
Formal Reasoning using Distributed Assertions

Dale Miller

Inria Saclay &
LIX, École Polytechnique
Partout Team

Joint work with
Farah Al Wardani &
Kaustuv Chaudhuri

Birmingham, 8 December 2023

Art by Nadia Miller

1 / 37

https://nadiaamiller.wixsite.com/website

Outline

Trust in the digital world

The community of proof checkers

Distributed Assertion Management Framework (DAMF)

Benefits of a move towards DAMF

2 / 37

Outline

Trust in the digital world

The community of proof checkers

Distributed Assertion Management Framework (DAMF)

Benefits of a move towards DAMF

3 / 37

Problematic information sources in the internet age

Propaganda and misinformation

▶ A government asserts ”The average life expectancy is 72 years
and increasing” although the real value is 68 years and
decreasing.

Disinformation campaigns

▶ “Firehose of Falsehood” Propaganda Model

▶ Steve Bannon: flood the zone with disinformation.

▶ The goal is disorientation and not persuasion.

Perverse Financial incentives

▶ Supporting grievances brings in clicks and revenue.

The digital world has greatly enabled disinformation and
propaganda.

4 / 37

What about cryptographically signing all assertions

Journalists write documents that cite other documents, photos,
spreadsheets, etc, all of which can be signed by others.

Journalists and editors publish documents signed either individually
or collectively.

Consumers would then have allow-lists of agents they are willing to
trust.

This sounds terribly naive.

5 / 37

What about cryptographically signing all assertions

Journalists write documents that cite other documents, photos,
spreadsheets, etc, all of which can be signed by others.

Journalists and editors publish documents signed either individually
or collectively.

Consumers would then have allow-lists of agents they are willing to
trust.

This sounds terribly naive.

5 / 37

Naive ideas sometimes need to be explored

Some naive solutions to important problems:

▶ Worried that people are bringing guns on planes and hijacking
the planes? (1960s) Introduce metal detectors and screen
everyone (1973).

▶ Worried that your mobile phone is giving out too much
information about you and your location? Have your phone lie
for you. Differential privacy.

▶ Worried that the binary file you are downloading could be a
security risk on your computer? Have it paired with a proof
that it is not dangerous. Proof-carrying code.

▶ Worried that the documents you are getting are forged, fake,
generated by an internet bot farm? Have all documents
cryptographically signed by their authors. A solution?

6 / 37

Naive ideas sometimes need to be explored

Some naive solutions to important problems:

▶ Worried that people are bringing guns on planes and hijacking
the planes? (1960s)

Introduce metal detectors and screen
everyone (1973).

▶ Worried that your mobile phone is giving out too much
information about you and your location? Have your phone lie
for you. Differential privacy.

▶ Worried that the binary file you are downloading could be a
security risk on your computer? Have it paired with a proof
that it is not dangerous. Proof-carrying code.

▶ Worried that the documents you are getting are forged, fake,
generated by an internet bot farm? Have all documents
cryptographically signed by their authors. A solution?

6 / 37

Naive ideas sometimes need to be explored

Some naive solutions to important problems:

▶ Worried that people are bringing guns on planes and hijacking
the planes? (1960s) Introduce metal detectors and screen
everyone (1973).

▶ Worried that your mobile phone is giving out too much
information about you and your location? Have your phone lie
for you. Differential privacy.

▶ Worried that the binary file you are downloading could be a
security risk on your computer? Have it paired with a proof
that it is not dangerous. Proof-carrying code.

▶ Worried that the documents you are getting are forged, fake,
generated by an internet bot farm? Have all documents
cryptographically signed by their authors. A solution?

6 / 37

Naive ideas sometimes need to be explored

Some naive solutions to important problems:

▶ Worried that people are bringing guns on planes and hijacking
the planes? (1960s) Introduce metal detectors and screen
everyone (1973).

▶ Worried that your mobile phone is giving out too much
information about you and your location?

Have your phone lie
for you. Differential privacy.

▶ Worried that the binary file you are downloading could be a
security risk on your computer? Have it paired with a proof
that it is not dangerous. Proof-carrying code.

▶ Worried that the documents you are getting are forged, fake,
generated by an internet bot farm? Have all documents
cryptographically signed by their authors. A solution?

6 / 37

Naive ideas sometimes need to be explored

Some naive solutions to important problems:

▶ Worried that people are bringing guns on planes and hijacking
the planes? (1960s) Introduce metal detectors and screen
everyone (1973).

