
Formal Reasoning using Distributed Assertions

Farah Al Wardani[0000−0003−1520−7090],
Kaustuv Chaudhuri[0000−0003−2938−547X], and Dale Miller[0000−0003−0274−4954]

Inria Saclay & LIX, Institut Polytechnique Paris

Abstract. When a proof system checks a formal proof, we can say
that its kernel asserts that the formula is a theorem in a particular
logic. We describe a general framework in which such assertions can be
made globally available so that any other proof assistant willing to trust
the assertion’s creator can use that assertion without rechecking any
associated formal proof. This framework, called DAMF, is heterogeneous
and allows each participant to decide which tools and operators they are
willing to trust in order to accept external assertions. This framework can
also be integrated into existing proof systems by making minor changes
to the input and output subsystems of the prover. DAMF achieves a high
level of distributivity using such off-the-shelf technologies as IPFS, IPLD,
and public key cryptography. We illustrate the framework by describing
an implemented tool for validating and publishing assertion objects and
a modified version of the Abella theorem prover that can use and publish
such assertions.

1 Introduction

In order to communicate a result from one formal reasoning system to another,
a common technique is to transfer a formal proof certificate from the source
system to the target system. This technique is usually required when the target
system is autarkic,1 wherein the system only trusts its own components, of which
a particularly trusted component is an implementation of a proof checking kernel.
To transfer a formal proof to an autarkic target system, either (a) the proof has
to be translated from the source system, or (b) the verifier for the proof must be
re-implemented as a certified procedure in the target system [6,25]. Both kinds
of transferal are complicated for a variety of reasons: (1) The source and target
system may not be syntactically, semantically, or foundationally compatible.
(2) The source-proof language can have complex operational semantics that is
cumbersome to encode in the target system. (Note that no universal standard has
yet emerged for encoding the formal semantics of arbitrary proof languages; cf.
sec. 5.) (3) As systems change and mature, older versions of proof certificates can
become stale and unmaintained. (4) Perhaps most importantly, many popular
reasoning systems do not produce proof certificates at all. Prominent examples
of that latter are SMT solvers that are not certifying when memory size and

1 In [12], the adjective autarkic was applied to computational components of a proof
checker but not to an entire proof checker.

execution time are critical [32] and the specification tool Twelf [42] when using
non-certifying procedures (e.g., totality checking).

Formal reasoning systems that are non-autarkic have an additional way
to interact with external provers that addresses many of the above issues. In
such systems, a host system is designed to build proof obligations that are then
dispatched to external systems to solve. While these external systems may produce
proofs, the host system usually does not check the proofs and instead trusts the
executions of the external systems. This system architecture is most commonly
used in program verification tools such as Dafny [28], Why3 [24], and TLAPS [16].
One issue not addressed with this enlarged view of trust is that the external
dependencies tend to have unclear descriptions, especially from a third-party
perspective. To illustrate, Dafny may declare that it trusts “Z3 v.4.12.1”, but
what does this mean? Is this external dependency to be interpreted by name, in
which case any tool called “Z3 v.4.12.1” can be used, or is it precisely identified by,
e.g., (a cryptographic hash of) the source code (or better, an executable binary)
of a particular tool called “Z3 v.4.12.1”? Even with a precise identification, an
external executable dependency may not be practical to incorporate. For example,
the HOL Light system [27] re-checks its entire standard library every time it is
started, taking on the order of minutes. If a development involves many calls to
an external HOL Light-based solver, how are the calls to be orchestrated?

In addition to these two bases of trust—autarkic based on proof certificates,
and non-autarkic based on executions of external tools—there is at least one
other basis of trust in any heterogeneous development: the agents that write and
assemble the developments and execute the formal tools as required (checkers,
solvers, etc.). An example of an agent is a user, although one individual user can
have many agent profiles (see sec. 3.2). Entities such as a trustworthy central
database can also correspond to an agent. Trusted agents have been largely
neglected in the formal reasoning world, but they are common in other high
reliability settings, such as security. Nevertheless, agents are at least implicitly
present in any formal development: to claim that a result has been formally
achieved is tantamount to saying that some trustworthy agent (e.g., peer reviewers)
has correctly and successfully executed a specific collection of formal tools to
convince themselves of that formal result. Furthermore, if one agent A trusts
another B, there is no need for A to re-check B’s proof scripts and re-execute
any tools that B used to construct the result.

In this paper, we propose a framework where a distributed collection of
agents can exchange formal results (called assertions), where the results have an
unimpeachable provenance, and where each agent is in full control of their trust
parameters. This Distributed Assertion Management Framework (DAMF) is:

– Decentralized : a global notion of truth is not imposed on every participant
by means of a privileged logic, language, system, or software. This linguistic
independence makes DAMF different from formalisms such as the evidential
tool bus [20,38] that have been proposed for integrating external reasoning
agents into a unified formal system. Participants in DAMF are free to combine
assertions from different sources if they believe the combination to be mean-

ingful. Any participant can retrieve and use any assertion they understand,
and this external import will be explicitly marked as a dependency if they
choose to publish assertions they build with such external imports.

– Reliable: assertions have an irrefutable provenance, i.e., the fact that an agent
has published an assertion is locally verifiable and independent of any other
aspect of DAMF. Assertions, therefore, need to be immutably and eternally
available, even in the presence of intermittent infrastructure and nefarious
users or tools.

– Composable: assertions are not rigidly constrained by their history ; new
logical artifacts such as theories, libraries, proof outlines, etc. can be crafted
by reorganizing existing assertions based on their declared dependencies.

– Egalitarian: the barrier to entry is low for participants who want to produce
or consume such assertions.

– Status Quo Compatible: existing work already done with current mainstream
systems is readily incorporated as assertions without needing to modify any
existing system.

Concretely, DAMF provides JSON-based representations of a small number
of concepts such as formulas, assertions, dependencies, etc. without any up-front
commitment to a formal syntax or any particular semantics. These objects are
then added to a global store in terms of the InterPlanetary File System (IPFS) [13]
using linked data in the InterPlanetary Linked Data (IPLD) format. An object in
IPFS/IPLD is denoted by a canonical content identifier (cid), a cryptographic
hash of its content. Knowing the cid is sufficient to retrieve the object by any
participant of the IPFS network. Furthermore, the cids are the only externally
visible names in DAMF, and links between objects are made using these cids by
IPLD. Features specific to a particular language or system, such as constants,
variables, definitions, and notations, are kept localized to particular formula
objects. Assertions are built using (the cids of) formula objects and signed by
their creator agents using public key cryptography. IPFS is used to distribute
DAMF objects transparently using various technologies whose precise details are
irrelevant to this paper.

This paper is accompanied by two concrete implementations that illustrate
DAMF. First, we provide a tool called Dispatch that can be used by users and
systems to both produce and consume DAMF assertions. Dispatch is not a privi-
leged tool in DAMF: users and systems can interact directly with DAMF objects
in IPFS if they so choose. Dispatch is simply one interface to the DAMF global
store, making the integration of producers and consumers minimally demanding.
It does tasks such as schematically validating the concrete JSON objects added
to or retrieved from the global store. Dispatch also helps to analyze and modify
the trust parameters for (compositions of) assertions.

Second, we implement a version of the Abella interactive theorem prover [10]
that can produce and consume assertions in DAMF, mediated by Dispatch. As
an example of its use, we show how Abella can use a lemma that was stated and
proved using the automated linear arithmetic reasoning tactics of Coq (v. 8.16.1);
this lemma is manually translated from the Coq to the Abella language, with

an explicit dependency on its Coq development, and added to the global store
by the present authors. A user can accept this heterogeneous development as
long as they trust Coq, Abella, and our translation of the Coq lemma to Abella.
Moreover, this assertion, which contains explicit links to the externally sourced
DAMF imports, can be published back to DAMF for use by others.

Since dependencies are explicitly tracked in DAMF assertions, any user can
analyze various aspects of how it was composed of other assertions. Such analysis
can form the basis of various kinds of investigations: for example, if a formula is
found to be a non-theorem, an investigator can explore the compositions of the
DAMF assertions that yield that formula in order to find the agents whose trust
parameters may need to be modified. The Dispatch tool mentioned above comes
with a command called lookup that explores combinations of known assertions
that ultimately yield a desired result; for each such composition, the analysis
extracts the collection of agents (and tools) that could be trusted in order to
accept that composition.

In the next section, we describe the abstract design of DAMF and its underly-
ing logic of assertions which form the basis of the abovementioned investigations.
Section 3 describes our concrete implementation of DAMF, Section 4 discusses
some of the design choices in DAMF, and Section 5 discusses some related work.
The specific software tools (Dispatch and Abella-DAMF) accompanying this paper
are fully documented at https://distributed-assertions.github.io/.

2 Design of DAMF

2.1 Languages, contexts, and formulas

To transfer a theorem from a source proof system to a target proof system, we
must be able to transfer the statement of the theorem, which we represent as a
formula object in DAMF. To be as general as possible, we represent the content
of such a formula as a string, i.e., in a format suitable as an input to a parser of
the source proof system. In order to determine that the input is well-formed, the
source proof system may need further information about the features—symbols,
predicates, functions, types, notations, hints, etc.—used in the formula. Such
additional information is the context of the formula, which we represent as a
document fragment in the language of the source proof system.

For example, take the following theorem written in Coq 8.16.1:

1 Definition lincomb (n j k : nat) := exists x y, n = x * j + y * k.

2 Theorem ex_coq : forall n:nat, 8 <= n -> lincomb n 3 5.

The formula corresponding to the theorem ex_coq is the literal string "forall

n:nat, · · · lincomb n 3 5". The symbols 8, <=, etc. are part of the standard
prelude of this language, and the symbol lincomb is defined in line 1, so a
sufficient context necessary for Coq 8.16.1 to parse and type-check the theorem
statement is the text of line 1, which is also written in the Coq 8.16.1 language.

Abstractly, a formula object in DAMF is a triple (L,Σ, F) where L denotes
a language, Σ denotes a context, and F denotes a formula, all of which may

https://distributed-assertions.github.io/

conceptually be thought of as strings. We will use the schematic variable N
to range over such formula objects. The language L is a canonical identifier
(specifically, the cid of a DAMF language object) which may optionally represent
information about a suitable loader for the language that will make sense of the
strings Σ and F ; DAMF compares languages just by their identifiers. Moreover,
L is interpreted as defining all the globally available features; for instance, the
symbol nat is part of the standard prelude of this version of Coq and should
therefore be understood as being defined in the language Coq 8.16.1. The context
Σ introduces any user-defined features such as the definition lincomb above that
is not part of Coq’s standard prelude.

Note that DAMF formula objects are considered to be closed, i.e., every
symbol used in the formula is defined in the language or the context. From
the perspective of DAMF, a formula object is an atomic entity. Additionally,
DAMF does not need to be aware of any reasoning principles of the language
or context components. For instance, no mechanism in DAMF would allow the
substitution of a declared symbol in the context with a concrete definition. The
purpose of differentiating a formula object into three parts is purely pragmatic:
the language part will in most cases be a well known object used by many agents,
and the context part may potentially be shared between multiple assertions.
DAMF consumers may be able to use this sharing of information to consolidate
tasks such as context-processing.

2.2 Sequents and assertions

A sequent in DAMF is abstractly of the form N1, . . . , Nk ⊢ N0 where each of the
Ni is a DAMF formula object defined in the previous subsection. We will use
the schematic variable Γ to range over ordered lists of formula objects, and S to
range over sequents. In a sequent Γ ⊢ N , we say that N is the conclusion and Γ
are the dependencies. Such sequent objects may be produced whenever a formal
proof has been checked in a proof checker: the conclusion represents the statement
of the theorem, and the dependencies are external lemmas that were used during
that proof. As an example, suppose the Coq 8.16.1 theorem in sec. 2.1 has a proof
that appeals to the lemma lem : forall m n, m <= n -> S m <= n \/ m = n. The
sequent that is produced is conceptually of the form lem ⊢ ex_coq, though
concretely we would have to build DAMF formula objects by packaging the
language and contexts.

An agent is a globally unique name. We use the schematic variable K to range
over agents. We define a simple multi-sorted first-order logic where agents and
sequents are primitive sorts and where the infix predicate says is the sole predicate;
the atomic formulaK says S, whereK is an agent and S a sequent, is an assertion.
The says predicate is implemented in DAMF using public-key cryptography. In a
DAMF-aware proof system, when an appeal is made—say as part of the proof of
some other theorem—to an assertion K says (N1, . . . , Nk ⊢ N0), the appeal is
interpreted as follows:

– The agent K is treated as trusted ; if the agent cannot be trusted for some
reason, such as if K occurs in a deny list, then the assertion is unusable.

– The conclusion of the assertion, N0, contains the formula representing the
lemma that is being appealed to. Note, in particular, that the dependencies
N1, . . . , Nk are not relevant to appealing to this assertion as an external
dependency. These dependencies will be used in reasoning about compositions
in DAMF, as described in Section 2.4.

2.3 Adapters

Because every formula object packages the formula together with its context and
language identifier, every formula object is independent of every other formula
object. Thus, in a sequent N1 ⊢ N0, there is no requirement that the conclusion
N0 and the dependency N1 be in the same language or have a common context.
When working within a single autarkic system (e.g., a proof checker using a single
logic), the sequents that are generated for every theorem will probably place the
conclusion and dependencies in the same language and context; however, in the
wider non-autarkic world, we can use multilingual sequents as first class entities
that are documented and tracked the same way as any other kind of sequent.

An important class of multilingual sequents comes from adapters. In order
for a theorem written in the Coq 8.16.1 language to be used by a different
system with a different language, say Abella 2.0.9, we will need to transform
the formula objects in the former language to those in the latter language. This
kind of translation is an example of a language adapter, which falls into the
general class of adapters, and which creates a sequent by translating between
languages or modifying the logical context by standard logical operations such as
weakening (adding extra symbols), instantiation (replacing a symbol by a term),
or unfolding (replacing a defined symbol by its definition).

As an example, the Coq 8.16.1 example above can be translated to the
Abella 2.0.9 language as follows, where the function symbols + and * are replaced
by relations in Abella.2

1 Import "nats". % some natural numbers library

2 Define lincomb : nat -> nat -> nat -> prop by

3 lincomb N J K := exists X Y U V,

4 times X J U /\ times Y K V /\ plus U V N.

5 Theorem ex_ab : forall n, nat n -> le 8 n -> lincomb n 3 5.

Lines 1–4 determine the context Σex_ab for the formula ex_ab on line 5.
The sequent that represents this translation therefore has the form(

Coq 8.16.1, Σex_coq, ex_coq
)
⊢ (Abella 2.0.9, Σex_ab, ex_ab).

Suppose agent K1 signs this translation and that agent K2 signs the sequent
⊢
(
Coq 8.16.1, Σex_coq, ex_coq

)
. As long as K1 and K2 are trusted by the user

of Abella 2.0.9, then the formula object (Abella 2.0.9, Σex_ab, ex_ab) can also
be treated as a theorem by that user thanks to composition, discussed next.

2 This encoding of functions using relations is the usual one: see [17] for details.

2.4 Composing assertions, trust

Assertions will be composed by means of a single rule of inference that implements
a cut-like rule for sequents, Compose.

K says (Γ1 ⊢ M) K says (M,Γ2 ⊢ N)

K says (Γ1, Γ2 ⊢ N)
Compose

The effect of this rule means that the says predicate does not correspond one-to-
one with cryptographic signatures. The conclusion of the Compose rule may, in
particular, not be a sequent that has been explicitly signed by the agent K even if
both premises are. Rather, the rule states that whenever K can be said to reliably
claim, either by a cryptographic signature or by a Compose-derivation tree,
that both Γ1 ⊢ M and M,Γ2 ⊢ N , then K must also reliably claim Γ1, Γ2 ⊢ N .

There are many variations to access control logic in the literature. For example,
some such logics use inference rules such as:

Γ ⊢ N
K says (Γ ⊢ N)

or
K says (Γ ⊢ N)

K says (K says (Γ ⊢ N))
.

Such rules are neither syntactically well-formed nor desirable for our purposes.
We use here a very weak access control logic (see [1] for a survey of such
logics). Instead, checking the validity of a given derivation using Compose is
computationally trivial: each instance of it must eliminate exactly the leftmost
dependency in the second premise, which is a DAMF formula object that is
compared by cid.

Observe that the agent K does not participate in a meaningful way in a
derivation that is built with the Compose rule. Thus, for a given end sequent
of the form K says (⊢ N), a Compose derivation can be seen as a proof outline
for the desired theorem N , with the leaves of the derivation being the assertions
that need to be sourced from an assertion database (such as the DAMF global
store). We say that an assertion (K says S) is published if it can be retrieved
from such a database. The inference system is then enlarged with the following
rule that can be used to complete the open leaves of the Compose derivation
using assertions made by different agents.

(K1 says S) is published

K2 says S
Trust [K1 7→ K2]

This rule is parameterized by a pair of agents, K1 and K2, and is understood
to be applicable only when K1 is in the user-specified allow list of K2 (i.e., K1

speaks for K2, which we write as [K1 7→ K2]).
We do not assume that agents have any additional closure properties beyond

Compose and Trust. For example, suppose NA, NA→B , and NB are the formula
objects that correspond to the formulas A, A → B, and B respectively in some
language. We do not assume that the following rule is admissible:

K says (Γ ⊢ NA→B) K says (Γ ⊢ NA)

K says (Γ ⊢ NB)
mp.

That is, we do not assume that the formulas asserted by agent K are closed under
modus ponens. Similarly, we do not assume that what agents assert are closed
by substitution or instantiation of any symbols that are defined in the contexts
of the formula objects. While a particular agent may not be closed under modus
ponens, substitution, or instantiation, it is possible to employ other agents that
can look for opportunities to apply such inference rules on the results of trusted
agents. In particular, if we want the query engine to be able to use the mp rule,
then the engine must construct an agent Kmp whose sole function is to generate
assertions such as Kmp says (NA→B , NA ⊢ NB) that correspond to applications
of the mp rule. Of course, Kmp will need to be in the allow list for any agent
wanting to use this agent.

2.5 Producing assertions, formal reasoning tools

Conceptually, an agent constructs a DAMF sequent as a consequence of running
formal reasoning tools such as proof checkers or theorem provers. DAMF includes
tool objects, which are unconstrained JSON objects that can be used to describe
such tools. A tool object does not necessarily describe an implemented tool; it
might describe a part of it, or an abstract description of the logical system in
which the sequent is asserted in, for instance. Like with languages in sec. 2.1, we
compare tools for equality by means of the cids of these tool objects. It is also
possible for an agent to build a DAMF sequent manually, without running any
tool. The agent may do this for a number of reasons: e.g., the assertion may be
a conjecture (i.e., a proof may be provided at some other time but is currently
missing) or a manually produced adapter.

A DAMF production is a sequent that is annotated with a mode that describes
how the sequent was produced; this mode can be the cid of a tool object
mentioned above, or it can be null expressing an unproven sequent. We use
the schematic variable T for modes, and write a production of the sequent
Γ ⊢ N with mode T as Γ ⊢T N . Published DAMF assertions will be of the form
K says (Γ ⊢T N), and we modify the Trust rule to the following:

(K1 says (Γ ⊢T N)) is published

K2 says (Γ ⊢ N)
Trust [K1/T 7→ K2]

where the side condition [K1/T 7→ K2] means that K2 allows K1’s assertions
in mode T . It may be tempting to think of K1/T as an agent by itself, but, as
we shall see in sec. 3.1, agents are implemented in DAMF using keypairs, so if
K1/T1 and K1/T2 were separate agents then there would be no verifiable way to
link them both to K1. This use of modes makes it possible, for example, to trust
an agent K using any version of Coq while not trusting K when using other
proof systems.

2.6 Logical consistency of heterogeneous combinations

DAMF imposes no constraints on the composition of assertions, which can
at first glance appear to be risky. For example, suppose the assertions come

from incompatible logics, say an assertion in classical logic during the proof of
an intuitionistic theorem. Without exceptional care, the result of a Compose
will only be classically, not intuitionistically, true. Similar problems exist if the
imported assertion requires additional axioms that are incompatible with the
user’s setting (e.g. extensionality or UIP in the setting of univalence).

This issue highlights the fact that DAMF does not guarantee logical com-
patibility of assertions; rather, DAMF is more accurately seen as a record of
compositions that have been made. To trust an agent’s assertion is just to say that
we trust that the agent indeed had good reasons (such as a proof) to make that
assertion, not that the assertion may be arbitrarily composed. Moreover, DAMF
assertions are intended to be read as hypothetical statements from dependencies
to conclusions (where “hypothetical” is understood in the informal language of
discourse rather than as a formal implication or entailment). If the dependencies
cannot be met, the assertion is useless. To illustrate, if an agent K wants to
use an assertion Γ ⊢ M in their proof of N , the assertion they will publish is
K says (M ⊢ N), which is acceptable in isolation; if M is incompatible with the
logic of N , then the assertion K says (M ⊢ N) is vacuous.

3 Implementation: Information, processes, and tools

3.1 The structures of the global store

A crucial design criterion of DAMF is that the assertions and their constituent
objects are a globally shared commodity, existing independently of the tools
that produce or consume them. To this end, DAMF requires well-defined basic
structures that producers would produce and consumers would expect and know
how to address.

The use of a content-addressing scheme is an essential part of seeing these
structures as global. Each structure is identified and addressed by a unique global
identifier in a common namespace in an independently verifiable and trusted
way: the identifier is derived from the content itself and every alteration of
the content produces a new identifier; at the DAMF level, the content is the
name/address, and comparing two objects structurally at the DAMF level is
reduced to comparing their cids as strings. One way to handle differences in cids
between different forms of conceptually the same DAMF object is by curation
and normalization of such structures at the level of producers or potentially other
DAMF actors.

The structures we may want to specify in DAMF are built by composing
several elements; for instance, a sequent contains formula structures, which
themselves contain context structures. In DAMF, we make the design choice to
treat all such structures as first class objects stored in a distributed network
through IPFS, and use the linked data representation of IPLD to represent an
object as being composed of other objects.

The core DAMF structures we define are context, formula, sequent, production,
and assertion. Concretely, these structures are represented as JSON objects with

a varying format property which has the type of the structure as its value. These
structures are described as follows (full definitions in [4, Appendix A]):

– Context : contains a language field, which is an IPLD link to a language object,
described in sec. 2.1, and a content field containing the body of the context.

– Formula: contains a language field, a content field for a string representation
of the formula in the language, and a context field that is an IPLD link to a
context object, as described in sec. 2.1.

– Sequent : a dependencies field mapped to a list of IPLD links to formula
objects, and a conclusion field as an IPLD link to a formula object.

– Production: pairs a sequent object with a mode field denoting a mode of
production of a sequent as described in sec. 2.5.

– Assertion: a claim field mapped to an IPLD link to a production (currently
considered the main claim type in DAMF), an agent field mapped to a public
key, and a signature field containing the result of signing the cid of the value
of the claim field.

Given these schemata, the aspects of tracking and trusting become natural: a
formula present as a dependency in some assertion could be matched with the
same formula present as the conclusion of a different assertion.

It is also useful to annotate these core DAMF objects with additional metadata
such as external names, proof objects, timestamps, etc. In DAMF, we have chosen
to give the core objects a cid independent of the metadata; instead, for every
core object, we define an annotated object that is composed of a link to the
core object and a link to any additional metadata. DAMF follows the design
principle that objects are to be considered equal at the DAMF level if they have
the same cid: the content of the objects is not examined, and no IPLD-links are
followed for such comparisons. Generally speaking, therefore, DAMF core objects
will not link to annotated objects, since the annotations will factor into the
cids and force disequality when undesired, such as when building compositions
(sec. 2.4). The sole exception to this rule of thumb are assertion objects which
can use annotated production objects as their claims. Note that every assertion
object will be globally unique when produced: it will have a different cid each
time its claim is signed, even if signed by the same agent, because cryptographic
signatures always include a nonce.

Another layer of structures that can aggregate global object references are col-
lections. We currently define one generic collection format in our implementation:
many other non-generic collection formats can easily be considered.

3.2 Processes in DAMF, and Dispatch as an intermediary tool

The two obvious processes in DAMF are the production and consumption of
DAMF objects. In a production process, DAMF objects are constructed starting
from local information, published, and then stored across the distributed net-
work. The consumption process is in the opposite direction: locally consumable
information are constructed from DAMF objects. The important point is that

these DAMF objects are common and well-understood (as DAMF formats) for
all consumers, and each consumer decides what to consume and how to consume
it. For example, a consumer might only choose to read formulas that are of some
specific language, and then decide how to process their internal structures based
on its own criteria. Other than these two, other processes will be done on the
published DAMF objects that will incorporate their combination, curation, and
analysis. The process we consider first in our implementation is lookup which will
be discussed further below. Individual producers and consumers, such as theorem
provers, can choose to implement some or several of these DAMF processes.
However, many aspects of dealing with linked data and IPFS will be common to
such tools, so we describe an intermediary tool called Dispatch that simplifies the
interactions between these producers and consumers and the DAMF global store.
Of course, Dispatch would be considered part of the trusted code base, along with
IPFS and any utilities used to manipulate JSON data and cryptographic signa-
tures. If this is problematic, Dispatch can be completely foregone in preference to
native implementations.

The Dispatch tool is distributed as an executable dispatch with three sub-
commands: publish, get, and lookup. The dispatch publish command operates
on one of a collection of standard input formats that contains local information
corresponding to DAMF types. After syntactically validating this input, the
publish command will construct and publish the global objects. Dispatch can also
optionally interact with a specific storage service in order to make that object
widely discoverable in the IPFS network. As an example, consider the following
input for an assertion object, where newly created formulas and contexts are
placed in the same file and are referred by local names such as plus_comm, and
previously existing objects are referred by their cids using the damf: flag, such as
the first value of "dependencies" (line 10) which refers to a formula object cid,
as well as "language" and "mode" values which refer to existing language and tool
objects respectively.

1 { "format": "assertion",

2 "agent": "localAgent",

3 "claim": {

4 "format": "annotated-production",

5 "annotation": . . .,
6 "production": {

7 "mode": "damf:bafyreihnx2. . .",
8 "sequent": {

9 "conclusion": "plus_comm",

10 "dependencies": ["damf:bafyreihw6g. . .", "plus_succ"] } } },

11 "formulas": {

12 "plus_comm": {

13 "language": "damf:bafyreidyts. . .",
14 "content": ": forall M N K, nat K -> . . .",
15 "context": ["plus"] },

16 "plus_succ": {

17 "language": "damf:bafyreidyts.",
18 "content": ": forall M N K, . . .",

19 "context": ["plus"] } },

20 "contexts": {

21 "plus": {

22 "language": "damf:bafyreidyts.",
23 "content": [

24 "Kind nat type.", "Type z nat.", "Type s nat -> nat.",

25 "Define plus : nat -> nat -> prop by"] } } }

This example is based on an output from our Abella-DAMF prover described
below. A prover using Dispatch tool only needs to be able to produce and consume
JSON objects with this structure, without needing to interface with IPFS directly.
The value of "agent" (line 2) refers to an agent profile in Dispatch; each profile
maps a user-readable name to a cryptographic key-pair, created separately using
the dispatch create-agent command.

The dispatch get command takes a cid as an argument, fetches the IPLD dag

(the full JSON object) referenced by it from the global store, validates the types
of all constituent IPLD linked objects, verifies any signatures, and finally outputs
a JSON object that is similar in structure to that accepted by dispatch publish.
The consumer will have access to all the necessary DAMF objects referenced by
the root cid without needing to interact with the global store or structurally
validating any objects. The only difference between the output of dispatch get

and the input of dispatch publish is that the local names that appeared in the
input will be replaced by cids (i.e., global names) in the output. Input and
output formats corresponding to other global types are described further at the
site mentioned in the introduction.3

The dispatch lookup command, as mentioned earlier, is the starting process
that we consider in our implementation regarding the combination and analysis
of DAMF assertions. Given a formula cid and a collection of assertion cids, the
output of this command is a list of potential sets of (agent, mode/tool) pairs that
correspond to combinations of assertions that would yield the target formula.
Any remaining unmatched dependency is also outputted along with the (agent,
mode/tool) pairs. In our current implementation, Dispatch exhaustively generates
all possible ways of constructing the target formula. A direct improvement is to
change this aspect of the tool to allow for a more interactive and incremental
exploration of such dependencies. In addition, filtering through allow-lists would
reduce the number of assertion combinations generated by this command.

3.3 Edge systems example: Abella

We have implemented a DAMF-aware branch of Abella [10] as an example of a
system that interacts with assertions in DAMF with the help of Dispatch as a
mediator. Abella was originally designed to test a particular approach to meta-
theoretic reasoning using a new, proof-theoretically motivated mechanism for
reasoning directly with bound variables (in particular, the ∇-quantifier [30] and
a treatment of equality based on equivariant higher-order unification [26]). While

3 https://distributed-assertions.github.io/

https://distributed-assertions.github.io/

the current implementation of Abella has succeeded with those meta-theoretic
tasks [22,41], the prover has not grown much beyond that domain. Indeed, Abella
has some (mis)features that make it a good test case for DAMF: (1) it has no
awareness of the file system and it is easy to replace the backing store from local
files to objects stored in IPFS; (2) it has a feature-poor proof language with
nearly no support for proof automation and hence an underdeveloped formal
mathematical libraries; and (3) it uses relational specifications as opposed to the
more common functional programming specifications. Furthermore, the area of
meta-theory that Abella treats declaratively is also an area many conventional
proof systems do not deal well, in part, because of the need to encode and
manipulate bindings [9,23]. Such conventional systems might be willing to delegate
such meta-theoretic reasoning to Abella.

Ordinary Abella developments (in .thm files) support a kind of import mecha-
nism which loads in marshaled results from a different run of Abella. We extend
import with a new kind of statement: Import "damf:bafyr. . ." that refers to a
collection of DAMF assertions (i.e., a DAMF collection object whose elements
are assertions). Dispatch is used to fetch all the referenced objects from IPFS as
explained in the previous subsection.

To appeal to an assertion, the elements of the context of the conclusion of
the assertion are merged using their internal names with the ambient context of
Abella where the assertion is appealed to. An Abella declaration in the context
is mergeable if it has both the same internal name and an identical (up to λ-
equivalence) definition; thus, type and term constants are merged if they have the
same kinds or types (respectively), and (co-)definitions are merged if they have
the same definitional clauses. This is done to keep the implementation simple
and mostly unchanged from the standard (non-DAMF) Abella, which also only
allows an Import declaration when the imported objects can be merged.

When the proof of a theorem is completed in Abella, a sequent object is
constructed with the dependencies being all the DAMF lemmas appealed to in
the proof, and the conclusion being the statement of the theorem (the formula)
in the context of all its necessary declarations, computed using a dependency
analysis. We use only the necessary declarations to allow such DAMF sequents
to have the widest possible uses, since a DAMF assertion can only be used in
Abella if the entire context of the conclusion can be merged.

A full example of an Abella development that makes use of imported assertions
from Abella, Coq, and λProlog can be found in [4, Appendix B] . In this example,
Coq and λProlog are not modified at all, and Abella is only minimally modified to
use Dispatch to interact with DAMF assertions. The total amount of modifications
to Abella to interface with Dispatch amounts to about 100 lines of code, most of
which deals with (un)marshalling JSON. We expect that making tools DAMF-
aware would require negligible effort.

4 Discussion: Design choices and alternatives

4.1 The role of formal proofs

Autarkic theorem provers often exploit the existence of proofs for several reasons.
Obviously, the ability to check a fully detailed proof object in their own kernel,
following the De Bruijn criterion [11], is central. But proofs can also be used for
various other roles. For example, they sometimes contain constructive content
that can be extracted as executable programs, and they can be used as guides
during the development and maintenance of other proofs. Given their central role
in many proof assistants, a great deal of effort has gone into the formalization,
manipulation, and transformation of formal proof objects; see, for example,
MMT [35], Logipedia [21], and foundational proof certificates [18]. As a concrete
matter, proof objects can be included in the annotations of annotated productions
in the global store of DAMF. Sequents are linked in productions by their cids,
so it is possible for the same sequent to have multiple proof objects contributed
by different agents in separate assertions.

4.2 Potential benefits to mainstream systems

The fact that proof objects are not central to DAMF and the example presented in
Section 3.3 might lead the reader to believe that the only beneficiaries of DAMF
are new systems that want to leverage existing developments in mainstream
systems. This belief is not necessarily true for two reasons. First, there are certain
logical systems and formalization styles that are inordinately complicated or
impossible to do in mainstream systems. Good examples are nominal sets [34],
λ-tree syntax (a.k.a. higher-order abstract syntax) [2,23], generic judgments [30],
and nominal abstraction [26]. It is conceivable that a mainstream prover can
use DAMF to import a formalization such as the proof of soundness of Howe’s
method done in the setting of higher-order abstract syntax and contextual modal
type theory [31], which is at present not available in a mainstream proof system
such as Coq or Agda.

A second benefit to mainstream systems is to enable more trustworthy refac-
toring of their existing implementations. For example, modern autarkic provers
routinely recheck large collections of proofs, often after every invocation of a new
instance of the proof checker and certainly after every change in the version of
the prover. As a result of needing to recheck such proofs, there is a tendency
for implementers of proof checkers to optimize such kernels to be more efficient.
However, such optimizations can add greater complexity to a kernel, making
errors in the kernel more likely to occur. With DAMF, once a trustworthy but
slow kernel—e.g., a certified implementation of a kernel [39]—checks a proof,
it rarely needs to be rechecked. This can even lower the pressure for kernel
implementations to chase performance with increasing, error-prone complexity.
Furthermore, the immutable nature of IPFS objects makes DAMF assertions
resistant to malicious subversion of the proper execution of a tool – see, for
example, the discussion in [5] concerning attacks on Coq’s .vo object files

4.3 Other use cases

While it is common to view tools that perform pure computations (such as
functional program execution or proof search a la λProlog) as producing assertions
without proofs, there are various well-known reasoning systems that have been
used a lot without being either certified or certifying: for example, Twelf [33].
DAMF would enable Twelf-based assertions to be exported to agents willing to
trust its type and totality checkers.

The relationship of DAMF to the following topics is discussed in greater
detail in the technical report [3]: libraries as curation on top of the DAMF model
of global objects; attacks in the adversarial environment of the web; and possible
uses of this framework in settings (such as journalism) where the lack of formal
proof means increasing the need to explicitly track trust.

5 Related work

The semantic web [14,15] was proposed to enrich the web with aspects of trust
and would rely on concepts and technologies such as cryptography, taxonomies,
ontologies, and inference rules. While the semantic web and DAMF both use
cryptographic signatures and low-level web-based technologies, DAMF differs
from the semantic web by focusing on objects rather than documents and using
richer notions of logic and compositional reasoning.

Dedukti [8] is a dependently typed λ-calculus augmented with rewriting.
Dedukti can be used to produce adapters (Section 2.3): in particular, proofs in a
source system can be transformed to Dedukti proofs and then transformed back
into formal proofs in a different system. For example, the Logipedia documentation
mentions that “some proofs expressed in some Dedukti theories can be translated
to other proof systems, such as HOL Light, HOL 4, Isabelle/HOL, Coq, Matita,
Lean, PVS, . . .” [29]. As a by-product, Dedukti can be used to build correctness-
preserving translations of assertions for DAMF.

TPTP [40] provides a number of standards for the concrete syntax of first-
order and higher-order logic along with tools for parsing and printing files that
adhere to such standards. Deploying those tools for the production of the kind of
multilingual adapters that we have described in sec. 2.3 is a natural next step for
tool development within DAMF.

The recognition that distributing some aspects of proof environments goes
back to at least the systems described by Sacerdoti Coen, et al. [7,19]. In such
systems, integration was meant to work between “near-peer” systems: that is,
between systems that are both based on rich logics such as higher-order logic or
on typed λ-calculi based on the Curry-Howard correspondence. A prerequisite
for successful integration in such systems is the ability to connect the semantics
of formulas, types, universes, proofs, etc. The wide spread use of such integration
approaches has been delayed since it has only been in recent years that efforts,
such as Dedukti [8] and MMT [36,37], are making it possible to form the necessary
deep and sophisticated ties between the semantics of these objects arising from

different implementations. In contrast, DAMF allows the composition of different
assertions without an a priori assumption that there is a formal semantics that
relates them. Of course, correctness is a concern in many (most) situations: in
those cases, Dedukti and MMT encodings can be used to translate assertions
between two provers with precise correctness assurances. Often, however, the
integration is of a more asymmetric kind. For example, when integrating a system
that only performs integer operations or reasons only with integer inequalities
(operations that are available in SMT systems) with a system based on higher-
order logic, producing adapters based on sophisticated encodings might be
completely unnecessary. The DAMF system similarly allows such integration.

6 Conclusion

We have described a Distributed Assertion Management Framework (DAMF)
designed to share assertions between agents while tracking dependencies with
canonical content ids (cids). This framework endows assertions with reliable
provenance using public key cryptography and distributes them globally using
the IPFS network. We have given an example of using DAMF to import a Coq
lemma into Abella. The biggest challenge for future work is to adapt existing
work on language translation and proof translation (in, e.g., Dedukti) to create or
derive adapters automatically. Another important matter for future consideration
is whether to persist compositions (i.e., Compose-derivations, cf. sec. 2.4) to
DAMF, which can serve as hints for post hoc investigations.

References

1. Abadi, M.: Variations in access control logic. In: van der Meyden, R., van der Torre,
L.W.N. (eds.) Deontic Logic in Computer Science, 9th International Conference,
DEON 2008, Luxembourg, Luxembourg, July 15-18, 2008. Proceedings. Lecture
Notes in Computer Science, vol. 5076, pp. 96–109. Springer (2008). https://doi.
org/10.1007/978-3-540-70525-3_9

2. Abel, A., Allais, G., Hameer, A., Momigliano, A., Pientka, B., Schaefer, S., Stark, K.:
POPLMark reloaded: Mechanizing proofs by logical relations. Journal of Functional
Programming 29 (2019). https://doi.org/10.1017/S0956796819000170

3. Al Wardani, F., Chaudhuri, K., Miller, D.: Distributing and trusting proof checking:
a preliminary report. Tech. rep., Inria Saclay (2022), https://hal.inria.fr/

hal-03909741

4. Al Wardani, F., Chaudhuri, K., Miller, D.: Formal reasoning using distributed
assertions. Tech. Rep. HAL-04167922, Inria (2023), https://inria.hal.science/
hal-04167922

5. ANSSI, F.N.C.A.: Requirements on the use of Coq in the context of common criteria
evaluations. URL (Dec 2021), v1.1

6. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular
integration of SAT/SMT solvers to Coq through proof witnesses. In: Jouannaud,
J.P., Shao, Z. (eds.) Certified Programs and Proofs (CPP 2011). Lecture Notes in
Computer Science, vol. 7086, pp. 135–150 (2011), http://hal.inria.fr/docs/00/
63/91/30/PDF/cpp11.pdf

https://doi.org/10.1007/978-3-540-70525-3_9
https://doi.org/10.1007/978-3-540-70525-3_9
https://doi.org/10.1007/978-3-540-70525-3_9
https://doi.org/10.1007/978-3-540-70525-3_9
https://doi.org/10.1017/S0956796819000170
https://doi.org/10.1017/S0956796819000170
https://hal.inria.fr/hal-03909741
https://hal.inria.fr/hal-03909741
https://inria.hal.science/hal-04167922
https://inria.hal.science/hal-04167922
https://www.ssi.gouv.fr/uploads/2014/11/anssi-requirements-on-the-use-of-coq-in-the-context-of-common-criteria-evaluations-v1.1-en.pdf
http://hal.inria.fr/docs/00/63/91/30/PDF/cpp11.pdf
http://hal.inria.fr/docs/00/63/91/30/PDF/cpp11.pdf

7. Asperti, A., Padovani, L., Coen, C.S., Guidi, F., Schena, I.: Mathematical knowledge
management in HELM. Ann. Math. Artif. Intell 38(1-3), 27–46 (2003)

8. Assaf, A., Burel, G., Cauderlier, R., Delahaye, D., Dowek, G., Dubois, C., Gilbert, F.,
Halmagrand, P., Hermant, O., Saillard, R.: Dedukti: a logical framework based on
the λΠ-calculus modulo theory (2016), http://www.lsv.ens-cachan.fr/~dowek/
Publi/expressing.pdf

9. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P.,
Vytiniotis, D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory
for the masses: The POPLmark challenge. In: Theorem Proving in Higher Order
Logics: 18th International Conference. pp. 50–65. No. 3603 in Lecture Notes in
Computer Science, Springer (2005). https://doi.org/10.1007/11541868_4

10. Baelde, D., Chaudhuri, K., Gacek, A., Miller, D., Nadathur, G., Tiu, A., Wang, Y.:
Abella: A system for reasoning about relational specifications. Journal of Formalized
Reasoning 7(2), 1–89 (2014). https://doi.org/10.6092/issn.1972-5787/4650

11. Barendregt, H., Wiedijk, F.: The challenge of computer mathematics. Transactions
A of the Royal Society 363(1835), 2351–2375 (Oct 2005)

12. Barendregt, H., Barendsen, E.: Autarkic computations in formal proofs. J.
of Automated Reasoning 28(3), 321–336 (2002). https://doi.org/10.1023/A:
1015761529444

13. Benet, J.: IPFS-content addressed, versioned, P2P file system (2014). https://doi.
org/10.48550/arxiv.1407.3561

14. Berners-Lee, T.: Semantic Web road map. Tech. rep., W3C Design Issues (1998),
http://www.w3.org/DesignIssues/Semantic.html

15. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
Magazine (May 2001)

16. Chaudhuri, K., Doligez, D., Merz, S., Lamport, L.: The TLA+ proof system:
Building a heterogeneous verification platform. In: Cavalcanti, A., Déharbe,
D., Gaudel, M.C., Woodcock, J. (eds.) Proceedings of the 7th International
Colloquium on Theoretical Aspects of Computing (ICTAC). Lecture Notes in
Computer Science, vol. 6256, p. 44. Springer, Natal, Rio Grande do Norte,
Brazil (Sep 2010). https://doi.org/10.1007/978-3-642-14808-8_3, http://hal.
archives-ouvertes.fr/inria-00521886/en/

17. Chaudhuri, K., Gérard, U., Miller, D.: Computation-as-deduction in Abella: work
in progress. In: 13th international Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice. Oxford, United Kingdom (Jul 2018), https:
//hal.inria.fr/hal-01806154

18. Chihani, Z., Miller, D., Renaud, F.: A semantic framework for proof evidence.
J. of Automated Reasoning 59(3), 287–330 (2017). https://doi.org/10.1007/
s10817-016-9380-6

19. Coen, C.S.: Mathematical libraries as proof assistant environments. In: International
Conference on Mathematical Knowledge Management (MKM), LNCS. vol. 3 (2004)

20. Cruanes, S., Hamon, G., Owre, S., Shankar, N.: Tool integration with the evidential
tool bus. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) Verification, Model
Checking, and Abstract Interpretation, 14th International Conference, VMCAI
2013. Lecture Notes in Computer Science, vol. 7737, pp. 275–294. Springer (2013).
https://doi.org/10.1007/978-3-642-35873-9_18

21. Dowek, G., Thiré, F.: Logipedia: a multi-system encyclopedia of formal proofs.
http://www.lsv.fr/~dowek/Publi/logipedia.pdf (2019)

22. Felty, A.P., Momigliano, A., Pientka, B.: The next 700 challenge problems for
reasoning with higher-order abstract syntax representations: Part 2–A survey.

http://www.lsv.ens-cachan.fr/~dowek/Publi/expressing.pdf
http://www.lsv.ens-cachan.fr/~dowek/Publi/expressing.pdf
https://doi.org/10.1007/11541868_4
https://doi.org/10.1007/11541868_4
https://doi.org/10.6092/issn.1972-5787/4650
https://doi.org/10.6092/issn.1972-5787/4650
https://doi.org/10.1023/A:1015761529444
https://doi.org/10.1023/A:1015761529444
https://doi.org/10.1023/A:1015761529444
https://doi.org/10.1023/A:1015761529444
https://doi.org/10.48550/arxiv.1407.3561
https://doi.org/10.48550/arxiv.1407.3561
https://doi.org/10.48550/arxiv.1407.3561
https://doi.org/10.48550/arxiv.1407.3561
http://www.w3.org/DesignIssues/Semantic.html
https://doi.org/10.1007/978-3-642-14808-8_3
https://doi.org/10.1007/978-3-642-14808-8_3
http://hal.archives-ouvertes.fr/inria-00521886/en/
http://hal.archives-ouvertes.fr/inria-00521886/en/
https://hal.inria.fr/hal-01806154
https://hal.inria.fr/hal-01806154
https://doi.org/10.1007/s10817-016-9380-6
https://doi.org/10.1007/s10817-016-9380-6
https://doi.org/10.1007/s10817-016-9380-6
https://doi.org/10.1007/s10817-016-9380-6
https://doi.org/10.1007/978-3-642-35873-9_18
https://doi.org/10.1007/978-3-642-35873-9_18
http://www.lsv.fr/~dowek/Publi/logipedia.pdf

J. of Automated Reasoning 55(4), 307–372 (2015). https://doi.org/10.1007/
s10817-015-9327-3

23. Felty, A.P., Momigliano, A., Pientka, B.: Benchmarks for reasoning with syn-
tax trees containing binders and contexts of assumptions. Mathematical Struc-
tures in Computer Science pp. 1507–1540 (2017). https://doi.org/10.1017/

S0960129517000093

24. Filliâtre, J.C., Paskevich, A.: Why3 - where programs meet provers. In: Felleisen, M.,
Gardner, P. (eds.) Proceedings of the 22nd European Symposium on Programming,
ESOP 2013, Rome, Italy. Lecture Notes in Computer Science, vol. 7792, pp. 125–128.
Springer (2013)

25. Fontaine, P., Marion, J.Y., Merz, S., Nieto, L.P., Tiu, A.F.: Expressiveness +
automation + soundness: Towards combining SMT solvers and interactive proof
assistants. In: Hermanns, H., Palsberg, J. (eds.) TACAS: Tools and Algorithms
for the Construction and Analysis of Systems. Lecture Notes in Computer Science,
vol. 3920, pp. 167–181. Springer (2006). https://doi.org/10.1007/11691372_11

26. Gacek, A., Miller, D., Nadathur, G.: Nominal abstraction. Information and Com-
putation 209(1), 48–73 (2011). https://doi.org/10.1016/j.ic.2010.09.004

27. Harrison, J.: The HOL Light tutorial (2017), https://www.cl.cam.ac.uk/~jrh13/
hol-light/tutorial.pdf

28. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence,
and Reasoning. pp. 348–370. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

29. Logipedia in a nutshell. http://logipedia.inria.fr/about/about.php (2022)

30. Miller, D., Tiu, A.: A proof theory for generic judgments. ACM Trans. on Com-
putational Logic 6(4), 749–783 (Oct 2005). https://doi.org/10.1145/1094622.
1094628

31. Momigliano, A., Pientka, B., Thibodeau, D.: A case study in programming coinduc-
tive proofs: Howe’s method. Math. Struct. Comput. Sci. 29(8), 1309–1343 (2019).
https://doi.org/10.1017/S0960129518000415

32. de Moura, L.M., Bjørner, N.: Proofs and refutations, and Z3. In: Rudnicki, P., Sut-
cliffe, G., Konev, B., Schmidt, R.A., Schulz, S. (eds.) Proceedings of the Combined
KEAPPA - IWIL Workshops. CEUR Workshop Proceedings, vol. 418, pp. 123–132.
CEUR-WS.org (2008), http://ceur-ws.org/Vol-418/paper10.pdf

33. Pfenning, F., Schürmann, C.: System description: Twelf — A meta-logical framework
for deductive systems. In: Ganzinger, H. (ed.) 16th Conf. on Automated Deduction
(CADE). pp. 202–206. No. 1632 in Lecture Notes in Artificial Intelligence, Springer,
Trento (1999). https://doi.org/10.1007/3-540-48660-7_14

34. Pitts, A.M.: Nominal logic, A first order theory of names and binding. Information
and Computation 186(2), 165–193 (2003)

35. Rabe, F.: The future of logic: Foundation-independence. Logica Universalis 10(1),
1–20 (2016)

36. Rabe, F.: How to identify, translate and combine logics? J. of Logic and Computation
27(6), 1753–1798 (2017)

37. Rabe, F.: The MMT Language and System. https://uniformal.github.io/ (2022)

38. Rushby, J.M.: An evidential tool bus. In: Lau, K., Banach, R. (eds.) Formal Methods
and Software Engineering, 7th International Conference on Formal Engineering
Methods, ICFEM 2005, Manchester, UK, November 1-4, 2005, Proceedings. Lecture
Notes in Computer Science, vol. 3785, pp. 36–36. Springer (2005). https://doi.
org/10.1007/11576280_3

https://doi.org/10.1007/s10817-015-9327-3
https://doi.org/10.1007/s10817-015-9327-3
https://doi.org/10.1007/s10817-015-9327-3
https://doi.org/10.1007/s10817-015-9327-3
https://doi.org/10.1017/S0960129517000093
https://doi.org/10.1017/S0960129517000093
https://doi.org/10.1017/S0960129517000093
https://doi.org/10.1017/S0960129517000093
https://doi.org/10.1007/11691372_11
https://doi.org/10.1007/11691372_11
https://doi.org/10.1016/j.ic.2010.09.004
https://doi.org/10.1016/j.ic.2010.09.004
https://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial.pdf
https://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial.pdf
http://logipedia.inria.fr/about/about.php
https://doi.org/10.1145/1094622.1094628
https://doi.org/10.1145/1094622.1094628
https://doi.org/10.1145/1094622.1094628
https://doi.org/10.1145/1094622.1094628
https://doi.org/10.1017/S0960129518000415
https://doi.org/10.1017/S0960129518000415
http://ceur-ws.org/Vol-418/paper10.pdf
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1007/3-540-48660-7_14
https://uniformal.github.io/
https://doi.org/10.1007/11576280_3
https://doi.org/10.1007/11576280_3
https://doi.org/10.1007/11576280_3
https://doi.org/10.1007/11576280_3

39. Sozeau, M., Anand, A., Boulier, S., Cohen, C., Forster, Y., Kunze, F., Malecha, G.,
Tabareau, N., Winterhalter, T.: The metacoq project. J. Autom. Reason. 64(5),
947–999 (2020). https://doi.org/10.1007/s10817-019-09540-0

40. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009).
https://doi.org/10.1007/s10817-009-9143-8

41. Tiu, A.: On the role of names in reasoning about λ-tree syntax specifications. In:
Abel, A., Urban, C. (eds.) International Workshop on Logical Frameworks and
Meta-Languages: Theory and Practice (LFMTP 2008). pp. 32–46 (2008)

42. The Twelf project (2016), http://twelf.org/

https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1007/s10817-009-9143-8
https://doi.org/10.1007/s10817-009-9143-8
http://twelf.org/

	Formal Reasoning using Distributed Assertions

