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Enriching a Meta-Language With Higher-Order Features

Abstract
Various meta-languages for the manipulation and specification of programs and programming languages have
recently been proposed. We examine one such framework, called natural semantics, which was inspired by the
work of G. Plotkin on operational semantics and extended by G. Kahn and others at INRIA. Natural
semantics makes use of a first-order meta-language which represents programs as first-order tree structures
and reasons about these using natural deduction-like methods. We present the following three enrichments of
this meta-language. First, programs are represented not by first-order structures but by simply typed λ-terms.
Second, schema variables in inference rules can be higher-order variables. Third, the reasoning mechanism is
explicitly extended with proof methods which have proved valuable for natural deduction systems. In
particular, we add methods for introducing and discharging assumptions and for introducing and discharging
parameters. The first method can be used to prove hypothetical propositions while the second can be used to
prove generic or universal propositions. We provide several example specifications using this extended meta-
language and compare them to their first-order specifications. We argue that our extension yields a more
natural and powerful meta-language than the related first-order system. We outline how this enriched meta-
language can be compiled into the higher-order logic programming language λProlog.
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John ~ a n n a n t  Dale ~ i l l e r *  
Department of Computer and Information Science 

University of Pennsylvania 
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ABSTRACT 
Various meta-languages for the manipulation and specification of programs and programming lan- 
guages have recently been proposed. We examine one such framework, called natural semantics, 
which was inspired by the work of G. Plotkin on operational semantics and extended by G. Kahn 
and others at  INRIA. Natural semantics makes use of a first-order meta-language which repre- 
sents programs as first-order tree structures and reasons about these using natural deduction-like 
methods. We present the following three enrichments of this meta-language. First, programs are 
represented not by first-order structures but by simply typed A-terms. Second, schema variables in 
inference rules can be higher-order variables. Third, the reasoning mechanism is explicitly extended 
with proof methods which have proved valuable for natural deduction systems. In particular, we 
add methods for introducing and discharging assumptions and for introducing and discharging 
parameters. The first method can be used to prove hypothetical propositions while the second 
can be used to  prove generic or universal propositions. We provide several example specifications 
using this extended meta-language and compare them to their first-order specifications. We argue 
that our extension yields a more natural and powerful meta-language than the related first-order 
system. We outline how this enriched meta-language can be compiled into the higher-order logic 
programming language XProlog. 

1 INTRODUCTION 

We examine the specification and manipulation of programming languages in the framework of 
natural semantics, which was initially inspired by the work of G. Plotkin in operational semantics 
[27] and extended by G. Kahn and others at INRIA [16, 2, 11. These meta-languages represent 
programs as first-order tree structures and provide a reasoning style similar to that of natural 
deduction. One strength of natural semantics is that it can be compiled directly into PROLOG 
by using first-order terms to represent programs and by using unification and backchaining to 
implement the natural deduction-style reasoning. We shall show how natural semantics can be 
extended by introducing higher-order terms (simply typed A-terms) directly into the meta-language. 
Along with such an extension, we extend the underlying reasoning mechanism with two kinds of 
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introduction and discharge rules. We argue that this extension yields a higher-level description 
of many program manipulations and provides a more natural specification of these tasks. Many 
low-level routines for manipulating program code, such as substitutions for free variables, changing 
bound variable names, maintaining a context, etc., are essentially moved to the meta-language and 
need not be written into the specification. 

1.1 Motivation 

The process of designing and implementing new programming languages could be greatly enhanced 
with a meta-programming tool that provides a generic framework in which designers can develop 
and experiment with new programming languages and their properties. Programs like compilers, 
interpreters, type checkers, and type inferencers are standard tools that designers implement and 
test. For our purposes we are concerned with two levels of programming languages: the object- 
languages and the meta-languages in which compilers, interpreters, etc. for the object languages 
are implemented. The work in natural semantics [16] can be viewed as a proposal for a general 
and flexible meta-language in which such meta-programs can be written for a wide class of object- 
languages. This work has also demonstrated how such apparently disparate tasks as compiling and 
type checking can be presented in a unified framework, one akin to natural deduction-style theorem 
provers. In this framework, properties of object-level programs are given by a set of axioms and 
inference rules in which the simplest propositions often have immediate and declarative readings. 
Such propositions are, for example, of the form I' i- E : r, denoting the property that "in context r 
program phrase E has type r," or of the form r t- E -t F, denoting the property that "in context 
I' program phrase E has value F (or compiles to program F)." Reasoning about programs, then, 
is performed by a restricted kind of theorem proving in this meta-language. 

Since, as we shall argue, higher-order expressions and higher-order reasoning arise naturally 
in meta-level manipulations of program code, a higher-order extension to natural semantics could 
be useful. While such higher-order extensions are not essential to capture the meaning of these 
program manipulations, having certain higher-order operations, such as abstraction, p-conversion, 
and unification of A-terms, as primitives permits the specification of some manipulations to be 
given at a higher and more general level than in natural semantics. Since resulting specifications 
are often more perspicuous, establishing their formal correctness properties will hopefully also be 
easier. 

1.2 Related Work 

The seminal work on a structured approach to operational semantics is by G. Plotkin [27] .  This 
work introduced the general approach of describing semantics with inference rules. Much of the 
work reported in this paper was motivated by the research in natural semantics done subsequently 
by G. Kahn and many others at  INRIA. They chose to study semantics of programming languages 
by developing proof systems similar to the ones we develop in this paper. A crucial difference 
is that they view programs as first-order structures which can be manipulated by a first-order 
language (e.g., PROLOG). While the use of a first-order language may lead directly to efficient 
implementations, the logical aspects of program systems are not always elucidated in a strictly 
first-order setting. This point will become obvious, for example, when we discuss the manipulation 
of recursive objects. 

Other efforts with similar goals have considered denotational instead of operational or natural 
semantics. Some of the earliest work in this area is due to Mosses and his SIS system [22]. SIS is a 
compiler generator which takes as input a specification of the denotational semantics of an object 



language and produces a compiler for this language. There have been numerous other efforts with 
similar goals and their contributions are well documented in the literature [9, 151. While this 
abundance of work has produced some fruitful results certain limitations appear inherent with 
this approach. First the mathematical machinery required to specify a denotational semantics can 
become burdensome for practical language definitions. Furthermore, denotational semantics, in 
general, does not appear to be a convenient technique for specifying parallelism or nondeterminism. 
Many of the techniques used in natural semantics do not seem to suffer from these deficiencies. 

From the perspective of reasoning in a higher-order setting this work shares much with several 
other projects. In [14,10,19] the authors argue that higher-order unification and logic programming 
can elegantly be used to manipulate programs in semantically meaningful ways. In [7] a logic 
programming language containing not only higher-order terms but also the ability to introduce and 
discharge assumptions and parameters is used to specify and implement various natural deduction- 
style theorem provers. Many techniques from that paper find immediate applications in this paper. 
The meta-language outlined in the next section is essentially an application of the general notion of 
higher-order abstract syntax to  a particular program manipulation system [25]. This meta-language 
can also be specified in the much richer proof system specification language of LF [ll]. Although 
we outline briefly how this meta-language can be implemented in the AProlog logic programming 
language [7, 18, 231, it should also be possible to provide an immediate implementation in the 
theorem proving system Isabelle [24]. 