▶ Worried that your mobile phone is giving out too much
information about you and your location? Have your phone lie
for you. Differential privacy.

▶ Worried that the binary file you are downloading could be a
security risk on your computer? Have it paired with a proof
that it is not dangerous. Proof-carrying code.

▶ Worried that the documents you are getting are forged, fake,
generated by an internet bot farm? Have all documents
cryptographically signed by their authors. A solution?

6 / 37

Naive ideas sometimes need to be explored

Some naive solutions to important problems:

▶ Worried that people are bringing guns on planes and hijacking
the planes? (1960s) Introduce metal detectors and screen
everyone (1973).

▶ Worried that your mobile phone is giving out too much
information about you and your location? Have your phone lie
for you. Differential privacy.

▶ Worried that the binary file you are downloading could be a
security risk on your computer?

Have it paired with a proof
that it is not dangerous. Proof-carrying code.

▶ Worried that the documents you are getting are forged, fake,
generated by an internet bot farm? Have all documents
cryptographically signed by their authors. A solution?

6 / 37

Naive ideas sometimes need to be explored

Some naive solutions to important problems:

▶ Worried that people are bringing guns on planes and hijacking
the planes? (1960s) Introduce metal detectors and screen
everyone (1973).

▶ Worried that your mobile phone is giving out too much
information about you and your location? Have your phone lie
for you. Differential privacy.

▶ Worried that the binary file you are downloading could be a
security risk on your computer? Have it paired with a proof
that it is not dangerous. Proof-carrying code.

▶ Worried that the documents you are getting are forged, fake,
generated by an internet bot farm? Have all documents
cryptographically signed by their authors. A solution?

6 / 37

Naive ideas sometimes need to be explored

Some naive solutions to important problems:

▶ Worried that people are bringing guns on planes and hijacking
the planes? (1960s) Introduce metal detectors and screen
everyone (1973).

▶ Worried that your mobile phone is giving out too much
information about you and your location? Have your phone lie
for you. Differential privacy.

▶ Worried that the binary file you are downloading could be a
security risk on your computer? Have it paired with a proof
that it is not dangerous. Proof-carrying code.

▶ Worried that the documents you are getting are forged, fake,
generated by an internet bot farm?

Have all documents
cryptographically signed by their authors. A solution?

6 / 37

Naive ideas sometimes need to be explored

Some naive solutions to important problems:

▶ Worried that people are bringing guns on planes and hijacking
the planes? (1960s) Introduce metal detectors and screen
everyone (1973).

▶ Worried that your mobile phone is giving out too much
information about you and your location? Have your phone lie
for you. Differential privacy.

▶ Worried that the binary file you are downloading could be a
security risk on your computer? Have it paired with a proof
that it is not dangerous. Proof-carrying code.

▶ Worried that the documents you are getting are forged, fake,
generated by an internet bot farm? Have all documents
cryptographically signed by their authors. A solution?

6 / 37

Naive ideas can also be terribly wrong

Archie Bunker (1972, All in the family) had a naive solution to
hijacking.

▶ ”All you gotta do is arm all your passengers, then your
airlines, then they wouldn’t have to search the passengers on
the ground no more. They just pass out the pistols at the
beginning of the trip, and they pick ’em up again at the end.”

7 / 37

A shift in scope

I do not have expertise to address this “crisis in journalism.”

The sign-everything-by-trusted-parties approach is used in some
computer systems.

▶ boot loading: Secure Boot, UEFI, etc.

▶ software updates: Debian Secure apt, etc.

Some of the problems surrounding trust in the digital world
reappear in the world of a mechanized proof-checking systems
(where I have more expertise).

My focus today:

▶ How can trust be implemented within the theorem proving
community?

▶ Explore the costs and benefits of a particular approach

8 / 37

Outline

Trust in the digital world

The community of proof checkers

Distributed Assertion Management Framework (DAMF)

Benefits of a move towards DAMF

9 / 37

Proof checking has a long history

Leibniz’s “universal symbolic language” and calculemus: “Let us
calculate.” (c. 1666).

Gordon, Milner, & Wadsworth, “Edinburgh LCF: A Mechanised
Logic of Computation”, 1979.

▶ The ML programming language (precursor to OCaml) was first
designed as the meta-language for building a proof checker.

Many ambitious provers have been built since LCF.

▶ Boyer-Moore (1979), Isabelle (1989), Coq (1989),
HOL (1988), PVS (1992), Lean (2013),

10 / 37

Published in 2006.
11 / 37

Abella appeared in 2009.
12 / 37

Trust no one else or trust a few

Most interactive theorem provers are autarkic: they only trust their
own proof checking kernels.

▶ HOL, Isabelle, Coq, Lean

Some deductive program verification systems explicitly exploit and
trust other theorem provers.

▶ Why3 - relies on external theorem provers to discharge
verification conditions: CVC4, Z3, Coq, etc.

▶ TLA+ Proof System (TLAPS) - relies on back-end provers
such as Isabelle, Zenon, and SMT solvers CVC3, Yices, Z3.

13 / 37

Dedukti and support for autarkic systems

The original goal of Dedukti

▶ Get many provers (e.g., HOL, Isabelle, Coq) to output their
proofs into the clean, simple format provided by Dedukti.

▶ Proof checkers for Dedukti are so simple, anyone can write
one. Reference checkers exist too.

▶ Such independent proof checking instills more confidence.

A new goal of Dedukti

▶ If Coq needs a proof from Isabelle, then Isabelle exports it to
Dedukti, and Dedukti outputs it for Coq.

▶ Dedukti is now a new tool for autarkic provers.

14 / 37

Dedukti and support for autarkic systems

The original goal of Dedukti

▶ Get many provers (e.g., HOL, Isabelle, Coq) to output their
proofs into the clean, simple format provided by Dedukti.

▶ Proof checkers for Dedukti are so simple, anyone can write
one. Reference checkers exist too.

▶ Such independent proof checking instills more confidence.

A new goal of Dedukti

▶ If Coq needs a proof from Isabelle, then Isabelle exports it to
Dedukti, and Dedukti outputs it for Coq.

▶ Dedukti is now a new tool for autarkic provers.

14 / 37

Another approach to managing proof and trust on the web

15 / 37

“Trust requires proof” vs “Proof requires trust”

We are familiar with the mathematician’s perspective that “Trust
requires proof”.

Extending that argument beyond mathematics (to politics,
journalism, etc) might have a future, but we are exploring the
converse here.

Formal proofs can only be checked by computer programs.

Computer programs can be wrong.

Indeed, carefully designed and constructed proof checkers have
been found to have errors (i.e., proofs of false).

We must speak explicitly about trusting proof checkers.

16 / 37

“Trust requires proof” vs “Proof requires trust”

We are familiar with the mathematician’s perspective that “Trust
requires proof”.

Extending that argument beyond mathematics (to politics,
journalism, etc) might have a future, but we are exploring the
converse here.

Formal proofs can only be checked by computer programs.

Computer programs can be wrong.

Indeed, carefully designed and constructed proof checkers have
been found to have errors (i.e., proofs of false).

We must speak explicitly about trusting proof checkers.

16 / 37

Outline

Trust in the digital world

The community of proof checkers

Distributed Assertion Management Framework (DAMF)

Benefits of a move towards DAMF

17 / 37

DAMF uses off-the-shelve technology: PKI and JSON

▶ Public-key infrastructure: private/public keys for cryptography

▶ JSON: an open standard approach to serialization of
structured data: lists of attribute-values pairs

An example of a DAMF object.

{ "format": "assertion",

"agent": "-----BEGIN PUBLIC KEY-----\nMFIwEA....",

"signature": "3040021e10db76a6606d7a813747849028c79e...."

"claim": {"/": "bafyreibvtxzqhvht5rfxpw3rkgx...." },

}

18 / 37

DAMF uses off-the-shelve technology: PKI and JSON

▶ Public-key infrastructure: private/public keys for cryptography

▶ JSON: an open standard approach to serialization of
structured data: lists of attribute-values pairs

An example of a DAMF object.

{ "format": "assertion",

"agent": "-----BEGIN PUBLIC KEY-----\nMFIwEA....",

"signature": "3040021e10db76a6606d7a813747849028c79e...."

"claim": {"/": "bafyreibvtxzqhvht5rfxpw3rkgx...." },

}

18 / 37

DAMF uses off-the-shelve technology: IPFS

InterPlanetary File System

All files—local or remote—are referenced through a unique
identifier which is a hash called a CID (content identifier).

> ipfs add nats.thm

added Qmf44WNArKxLC2MYmzK6DTAmkSSwAQwqvRmn94NRbStKxD nats.thm

> ipfs cat Qmf44WNArKxLC2MYmzK6DTAmkSSwAQwqvRmn94NRbStKxD

Kind nat type.

Type z nat.

Type s nat -> nat.

Define nat : nat -> prop by nat z ; nat (s N) := nat N.

>

ipfs://Qmf44WNArKxLC2MYmzK6DTAmkSSwAQwqvRmn94NRbStKxD

19 / 37

ipfs://Qmf44WNArKxLC2MYmzK6DTAmkSSwAQwqvRmn94NRbStKxD

DAMF uses off-the-shelve technology: IPFS

InterPlanetary File System

All files—local or remote—are referenced through a unique
identifier which is a hash called a CID (content identifier).

> ipfs add nats.thm

added Qmf44WNArKxLC2MYmzK6DTAmkSSwAQwqvRmn94NRbStKxD nats.thm

> ipfs cat Qmf44WNArKxLC2MYmzK6DTAmkSSwAQwqvRmn94NRbStKxD

Kind nat type.

Type z nat.

Type s nat -> nat.

Define nat : nat -> prop by nat z ; nat (s N) := nat N.

>

ipfs://Qmf44WNArKxLC2MYmzK6DTAmkSSwAQwqvRmn94NRbStKxD

19 / 37

ipfs://Qmf44WNArKxLC2MYmzK6DTAmkSSwAQwqvRmn94NRbStKxD

DAMF uses off-the-shelve technology: IPLD

IPLD: Interplanetary Linked Data.

This provides an elegant integration of JSON with IPFS.

If CID points to a JSON object with attribute "formula:"
then CID/formula is the CID for the attribute’s value.

20 / 37

DAMF structures

Different formats used within DAMF. These are all values in IPFS.

Languages naming a language (indicates how to parse)

Tools names of theorem provers with their version info, etc.
e..g., Coq 8.16.1, Abella 2.0.9, etc.

Contexts typing declarations, definitions, etc

Formulas Logical formulas

Sequents list of dependencies with conclusion

Assertions an agent signs a sequent

Others items needed: Productions / Collections / etc.

21 / 37

The Dispatch tool

Dispatch is an intermediary tool for publishing, retrieving, and
analyzing trust in DAMF.

Dispatch specifies a family of JSON-based formats for DAMF
objects and implements the main DAMF processes.

▶ Production of DAMF objects

▶ Consumption of DAMF objects

▶ Lookup: analyze dependencies to see who I am trusting

Dispatch can be used by both human users and provers.

Dispatch removes the need for a theorem proving system to be
aware of IPFS.

A DAMF-aware prover only needs to be able to build and parse
certain JSON objects from its theory files.

22 / 37

The Dispatch tool

Dispatch is an intermediary tool for publishing, retrieving, and
analyzing trust in DAMF.

Dispatch specifies a family of JSON-based formats for DAMF
objects and implements the main DAMF processes.

▶ Production of DAMF objects

▶ Consumption of DAMF objects

▶ Lookup: analyze dependencies to see who I am trusting

Dispatch can be used by both human users and provers.

Dispatch removes the need for a theorem proving system to be
aware of IPFS.

A DAMF-aware prover only needs to be able to build and parse
certain JSON objects from its theory files.

22 / 37

An agent makes an assertion: K says (Γ ⊢ B)

B is the proposed theorem.

Γ lists the dependencies.

K is a pair of an agent (via a public key) and a mode.

A mode can be:

▶ null - the agent takes full responsibility

▶ axiom - expect to seldom use: no proof is expected

▶ conjecture - an agent declares an interest in having this
proved

▶ tool T - the agent used prover T

Note that a prover does not do the signing. The operator of the
prover does the signing: binaries can be corrupted by users.

The truth of K says (Γ ⊢ B) comes from checking the digital
signature.

23 / 37

The says logic: some inference

We permit just two inference rules for reasoning in the says logic.

K says (Γ1 ⊢ M) K says (M, Γ2 ⊢ N)

K says (Γ1, Γ2 ⊢ N)
Compose

Assume that that K1 is in the user-specified allow list of K2.

Thus, K1 speaks for K2, which we write as [K1 7→ K2].

K1 says S

K2 says S
Trust[K1 7→ K2]

24 / 37

The says logic is weak by design

There are many variations to access control logic in the literature,
where the following rules might be assumed.

Γ ⊢ N
K says (Γ ⊢ N)

or
K says (Γ ⊢ N)

K says (K says (Γ ⊢ N)).

Such rules are neither syntactically well-formed nor desirable here.

No logical closure is assumed: let NA, NA→B , and NB be the
formula objects that correspond to the formulas A, A → B, and B.

We do not assume that the following rule is admissible:

K says (Γ ⊢ NA→B) K says (Γ ⊢ NA)

K says (Γ ⊢ NB)
mp.

25 / 37

The says logic is weak by design

There are many variations to access control logic in the literature,
where the following rules might be assumed.

Γ ⊢ N
K says (Γ ⊢ N)

or
K says (Γ ⊢ N)

K says (K says (Γ ⊢ N)).

Such rules are neither syntactically well-formed nor desirable here.

No logical closure is assumed: let NA, NA→B , and NB be the
formula objects that correspond to the formulas A, A → B, and B.

We do not assume that the following rule is admissible:

K says (Γ ⊢ NA→B) K says (Γ ⊢ NA)

K says (Γ ⊢ NB)
mp.

25 / 37

An interactive theorem prover well-suited for reasoning about the
meta-theory of languages and logics involving binding.

▶ Various results on the λ-calculus involving big-step evaluation,
small-step evaluation, and typing judgments

▶ Cut-admissibility for a sequent calculus

▶ Part 1a and Part 2a of the POPLmark challenge

▶ Some π-calculus meta-theory

▶ Takahashi’s proof of the Church-Rosser theorem

▶ Tait’s logical relations proof of weak normalization for STLC

▶ Girard’s proof of strong normalization of STLC

Abella: A System for Reasoning about Relational Specifications by

Baelde, Chaudhuri, Gacek, Miller, Nadathur, Tiu, and Wang. J. of

Formalized Reasoning 7(2), 2014, 1-89.
26 / 37

An example of using DAMF

Let fib(n) denotes the nth Fibonacci number.

We want to have the following theorem available in Abella.

For n ∈ N, fib(n) = n2 if and only if n ∈ {0, 1, 12}.

We build the proof using three provers as follows.

1. We use λProlog to compute fib(n) and n2 for
n ∈ {0, 1, . . . , 12} and to compare them for equality.

2. We use Coq to prove: forall n, if n ≥ 13 then fib(n) > n2.

3. We use Abella to do all the remaining steps.

These systems use different syntaxes, logics, and proofs.

This integration was achieved with minor additions/modifications
to printers and parsers: no kernels were touched.

27 / 37

An example of using DAMF

Let fib(n) denotes the nth Fibonacci number.

We want to have the following theorem available in Abella.

For n ∈ N, fib(n) = n2 if and only if n ∈ {0, 1, 12}.

We build the proof using three provers as follows.

1. We use λProlog to compute fib(n) and n2 for
n ∈ {0, 1, . . . , 12} and to compare them for equality.

2. We use Coq to prove: forall n, if n ≥ 13 then fib(n) > n2.

3. We use Abella to do all the remaining steps.

These systems use different syntaxes, logics, and proofs.

This integration was achieved with minor additions/modifications
to printers and parsers: no kernels were touched.

27 / 37

28 / 37

Multilanguage situations

Every formula object packages the formula with its context and
language identifier.

Thus, every formula object is independent of every other formula
object.

In a sequent N1 ⊢ N0, there is no requirement that the conclusion
N0 and the dependency N1 be in the same language or have a
common context.

In the autarkic setting, sequents will generally use the same
language and context for all formula objects.

In the wider non-autarkic world, we can use multilingual sequents.

29 / 37

Multilingual sequents

For a theorem written in the one prover to be used by a different
prover, we need to transform a formula object in the first language
to a corresponding object in the second language.

Coq 8.16.1:

Theorem ex_coq :

forall n:nat , 8 <= n -> lincomb n 3 5.

Abella 2.0.9:

Import "nats".

Define lincomb : nat -> nat -> nat -> prop by

lincomb N J K := exists X Y U V,

times X J U /\ times Y K V /\ plus U V N.

Theorem ex_ab :

forall n, nat n -> le 8 n -> lincomb n 3 5.

Such a translation is often sophisticated: here, the function
symbols + and * are replaced by relations in Abella.

30 / 37

Language adapters

Adapters are tools that do such translations.

The sequent that represents this translation has the form

⟨Coq 8.16.1,Σex_coq, ex_coq⟩ ