y — (wave s (z + y)) (twice on the left, once on the right), we
obtain (wave s (¢ + y) + z)) = (wave s z + (y + 2)). Now the wave fronts have been fully rippled,
and what’s inside the wave fronts is exactly the inductive hypothesis. Another ripple rule, using
the fact that s is injective, eliminates the outer s wave-fronts, and the proof is complete. This
illustrates how wave front annotations can guide the construction of a proof. Were there no wave
fronts, the rewrite from the inductive conclusion to the hypothesis could take any of a number of
possible routes, i.e., the search space would be too huge to expect efficient proofs to result.?

Representing Rippling in AProlog

A wave front is represented as a higher-order lambda term. The bound variable represents the
positions of the wave hole. If t1 is the type of expression in question (integer in the above example),
then the wave front will have type t1 — t1. The content of the wave holes is another t1 expression.
The wave expression constructor “wave” have type (t1 — tl1) — t1 — t1. The entire expression
(wave Front Hole) is again of type t1°. This representation means that the wave hole could have
several occurrences inside the front since the bound variable could have several occurrences, but
the content of the hole has to be the same for each occurrence. We chose not to have wave-fronts of
form (wave (Az.Ay.(P z y)) H1 H2) because of typing problems. Such composite wave forms can
be broken up into separate instances: (wave (Az.(P z H2)) H1) and (wave (Ay.(P H1 y)) H2),
each with its own set of rippling rules. This representation is arguably more desirable because we
now have more control over which part of the wave to ripple.

The choice of using lambda terms to represent wave fronts is a natural one. A first order
representation will have to contend with locating the wave holes inside the wave fronts, and with
the well-formedness of expressions. Lambda abstraction makes these issues trivial. An expression
annotated with waves should be recoverable, i.e, we need to be able to know what is the real
expression being considered (wave-fronts, after all, adds no more expressive power to a rewrite
system). A first order representation will require an explicit de-annotation procedure to surgically
remove wave fronts. The higher order representation has implemented the constructor wave as a
kind of delayed function application. Therefore, de-annotation of a wave expression (wave F H)
is easily accomplished with (F H). Sometimes it is also desirable to merge two wave fronts :

(wave F (wave G H))

into a single wave front: the composition of F and G. But function composition is expressed
naturally in our system of lambda terms. The merged wave expression is (wave (Az.(F (G z))) H).
No such obvious method exists in first order systems that would allow this kind of composition.

2The reader may wish to see [1] for a more complete background on rippling.

A generic “wave” is used here for simplicity. In the actualy implementation there are different wave constructors
for each type, i.e, wavei for integers, wavel for lists. AProlog does not support dependent types (as opposed to Elf),
which would allow a polymorphic definition of wave that still ensures that the type of a wave is the same as the type
of terms it annotates.
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The problem of wave annotation also illustrates the natural choice of using a higher-order
representation. In proving a problem of form (VA) (such as (VAz.(z = z + 0))), we need to specify
the inductive basis, the inductive hypothesis and the inductive conclusion, which is annotated with
wave fronts. This can be done easily in our representation. Let I be an inductive constructor,
for example the successor function in the integer case), then the base case goal is simply (A 0),
the inductive hypothesis will be (A n) for some arbitrary n, and the inductive conclusion will be
(A (wave s n)) or equivalently (A (wave (Az.(z + 1)) n)).* The lambda term representation of
wave fronts allows the use of function application to implement substitution, which is a tedious and
(because of the danger of bound variable capture) potentially unsafe task in first order systems.

Implementing the theorem prover

Idealy, a rewrite system annotated with wave fronts should need no further support to construct
correct and efficient proofs. We should need only initiate the rippling process. However, it will be
naive to assume that rippling alone can produce efficient proofs. There are several different types
of rippling rules and the order they are applied is important. Sometimes it is also preferable to
perform normal rewriting, such as normalization, rather than applying rippling rules. It is therefore
still necessary to support the wave-augmented rewrite system with an underlining theorem prover.

It has been argued that effective theorem provers can not be specified in Prolog because of the
limitations of first-order Horn clause logic, and because the naive, depth-first backtracking method
of Prolog interpreters prohibits more elaborate proof-search methods. However, Amy Felty, in [4,5]
have demonstrated that this criticism of Prolog is invalid. Prolog’s internal mechanism may be
naive, but Prolog can be used to define a meta-level language of tactics, which can provide control
over the theorem proving process independently of Prolog’s internal search mechanisms. Prolog is
used as the meta-language of the meta-language. Much of limitations of first-order Horn clause
prolog can also be solved by the more expressive, higher-ordered hereditarily Harrop formulas of
AProlog.

Our purpose is to implement a rich tactic system that would give the user the choice of varying
degrees of control over the theorem proving process. The system can be specified to attempt to
prove something automatically, or be used as an interactive proof-editor.

Theorem proving rules and methods are implemented by declaring “tactics”. Tactics can be
combined using a language of “tacticals.” The following set of tacticals are defined following
Felty [4].

apply_tac idtac A A.
apply_tac (then T1 T2) A C :- apply_tac T1 A B, apply_tac T2 B C.
apply_tac (orelse T1 T2) A C :- apply_tac T1 A C; apply_tac T2 A C.
apply_tac (try T) A B :- apply_tac (orelse T idtac) A B.
apply_tac (repeat T) A B :-

apply_tac (orelse (then T (repeat T)) idtac) A B.

*In the inductive proof case the initial wave front is always the inductive operator (successor for integers, cons for
lists), but rippling can also be used for non-inductive proofs (see [3]), in which case the initial annotation of wave
fronts is much more difficult, and requires careful higher-order manipulations.
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The purpose of a tactic is to advance the theorem proving process by one or more steps.
apply-tac is given a tactic name and the current goal or form of the problem, and gives the
updated goal, or the result of applying the tactic on the current goal. The aim is to reduce the
initial goal (the theorem to be proved) to truegoal, which represents triviality. idtac is the most
simple tactic in leaving the problem unchanged. The try tactic prevents failure by returning the
same goal should the tactic fail. repeat repeatedly applies a tactic until it fails. then and orelse
are self-explanatory.

These tacticals form the core of the meta-language of tactics. They are used to define other,
more complicated tactics and tacticals. They have a natural declaration in prolog (in fact first-order
prolog), and yet greatly extends the ability of prolog by providing more flexible control over goal
search. For example, (repeat (orelse (tacticl (Then tactic2 tactic3)))) can be used to
repeatedly transform a goal using either tacticl or sequences of tactic2 and tactic3.

Rewrite rules are implemented as tactics. Each tactic can be viewed as the implementation of
one or more rewrite rules. They are organized as follows:

Primitive normalization rules. These include rules such as (z + 0 = z) for arithmetics and basic
list equalities such as (append a nil) = a. Tactics are defined to implement these rules. Each tactic
applies a primitive rule exactly once. We explicitly prevent exhaustive application to provide the
option of precise control of rewriting through the tactics. Tactics can be exhaustively applied using
the repeat tactical.

Special normalization rules. Additional constructors, such as user defined functions, need their
own set of rules and corresponding tactics. For example, the function reverse for reversing lists
will have a set of rewrite rules representing the functional evaluation rules for reverse. They are
kept separate from the other normalization rules; again, to provide precise control over rewriting.
The indiscriminate application of both primitive and special rules is achieved using the orelse
tactical.

Wave rippling rules. These rules/tactics are annotated with a direction: outward (the standard
type), sideways or inward. This is the core of the theorem prover.

“Proof Plans.” A proof-plan is a clause that implements a series of procedures for carrying out
proofs for a certain type of theorem. These procedures include tactics, but also other facilities.
We could implement proof plans as composite tactics but choose not to, because, theoretically,
there could be a meta-language of proof-planning separate from the meta-language of tactics. For
example, integer induction can be specified as the following proof plan:

Prove base case using normalization.

Annotate inductive conclusion with wave-fronts,
Exhaustively apply ripple outward,

Apply normalization to the result,

Match result with inductive hypothesis.

Auxiliary tactics. These include, for example. equality, which makes use of normalization.
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Issues in implementing ripple-rewrite in AProlog

The use of Higher-order unification must be precisely controlled to be effective. In this system,
unification is only performed with variables on one side of the equation.’ This reduces the otherwise
unmanageable number of unifiers returned by the unification algorithm. The use of higher-order
unification is limited to what was described earlier in systems such as arithmetics, which is not
inherently higher-ordered. However, in inherently higher-ordered problem domains such as solving
sum-series, which includes a notion of bound variables, higher-order unification becomes a necessity.
For example, it is used in determining if a sum-series expression is independent of the index variable
of the series. The implementation demonstrates the safe and effective use of higher-ordered terms
and unification throughout.

AProlog’s more expressive abilities allow the system to be defined without any use of extra-
logical constructs found in first-order Horn clause Prolog systems such as cut, not, assert or call.
Assert is replaced by the more logical =>. For example, say we wanted to define a predicate to test
if a formula is atomic. We could write:

atomic (and A B) :- !, fail.
atomic (or A B) :- ', fail.

atomic Anything.

Or we can explicitly write (assert (atomic x)) for each new x we wish to be considered
atomic. In AProlog, if in solving a goal G we wish to regard some x (usually introduced by
the negative universal quantifier pi) as atomic, we simply write (atomic x => G). Universally
quantified formulas (at the object level) often require = to place conditions on their bounded
variables. This method is used in implementing the sum-series problem to test if an expression is
free of sums (in which case the proof is complete).

The tactic system defined in AProlog further ensures that the system is purely logical. As an
example, tactics do not recursively descend into a structure and perform rewrite on a subterm
unless it is specifically predicated by the descend tactical. Non tactic-based systems often use cut
() to explicitly control recursive descent. The descend tactical eliminates this reliance on extra-
logical constructs. The use of descend and other search control tacticals also further illustrates
the power of our tactic system in offering varying degrees of control over rewriting. For example,
if the tactic associativity rewrites terms of the form a + (b + ¢) into (a + b) + ¢, then the tactic
(descend associativity) will apply associativity to a subterm if it fails at the outermost level;
(repeat (descend associativity)) will exhaustively rewrite an expression to eliminate at all
levels terms of the form a + (b + ¢). ¢

5In fact, usually with only one occurrence of an unbound logic variable. When expedient, 8o redex of L)\ are used
to further ensure smooth unification.

8 Although not all implemented, other tacticals similar to descend that provide precise control over search and rule
application can be easily defined given the core tactics. For example, although ideally, wave-front expressions should
only be rewritten by rippling rules, rewrite rules can be made to descend into a wave-front with the trans-wave
tactical.
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Other Considerations

Although through this implementation we have formalized wave-rippling as a special form of rewrite,
we have not shown how rippling rules should be selected. Bundy et al. have shown in [2] that
deriving rippling rules directly from the recursive definition of functions in the style of the Boyer-
Moore Theorem Prover is often not complete enough to guarantee the successful proof of a theorem.
In general, a wave rule can be derived from any valid rewrite rule. Bach regular rewrite rule
can have a number of different wave-annotations, giving it several rippling interpretations. If all
possible annotations are given, then this defeats the purpose of having ripple rules guide induction
by limiting the number of choices in each rewrite step. The selection of rippling rules is clearly
dependent on the problem domain. However, it may be possible to develop some kinds of standards
of specifying ripple rules. For example, it is reasonable to hypothesize that only outward ripple
rules are necessary in solving integer induction problems. We hope to study this problem further.

During the course of this implementation, many unclear issues in Bundy’s presentation of rip-
pling, such as the meaning and use of logic variables, are clarified through the declarative speci-
fication. We wish also to better understand how exactly existential quantifiers (object level) are
treated.

The problem of typing needs to be addressed further. There are two typing issues to consider.
First, do we put types at the meta level (using the typing system of AProlog) or do we define
types at the object level (so that each rule and/or expression must be annotated with a type). The
current system implements the first approach. Secondly, we wish our system to be polymorphic
at least to some extent. For example, we wish to define lists of any type, not just, say, lists of
integers. The first option is to use AProlog’s own polymorphic typing system. But this will lead
to problems in unification. The other option is to put the polymorphism into the tactic structure.
Different rules of the same tactic are defined to permit the application of that tactic to different
types. This is what has been adapted in the current system. For example, there are several rules for
the equality tactic, each for a different type of equality. Neither of these issues has been completely
resolved; they require further study.

Finally, a major goal of ours is to prove that our implementation is sound and at least to some
extent, complete. Alan Bundy have already proved that rippling terminates if the ripple rules are
used correctly.” Thus, we only need to show that our implementation terminates. We also need
to show that if a rippling rule succeeds then the unannotated version of the rule is valid. Again,
it is hoped that our higher-ordered, tactic-directed implementation will facilitate in such proofs.
As mentioned earlier, the ease of de-annotating wave fronts from an expression to recover the real
formula will be an important tool in our proofs. The simplicity, flexibility and expressiveness of
our tactic system should aid in the proof of some kind of completeness.

"For example, if we know that only outward rippling is used. termination is relatively trivial. The other forms of
rippling obviously complicates the problem greatly.
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1 Introduction

Several researchers have studied the problem of inductive reasoning about PROLOG programs,
beginning with an early paper by Clark and Tarnlund [2]. The pioneering work of Kanamori and
Seki [11] proposed an extended model of PROLOG execution and showed how this extended model
could be used for program verification. A companion paper by Kanamori and Fujita [10] analyzed
several techniques for the formulation of induction schemata and showed how two or more such
schemata could be merged into one. These ideas have been extended and refined in a series of
papers by Fribourg [4, 5, 6]. Other contributions include the work of Hsiang and Srivas [9] and
Elkan and McAllester [3]

The biggest problem in all of this work seems to be: How to conjecture an appropriate induction
schema? In this extended abstract, we will show how to formulate induction schemata in second-
order intuitionistic logic [27], and how to search for these schemata in a logic programming language
based on embedded implications 17, 18]. This is a report on work in progress, and it relies heavily on
two concrete examples. One example (“Red and Green Blocks”) is a variant of a familiar problem
in common sense reasoning; the other example (“Naive Reverse”) is a standard problem from the
logic programming literature. We use these examples to illustrate our proposed technique, and to
suggest that the ideas presented here are worth pursuing further. We will tackle the problem of
inductive proofs in greater generality in a future paper.

Section 2 is a brief discussion of the theoretical foundations of our work, abstracted from [20].
The two examples are presented in Sections 3 and 4. Section 5 then outlines our current and future
investigations into inductive reasoning.

2 Theoretical Background

The framework for our work is the language of intuitionistic embedded tmplications presented in
[17, 18]. A similar language is studied in [23] and forms the basis of the APROLOG program-
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ming language [25]. Prior work on essentially the same language appears in [8, 7]. The class of
intuitionistic embedded implications is given by:

Definition 2.1:

e An atomic formula is an embedded implication.

o If Aisan atomicformulaand A,,...,.4; are embedded implications, then A< A1 A ... AA;
is an embedded implication.

o If A(z) is an embedded implication, then (Vz).A(z) is an embedded implication.

This definition allows implications to be embedded to an arbitrary depth. However, we can restrict
this definition to the class of simple embedded implications — in which implications are nested at
most one deep — without any loss of expressive power, since arbitrary embeddings can be simulated
by defining new atomic predicates using simple embedded implications exclusively.

It is easy to see that Definition 2.1 gives us a language which is equivalent, classically, to full first-
order logic. However, interpreted intuitionistically, this language is a proper subset of first-order
logic with interesting semantic properties [17]. Most significantly, a set of intuitionistic embedded
implications R has the disjunctive property and the ezistential property. A disjunction of formulae,
AVB, is entailed by R if and only if R = A or R B, and an existentially quantified formula,
(3x).A(x), is entailed by R if and only if R |= .A(x )@ for some ground substitution 6. Closely related
is a proof-theoretic property, the existence of linear proofs [18] in which subgoals return definite
answer substitutions to parent goals. (These are referred to as uniform proofs in [24].) Because of
these properties, intuitionistic embedded implications provide a natural generalization of the class
of definite Horn clauses.

But what if we wanted to represent indefinite information as well? A recent paper [21] suggests
a novel approach to this question. Imagine a two-person communication situation in which the
“speaker” applies a set of definite rules to a world of definite facts, and then reports some of these
definite conclusions. Assume it is our job (as the “hearer”) to make inferences about the actual state
of the world, even though we have not observed it directly. McCarty and van der Meyden suggest
that the correct way to formalize this problem is to circumscribe [15, 16] the defined predicates
in the set of definite rules, and then to ask whether a certain implicational goal is entailed by the
circumscription. In [21], the set of definite rules consists of a set of Horn clauses, but in [22] this
model is extended to include actions defined by Horn clauses over a linear temporal order, and in
[19] it is extended to include intuitionistic embedded implications as well. In all cases, the basic
idea is to do indefinite reasoning with definite rules.

We now outline the machinery needed for this type of reasoning. Since we are working with
intuitionistic logic, we need to use an intuitionistic version of the circumscription axiom. As in [21],
we restrict our attention here to the circumscription of Horn clauses. Let R be a finite set of definite
Horn clauses, and let P = < Py, P,,..., P> be a tuple consisting of the “defined predicates” that
appear on the left-hand sides of the sentences in R. Let R(P) denote the conjunction of the
sentences in R, with the predicate symbols in P treated as free parameters, and let R(X ) be the
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same as R(P) but with the predicate constants < Py, Ps, ..., P, > replaced by predicate variables
<X;,Xs,...,Xr>.

Definition 2.2: The circumscription aziom is the following sentence in second-order intu-
itionistic logic [27]:
k k
R(P) A (VX)[R(X) A A\ (v)[Xi(x)=Pi(x)] = N\ (¥x)[Pi(x)= Xi(x)]]

=1 1i=1

We denote this expression by Circ(R(P);P), and we refer to it as “the circumscription of P in
R(P).” The circumscription axiom has the same intuitive meaning here that it has in classical logic.
It states that the extensions of the predicates in P are as small as possible, given the constraint
that R(P) must be true. Since the logic is intuitionistic, however, the axiom minimizes extensions
at every state of every Kripke structure that satisfies R.

Now let ¢ be a Horn clause and let @ be a set of embedded implications. We are interested in
the following circumscriptive query problem:

QU Circ(R(P);P) = ¢?

We will discuss concrete instances of this problem in Sections 3 and 4. Since Circ(R(P);P) is a
second-order sentence, however, one might ask: Is it possible to solve the circumscriptive query
problem at all? The answer is: Yes, in certain special cases. Our analysis makes use of the concept
of a final Kripke model, which is not discussed in this extended abstract. For more details, see
[21, 19, 20].

First, if R is a set of nonrecursive Horn clauses, the solution is the same in intuitionistic logic
as it is in classical logic (26, 13]. Let Comp(R) denote Clark’s Predicate Completion [1]. We then
have the following result:

Theorem 2.3: Let R be a set of nonrecursive Horn clauses. Then Circ(R(P);P) is equiva-
lent to Comp(R).

For recursive Horn clauses, we initially restrict our analysis to a special case:
Definition 2.4: 7R is a linear recursive definition of the predicate A if it consists of:

1. A Horn clause with ‘A(x)’ on the left-hand side and a conjunction of nonrecursive
predicates on the right-hand side, and

2. A Horn clause that is linear recursive in A.

Let ‘A(x)=A%(x)’ be the rule obtained from (1) by applying Clark’s Predicate Comple-
tion. We say that ‘A(x)=>A%(x)’ is the prototypical definition of A(x).
Let ‘X (x)=AX(x)’ be the rule obtained from (2) by applying Clark’s Predicate Com-

pletion and then replacing the predicate constant A with the predicate variable X. We say
that ‘X (x)=>AX(x)’is the transformation associated with A(x). O
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Now let $(A) be any Horn clause in which the predicate constant A appears on the right-hand
side. For example:

1
B(A) = (¥x) |P(x) < A(x) A A Bi(x)

=1

We treat ®(A4) as a schema that depends on A, so that we are free to substitute A°, AX and X as
we wish.

Definition 2.5: The induction schema for ®(A) is the following sentence in second-order
intuitionistic logic:

B(A) « 3(A%) A (VX)[B(AX) « $(X))

The interesting point about this induction schema is that it takes the form of an embedded im-
plication with an embedded second-order universal quantifier. Second-order intuitionistic logic has
no complete proof procedure, of course, but it turns out that a set of second-order sentences in
this form does have a complete proof procedure. The procedure is similar to the first-order proof
procedure for universally quantified implications discussed in [18]. To prove the second conjunct
on the right-hand side of Definition 2.5, we replace the predicate variable ‘X’ with a new predicate
constant ‘!X’, we assert ®(!X) into the rulebase, and we try to prove ®(A!X). If this proof succeeds,
then we have proven the goal: (VX )[®(AX) < &(X)]. For a proof that this procedure is complete,
see [20].

We will show how to use this induction schema in Sections 3 and 4. The justification of our
approach is given in the following two theorems, which are proven in [20] using the concept of a final
Kripke model. In the statement of these theorems, A is a tuple consisting of the recursively defined
predicates in R, which is assumed to include only linear recursive definitions, P(A) denotes the set
of prototypical definitions of the predicates in A given by Definition 2.4, and S(A) denotes the set of
all induction schemata for the predicates in A that can be constructed using Definition 2.5.

Theorem 2.6: QU Comp(R)UP(A) oy <= QU CCirc(R(P);P)E
Theorem 2.7: QU Comp(R)YUS(A) v = QU Circ(R(P); P) =+

These theorems suggest that we search first for a prototypical proof of ¢, i.e., a proof that uses just
the prototypical definitions P(A). If we fail to find a prototypical proof, we have failed, period.
But if we succeed, we can analyze the successful prototypical proof in an attempt to construct an
induction schema in S(A). We can then search for a proof from this induction schema, using the
procedure for second-order embedded implications outlined above.

Intuitively, Theorem 2.6 tells us that prototypical proofs are complete but not necessarily sound,
while Theorem 2.7 tells us that inductive proofs are sound but not necessarily complete. We will
see how to combine these two proof procedures in the following two sections of the paper.
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3 Example: Red and Green Blocks

The example in this section is taken from [21]. Let R be the following set of rules:

ChristmasBlock(z) < Block(z) A Red(z) (1)
ChristmasBlock(z) < Block{z) A Green(z) (2)
OnCB(z, y) < ChristmasBlock(z) A ChristmasBlock(y) A On(z, y) (3)
AboveCB(z, y) « OnCB(z,y) (4)
AboveCB(z, y) < OnCB(z, z) A AboveCB(z, y) (5)

Intuitively, rules (1)-(2) define the concept of a ‘ChristmasBlock’, and rules (3)—(5) define the
concept of a stack of ‘ChristmasBlocks’. Suppose we are told that there exists a stack of ‘Christ-
masBlocks’ in which block ‘a’ is above block ‘b’, and furthermore that ‘a’ and ‘b’ are painted green
and red, respectively. Does it follow that there is something green on something red?

Intuitively, the answer should be: Yes. Formally, we can pose this question by circumscribing
the predicates ‘ChristmasBlock,” ‘OnCB’ and ‘AboveCB’ in rules (1)—(5), adding the following Horn
clause to Q:

GreenOnRed < On(z, y) A Green(z) A Red(y), (6)
and taking 1 to be the following implication:
GreenOnRed < AboveCB(a,b) A Green(a) A Red(b). (7)

We now try to show that QU Circ(R(P);P) E ¥.

A successful proof is shown in Figures 1 and 2. Rules (4)-(5) constitute a linear recursive
definition of the predicate ‘AboveCB’ in which
AboveCB(z,y) = OnCB(z,y) (8)
is the prototypical definition, and
X(z,y) = (32)[OnCB(z, 2) A X(z,vy)] (9)

is the transformation. Using the notation in Definition 2.4, the right-hand side of (8) is written as
‘AboveCB®(z, y)’, and the right-hand side of (9) is written as ‘AX(z,y)’. Since we are trying to
prove the implication in (7), we construct an initial tableau, 75, with ‘AboveCB(a,b)’, ‘Green(a)’
and ‘Red(b)’ in its data base, and with ‘GreenOnRed’ as its goal, and we try to show that this goal
succeeds using the prototypical definition in (8). Figure 1 shows a successful proof, which happens
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Toz succeeds
GOR
H
GOR
O(x;,y1)) G@ R(b)
G {X,« X} I I
{)’2 <« )’1}
OCB(x,, ¥y = O(xp,¥,) A CB(x) A CB(y,)
G :{x3€Xx;]} ‘
[Y3" yz} |
ACB(x,,y ) => OCB(x;,y,) v @ ﬂ LRI
G:{a «Xx,)
{b «y3)
DB: ACB(a,b), G(a), R(b)

Figure 1: “Red and Green Blocks,” prototypical proof.

to use Comp(R) applied to rule (3). We have thus found a prototypical proof, as guaranteed by
Theorem 2.6.

Our task now is to “strengthen” the proof from P(A) into a proof from S(A), if possible. The
first step is to generalize the proof in Figure 1 from a proof that works for the constant ‘a’ to a proof
that works for the variable ‘z’. (See [12] for the analysis of a similar problem in “explanation-based
generalization”.) It is easy to see that this generalization is successful. We now have a proof of the
following universally quantified implication:

(Vz)[GreenOnRed < OnCB(z,b) A Green(z) A Red(b)]. (10)

Let us call this implication &(AboveCB®). Then $(AboveCB) is the following universally quantified
implication:

(Vz)[GreenOnRed < AboveCB(z,b) A Green(z) A Red(b)]. (11)

If we can prove (11), we will also have a proof of our original query (7). Therefore, using the
induction schema in Definition 2.5, we try to prove (VX)[®(AX) « &(X)]. This goal is an
implication with a second-order universal quantifier, so we create a new tableau, 77, we add ®(!X)
to the data base, and we try to prove ®(A!X) in 7;.
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T : succeeds T : succeeds
GOR GOR
I
GOR GlolR
Okxsy9)  G(xp)  R(zy X(x,.b) G('z) R(b)
G {xg« x5} I 0:{!z4<-x7}” I
{ys < ¥
CB('z,) = R('z) v G(lz,)
I
OCB(xg ye = O(x4,¥¢) A CB(ys) A CB(xy) CB(!zp) = R('z,) v G('z,)
G: (x4« x4} i
{1z« Yg)
DB: P(!X), OCB(!x,, 'z,), !X('z,, b), G(!x »), R(b) H DB:

Figure 2: “Red and Green Blocks,” inductive proof.

Let us write out each of these schemata in detail. $(!X) is the following implication:
(Vz)[GreenOnRed <« !'X(z,b) A Green(z) A Red(b)], (12)
and ®(A!X) is equivalent to the following implication:
(Vz, z)[GreenOnRed < OnCB(z, z) A 'X(z,b) A Green(z) A Red(b)]. (13)

To prove (13), we instantiate ‘z’ and ‘z’ to the special constants ‘x4’ and ‘!z4’, we add the right-
hand side of (13) to the data base of 77, and we try to prove the left-hand side of (13). The proof
is shown in Figure 2. The main point to note is that the proof now uses Comp(R) applied to rules
(1) and (2), which generates a disjunctive assertion. It is therefore necessary to use a “disjunctive
splitting” operation [14] in order to obtain a closed proof. However, Figure 2 shows that the goal
‘GreenOnRed’ succeeds initially from the disjunct ‘Red('z4)’, and then succeeds again from the
disjunct ‘Green(!z4)’ using ®(!X).

We have thus shown, by Theorem 2.7, that Q U Circ(R(P);P) = .

4 Example: Naive Reverse

The problem in Section 3 is relatively simple, but we have constructed proofs of this sort for more
complicated problems. In particular, we have applied our techniques to prove various properties of
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PROLOG programs [10, 3]. For example, let ‘Append(l/,m,n)’ be defined as usual:
Append(nil, {,{) « (14)
Append([k | I}, m, [k | n]) < Append(l,m, n) (15)
Let ‘Reverse(r,s)’ be defined as follows:
Reverse(nil, nil) < (16)
Reverse([g| ], p) < Reverse(r, s) A Append(s, [q], p) (17)

Intuitively, ‘Reverse’ should be a symmetric relation. We can express this property by taking ¥ to
be the following universally quantified implication:

(Vz, y)[Reverse(y, z) < Reverse(z, y)]. (18)

We now show that (18) is entailed by the circumscription of ‘Append’ and ‘Reverse’ in rules (14)-
(17).

Ty: succeeds I;
Rev(ly,, !x)) Rev(ly,. ['q,) !r2])
ly =nil
Ix =nil Rev(y3, X 3)
Rev(nil,nil) |
'R(x4, y4)
Rev(!x,'y)) = Revi(x;,ly) v @ # G:{lr; «x,)
I {1s, <y,
DB: Rev(!x,,!y,) DB: (I)l(!R), R(Ir,!s ), App(!s ,['q,)!y,)

Figure 3: “Naive Reverse,” partial proof.

The first part of the proof is shown in Figure 3. Applying our first-order proof procedure for
intuitionistic embedded implications [18], we construct an initial tableau, 7o, with ‘Reverse(!x;, ly;)’
in its data base and with ‘Reverse(ly;, 'x;)’ as its goal. The prototypical definition of ‘Reverse’ is
given by Definition 2.4, as before, but its use in the tableau proof is slightly more complicated here
than it was in Section 3. Applying Clark’s Predicate Completion to rule (16) alone, we have:

Reverse(z,y) = ¢ = nil A y = nil. (19)
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Thus ‘Reverse®(!x;, ly;)’ is the assertion that ‘!z; = nil’ and ‘!y; = nil’, and when these values are
substituted throughout the tableau 7; the goal succeeds immediately, as indicated in Figure 3. We
thus have a proof of the following universally quantified implication:

(Vz, y)[Reverse(y, ) < Reverse’(z, y)). (20)

Let us call this implication &;(Reverse®). Then the implication in (18), our ultimate goal, is
&, (Reverse).

The prototypical proof in Figure 3 has suggested an induction schema, and we now compute

the expression (VR)[®1(AR) < ®,(R)] where R is a predicate variable. We can immediately write:

®,1(R) = (Vz,y)[Reverse(y,z) « R(z,y)]. (21)

Also, by Definition 2.4, the transformation associated with ‘Reverse’ is:
R(z,y) = (3g,7,9) (22)
R(r,s) A Append(s,[q],y) A = =[q] 7],
and we can therefore write:
&:(AR) = (Y2,y,4,7,9) (23)
Reverse(y,z) < R(r,s) A Append(s,[q],y) A z =[g]| 7]

Tableau 7; in Figure 3 shows our attempt to prove the right-hand side of this induction schema.
We add €,('R) to the data base and we try to prove ®;(A'R). Notice that the equality ‘z = [¢ | ]’
in (23) can be eliminated when we attempt this proof.

However, as Figure 3 indicates, this proof does not succeed immediately. Instead, we are able
to reduce the goal in tableau 7; to another universally quantified implication:

(Vy, g, 7, s)[Reverse(y,[q | 7]) <« Reverse(s,7) A Append(s,[q], y)]- (24)

We now attempt, in Figure 4, to prove (24). The strategy here is exactly the same: Find a proof
using the prototypical definitions P(A), and then try to “strengthen” this proof into a proof from
S(A). The prototypical definition of ‘Append’ is:

Append(z,y,2) = y =2z A z = nil (25)
Thus, to assert ‘Reverse®(!sy,!r,)’ and ‘Append’(!ss, [!qs],'y2)’ is to assert ‘ls; = lr, = nil’ and
‘ly2 = [!g2]’. When these values are substituted throughout the tableau 77, as shown in Figure 4,
the goal succeeds. We thus have a proof of the following universally quantified implication:

(Yy, q,7, s)[Reverse(y,[qg | r]) < Reverse®(s,7) A Append®(s,[q], v)]. (26)

Our task now is to strengthen the proof of (26) into a proof of (24).
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T, 1: succeeds

Rev(ly,, [!q,) 'r])

!y2= [!q2]
Ir,= nil

Rev(l!q,lI!q,])

/N

Rev(nil, s 3) App(nil,[!qz],[!qz])

o: {nil «s,}
Rev(nil,nil)

Rev(!s, Ir) => Revi(ls,, Ir)) o
\% " =

App(!s 5,[!q,.ly2) = AppP(s,.[ig,lLly,)
[

DB: Rev(!sz,!rz), App(!s,.[lq,].!y,)

App(nil,['q, L.l'q, )

Y

Figure 4: “Naive Reverse,” second prototypical proof.

Since there are two recursive predicates on the right-hand side of (24), we can expect the
construction of an induction schema here to be more complicated than it was in our prior examples.
However, it turns out that we can transform the relations ‘Reverse’ and ‘Append’ conjunctively in
this case. (In other cases, alternative strategies may be necessary.) Suppose we define:

&,(RAA) = (Yy,q,7,s)[Reverse(y,[q | r]) < R(s,7) A A(s,[q],y)), (27)

where R and A are predicate variables and ‘RAA’ is their conjunction. By Definition 2.4, the
transformation for ‘Append’ is:

A(z,y,z) = (3k,1,n) (28)
A(lLy,n) ANz=[k|l] AN z=[k]n]
and combining this with the transformation for ‘Reverse’; we have:
R(s,7) A A(s,[q],y) = (3k,1,n,z) (29)
R(l,z) A Append(z,[k],7) A A(l,[g),n) A
s=[k|l] AN y=][k]|n].

Notice, because of the equality ‘s = [k | []’ in (29), that the first arguments of R and A will always
be identical under the application of this transformation. This is the key observation that allows us
to compose the transformations (22) and (28) conjunctively in this case, and it is also the property
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that allows the “merger” of the induction schemata in [10]. Finally, substituting the right-hand

side of (29) into the schema ®;, we have:
®,(ARANA) = (Vy,q,7,k,1,n,z)
Reverse(y,[q | 7]) « R(l,z) A Append(z,[k],») A A(l,[q],n) A
y=[k]n]

Figure 5 now shows that the proof using this induction schema is successful.

T. 2 . succeeds

R ERy

Rev([!k i n L.['q, ! 'r D)

I
Rev(['k,I'n LI!q I 'r,])

/N

Rev(in, s 5 App([!q4I !24],[!k4],[!q4l !r4])

o:{lgglrg] « s} ” I
Rev(n,,[qJr D) App(liq !z LIk L['q,l!r D)

App(!z4,[!k4],!r4)
IR(s ¢, T¢) AN ,.[q Jin ) I

c:{lq,« qe}”

{|Z4 <« r6}

DB: (R, 1A), IR(!1 .1z ), App(iz ,[Ik 1Ir,), 1AC!L, ' J.!n )

Figure 5: “Naive Reverse,’

We have thus shown, by Theorem 2.7, that (18) is entailed by the circumscription of ‘Append’

Y

second inductive proof.

and ‘Reverse’ in rules (14)-(17).

5 Current Work

This work is currently being extended in two directions:

1. We are analyzing a wider class of recursive definitions.

2. We are writing a PROLOG interpreter to search for inductive proofs.

Preliminary results of these investigations will be reported at the workshop.
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1 Introduction

Implementation technology for higher-order logic programming languages such as AProlog [17]
and EIf [21] is still in its infancy. There are many features of these languages that do not oc-
cur in ordinary Prolog programs, such as types, variable binding constructs for terms, embedded
implication and universal quantification, or dependent types and explicit construction of proofs.
Some initial work on compiler design for higher-order logic programming languages can be found
in [11, 16, 18, 19]%2. At the same time, the language design process for such languages is far from
complete. Extensions [2, 7] as well as restrictions [14] of AProlog have been proposed to increase
its expressive power or simplify the language theory or its implementation.

Obviously, further language design and implementation efforts must be closely linked. It is easy
to design unimplementable languages or implement unusable languages. In order to understand and
evaluate the challenges and available choices, we report the results of an empirical study of existing
example programs. We chose Elf over AProlog for this study for two reasons: (1) accessibility
of the large suite of examples, and (2) ease of instrumentation of the Elf interpreter to perform
measurements. Many of these examples can be trivially transformed into AProlog programs, and
essentially the same issues arise regarding their runtime behavior. We will discuss later which

!This research was sponsored partly by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U. S. Air Force. Wright-Patterson AFB, OH 45433-6543 under Contract
F33615-90-C-1465, ARPA Order No. 7597. The views and conclusions contained in this document are those of the
author and should not be interpreted as representing the official policies, either expressed or implied, of the U.S.
Government.

2See also the paper by Kwon and Nadathur in this volume
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measurements are specific to Elf.

Currently, we have access to about 10,000 lines of Elf code, written mostly by the authors and
students in a course on Computation and Deduction taught in the Spring of 1992. We selected a
sample of 12 representative examples of about 3500 total lines of code to conduct this study. The
examples cover a range of applications from logic and the theory of programming languages. They
are explained further in Section 3.

We briefly summarize what we consider to be some of the central issues and our conclusion.

Full unification in higher-order languages is clearly impractical, due to the non-existence of
minimal complete sets of most-general unifiers [8]. Therefore, work on AProlog has used Huet’s
algorithm for pre-unification (8], where so-called flex-flex pairs (which are always unifiable) are
postponed as constraints, in effect turning AProlog into a constraint logic programming language.
Yet, even pre-unifiability is undecidable, and sets of most general pre-unifiers may be infinite.
While undecidability has not turned out to be a severe problem, the lack of unique most general
unifiers makes it difficult to accurately predict the run-time behavior of a AProlog program that
attempts to take advantage of full higher-order pre-unification. It can result in thrashing when
certain combinations of unification problems have to be solved by extensive backtracking. Moreover,
in a straightforward implementation, common cases of unification incur a high overhead. These
problems have led to a search for natural, decidable subcase of higher-order unification. Miller [14]
has suggested a syntactic restriction (L)) to AProlog, easily extensible to related languages [22],
where most general unifiers are unique modulo gna-equivalence.

Miller’s restriction has many attractive features. Unification is deterministic and thrashing
behavior due to unification is avoided. Higher-order unification in its full power can be implemented
if some additional control constructs (when) are available [15].

However, our study suggests that this solution is unsatisfactory, since it has a detrimental effect
on programming methodology, and potentially introduces a new efficiency problem. Object-level
variables are typically represented by meta-level variables, which means that object-level capture-
avoiding substitution can be implemented via meta-level §-reduction. The syntactic restriction
to L) prohibits this implementation technique, and hence a new substitution predicate must be
programmed for each object language. Not only does this make programs harder to read and reason
about, but a substitution predicate will be less efficient than meta-language substitution.

This is not to diminish the contribution that L has made to our understanding of higher-order
logic programming. The operational semantics of Elf, in contrast to AProlog, is based on solving all
dynamically arising equations that lie within an appropriate extension of L) to dependent types.
All other equations (solvable or not) are postponed as constraints. We found that this addresses
the problems with higher-order unification without compromising programming methodology.

This still leaves open the question whether this constraint satisfaction algorithm can be imple-
mented efficiently. Part of our study was aimed at determining the relative frequency of various
forms of equations, in order to guide future design of efficient implementations.

In this paper we study the run-time behavior of a large suite of Elf programs, and demonstrate
the following;:

e While a large proportion of programs are outside L, syntactically, the cases of unification
that occur dynamically are almost all deterministic.
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e All of the programs behave well if nondeterministic cases of unification are delayed until they
are deterministic.

e While most programs at some point use non-trivial cases of higher-order unification, the vast
majority of unification instances are extremely simple, in fact, essentially Prolog unification.

This empirical study has been performed by instrumenting an Elf interpreter to count:

o the relative frequency of different cases of unification,

o the relative frequency of various instances of substitution,

e the number of times non-deterministic unification would arise were these cases not delayed.

This leads us to suggest a strategy for efficient implementation of higher-order logic program-
ming languages, which is essentially the strategy described for Constraint Logic Programming
languages in [9, 12]. That is:

e The languages should not be restricted syntactically.

e The unification instances corresponding to those of L, should be identified as directly solvable,
and the remainder as hard. Hard constraints should be delayed until they become directly
solvable as a result of further variable instantiation. The relevant terminology, concepts and
implementation methods are described in [10].

e Data structures and algorithms should be designed to favor the simple cases of unification.

2 Properties of Programs

Since our concern in this paper is with efficient implementation (and its interaction with language
design), the properties of programs that we most need to study are the dynamic properties: how
frequently do various phenomena arise when typical queries are executed? This allows us to tune
data structures and algorithms. On the other hand, to evaluate the possibility of syntactic restric-
tions, we also need to know what occurs syntactically in programs. We begin by discussing these
syntactic properties and why they are of interest. Then we go on to discuss the dynamic properties.

2.1 Static Properties

L)y vs. general variable applications. Because of our interest in the syntactic restriction to Ly,
we need to understand how often and why programs do not fall into this subset. An important use
of general variable applications appears in a rule like the following (taken from a natural semantics

in [13])

eval_app_lam : eval (app E1 E2) V
<- eval E1 (lam E1°)
<- eval E2 V2
<- eval (E1’ V2) V.
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where we see an application of two existential variables (E1’> V2) to implement substitution in an
object language by meta-level 3-reduction.

Even within the L) subset, we can observe interesting static properties of programs. For

example, many programs structurally recurse through an object language expression, where the
object is represented using higher-order abstract syntax. Consider the rule above: the head of this
rule requires only first order unification, which could be implemented as simple variable binding.
Type redundancy. Both in AProlog and EIf there is a potential for much redundant run-
time type computation. In AProlog, this is due to polymorphism (see [11]), in EIf it is due to
type dependency. Such redundancy can be detected statically. However, the question about the
dynamic properties of programs remains: how much type computation remains after all redundant
ones have been eliminated.
Level of indexing. This is an Elf-specific property of a program. Briefly, a (simple) type is a
level 0 type family. A type family indexed by objects of level 0 type is a level 1 type family. In
general, an type family indexed by objects whose type involves level n families is a family of level
n + 1. For example,

o : type. % propositions, level 0.

pf : o -> type. % proofs of propositions, level 1.

norm : pf A -> pf A -> type. ) proof transformations, level 2.

proper : norm P Q -> type. % proper proof transformations, level 3.

This is of interest because the level of indexing determines the amount of potentially redundant
type computation. Empirically, it can be observed that programs at level 2 or 3 have in some
respects different runtime characteristics than programs at level 1. We have therefore separated
out the queries of the higher-level. This also helps to separate out the part of our analysis which is
directly relevant to AProlog, where all computation happens at levels 0 and 1 (due to the absence
of dependency).

2.2 Dynamic Properties

The major dynamic properties studied in this paper are substitution, unification and constraint
solving.

Substitution. Substitution can be a significant factor limiting performance. It is thus important
to analyze various forms of substitution that arise during execution. When measuring these, our
concern is simple: substitutions with anything other than parameters (uvars) result from the frag-
ment of the language outside L, so these represent substitutions that would have had to have been
performed using EIf code if the L) restriction had been applied. Moreover, the relative frequency
of parameter substitution suggests that it is crucial for it to be highly efficient, while general sub-
stitution is somewhat less critical. A proposal regarding efficient implementation of terms has been
made in [18]. For our study we eliminated substitutions which arose due to clause copying and
during type reconstruction, since these are residuals effects of the interpreter and would most likely
be eliminated in any reasonable compiler.

Unification and Constraint Satisfaction. We measure various aspects of unification and con-
straint satisfaction. Terms involved in equations (disagreement pairs) are classified as rigid (con-
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stant head), uvars (parameters, i.e., temporary constants), evars (simple logic variables), gvars
(generalized variables, i.e., logic variables applied to distinct, dominated parameters [14]), flexible
(compound terms with a logic variable at the head, but not a gvar), abst (a term beginning with a
A-abstraction), or quant (a term beginning with a II-quantification, in EIf only).

One of our goals is to determine how close Elf computations come to Prolog computations in
several respects:

e How many pairs, at least at the top level, require essentially Herbrand unification? These are
the rigid-rigid and evar-anything cases.

¢ How many pairs still have unique mgus, that is, gvar-gvar, or admit a unique strategy for
constraint simplification, that is, gvar-rigid, abst-anything, or quant-anything?

e How often do the remaining cases arise (which are postponed to avoid branching)?

e How successful is rule indexing (as familiar from Prolog) to avoid calls to unification?

In our opinion, while we have not yet completed the required experiments, it is also very important
to determine the following;:

e How important is the occurs-check (extended to deal with a dependency check)?
o How much time is spent on type computations as compared to object computations?

e How much time is spent on proof computations, when it is requested by the user or required
for further computation?

3 Study of Programs

In this section we report our preliminary findings. We currently have detailed statistics on the kinds
of disagreement pairs that arise during unification, and the kind of substitution that is performed
during unification and search.

3.1 The Examples

Figures 1 and 2 show the data for basic computation queries and proof manipulation queries
respectively, for the range of programs. Thus Figure 1 is especially applicable to the understanding
of AProlog programs, while Figure 2 measures Elf-specific behavior.

The two tables in each figure give data on five areas of interest, as follows:

o All Unifications
The total gives an indication of computational content. while the breakdown indicates the
usefulness of first-argument indexing and the amount of deep search.

Unif Total number of subgoal/head pairs to be unified.

%Ind Percentage of above total unifications avoided by rule indexing.
%S Percentage of total unifications that succeeded.

%F Percentage of total unifications that failed.
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e Dynamic Unifications
It is also useful to have this information for rules assumed through embedded implication,
since indexing of such rules is more complicated, and compilation has a runtime cost.

Dyn Total number of subgoal/head pairs to be unified, where the head is
from a rule assumed (dynamically) through embedded implication.
%Ind, %S, %F
Percentages of number of unifications with heads from dynamic rules,
as above.

e Dynamic/Assume
By knowing how many rules are assumed dynamically, and on average how often they are
used, we can see whether it is worthwhile to index and compile such rules or whether they

should be interpreted.

Ass Number of rules assumed by implication.

U/Ass  Normalized ratio of total unifications with dynamic rules to number
of rules assumed by implication.

AU/Ass As above, but using only those rules where the unification was not
avoided through indexing.

e Disagreement Pairs
We study the kinds of disagreement pairs that arise to determine which kinds of unification
dominate.
Tot Total number of disagreement pairs examined throughout the
computation.
ZE-? Percentage of disagreement pairs that involved a simple evar.
%G-? Percentage of disagreement pairs that involved a gvar which is not a
simple evar.
%R Percentage of disagreement pairs between two rigid terms.
%A Percentage of disagreement pairs between two abstractions.

e Substitutions
Substitutions and abstractions (the inverse of uvar substitutions) are expensive, and the
efficiency of one can be improved at the expense of the other. Furthermore, some kinds of
substitutions are more costly than others. Thus it is useful to know what kinds of substitutions
arise, how often both substitution and abstraction arise, and their relative frequency.

Tot Total number of substitutions for bound variables.
% Uv Percentage of the above where a uvar is substituted.
Abs Number of abstractions over a uvar.

Abs/Uv Normalized ratio of such abstractions to substitutions of uvars.

The examples used are as follows:

e Extraction — Constructive theorem proving and program eztraction [1)
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All Unifications Dynamic Unifications Dynamic/Assume
Program Unif %Ind %S %F | Dyn %Ind %S %F | Ass U/Ass AU/Ass
Mini-ML 15333 87 13 0 [ 1532 93 7 0| 67 2287 1.61
Canonical 177 66 28 6 8 50 50 0 3 2.67 1.33
Prop 677 60 30 10 41 44 41 15 9 4.56 2.56
F-O 359 65 28 7 33 18 82 0 17 1.94 0.07
Forsythe 2087 38 23 39 16 25 75 0 10 1.60 1.20
Lam 240 50 40 10 26 80 15 5 4 6.50 1.25
Polylam 982 656 34 L 389 88 12 1| 45 8.64 1.00
Records 2459 61 31 8| 274 61 39 0 28 9.79 3.79
DeBruijn 451 25 39 36 5 40 60 0 5 1.00 0.60
CLS 278 0 32 638 0 - - - 0 - -
Disagreement Pairs Substitutions

Program Tot %E-7 %G-7 %R %A | Tot %Uv Abs Abs/Uv

Mini-ML 8716 47 0 52 0] 6411 98 0 0.00

Canonical 427 41 8§ 56 0] 180 96 36 0.21

Prop 1681 54 0 45 1| 202 100 8 0.04

F-O 438 40 6 58 0| 108 100 58 0.54

Forsythe 5812 43 0 57 0 39 100 0 0.00

Lam 874 41 0 59 0 149 86 0 0.00

Polylam 2085 48 3 50 1| 7907 89 81 0.01

Records 3880 46 3 53 0| 1347 100 204 0.15

DeBruijn 1554 44 1 56 0 688 97 16 0.02

CLS 2455 36 0 65 0 0 - 0 -

Figure 1: Basic Computation
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All Unifications Dynamic Unifications Dynamic/Assume
Program Unif %Ind %S %F | Dyn %Ind %S %F [ Ass U/Ass AU/Ass
Extraction 878 89 11 0] 165 82 17 1] 54 3.05 0.54
Mini-ML 2415 73 11 16| 107 87 13 0| 10 10.70 1.40
CPS 162 59 41 0 72 57 43 0] 48 1.50 0.65
Prop 4957 67 25 81 509 71 14 15| 71 7.17 2.10
F-O 1140 69 27 4 27 0 100 0 13 2.08 2.08
Lam 369 50 44 6 36 75 22 3| 12 3.00 0.75
DeBruijn 627 200 44 36 7 5L 30 19| 24 3.21 1.58
CLS 333 30 42 28 0 - - - 0 - -
Disagreement Pairs Substitutions
Program Tot %E-? %G-7 %R %A Tot %Uv  Abs Abs/Uv
Extraction 1580 22 9 66 6| 9016 96 1124 0.01
Mini-ML 5872 17 176 6| 3644 96 55 0.02
CPS 592 24 34 54 0| 1509 100 1029 0.68
Prop 13809 35 3 63 1| 12040 99 443 0.04
F-O 6800 21 1 74 51 12716 99 38 0.00
Lam 3464 22 2 T 3| 1825 94 83 0.05
DeBruijn 13441 15 171 13 | 14632 99 150 0.01
CLS 5227 23 0 77 0 2 - 0 -

Figure 2: Proof Manipulation
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All Unifications Dynamic Unifications Dynamic/Assume
Program Unif %Ind %S %F | Dyn %Ind %S %F [ Ass U/Ass AU/Ass
Comp 5562 90 10 0| 1532 92 8 0 67 2287 1.61
ExpComp 7200 70 10 20| 1798 80 8 12| 87 10.67 4.30
ExpIndComp || 7200 88 10 211798 92 8 0] 87 10.67 4.30
Trans 2159 70 11 19 107 86 14 0 10 10.70 1.40
ExpTrans 5255 29 10 59| 633 15 13 72| 67 9.45 8.06
ExpIndTrans || 5255 76 11 13| 633 84 13 3 67 9.45 8.06
Disagreement Pairs Substitutions
Program Tot %E-?7 %G-7 %R %A Tot %Uv  Abs Abs/Uv
Comp 2424 43 0 57 0 445 97 0 -
ExpComp 10765 24 4 56 17 | 22743 100 778 0.03
ExpIndComp 4251 32 10 52 8 15801 100 778 0.05
Trans 5709 17 1 76 7 3612 96 55 0.02
ExpTrans 27342 20 4 61 16 | 280679 97 2522 0.01
ExpIndTrans | 13482 17 8 65 12 | 264399 98 2522 0.01
Program Computation Transformation
Implicit 1.30 2.48
Explicit 8.48 155.09
Explicit-Indexed 5.80 145.89

Figure 3: Mini-ML comparison
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This example involves a large number of level 2 judgments. Indexing is particularly effective
here, and assumed rules are used unusually infrequently. Note that these examples do not
include any basic computation.

Mini-ML [13]

An implementation of Mini-ML, including type-checking, evaluation, and the type soundness
proof. Because of the large number of cases, indexing has a stronger effect than in all other
examples.

CPS — Interpretation of propositional logics and CPS conversions (3, 23]

Various forms of conversion of simply-tvped terms to continuation-passing and exception-
returning style. Substitutions are all parameter substitutions, and unification involves an
unusually large number of gvar-anything cases. The redundant type computations are very
significant in this example—all the examples are level 2 judgments.

Canonical — Canonical forms in the simply-typed lambda-calculus [21]

Conversion of lambda-terms to canonical form. A small number of non-parameter substitu-
tions arise, but mostly unification is first-order. Here, too, there is much redundant type
computation.

Prop — Propositional Theorem Proving and Transformation [5]

This is mostly first-order. In the transformations between various proof formats (natural
deduction and Hilbert calculi), a fairly large number of assumptions arise, and are quite
heavily used. Unification involves a large number of evar-anything cases.

F-O — First-order logic theorem proving and transformation

This includes a logic programming style theorem prover and transformation of execution trace
to natural deductions. There is rather little abstraction.

Forsythe — Forsythe type checking

Forsythe is an Algol-like language with intersection types developed by Reynolds [24]. This
example involves very few substitutions, all of which are parameter substitutions. Thus the
runtime behavior suggests an almost entirely first-order program, which is not apparent from
the code.

Lam — Lambda calculus convertibility

Normalization and equivalence proofs of terms in a typed A-calculus. A relatively high per-
centage of the substitutions are non-parameter substitutions.

Polylam — Type inference in the polymorphic lambda calculus [20]

Type inference for the polymorphic A-calculus involves postponed constraints, but mostly
parameter substitutions. Unification can be highly non-deterministic. This is not directly
reflected in the given tables, as this is the only one of our examples where any hard constraints
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are delayed at run time (and in only 10 instances). In fact, one of these hard constraints
remains all the way to the end of the computation. This indicates that the input was not
annotated with enough type information (within the polymorphic type discipline, not within
the framework).

o Records — A lambda-calculus with records and polymorphism

Type checking for a lambda-calculus with records and polymorphism as described in [6]. This
involves only parameter substitutions, and assumptions are heavily used.

e DeBruijn [4]

A compiler from untyped A-terms to terms using deBruijn indices, including a call-by-value
operational semantics for source and target language. The proof manipulation queries check
compiler correctness for concrete programs. Indexing works quite poorly, and an unusually
large number of abst-abst cases arise in unification.

o CLS[4]

A second compiler from terms in deBruijn representation to the CLS abstract machine. Sim-
ple queries execute the CLS machine on given programs, proof manipulation queries check
compiler correctness for concrete programs. This is almost completely first-order.

Overall, the figures suggest quite strongly that most unification is either simple assignment or
first-order (Herbrand) unification, around 95%, averaged over all examples. Similarly, substitution
is the substitution of parameters for A-bound variables in about 95% of the cases. The remaining 5%
are substitution of constants, variables, or compound terms for bound variables. These figures do
not count the substitution that may occur when clauses are copied, or unifications or substitutions
that arise during type reconstruction.

Finally, we compare the Mini-ML program with a version written using explicit substitution,
to evaluate the effects of a syntactic restriction along the lines of L. The computation queries had
to be cut down somewhat because of memory restrictions. In Figure 3 we show the same data as
above for the computation and transformation queries with and without explicit substitution. We
also show a version with explicit substitution with the substitution code rewritten to take better
advantage of indexing. Then we compare the CPU times (in seconds) for the two sets of queries for
all three versions of the program, using a slightly modified® Elf version 0.2 in SML/NJ version 0.80
on a DEC station 5000/200 with 64MB of memory and local paging. These results show that there
is a clear efficiency disadvantage to the L, restriction, given present implementation techniques.
Note that the disadvantage is greater for the transformation queries, since a longer proof object
is obtained, resulting in a more complicated proof transformation. Explicit substitution increases
the size of the relevant code by 30%.? Substitutions dominate the computation time, basically
because one meta-level 3-reduction has been replaced by many substitutions. These substitutions

3The modification involves building proof objects only when needed for correctness.

* Actually, the meta-theory was not completely reduced to L. because type dependencies in the verification code
would lead to a very complex verification predicate. We estimate that the code size would increase an additional 5%
and the computation time by much more than that.
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should all be parameter (uvar) substitutions, which suggests that some (but clearly not all) of the
performance degradation could be recovered through efficient uvar substitution. See the previous
footnote on why non-parameter substitutions still arise in the proof transformation examples.

3.2 Further Summary Analysis

A few figures were obtained through simple summary profiling and await further detailed analysis.
The summary figures suggest that, for examples of average size, omitting the (extended) occurs-
check in the current implementation can result in speed improvements of between 40% and 60%.
This is therefore an upper bound on the speed-up that could be achieved through smart compilation
to avoid the occurs-check.

The current implementation avoids building proof objects to some extent (applicable to EIf
only), which saves about 50% of total computation time. although the savings are not additive
(some of the occurs-check overhead arises in building proofs).

4 Conclusions

We briefly summarize our preliminary conclusions, which are very much in line with the experience
gained in other constraint logic programming languages [12].

Language Design. Statically prohibiting difficult cases in unification (by a restriction to Ly, for
example) is not a good idea, since it leads to a proliferation of code and significantly complicates
meta-theory as it is typically expressed in Elf. This coincides with experience in other constraint
logic programming languages such as CLP(R) and Prolog-III.

Our recommendation is to delay hard constraints (including flexible-rigid pairs that are not

gvar-rigid pairs) and thus avoid branching in unification at runtime.
Language Implementation. Indexing and representation of terms in the functor/arg notation
(rather then the curried notation typical for A-calculi) are crucial for achieving good performance,
as they enable quick classification of disagreement pairs and rigid-rigid decomposition. It is rather
obvious that runtime type computation must be avoided whenever possible as suggested in [11],
and that proof building must be avoided whenever the proof object will not be needed.

We need special efficient mechanisms for direct binding and first-order unification. Furthermore,
unification as in Ly and substitution of parameters for bound variables are very important special
cases that merit special attention. Efficiency of substitution of constants or compound terms for
bound variables is important in some applications, but not nearly as pervasive and deserves only
secondary consideration.

5 Future Work

A study such as this is necessarily restricted and biased by the currently available implementation
technology. The most important figures that are currently missing:

e How much type computation can be eliminated. and what would be the effect of eliminating
redundant type computation on the remaining figures.
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e How often can the occurs-check be avoided.

In longer term work, one would also like to analyse the effect of other standard compilation

techniques of logic programming languages in this new setting, but much of this requires an imple-
mented compiler as a basis.
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Abstract

Higher-order hereditary Harrop formulas, the underlying logical foundation of AProlog [20], are
more expressive than first-order Horn clauses, the logical foundation of Prolog. In particular,
various forms of scoping and abstraction are supported by the logic of higher-order hereditary
Harrop formulas while they are not supported by first-order Horn clauses. Various papers have
argued that the scoping and abstraction available in this richer logic can be used to provide for
modular programming [15], abstract data types [14], and state encapsulation [7]. None of these
papers, however, have dealt with the problems of programming-in-the-large, that is, the essentially
linguistic problems of putting together various different textual sources of code found, say, in
different files on a persistent store into one logic program. In this paper, | propose a module
system for AProlog and shall focus mostly on it static semantics. The dynamic aspects are covered
in various other papers: in particular, see the paper by Kwon, Nadathur, and Wilson [10] in these
proceedings.

1 Module syntax should be declarative

Several modern programming languages are built on declarative, formal languages: for example,
ML and Scheme are based on the A-calculus and Prolog is based on Horn clauses. Initial work
on developing such languages was first concerned with programming-in-the-small: problems with
programming-in-the-large were attached later. At that point, a second language was often added
on top of the initial language. For example, parsing and compiler directives, such as use, import,
include, and local, were added. This second language generally had little connection with the
original declarative foundation of the initial language: its was born out of the necessity to build
large programs and its function was expediency. The meaning of the resulting hybrid language is
often complex since it loses some of its declarative purity.

Occasionally, programming design is inflicted with what we may call the “recreating the Turing
machine” syndrome. Turing machines were important because they were the first formal system
that obviously computed and were clearly easy to implement. They have not been considered
seriously as programming languages for several reasons, including the difficulty of understanding and

!Supported in part by ONR N00014-88-15-0633, NSF CCR-91-02753, and DARPA N00014-85-K-0018.
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reasoning about transition tables. Often the development of modular constructions in programming
languages follows a similar path: it is generally easy to develop a language for programming-in-
the-large that obviously separates and hides details and for which efficient implementations are
possible. Often, however, it is difficult to reason about the meaning of the resulting language.

In order to avoid this syndrome we should ask that any proposal for programming-in-the-large
have several high-level principles. For example, we should ask for such proposals to support several
of the following properties.

o There should be a non-trivial notion of the equivalence of modules that would guarantee that
a module can be replaced by an equivalent module with little to no impact on the behavior
of a larger program. This property is sometimes called representation independence (see
Section 3).

¢ Constructs for programming-in-the-large should not complicate the meaning of the underly-
ing, declarative language.

¢ Modules should support transitions from specification to implementation.

e Modular programming should work smoothly with higher-order programming. In Prolog, a
particular challenge is getting the semantics of the call/1 predicate correct.

o Rich forms of abstraction, hiding, and parametrization should be possible.

o Modules should allow a rich calculus of transformations. These should include partial evalu-
ation, fold /unfold, and even compilation.

¢ Important aspects of a module’s meaning should be available and verified without examining
the module in detail. Notions of interfaces often support this property.

o The additional syntax for programming-in-the-large should also be readable, natural, and
support separate compilation and re-usability.

The success of a proposal for modular programming should not be judged simply on its obvi-
ousness or easy of implementation: it should also be judged on its ability to support a large number
of properties such as these.

One approach: map module syntax directly to logic There are some logical systems that
can be used as a basis of logic programming and that contain natural notions of scope for program
clauses and constants. For example, the logic of hereditary Harrop formulas, parts of which were
developed independently by Gabbay and Reyle [4], McCarty [11, 12], and Miller [13, 15, 16], allows
for a simple stack-based structuring of the runtime program and set of constants. The modal
logic of Giordano, Martelli, and Rossi [5] provides an interesting variation on the simple “visibility
rules” effecting logic programs based on the intuitionistic theory of hereditary Harrop formulas. A
recent linear logic refinement of hereditary Harrop formulas by Hodas and Miller [8] modifies the
stacked-based discipline of programs by allowing some program clauses to be deleted once they are
used within a proof.
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One approach to developing a principled modular programming language is to reduce program-
ming-in-the-large to programming-in-the-small is such a way that modular programming can be
explained completely in terms on the logical connectives of the underlying language. That is, a
linked collection of modules would be mapped to a (possibly large) collection of (possibly large)
formulas. Furthermore, we would like the combinators for building modules to correspond closely
to logical connectives. The static semantics of a collection of modules is specified by describing
how such modules denote a collection of constants and program clauses. The dynamic semantics
of a collection of modules is specified by describing the collection of goal formulas that can be
proved from them. Given the richness of hereditary Harrop formulas and their variants, the main
challenge in specifying the static semantics of modules appears to be determining the scope and
types of constants.

2 A specific module proposal

We shall now turn to a specific proposal for modules for AProlog. Since the underlying logic of
AProlog is that of the intuitionistic (actually minimal) theory of hereditary Harrop formulas, we
shall consider how modules can be mapped into such formulas. It would be interesting to consider
a similar mapping into either the modal or linear logic variants of these formulas mentioned above.
We shall not, however, consider these other variations here.

2.1 General comments

AProlog extends first-order Horn clauses in several ways. As it turns out, much of the scoping
primitives for the module facility proposed here do not come from the higher-order quantification
available in AProlog. In fact, the propositional logic fragment of AProlog supports the stacked-based
treatment of programming clauses. Higher-order quantification is important, however, in providing
scope for predicate and function symbols as well as in providing for higher-order programming (an
important abstraction separate from the module proposal here.

Both the proof theoretic and model theoretic treatments of AProlog’s foundation treats a pro-
gram as a pair containing a signature and set of clauses. For example, the proof theoretic treatment
of AProlog given in [16] uses sequents of the form ¥;P — G, where ¥ is a signature (a collection of
typed constants) and P is a set of E-formulas (closed formulas all of whose non-logical constants are
contained in X). Similarly, a canonical model for a large fragment of the logic underlying AProlog
can be given as a Kripke model where possible worlds are pairs (X, P), where ¥ is a signature and
P is a set of T-formulas [17]. Thus it will not be surprising that the module proposal presented
here will make extensive use of signatures. Even if AProlog was not a typed language signatures
would be important since the set of constants available to a computation changes, and describing
how that set of constants change would make use of a notion of signature similar to that used here.
Gunter [6] also makes use of signatures in developing a module calculus for AProlog.

Finally, it is important to say that what follows is just the draft of a proposal. Much of
what follows has not be debated by those currently using implementations of AProlog. Also, most
experience with AProlog has been with small programs. Few people have yet had experience with
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large AProlog programs. This proposal is hopefully another step in determining a viable solution
to programming-in-the-large in this logic programming setting.

2.2 Persistent store

Interacting with a persistent store, such as the Unix file system, is problematic within our logic
programming setting: some non-logical predicates are required at the core of our module facility.
In particular, the predicate

type load string -> o

predicate performs a side-effect: it is used to reflect some of the persistent store into the space of
meaningful AProlog objects. As edits are done on files, new calls to load are needed to update
these objects. An attempt to prove the atom load name takes the string name as a reference to an
actual file. The resolution of this string into a file can be done in possibly many ways. The method
used in LP2.7 [18] was to maintain a list of Unix path names and to search in them for a file whose
name is name augmented with “.mod”. If such a file is found, then it is parsed and type checked.
Other methods to resolve the string name with a file are possible.

2.3 Kinds and types

In order to allow useful types, we admit type constructors. There is only one of these built into
AProlog, namely the infix “function space” constructor =>. Other type constructors can be declared
via the KIND declaration. (Keywords will be capitalized for readability: in most implementations
of AProlog, keywords appear in lowercase letters.) For example,

KIND bool type.
KIND list type -> type.
KIND pair type -> type -> type.

As this example show, the only kind that can be associated with a type constructor is any “first-
order kind” involving only type and ->. Qualifying a type constructor with a non-negative integer
(0 instead of type, 1 instead of type -> type, etc.) could also have worked here.

Types will be used to qualify constants. Types are any first-order term structure built from
type variables and type constructors. The presence of types variables will provide AProlog with
a degree of polymorphism. Type variables are tokens within type expressions that have an initial
uppercase letter. The following are some type declarations.

TYPE nil list A.

TYPE :: A -> list A -> list 4.

TYPE append 1list A -> list A -> list A -> o.
TYPE memb A -> list A -> o.

AProlog has numerous build-in types, including type o. the type of AProlog formulas.
The subsumption relation on types is that familiar from first order logic: a type is subsumed
by another type if the first is a substitution instance of the second.
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2.4 Static semantics for types and terms

I will assume that types are property formed (they respect kind declarations) and that formulas
and terms are well typed. See [21] for a fuller discussion of this aspect of static semantics.

2.5 Signatures

Signatures are lists of tokens assigned kinds and types, and are denoted by the syntactic variable
Y. The same token can be given a type and a kind. Op-declarations are also stored as members of
signatures. The following is an example of a signature.

OP 150 :: xfy.

KIND list type -> type.
TYPE :: A -> list A -> list A.
TYPE nil list A.

TYPE memb, member A -> list A -> o.
TYPE append, join 1list A -> list 4 -> list A -> o.

A formula is a ¥-formula if it is a correctly typed, closed formula all of whose non-logical constants
are from X. Since modules are collections of formulas, we shall use signatures to qualify (type)
modules.

It will be useful to have signature descriptions to represent possibly long lists of constants. For
this, we shall use the keywords SIGNATURE, TYPE, KIND, OP, ACCUMULATE, LOCAL, and LOCALKIND.
The keyword SIGNATURE is used to name a signature and the keywords TYPE, KIND, and OP are used
simply to enumerate the members of a signature. ACCUMULATE takes a list of signatures: its intended
meaning is to merge in the listed signatures. The two keywords LOCAL and LOCALKIND are used to
limit the scope of types and kinds so that they are actually not part of this signature. The LOCAL
keyword can take a type declaration as an optional third argument; similarly with LOCALKIND. The
following are two signature descriptions.

SIGNATURE lists.
0P 150 :: xfy.

KIND list type -> type.
TYPE :: A -> list A -> list A.
TYPE nil list A.

TYPE memb,member A -> list A -> o.
TYPE append, join 1list A -> list A -> list A -> o.

SIGNATURE rev.

ACCUMULATE 1lists.

TYPE reverse list A -> list A -> o.

LOCAL revaux list A -> list A -> list A -> o.
LOCAL join.
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Constants can be given multiple types within the same module or within ACCUMULATEing chains of
modules. It is an error if these types are not comparable via subsumption. Otherwise, the type
assumed is the least general of those types.

Signature descriptions are elaborated into signatures using the following rules. First, eliminate
all ACCUMULATE keywords by replacing them with the signatures they name. In doing this, if a
constant is given two op-declarations, then it is an error if those two declarations are not identical.
Second, LOCAL can be dropped by deleting it and any constant of the same name in the accumulated
signature. If LOCALKIND is present, then first check to see if there are constants in the signature
that have a type containing this type constructor. If so, produce an error. Otherwise, simply drop
this declaration.

The notion of signature containment is given simply as follows: ¥; is contained in X, if

e for every constant in ¥; given a kind, that constant is given the same kind in X5,

e for every constant in ¥; given a type 7. that constant is given a type in X, that subsumes 7,
and

e for every constant in ¥; given an op-declaration, that constant is given the identical op-
declaration in ¥,.

This notion of signature containment will be needed for defining equal signatures and for a certain
kind of dynamic qualification of modules (see subsection 2.10).

We shall assume that there is a special system signature that contains declarations for all logical
and built-in constants of a given AProlog system.

2.6 Module syntax

Modules will be built from kinds, types, and program clauses using the following keywords: TYPE,
KIND, OP, LOCAL, LOCALKIND, MODULE, ACCUMULATE, and IMPORT. The meaning of TYPE, KIND, and
OP are as they were for signature descriptions. The keyword MODULE names a module (similar to
the keyword SIGNATURE). The keywords LOCAL and LOCALKIND provide scope to constants within a
module: the dynamic semantics of LOCAL will be interpreted as an existential quantifier, as described
in [14]. The keywords ACCUMULATE and IMPORT will be described further below.

Although only the keyword MODULE must appear at the front of a module, for the convenience
of parsing and reading modules, we assume that it is an error if a declaration of a constant appears
after the first occurrence of that constant. All declarations are global in a module. Figure 1 contains
two examples of modules.

2.7 Static semantics for modules

The static semantics of modules is used to determine which signature and formulas are intended by
the module. Since we are attempting to reduce modules to formulas, recursion between modules is
not allowed: that is, if mod1 imports or accumulates mod2 then mod2 can not import or accumulate
mod1.

A s.gnature description is built from a module as follows.
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MODULE lists.

0P 150 :: xfy.

KIND list type -> type.
TYPE :: A -> list A -> 1list A.
TYPE nil list A.

TYPE memb ,member A -> list A -> o.
TYPE append, join 1list A -> list A -> list A -> o.

memb X (X::L).
memb X (Y::L) :- memb X L.

member X (X::L) :- !,
member X (Y::L) :- member X L.

append nil K K.
append (X::L) K (X::M) :- append L K M.

join nil K K.

join (X::L) K M :- memb X K, !, join L K M.
join (X::L) K (X::M) :- join L K M.

MCDULE rev.

ACCUMULATE lists.

TYPE reverse 1list A -> list A -> o.

LOCAL rev list A -> list A -> list A -> o.

reverse L K :- rev L K nil.

rev nil K K.
rev (X::L) K (X::Acc) :- rev L K ACC.

Figure 1: The 1ists and rev modules.
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e TYPE and KIND declarations stay TYPE and KIND declarations.

e All IMPORTed, ACCUMULATEd, and module implication (==>) modules have their signatures
ACCUMULATEd.

e If the qualified module importing (===> mod sig) G is used, then the signature sig is
ACCUMULATEd (see Section 2.10 for a description of ===>).

e LOCAL and LOCALKIND become LOCAL and LOCALKIND.

Notice that it is possible for LOCAL and LOCALKIND to provide scope to a constant that is IMPORTed
or ACCUMULATEd. If IMPORT or ACCUMULATE is used in a module and there is no corresponding
module with the correct name, then look for a signature with that name. Thus modules without
clauses can simply be written as signatures.

The static semantics of the IMPORT keyword construction is a bit complicated, although it does
follow closely the lines described in [15] and implemented in LP2.7 and eLP [3]. If a module mod1
contains the line

IMPORT mod2 mod3.

then the modules mod2 and mod3 are made available (via implications) during the search for proofs
of the body of clauses listed in modl. Thus, if the formulas E; and E3 are associated with mod2
and mod3, then a clause G D A listed in mod1 is elaborated to the clause ((E; A E3) D G) D A.
Notice that a module denotes both a set of program clauses and a signature. The signature
that is inferred from a module can be used as an interface: when parsing and compiling modules,
it should only be necessary for the signature of an accumulated or imported module to be read.

2.8 Environment support

The process of parsing a module will also be accompanied with type checking and type inference.
In particular, a file containing a module may not attribute a type to all constants. In this case, the
programming environment must be able to infer a reasonable type for the undeclared constants.
Type inference can be done much as it is in ML: see [21] for more discussion on type inference for
AProlog.

Signature checking and inference will also need to be done by the environment. Checking
involves making certain that when modules are accumulated and imported, constants are not given
incomparable types and declarations.

2.9 Dynamic semantics for modules

I shall assume that the reader is already familiar with the operational (dynamic) semantics of
hereditary Harrop formulas, in particular, with the meaning of implications and universal quantifiers
in goals.
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The ACCUMULATE keyword. Although the meaning of this keyword is simple, it is not
present in either LP2.7 or eLP. It is similar to the use directive of Prolog/Mali. If a module mod1
contains the line

ACCUMULATE mod2 mod3.

then is intended that the program clauses in mod2 and mod3 are available at the end of the list of
program clauses listed explicitly in mod1.

The IMPORT keyword. Proof search based on clauses obtained by importing a module into
another module can benefit from some recent work on provability in intuitionistic logic. For exam-
ple, both Hudelmaier [9] and Dyckhoff [2] have demonstrated that the implication-left rule can be
improved (with respect to proof search). For example, the implication-left rule can be split into
several cases depending of the form of the implication. The following is one of these rules.

S;P,EGDOD G S:P.D— G
SP(EDG) oD —G

Consider the case when the formulas D and G’ are the same atomic formula A.

S P.E.GDA—G
SSP(EDG)DA—A

Notice that the formula (£ D G) D A could be the result of importing a module F into a module
listing the clause G D A. Notice that backchaining on a clause in this module provides an opera-
tional reading of importing: the imported module is added to the current clauses along with the
un-elaborated clauses from the initial module.

A generalization of this inference rule would be the following:

5P, E N (Gi D A) — G,
SPAL(EDG)DA)— A

where A; is equal to A, for some j = 1,....n. An argument for the completeness for this rule can
be found in [10].

In the above inference rule, assume that the formula E is of the form 3z.D where the list of
typed, bound variables Z are not in the signature ¥. This inference rule could then be modified to
be S, 2P, DAL (G D A — G,

SPAL(EDG) D A)— A

Thus, backchaining into a module which imports a module containing local constants essentially
loads its local constants into the current signature and loads it’s code (the formula D) into the
current program.

Another important aspect of the dynamic semantics of modules is presented in [10] where the
AUGMENT search rule is modified to be the AUGMENT’ search rule. This new rule is used only
for modules and not formulas thus forcing an operational (but not declarative) distinction between
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programming-in-the-large and small. The AUGMENT’ rule essentially says that if the current
program space already contains a module, that module should not be assumed again: that is, there
should be at most one copy of a module in the current program space at a time. The goal mod ==>
mod ==> G is operationally the same as mod ==> G. Such an optimization is unlikely at the level
of formulas because of the following example. Consider a goal of the form (p a) => (p X) => G,
where X is a logical variable. If we checked to see if (p X) in the context, it would seem that we
should allow the unification of X with a. It would be easy to construct examples where the order of
instantiating variables would yield two different answers to this computation, an undesirable effect.

2.10 Questions and additional features

I list below some questions and possible additional features that could be incorporated in the
module system sketched above.

Parametric modules When a module is defined using the MODULE keyword, it might be possible
to also add to it a signature over which that module is parametric. An example could be given as
follows.

MODULE {quicksort KIND Atype type.
TYPE Order Atype -> Atype -> o}.

TYPE gsort 1list Atype -> list Atype -> o.
LOCAL split Atype -> list Atype -> list Atype -> list Atype -> o.
IMPORT lists.

gsort nil nil.
gsort (X::L) K :- split X L Low High, gsort Low R,
gsort High S, append R (X::3) K.

split X (Y::L) (Y::K) M :- Order X Y, !, split X L K M.
split X (Y::L) K (Y::M) :- split X L K M.

The argument signature is described using only the KIND and TYPE keywords and the order in which
items are listed in this signature is important. The corresponding signature should probably be
written as

SIGNATURE {quicksort KIND Atype type.
TYPE Order Atype -> Atype -> o}.

TYPE gsort 1list Atype -> list Atype -> o.
ACCUMULATE 1lists.

A use of such a module can be given as

?- {quicksort int <} ==> gsort (2::3::4::nil) L.
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Parsing this “module implication” ==> is a bit different from parsing other terms, in particular, the
subexpression {quicksort int <} should be treated by the parser as a subterm over the signature

KIND int  type.
TYPE > int -> int -> o.
TYPE gsort int list -> int list -> o.

plus the signature items in lists (and the system module, where < is given an op-declaration).

Using constants to denote modules and signatures. The names for modules and signatures
should be converted to constants that are given types, say modname and signame, and declarations
for these names need to be added (destructively) to the system module. In this way, they will be
available globally. Thus, ==> and ===> (this second arrow is described below) would have the types

KIND modname, signame type.
TYPE ==> modname ~> o ~> o.
TYPE ===> modname -> signame -> o -> o.

The current convention in LP2.7 and eLP is that there is one module per file and that the file’s name
is built from the module’s name. This approach has the advantage that by mentioning a module
name in one of these interpreters, it is possible for the system to find the file containing that module.
It may be an advantage, however, to drop this linkage, in which case, files, possibly containing a
number of modules and signatures, are loaded by using entire path names. For the purposes of
compilation and parsing, once a file is parsed and checked, a second, parallel file containing only
signatures might be generated from the one that is just parsed. It should only be this second
file that is needed during parsing and compiling of other modules. The aux files generated by
Prolog/Mali [1] are essentially signatures that parallel modules.

Quantification over module names. It may be possible to permit variables to range over
modules if we are willing to admit runtime signature checking of modules. For example, consider
a goal of the form (===> mod sig G). Here mod is a module whose signature is contained in that
given by sig: this check would be done when this goal is attempted. Thus, in determining the
static properties of a goal with this syntax, simply use the signature sig instead of attempting to
determine the one for mod, which may be a variable. Thus, a goal of the form

?- memb M (mod1::mod2::mod3::nil), ===> M sig G.

would search for a module that can be used to establish the goal G. If all the modules mod1, mod2,
and mod3 have a signature contained in the signature sig, then no runtime error is generated by
this goal. The syntax (===> M sig G) is essentially the same as (M ==> G) except that M must
be restricted by the signature sig. Notice that it will not be possible to quantify over signature
names.
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Other declarations. Other declarations besides those for op might also be allowed. For ex-
ample, certain types could be specified as being open or closed and certain predicates could have
declarations describing how atomic goals could be suspended if certain argument positions are
unbound.

Relationship to other aspects of an interpreter. The interaction of the module system with
input/output and with the top-level of an interpreter must also be considered carefully.

3 Formal aspects of this proposal

The design of AProlog has been motivated in part by the desire to make logic play as large a
role as possible in efforts to extend the expressiveness of logic programming. There are many
reasons for this emphasis on logic: the resulting language remains declarative and programs can be
given meaning using such deep meta-theoretic properties as cut-elimination and model theoretic
semantics. Thus, analyzing programming-in-the-small within “pure” AProlog.can be attached using
these deep principles. We can hope that the language for describing modules will also have such
principles.

As an example of such principles, consider the problem of representation independence for
abstract data types. If we follow the line of argument given in [14] (and above) for coding abstract
data types, representation independence follows directly. For example, consider the following two
existentially quantified formulas, F, and F, which provide different implementations of queues. (I
shall use the syntactic variable E to range over possibly existentially quantified definite formulas.)

sigma qu\(sigma £\(
pi L\ ( empty (qu L L) ),
pi X\(pi L\(pi K\( enter X (qu L (f X K)) (qu L K) })),
pi X\(pi L\(pi K\( remove X (qu (f X L) K) (qu L K) ))) ).

sigma emp\(sigma g\(
( empty emp ),
pi X\(pi L\ (enter XL (gX0L))),
pi X\ ( remove X (g X emp) emp ),
pi X\(pi L\(pi K\( remove X (g Y L) (g Y K) :- remove X L K ))) )).

Let I be intuitionistic provability and let F* be an enrichment of - that is conservative over - and
that also makes it possible to reason about data structures (that is, induction must be incorporated).
Then if we show that E; and E; are equivalent in F*, that is, £; ¥ E; and E, F+ E;, then the
following argument is immediate: if I, E; + G then T, E; +t G since +* enriches +; by cut-
elimination (assumed also for %), T', E; + G finally, by conservative extension, I, E - G. Thus,
if a goal G is provable using Fy, it is provable using F, (the converse is similar). The fact that
abstractions are based on logic made this argument particularly direct.
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Since the higher-order theory of hereditary Harrop formulas has been worked out in [19], there
should be little problem getting this module facility to work smoothly with higher-order program-
ming. Numerous other formal aspects of this module proposal must also be explored.

4 Conclusion

I have described a possible approach to programming-in-the-large for AProlog. This proposal is
designed to ensure that the module constructions are declarative and this was done by making
certain that the module syntax can be replaced in a very natural way by logical connectives.

This proposal is just a draft: many details have been left out. A subsequent version of this
proposal will hopefully correct this shortcoming.
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