2 A HIGHER-ORDER META-LANGUAGE 

To extend the meta-language proposed in [16] we use a higher-order abstract syntax for the repre- 
sentation of programs as data objects and for specifying proof rules [25]. The use of higher-order 
features actually provides a "high-level" approach to specifying program manipulations. The spec- 
ification language described here could be translated or "compiled" into either natural semantics or 
into first-order Prolog, though we will not attempt to  do either. This translation could, however, 
be important since the removal of high-level features (here, higher-order features) usually results 
in more efficient implementations of specifications. Our purpose in the current work, however, is to 
concentrate on the inherent logical content of various program manipulations and not to  address 
the efficiency of the programs which implement them. 

The abstract syntax for programs and types of the object language is based on the simply typed 
A-calculus. We shall represent programs as simply typed terms by introducing an appropriate set of 
constants from which we can construct terms denoting programs. In general, for each programming 
language construct we introduce a new constant which is used to  build a term representing this 
construct. We also define new base types (or sorts) corresponding to the different categories of 
the object language. For example, a simple functional language might require two sorts, one for 
object-level terms and one for object-level types. We provide an example of such an abstract syntax 
in the next section. In the rest of this section, we present the proof and reasoning components of 
our met a- theory. 

2.1 An Abstract Proof System 

Given a representation of programs as terms we now describe the general structure of a proof system 
for manipulating these terms. We consider a natural deduction calculus patterned after Gentzen 
proof systems [B]. The propositions of this system will typically be binary statements of the form 
t- E : T or t- E + F. Here, of course, we are thinking of E ,  F , T  as variables which might range 
over A-terms. Although propositions can have more complex structure, we shall restrict them to 



be X-terms with a constant symbol as their head. 

The proof system of our meta-language comes equipped with four built-in inference figures. The 
first has the structure: 

A1 - 
A0 

in which the X-terms representing the propositions in A. and A1 are ,Oq-convertible. By virtue of 
this rule, we generally think of any two X-terms as equal if they are pq-convertible. The second 
inference figure is: 

A1 A2 
A1 & A2 

This rule is called conjunction introduction. When implementing this inference rule, we interpret 
it in the following backward fashion: to establish the proposition in A1 & A2, establish the two 
separate propositions found in A1 and A2. 

The remaining two rules deal with introduction and discharge. To specify the introduction and 
discharge of assumptions needed to  prove hypothetical propositions we use the following inference 
figure. 

(A1 ) 

That is, to prove A1 j A2, first assume that there is a proof of A1 and attempt to build a proof 
for A2 from it. If such a proof is found, then the implication is justified and the proof of this 
implication is the result of discharging the assumption about A1. This rule is called implication 
introduction. Proving a universally quantified proposition has a similar structure, suggesting the 
following inference figure. 

Here, to  prove a universal instance, a new parameter (c) must be introduced and the resulting 
generic instance of the quantified formula must be proved. Of course, after that instance is proved, 
the parameter must be discharged, in the sense that c cannot occur free in A or in any undischarged 
hypotheses. This rule is called universal introduction. 

A specification of a meta-level program will be a collection of atomic propositions which will 
denote axioms and a collection of inference figures, none of which introduce the symbols &, +,V. 
Of course, the premises to  user supplied inference figures can contain instances of these symbols. 
When providing examples of inference figures later in this paper, we shall drop references to the 
connective & in premises. Inference figures of the form 

& 
will simply be written as A1 A2 

A0 A0 

A proof in this language will be understood in the standard sense of proofs in natural deduction 
[8, 281. 

2.2 An Implementation of the Meta-Language 

Following the observation described in [16] that natural semantics has an intimate connection to 
logic programming, we show how the preceding four inference figures are related to logic pro- 
gramming. First-order Horn clauses, however, are not strong enough to directly implement these 



inference rules. First, the notion of equality between terms would be that of simple tree equality, 
not that of pq-conversion. Horn clauses also do not provide a mechanism for directly implementing 
the introduction and discharge of parameters and assumptions. It is not difficult to modify our 
proof system so that the explicit references to  introducing and discharging assumptions could be 
eliminated in favor of treating basic propositions as essentially sequents. That is, a proposition 
l- Prop would be replaced by a proposition r t- Prop, in which r is used to store assumptions. 
This is, for example, used in natural semantics to  handle contexts. For the examples in this paper 
we actually used this approach to implement them in XProlog. We were required to  do this since 
version 2.6 of XProlog does not fully support implication in goal clauses. (See appendix B.) A more 
serious challenge to Horn clauses is that they cannot naturally implement the universally quantified 
proposition. 

There is, however, a generalization of Horn clauses which adds both implications and universal 
quantifiers to the body of clauses and permits quantification over higher-order variables. This 
extension, called higher-onler hereditary Harrop formulas [20] has (partially) been implemented in 
the AProlog system. XProlog does, in fact, provide a natural implementation language for these 
inference rules. For example, the user can specify inference rules by directly writing program 
clauses containing conjunction, implication, and universal quantifiers, since these are understood 
on a primitive level of XProlog. For example, clauses of the form 

can be used to represent complex inference figures. Free (higher-order) variables here are assumed 
to be universally quantified over the scope of the full clause. Instead of using this kind of syntax 
to  present example inference rules later in this paper, we shall continue to use the more graphi- 
cally oriented inference figures. All the examples presented in this paper have been implemented 
and tested in a version of XProlog. The XProlog code for these examples may be found in the 
appendices. 

3 MINI-ML AND TYPE INFERENCE 

To introduce the features of our meta-language we present a description of type inferencing for 
a variant of mini-ML [2], which is a subset of Standard ML containing just the functional part 
of that language. (It does not contain exceptions, pattern matching, datatype declarations or 
modules.) This presentation demonstrates how an abstract syntax for a functional language can 
be constructed using simply typed lambda terms and also how the unique features of our meta- 
language can be exploited in the manipulation of programs. We take care in making the distinction 
between terms and types at the object (mini-ML) level and terms and types at the meta-level. 
We refer to the latter as meta-terms and meta-types. We have two base meta-types, tm and tp, 
representing object-level terms and types, respectively. 

To define our abstract syntax for mini-ML we begin by giving a signature for some meta-terms 
that we use to construct terms and types at the object level. (See figure 1.) Notice that the 
constants lamb, let and fix are higher-order, that is, they each require a functional argument of type 
tm--+tm. In the examples that follow M will be used as a higher-order variable of this meta-type. 
'*' and '+' are the product space and function space constructors, respectively, for tp. We have 
overloaded the symbol 't', using it at  both the object and meta levels; its use, however, should 
be clear from context. The object types we consider are only monotypes (in the sense of [21] as 
we do allow type variables). Expressions with polytypes (i.e., monotypes that may be prefixed by 
universal quantification over type variables) do arise, however, in mini-ML. At the conclusion of 
this section we present a separate discussion of polytypes. 



Figure 1: Signature for mini-ML abstract syntax 

meta-term 
true, false 
0 , 1 2  
I t 

fst 
snd 
if 
'@' 
lamb 
let 
fix 

meta-type 
tm 
tm 
tm + tm --+ tm 
tm + tm 
tm + tm 
trn -+ tm + tm + tm 
tm + ( t m  + tm) 
( t m  - tm) - tm 
( t m  4 tm) + tm + tm 
( t m  + tm) + tm 

Figure 2: Abstract Syntax for mini-ML 

syntax 
c 
x 

(el ,  ez) 
(fst e), (snd e) 

( i f e l e 2 e s )  
(el @ ez) 
(lamb M) 
(let M ez) 

( f i x  M) 

3.1 An Abstract Syntax for mini-ML 

description 
constants: integers, true, false, etc. 
variables 
pairing 
first and second projections 
i fe l thenezelseea 
application 
M = Xx.e (lambda abstraction) 
M = Xz.e~  (let x = e2 in el)  
M = X f.e (least fixed point operator) 

Figure 2 contains the higher-order abstract syntax for expressions in mini-ML. The first few lines 
treat constants, variables, pairing, projections and the conditional in a traditional manner. Ap- 
plication is made explicit with the infix operator '@'. For lambda abstraction we introduce the 
constructor lamb which takes a meta-term M of the form Xx.e, in which x and e are of meta-type 
tm, and produces a mini-ML term. Similar to  lamb, the let construct uses a meta-term M of the 
form Xx.e to represent the binding of an identifier. To accommodate recursion we introduce the 
fix construct which again uses an explicit abstraction to capture the binding. Thus, we employ the 
general principal that bindings at  the object level have an associated abstraction at the meta-level. 
Two differences between our approach and INRIA's (aside from the use of higher-order syntax) are 
immediately obvious. First, our binding of identifiers is restricted to individual identifiers while 
the INRIA approach allows patterns (e.g., pairs) to be bound simultaneously. Second, we do not 
provide a letrec construct, but rather obtain an equivalent construct by combining let and fix [2]. 

This abstract syntax is essentially the embedding of the untyped lambda calculus into a simply 
typed calculus as described originally in [29], in terms of lattices, and later in [17]. Using the 
notation of [I?] our meta-term lamb corresponds to the function 9, for coercing functions into 
terms. The meta-term '@' corresponds to the function @ for coercing terms into functions. Thus 
our representation of mini-ML code is essentially the same as first encoding them as untyped lambda 
terms and then embedding them into the typed calculus using Q, and Q.  

Throughout this paper we will avoid discussing primitive operations of mini-ML, such as +, -, 



etc. They are, of course, important to have in the full language but including them here is neither 
difficult nor illuminating. (See appendix B for examples of how we treat primitive operations.) 

The restriction that bindings cannot be over patterns is used only as a matter of convenience 
here: it does not reduce the expressiveness of our version of mini-ML. Most expressions that bind 
patterns can be transformed into equivalent ones that do not use patterns. For example consider 
the expression found in [2] that contains a pair of mutually recursive function definitions: 

letrec (even, odd) = ((lambda x (if x = 0 then true else odd(x - I))), 

(lambda x (if x = 0 then false else even(x - 1)))) 

in even(3) 

(We use the notation (lambda x E )  to denote the "first-order" term representing a lambda ab- 
straction. This distinguishes it from our use of A in simply typed terms.) This recursive definition 
can be rewritten in our abstract syntax as follows. 

(let A f((fst f )  3) (fix Af( Ax(if x = 0 true (snd f)(x - I)), 
Xx(if x = 0 false (fst f)(x - 1))))) 

In this example, we have systematically dropped the apply "@" operator in order to make this 
example more readable. (There should be 14 occurrences of "O" in this example.) In words, the 
first expression contains a pair of (mutually) recursive functions and the second expression contains 
a recursively defined pair of functions. A general program transformer taking expressions of the 
former kind into equivalent ones of the latter kind is given in appendix A. The simplicity of the 
transformer given there helps justify our claims that our meta-language allows us to naturally 
specify manipulations of programs. 

3.2 Environments versus Abstractions 

Before presenting the type inference proof procedure we make another distinction between our 
method and typical approaches to natural semantics. This distinction concerns the treatment 
of identifiers. The typical approach to analyzing programs uses an environment (or context) to  
denote a finite mapping from identifiers to some domain (e.g., types or terms). When analyzing 
an abstraction, the bound variable is stripped from the abstraction and the identifier which names 
that bound variable is added to the context. The meaning of such an identifier within the body of 
the abstraction is then determined by "looking up" the value associated with the identifier in the 
current environment. We refer to this technique as the environment approach. 

Given our commitment to  representing program abstractions using abstractions with A-terms 
and to equating such terms when they are pq-convertible, it is impossible to access the bound 
variable name of a A-term at the meta-level, since such an operation would return different answers 
on equal terms. A combination of the V and + propositions, however, can provide a very simple 
solution to  this problem. When an abstraction is encountered, typically within lamb, let and 
fix constructions, a V judgement is used to introduce a new parameter. That parameter is then 
substituted into the abstraction using p-conversion. The value or type to  be associated with this 
new parameter is then introduced as an assumed proposition. In this way, the newly introduced 
identifier is used to stand for the name of the bound variable. 

This relation between the environment approach and our technique is similar to an observation 
by Plotkin about evaluations in the SECD machine [26]. There two different evaluation functions 
were defined: the awkward Eva2 function defined in terms of closures and the simpler eval defined 



ky N : int tfy true : boo1 ky false : boo1 (1,2,3) 

kv el : boo1 tfv el : r ky ez : r 
ky (if el e2 es) : r (4) 

hv el : TI by e2 : ~2 

ky (el ,  ez) : (ri * ~ 2 )  ( 5 )  

k,. e : (rl * n) try e : (TI * TZ) 
ky (fst e) : rl ky (snd e) : rz (6j7) 

(Vc) (kv c : r~ =+ kV ( M  C) : r2) by el : (rl -+ ~ 2 )  e2 : rl 
ky (lamb M )  : (rl -i ~ 2 )  tfy (el@ez) : h (8 ,9 )  

tfy ez : 5 tfv (M ez) : r~ (Vc) (kv c : r +- tt, (M c )  : r )  
ky (let M e2) : TI tfy (fix M) : T 

(10,11) 

Figure 3: Type Inference for Mini-ML 

using substitution (p-conversion, here). While these two functions were shown to be equivalent, 
introducing the simpler definition for evaluation allowed properties of the SECD machine to  be 
described much more naturally than with the first, more cumbersome, definition. Similarly, we 
believe that the use of abstractions and substitution in our meta-language will often produce this 
kind of advantage over programs using the environment approach. 

3.3 A Type Inference System 

The proof system for type inference in our formulation of mini-ML is given in figure 3. A proof 
of the proposition ky E : 7, in which E is a closed expression given in the above abstract syntax, 
states that E has type r. To be precise we should prove certain properties about this typing system, 
e.g., soundness, completeness and principal typing [4, 121. However, due to  the preliminary nature 
of this work we prefer t o  provide an informal discussion of this system. The first three clauses 
(actually axioms) are for typing the constants of the language; here N denotes any integer. The 
next clause gives the usual typing for the conditional statement. Clause 5 gives the typing for pairs. 
Clauses 6 and 7 give the typings for the corresponding projections. 

Clause 8 is the typing rule for lambda abstraction and it is a bit different from the usual typing 
rule using environments. In the environment approach, typing the (first-order) term (lambda x E) 
would first require adding the type assignment x : rl to  the environment, then computing the type 
of E in this new environment to  be 72, and then finally inferring the type of the original term to be 
r1 + r2. Our rule uses P-reduction and operationally works as follows. Given the term (lamb M) 
we first pick a new constant c and assume it has type 71 (i.e., we introduce the assunlption ky c : rl). 
Under this assumption we then type (the pq-normal form of) the term ( M  c). If M is of the form 
Xx.e then the P-reduction is, in this case, equivalent to  the substitution e[x H c]. If we infer the 
type rz  for this term then we infer the type of the original term to be r1 + TZ. Informally, this 
infers the correct type because every occurrence of x bound by this abstraction has been replaced 
by a term c whose type will be inferred t o  be T I .  Although this is in many ways similar to  the 
environment approach, it avoids the need to  access the names of bound variables. 



Clause 9 is the usual typing rule for application. Clause 11 for fixed points uses the same 
technique as lamb, though in this case we know that M must be of type r + r for some r. Clause 
10 requires some explanation. The more standard implementation of type inference for let first 
infers the principle type for e2, then generalizes that type with a universal quantifier over type 
variables, yielding a polytype. Later in the typing of the abstraction M, various universal instances 
of this polytype could be made for instances of the abstracted variable of M. Our meta-language, 
however, contains no method for generalizing a free variable into a bound variable, and so this 
kind of implementation is not possible here. Instead, we avoid inferring a polytype for ea explicitly. 
Clause 10 requires that e2 have some type, but that type is then ignored. P-reduction is used to  
substitute e2 into the abstraction M, and then the type of the result is inferred. If e2 is placed into 
several different places in M, each of those instances will again have a type inferred for them; this 
time the types might be different. Therefore, e2 could be polymorphic in that its occurrences in M 
might be at  several different types. 

We do not need a rule for typing identifiers because any identifier occurring in a term is replaced 
via P-reduction with either (i) a term explicitly typed via an assumption (lamb, fix) or (ii) a term 
whose type has already been inferred (let). (Recall that we are typing only closed expressions.) 
Note that the three clauses that make significant use of higher-order features correspond precisely to  
the three clauses in the environment approach that extend the environment. This is not surprising 
as these are the only three clauses that introduce identifiers and bindings. An implementation of 
this system is given in appendix B. 

3.4 The Subsumes Relation for Polytypes 

As a second example of using our meta-language to  manipulate ML types, we present a proof 
system for the subsumes relation on polytypes [21]. For this purpose, we now introduce a higher- 
order constant for constructing ML types, namely the type quantifier forall which is of meta-type 
(tp + tp) + tp. Any term of type tp which does not contain an instance of this constant is a 
monotype. A term of type tp in which all of occurrences of forall are in its prefix (that is, no 
occurrence of forall is in the scope of * or +) is called a polytype (a  monotype is a polytype). I t  is 
possible to construct terms (of meta-type tp) that are neither monotypes nor polytypes, but these 
will not interest us here. In the following discussion, the greek letter r will represent a monotype 
and a a polytype. Before defining the subsumes relation we define an auxiliary definition. 

Definition 1 (Instance of a Polytype) T is an instance of polytype (forall Atl(. . . (forall At, 
(r')) . . .)) if there exists a substitution S of the variables tl, . . . , t, into monotypes such that S(r1) = 
7. 

The subsumes relation on polytypes is then given by the following. 

Definition 2 (Subsumes) Let a1 and a 2  be two polytypes. a1 subsumes a2, written a1 5 a 2 ,  if 
every instance of a 2  is also an instance of al. 

For example, the polytype (forall At.t) subsumes all other polytypes. An informal operational 
description of this definition is the following. Given a1 and 02, erase the quantifiers of each yielding 
two monotypes, rl and 72.  Then a1 C a 2  iff there exists a substitution S such that S( r l )  = r2 .  

Since the erasure of bound variables is another operation not available in our meta-language, we 
need to  approach the implementation of subsumes differently. 

In our meta-language we can construct a simple proof system for the subsumes relation; it is 
given in figure 4. The first clause states the obvious: any polytype subsumes itself. The second 



Figure 4: Subsumes Relation for Polytypes 

clause produces a 'canonical' instance of az. This step is essentially like the process of erasing a 
type quantifier. The meta-level universal quantifier used in this clause ensures that, after removing 
the quantifiers on a*, revealing a monotype, any future substitution does not affect this monotype 
(its free variables are, in a sense, protected). The third clause is used to build an instance of the 
first type by stripping off a quantifier (replacing a bound (type) variable with a free one). 

Notice that these three proof rules have a simple declarative reading. Assume that types are 
interpreted as sets of objects of that type, that forall is interpreted as intersection, and C as subset. 
The second clause states that a type is a subset of the intersection of a family of types if it is a 
subset of all members of the family. The third clauses similarly states that if some member of a 
family is a subset by a given type, then the intersection of that family is a subset of that type. 

4 DYNAMIC SEMANTICS 

In mini-ML the evaluation of an expression E always yields some 'canonical' value a. Following 
[16] we refer to  a formal specification of an evaluator for a language as the language's dynamic 
semantics. We characterize the dynamic semantics of an object language via judgements of the 
form k E + a in which E is an expression of the object language and a is the result of 
evaluating E .  By providing rules corresponding to the operational behavior of the language (with 
the general guideline of having one rule for each programming language construct) we can specify 
the declarative aspects of interpreters (or evaluators) for the language, isolated from control issues. 
As mentioned previously this provides a convenient tool for analyzing and experimenting with new 
programming languages. 

We now present a dynamic semantics for mini-ML, using the same higher-order abstract syntax 
as given in the previous section. Propositions in our system are of the form h E - cr in which E 
and a are expressions in mini-ML and cr is the result of evaluating E. The dynamic semantics for 
our version of mini-ML is given in figure 5. Many of these rule are similar to  the ones given in figure 
2 of [16], except that our rules do not make explicit reference to an environment. We highlight 
here, then, only the important differences between the two, which principally revolve around the 
treatment of variable bindings. To aid in the discussion we present those rules from [16] which differ 
significantly from our own. These are given in figure 6 with numbers referring to the corresponding 
rules of figure 5. An implementation of our system is given in appendix B. 

First consider rule (9) for handling abstractions. In the environment approach, an explicit 
closure is created for preserving the current environment. This ensures static scoping. Closures 
are not used in our specification since no environment is maintained: neither the universal nor 
the implicational propositions are used in this example. Static scoping is ensured in our model 
because @-reduction, as a means of propagating binding information, guarantees that the identifiers 
occurring free within a lambda abstraction are replaced (with their associated value) prior to 
manipulating the abstraction. The two rules for application (10) are somewhat similar, though in 
our model el evaluates to a lambda abstraction rather than a closure. Also use of P-conversion 



t,l N ---. N kl true ---, true t,, false -+ false (1 ,2 ,3)  

b-,1 e l  d true hl ez - O. 

t-,1 (if e l  e2 es) -+ a 
(4) 

h1 el ---. false la e3 +. ff 

h (if e l  ez es) d O. 
( 5 )  

tl el  + a 1  b~ e2 -+ a 2  

hl (el ,  e2) + (0.1, 0.2) 
(6) 

bl e - ( a l , a z )  e - (0 .1 ,az)  
hl (fst e) - 0.1 h-,1 (snd e) + 0.2 

(798) 

t-,1 (lamb M )  - (lamb M) (9) 

bl e l  ---+ (lamb M) hl ez -+ ffz k1 ( M  az) - a 
h1 (e1Qe2) + O. (10) 

hl ez + a 2  t-,~ (M 0.2) + a t-,, ( M  (fix M)) + a 
t-,l (let M ez) -+ a t-,-,1 (fix M )  -+a (11,121 

Figure 5: Dynamic Semantics for Mini-ML 

instead of environment updating correctly models the notion of function application (with a call- 
by-value semantics). Similar comments apply to  our rule for let (11). 

Finally we have the rules for introducing recursion. We opt for a fixed point operator with its 
intuitive operational semantics (i.e., unfolding). This again makes explicit use of p-conversion since 
the higher-order variable M is applied to  the term (fix M). The result of /?-converting this expression 
substitutes the recursive call, namely (fix M), within the body of the recursive program, namely 
M. This rule in the environment approach is less perspicuous and relies on constructing an infinite 
structure. This technique appears to  be motivated more by the underlying implementation language 
(MU-PROLOG, which supports such constructs) than by a logical description of recursion. This 
infinite structure results from the construction of a cyclic term in MU-PROLOG when encountering 
an occur-check situation implicit in the implementation of (12) in figure 6. 

We have also specified a proof system providing a dynamic semantics for the Categorical Ab- 
stract Machine (CAM) [3]. As the CAM is alow-level stack-based machine, higher-order syntax pro- 
vides little advantage in specifying its semantics. Values in the CAM must be explicitly maintained 
on a stack, thus forming a kind of environment; hence we could not dispense with environments. 
We were, however, able t o  avoid the use of infinite structures for handling the rec command. In 
the first-order system of [16], the rec command, which allows recursion, is handled by constructing 
a cyclic (hence, infinite) environment. We construct a higher-order object for the environment and 
then represent this recursive environment by a fixed point. This specification, we believe, provides 
a clear picture of the underlying stack manipulation of the CAM. An implementation of this system 
is given in appendix B. 



p I- XP.E + [XP.E, p] (9) 

p I- El [XP.E, p ~ l  p l -  E2 =+ a p l . P ~ a k E + p  
p I -  ElOEz + ,f3 (10) 

p k E 2 * a  p . P w a l - E 1  j p  
pl-let P =  Ez in El * p  (11) 

p . P w a l - E 2 ~ a  p . P ~ a t - E l * P  
p k  letrec P  = E2 in El + p (12) 

Figure 6: Dynamic Semantics for Mini-ML (using environments) 

5 TRANSLATION FROM MINI-ML TO CAM 

As a final example we take the translation from mini-ML to CAM given in [6] and specify i t  in 
our higher-order meta-language. The inference figures for this translation are given in figure 7. We 
were able t o  replace the use of environments with de Bruijn indices (the D's occurring in the proof 
rules). Such a simple addressing scheme is due partly to our restriction that bindings refer only 
to  individual identifiers. When dealing with identifiers, our presentation is somewhat simpler than 
that of [6]. We give only an overview here of the functioning of this proof system. We have not 
presented the constructors for the abstract syntax for the CAM since they all have straightforward 
first-order types. An implemenation of this translation system is given in appendix C. 

Given a mini-ML term e we define the depth of a subterm el of e to be the number of variable 
bindings in e of which el is in the scope. The proposition D kr e - C then has the declarative 
reading: "the mini-ML term e ,  occurring at a depth D in some term, translates to the CAM code 
C." The depth of a subterm is needed in order to generate the correct CAM code for accessing 
the value of mini-ML identifiers. Identifiers are translated into access paths into an environment 
on top of the CAM's stack. The precise nature of this environment is not important; we only note 
that it is, in general, a tree structure with values at its leaves. An access path is a sequence of fsts 
and snds for descending through this environment to  retrieve a desired value. Due to  the uniform 
manner in which identifiers are introduced into (our simplified) mini-ML the access path for an 
identifier has the form "fstd-';sndn in which d is the usual de Bruijn index for the identifier [5 ] .  
We can compute this index during translation by noting that d = D - Dl + 1 where D is the depth 
of the occurrence of the identifier and Dl is the depth of the binding occurrence for the identifier. 
For example, in the term XxXy.x the occurrence of the identifier x is a t  depth 2 and the binding 
occurrence of x is at depth 1 (the top level). The de Bruijn index for the occurrence of x is then 
computed to be 2 (= 2 - 1 + 1). (Compare this with the same lambda term given in a syntax using 
de Bruijn indices: XX.2.) 

To implement this translation in our meta-language we use a technique similar to our handling 
of lambda abstraction in the mini-ML type inference system. Consider rule 9 in figure 7. To 
translate the term (lamb M) we introduce a new parameter c and apply the meta-term M  to  it. 
This substitutes c for the abstracted variable of the term. Since the term (lamb M )  represents 
the introduction of a new binding we must increment by one the depth D for translating subterms 
in M. The assumption D + 1 $ c asserts that c is an identifier which was abstracted at depth 



D + 1. This will be precisely the information required to produce the access path for this identifier 
(given by rule 4). When the subterm c is reached during the translation process the depth (Dl) 
of its binding occurrence is obtained from the assumptions of the form Dl b, c. Noting the above 
relation between de Bruijn indices and our depths we form rule 4 to generate the correct access 
path. This is essentially the rule for the "categorical combinator" n! given in [3], though they work 
directly with de Bruijn indices and so their translation of identifiers into such indices is simpler. 

The translations for let and fix (rules 11 and 12, respectively) use the same approach for manip- 
ulating the identifiers. The translations for the remaining constructs are almost identical to their 
counterparts in [6] and we do not discuss them here. 

D trr N ---r (quote N)  

D IT, true - (quote true) D kr false - (quote false) 

Dl bo z 
D k, z - f ~ t ~ - ~ l + ' ;  snd 

D kr el + CI D IT, ez --, C2 D kI ea - (73 

D kr (if el ez es) + (push; C1; branch(C2, 

D h e 1 - 4  D k, e2 ---+ C2 
D kr (el, e2) - (push; CI ; swap; C2; cons) 

D h , e + C  D tr, e --+ C 
D hi (fst e) -+ (push; C ;  fst) D kr (snd e) + (push; C; snd) 

(Vc) ( D + 1  bD c * D + 1  h, (M c) ---,C) 
D hr (lamb M) ---, cur(C) 

I D tr, el -+ CI D tr, ez ---, C2 
D hr (el@ez) + (push; CI; swap; C2; cons; ~ P P )  

D kr ez - C2 (Vc) ( D + 1  hD c * D + 1  kr ( M  c ) - - t 4 )  
D kr (let M e2) --+ (push; C2; cons; CI )  (11) 

(Vc) ( D  + 1 h, c + D + 1 h (M c) ---, C) 
D k, ( f ix  M )  -+ (push; rec(C)) 

Figure 7: Translation from mini-ML to CAM 

6 CONCLUSION 

We have presented an enrichment of the natural semantics meta-language. This language differs 
from previous work in natural semantics in three significant ways. First, we represent programs as 
simply typed A-terms instead of first order structures. We demonstrated how this representation 
affords higher-level reasoning about programs, since many low-level manipulations, e.g., substitu- 
tions for free variables and changing bound variable names, are pushed into the meta-language and 
need not be explicitly stated in a specification. Second, we extended the reasoning mechanism with 
proof methods which have proved valuable in other natural deduction systems. We incorporated 
explicit methods for introducing and discharging assumptions and parameters which are used to 



prove hypothetical and universal propositions. Typically we applied these two in tandem for in- 
troducing identifiers for object-level bound variables. Finally, the schema variables appearing in 
inference rules can be higher-order variables. 

We presented several examples to  support our claim that this enriched meta-language permits a 
high-level and elegant specification of program manipulations. From the specification point-of-view, 
we argued that the proof rules provided in this enriched meta-language were more perspicuous and 
we did not need to  introduce any non-logical meta-level operations to  implement all the examples 
considered above. An important concern for the researchers in natural semantics was the compiling 
of inference rules into efficient programs. Although we see no reason to believe that the specifications 
given here could not also be implemented efficiently, it seems probable that such compiling will be 
more involved than it is for compiling a first-order natural semantics. 

By providing a purely logical framework in which one can naturally reason about properties of 
programs we expect that correctness properties for these systems will be easier t o  show than for 
systems using only first-order features. While correctness proofs have been given for translations 
in natural semantics [6], we believe that proofs for systems specified in our meta-language will be 
simpler due to the stronger meta-theory of our language. The construction of such correctness 
proofs for the meta-level programs in this paper has not yet been done. Finding such proofs is one 
of our next concerns. 
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Appendix A: Transformation of Recursive Equations 

In section 3 we presented examples of two different abstract syntaxes for representing recursive 
definitions. We present here a transformation specified in our meta-language for converting a re- 
cursive definition of the first kind (which we call recursive equations) to  an equivalent definition of 
the second kind (which we call fixed point equations). As presented earlier the recursive equations 
actually appear embedded in a letrec expression which combines the recursive definition and an 
application. To isolate just the definition part we introduce two new constructors, '+' and receq, 
with meta-types (tm * tm) i (tm * tm) + tm and (tm + tm + tm) + tm, respectively. The 
intended meaning of '+' is to associate a pair of identifiers with a pair of (mutually recursive) 
function definitions. To facilitate the manipulation of this term we abstract out the names of these 
identifiers, yielding a meta-term. To coerce this meta-term back into a A-term of type tm we use the 
receq constructor which takes this meta-term to a term. For example, a definition of the even/odd 
functions using recursive equations in this syntax would be: 

(receq AFAG.((F,G) ((lamb AX.(if ( X  = 0) true (G ( X  - 1)))) 

(lamb AX.(if ( X  = 0) false (F (X - 1))))))) 

Again, we have dropped occurrences of the apply operator "@" to make this example more readable. 
Now we wish to transform this term into the term 

(fix AF.( AX.(if X = 0 true (snd F ) (X  - I)), 
XX.(if X = 0 false (fst F ) (X  - 1))))) 

This type of transformation is similar to the "curry" transformation of [19] which transforms a 
function of one argument (representing a pair) to a function of two arguments (representing the 
two elements of the pair). Let ke, R - F be the proposition stating that the recursive equation 
represented by R is equivalent to the fixed point equation represented by F. A proof system for 
this proposition (restricted to definitions of exactly two recursive equations) is given by the single 
axiom involving higher-order terms: 

k c  (receq AFAG.((F, G) + ((MI F G), (M2 F G)))) - 
(fix AF.((Ml (fst F) (snd F ) ) ,  (M2 (fst F) (snd F))))  

This proof rule makes a significant use of higher-order unification 113, 141 to generate the meta- 
terms MI and Mz, both of type tm i tm + tm. Transformations of this type and their reliance 
on higher-order unification are discussed in [lo]. 



Append ix  B: XProlog Source C o d e  for Mini-ML Examples  

We give below the XProlog code for the mini-ML type inference and dynamic semantics systems. 
This is given in four modules (a module is a named collection of declarations and definitions, 
providing scoping and structuring mechanisms in XProlog): the first gives the signature for the mini- 
ML abstract syntax; the second gives an implementation of the mini-ML type inference system; 
the third gives an implementation of the mini-ML dynamic semantics; and the last gives some 
examples. In XProlog one can accumulate definitions from other modules by explicitly importing 
those modules into another. The import declaration provides this capability and is used in the 
modules below. (Note: the module lists contains the usual list manipulation routines, including 
member. 

Some additional comments regarding the signature may elucidate the example. We introduce 
the object types mint and mbool (for int and boo9 and the object-type constructors mand and mlist 
(for x and list). We do this to  maintain the distinction between the object types and the meta- 
types (of XProlog) which include types for int, bool, etc. Also we introduce the constructor # for 
coercing meta-level integers (as provided by XProlog) to object-level integers. This allows us t o  
move easily between the object-level representation of integers and the meta-level representation. 
Similar comments apply to  the primitive operators for addition, multiplication, etc. 

As mentioned previously, the current version of XProlog does not fully implement hereditary 
Harrop formulas. Specifically, formulas of the form A1 + A2 are restricted to  instances in which 
A1 is the name of a module. Hence we cannot directly implement the proof systems given earlier 
in the paper. We must resort to supplying a context with our proof rules for type inference. Here, 
a context is a list of pairs (tm, tp) associating identifiers to  types. Only rules 8 and 11 extend 
the context and the last clause for infer searches the environment to  find the type of an identifier 
(really a universal constant). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% mini-ML : Signature %%% 
%%% Declaration of Type and Expression Constructors %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

module mldecl . 

%%% Infix Declarations for Constructors 
infix 40 tand yfx. %%% product type constructor 
infix 60 --> xfy. %%% function type constructor 
infix 40 && yfx. %%% product term constructor 
infix 30 Q yfx. %%% application 

%%% Kinds for object terms and types 
kind tm type. %%% meta-type for terms 
kind tp type. %%% meta-type for types 



%%% Type Constructors 
type mand tp -> tp -> tp. 
type - -  tp -> tp -> tp. 
type mbool tp. 

type mint tp. 
type mlist tp -> tp. 

%%% Term Constructors 
type lamb (tm -> tm) -> tm. 
type cond tm -> tm -> tm -> tm. 
type && tm -> tm -> tm. 

type @ tm -> tm -> tm. 
type let (tm -> tm) -> tm -> tm. 
type fix (tm -> tm) -> tm. 
type # int -> tm. 

%%% Primi ti ves/Constan ts 
type tt tm. 
type ff tm. 

type fst tm. 

type snd tm. 
type :: tm. 

type nil tm. 
type hd tm. 

type tl tm. 
type empty tm. 

type == tm . 
type != tm. 

type It tm. 

type gt tm. 

type plus tm. 
type minus tm. 

type times tm. 

%%% End of module mldecl %%% 

%%% product space 
%%% function space 
%%% meta-type boo1 
%%% meta-type int 
%%% meta-type list constructor 

%%% Lambda Abstraction 
%%% Conditional 
%%% Products 
%%% Application 
%%% Let 
%%% Fixed Point 
%%% Coerces int to mint 

%%% true 
%%% false 
%%% first projection 
%%% first projection 
%%% list constructor 
%%% empty list 
%%% head-of-list function 
%%% tail-of-list function 
%%% empty-list function 
%%% equality function 
%%% inequality function 
%%% integer < 
%%% integer > 
%%% integer + 
%%% integer - 
%%% integer * 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% mini-ML : Type Inference %%% 
%%% (infer Gamma Exp Type) succeeds if Exp has type %%% 
%%X Type in "context" Gamma. %%% 



module m l  t ype .  

import mldecl l i s t s .  

t ype  i n f e r  ( l i s t  (pa i r  t m  t p ) )  -> t m  -> t p  -> 0 .  

%%% Numbers i n  parentheses correspond t o  the  numbering given t o  t h e  

%%% r u l e s  i n  f i gure  3 .  

i n f e r  Gamma (# N) mint .  %%% ( I )  Numbers 

i n f e r  Gamma tt mbool. 

i n f e r  Gamma f f  mbool. 

i n f e r  Gamma (cond E l  E2 E3) T  : - 
i n f e r  Gamma El mbool, 
i n f e r  Gamma E2 T ,  

i n f e r  Gamma E3 T.  

%%% (2,3)  Boolean constants  

%%% ( 4 )  Conditional 

i n f e r  Gamma (El && E2) (Ti  mand T2) : - %%% (5) Product Introduction 
i n f e r  Gamma El T i ,  
i n f e r  Gamma E2 T2. 

i n f e r  Gamma (lamb M) (Ti  --> T2) :- 11% (8)  Abstraction 

p i  C\ ( i n f e r  [ (pair  C T I )  I~amma] ( M  C )  ~ 2 ) .  

i n f e r  Gamma (El Q E2) T2 : - 
i n f e r  Gamma El (T i  --> T2). 

i n f e r  Gamma E2 T i .  

i n f e r  Gamma (1 e t  M E2) T i  : - 
i n f e r  Gamma E2 T2, 
i n f e r  Gamma (M E2) T I  

%%% (9) Application 

%%% (10) Let 

i n f e r  Gamma ( f i x  M )  T : - %%% (11) Recursion 
p i  C\ ( i n f  er  [ (pair  C T )  /Gamma] (M C) TI .  

%%% pr imi t ive  operators %%% 

i n f e r  Gamma f s t  ((TI  mand T2) --> T I ) .  %%% ( 6 )  F i r s t  Project ion 

i n f e r  Gamma snd ( (T i  mand T2) --> T2) .  %%% ( 7 )  Second Project ion 

i n f e r  Gamma :: (T --> ( m l i s t  T)  --> (ml i s t  T)). %%% l i s t  constructor 

i n f e r  Gamma hd ( ( m l i s t  T)  --> T) . %%% head o f  l i s t  



i n f e r  Gamma tl ( ( m l i s t  T )  --> (ml i s t  T I ) .  
i n f e r  Gamma n i l  (m l i s t  T ) .  
i n f e r  Gamma empty ( ( m l i s t  T )  --> mbool) . 

i n f e r  Gamma == (T --> T --> mbool) . 
i n f e r  Gamma != (T --> T --> mbool). 
i n f e r  Gamma I t  (mint --> mint --> mbool) . 
i n f e r  Gamma g t  (mint --> mint --> mbool). 
i n f e r  Gamma plus (mint --> mint --> min t ) .  
i n f e r  Gamma minus (mint --> mint --> mint )  
i n f e r  Gamma t imes (mint --> mint --> mint )  

%%% Assumed Types ( instead o f  '=>') %%A 

i n f e r  Gamma C T :- 
member (pa i r  C T)  Gamma. 

%%% End o f  module m l  t ype  %%% 

%%% t a i l  o f  l i s t  
%%% t h e  empty l i s t  
%%% empty-l is t  funct ion 

%%% term equa l i t y  
%%% term inequa l i t y  
%%% i n t eger  < 
%%% i n t eger  > 
%%% i n t eger  + 
%%% in teger  - 
%%% i n t eger  * 

............................................................. 
%%% mini-ML : Evaluation Procedure %%% 
%%% (eval  Exp V) succeeds i f  Exp evaluates t o  V .  %%% 
............................................................. 

module mleval . 

import mldecl l i s t s .  

t ype  eval t m  -> t m  -> o.  
type  evalbinaryop t m  -> t m  -> t m  -> t m  -> o.  
type  evalunaryop t m  -> t m  -> t m  -> 0 .  

%%% Numbers i n  parentheses correspond t o  the  numbering given t o  t h e  
%%% r u l e s  i n  f i gure  5 .  

eval (# N) (# N) . %%% (I) Numbers 

eval tt t t .  
eval f f  f f .  

%%% (2,3) constants  



eval nil nil. 

eval (cond El E2 E3) C : - 
eval El B, 
(B = tt, eval E2 C, ! ; 

eval E3 C) . 

eval (El && E2) (C1 && C2) :- 
eval El Cl. 
eve1 E2 C2. 

eval (lamb W) (lamb M). 

eval (El Q E2) C :- 
eval El (lamb M), 
eval E2 C2, 
eval (M C2) C. 

eval (let W E2) C :- 

eval E2 C2, 
eval (M C2) C. 

eval (fix M) C :- 
eval (M (fix M)) C. 

%%% (4.5) Conditional 

%%% (6) Product 

%%% (9) Abstraction 

%%% (10) Application 

%%% (11) Let 

%%% (12) Recursion 

%%% Primitive unary operators %%% 
eval (Op Q El) C :- 

member Op ifst, snd, hd, tl, empty], 
eval Ei Ci, 
evalunaryop Op C1 C. 

%%% Primitive binary operators %%% 
eval (Op Q Ei Q E2) C : - 

member Op C::, ==, !=, It, gt, plus, minus, times], 
eval El Ci, 
eval E2 C2, 
evalbinaryop Op Ci C2 C. 

evalunaryop f st (Ci && C2) Ci . 
evalunaryop snd (Ci && C2) C2. 
evalunaryop hd (: : Q C1 Q C2) Ci. 
evalunaryop tl (: : Q Ci 13 C2) C2. 
evalunaryop empty nil tt. 

evalunaryop empty (: : Q Ci Q C2) ff 

evalbinaryop : : Ci C2 (: : Q C1 Q C2). 
evalbinaryop == C C tt. 

%%% (7) First Projection 
%%% (8) Second Projection 
%%% head of list 
%%% tail of list 
%%% empty-list function 
%%% i i ' i  

%%% list construction 
%%% term equality 



evalbinaryop == C l  C2 f f .  %%% "', 
evalbinaryop != C C f f .  %%% term inequa l i t y  

evalbinaryop != C l  C2 t t .  %%% ,',, 
evalbinaryop I t  (# Nl)  (# N2) T :- %%% i n t e g e r  < 

( t r u t h  i s  (Nl < N2), T = t t ,  ! ; T = f f ) .  
evalbinaryop g t  (# Nl)  (# N2) T :- %%% i n t e g e r  > 

( t r u t h  i s  ( N l  > N 2 ) ,  T = t t ,  ! ; T = f f ) .  
evalbinaryop p lu s  (# Nl) (# N2) (# N) :- %%% i n t eger  + 

N i s  (Nl + 1 2 ) .  
evalbinaryop minus (# Nl) (# N2) (# N) :- %%% i n t e g e r  - 

N i s  (XI - N2). 
evalbinaryop t imes  (# N l )  (# N2) (# N) :- %%% i n t e g e r  * 

N i s  (Nl * N2). 

%%% End o f  module ml eval %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% mini-ML: Examples %%% 
%%% Examples f o r  t e s t i n g  t ype  i n f e renc ing  %%% 
%%% and evaluator .  %%% 

module m l t e s t  

import m l  t y p e  mleval . 

%%% FUNCTION DEFINITIONS %%% 

%%% f a c t o r i a l  func t ion  
f ac t1  ( f i x  Fact\ (lamb N\ (cond (== Q N Q (# 0 ) )  

(# 11 
( t imes  Q N Q (Fact Q (minus Q N Q (# I ) ) ) ) ) ) ) .  

%%% append func t ion  
appl ( f i x  App\ (lamb K\ (lamb L\ 

(cond (== Q K Q n i l )  
L 

(:: Q (hd Q K) Q (App Q ( t l  Q K) Q L ) ) ) ) ) ) .  

%%% mutual recurs ion  example: even/odd func t ions  
evenoddl ( f i x  EO\ 



((lamb X\ (cond (== Q X Q (# 0 ) )  
tt 

((snd Q EO) Q (minus Q X Q (# 1))))) && 

(lamb X\ (cond (== Q X Q (# 0 ) )  
f f 

( ( f s t  Q EO) Q (minus Q X (P (# 1))))))). 

%%% TEST CASES %%% 
t e s t 1  T :- f a c t l  F, i n f e r  n F  T .  

t e s t 2  T :- f a c t l  F, i n f e r  11 ( l e t  Fact\(Fact (P (# 3 ) )  F) T .  
t e s t 3  V :- f a c t l  F, eval ( l e t  Fact\(Fact Q (# 3 ) )  F) V .  

t e s t 4  T  :- appl A ,  i n f e r  11 A T. 
t e s t s  T :- appl A ,  i n f e r  U ( l e t  App\(App Q (:: Q (# 1)  Q (:: O (# 2)  (P n i l ) )  

Q (:: Q (# 3 )  Q (:: Q (# 4)  Q n i l ) ) )  A )  

T. 

t e s t 6  V :- appl A ,  eval ( l e t  App\(App Q (:: Q (# 1 )  Q (:: Q (# 2)  Q n i l ) )  
Q (: : Q (# 3) Q (: : Q (# 4 )  Q n i l ) ) )  A) 

v. 
t e s t 7  T :- evenoddl F, i n f e r  11 F T. 

t e s t 8  V :- evenoddl F, eval  ( l e t  EO\((fst Q EO) Q (# 3)) F) V .  

%%% End o f  module m l t e s t  %%% 



Appendix  C: XProlog Source Code  for Mini-ML t o  C A M  Translat ion 

Comments similar to those given for the mini-ML example apply to this example as well. We do 
not provide a signature for the CAM here but only give the XProlog module corresponding to figure 
7. We number the clauses in this module with the number of the corresponding proof rule. 

We again must resort to  supplying a context with our proof rules. For this example the context 
is a list of pairs ( t m ,  i n t )  associating identifiers to the depth at which they were bound. The 
three proof rules in figure 7 that use the schema for + (9,11,12) correspond exactly to the three 
rules in our implementation that extend the context. The clauses generate-path generate the code 
(cfstn; csnd) and the de Bruijn index in calculated as before, only now we must refer to the context 
for the value Dl. 

............................................................. 
%%% ML-CAM Translat ion %%% 
%%% This version uses d e  B r u i j n  indexing t o  %%% 
%%% generate code for  i d e n t i f i e r s .  %%% 
............................................................. 

module camml . 

impor t  mldec l  camdecl l i s t s .  

t y p e  t rans la te  t m  -> prog -> o.  
t y p e  trans ( l i s t  ( p a i r  t m  i n t ) )  -> in t  -> t m  -> com -> o .  

t y p e  transop t m  -> oper -> o. 
t y p e  generate-path i n t  -> com -> o.  

t y p e  member A -> ( l i s t  A )  -> o. 

%%% ( t rans la te  ML CAM) t rans la te s  mini-ML expression 'ML ' i n t o  CAM program 
%%% 'CAN . 

translate E (program C )  : - 
trans 0 E C .  

trans Gamma Depth (# N) (quote (## X ) ) .  %%% ( I )  Numbers 

trans Gamma Depth t t  (quote  c t t ) .  %%% (2) t r u e  



t r a n s  Gamma Depth f f  ( q u o t e  c f f ) .  

t r a n s  Gamma Depth (cond El E2 E3) 
(push  & C1 & (branch C2 C3))  : 

t r a n s  Gamma Depth El C l ,  

t r a n s  Gamma Depth E2 C 2 ,  

t r a n s  Gamma Depth E3 C 3 .  

%%% ( 3 )  f a l s e  

%%% (5) Condi t iona l  

t r a n s  Gamma Depth (El  && E2) %%% (6) Product 
(push & C1 & swap & C2 & cons )  : - 

t r a n s  Gamma Depth El C l ,  

t r a n s  Gamma Depth E2 C2. 

t r a n s  Gamma Depth (Op B E) (push & C & Camop) : - %%% (7,8) P r o j e c t i o n s  
member Op [ f s t ,  s n d ] ,  
t r a n s  Gamma Depth E C ,  

t r a n s o p  Op Camop. 

t r a n s  Gamma Depth (lamb E) ( c u r  C) :- %%% ( 9 )  Lamb 
NewDepth i s  Depth t 1 ,  
p i  K\(trans [ ( p a i r  K NewDepth) /Gamma] 

NewDepth ( E  K) C).  

t r a n s  Gamma Depth ( l e t  M E2) %%% ( 1 1 )  Le t  
(push & C2 & cons & C l )  :- 

t r a n s  Gamma Depth E2 C2, 
NewDepth i s  Depth + I ,  

p i  K\ ( t r a n s  [ ( p a i r  K MewDepth) /Gamma] 
NewDepth (M K) C I ) .  

t r a n s  Gamma Depth ( f i x  M) (push & ( r e c  C ) )  :- %%% (12)  F i x  
NewDepth i s  Depth + I ,  
p i  K\ ( t r a n s  [ ( p a i r  K NewDepth) /Gamma] 

NewDepth (M K) C). 

%%% ( 1  0) A p p l i c a t i o n  
t r a n s  Gamma Depth (Op B E l  8 E2) %%% b i n a r y  p r i m i t i v e s  

(push & C l  & swap & C2 & cons & (op  Camop)) :- 
member Op [==, !=, ::, p l u s ,  minus ,  t i m e s 3 ,  
t r a n s  Gamma Depth E l  C1, 
t r a n s  Gamma Depth E2 C 2 ,  

t r a n s o p  Op Camop. 

t r a n s  Gamma Depth (Op E l )  

(push & C l  & (op  Camop)) :- 
member Op i h d ,  t l ,  empty] ,  
t r a n s  Gamma Depth El C1, 

%%% unary p r i m i t i v e s  



t r a n s o p  Op Camop. 

t r a n s  Gamma Depth (El  cP E2) %%% General Apply 
(push k C l  k swap k C 2  k cons k app) :- 

t r a n s  Gamma Depth Ei C l ,  

t r a n s  Gamma Depth E2 C2. 

t r a n s  Gamma Depth K C :- 
member ( p a i r  X D) Gamma, 
Dis tance  i s  (Depth - D) + 1 ,  
generate-path  Dis tance  C .  

%%% t r a n s l a t i o n s  f o r  p r i m i t i v e  opera tors  %%% 
t r a n s o p  == cequal  . 
t r a n s o p  != cnequal . 
t r a n s o p  :: ccons .  
t r a n s o p  p l u s  c p l u s .  
t r a n s o p  minus  cminus.  
t ransop  t i m e s  c t i m e s .  
t r a n s o p  h d  chd . 
t r a n s o p  tl c t l .  
t r a n s o p  empty cempty.  

%%% t r a n s l a t e  N + i  i n t o  ( c f s t ' N  & csnd)  %%% 
genera te -pa th  1 c snd .  
generate-path  X ( c f s t  & C) :- 

X i  i s  N - 1 ,  
genera te -pa th  N1 C .  

%%% ( 4 )  I d e n t i f i e r  

%%% End o f  module canunl %%% 
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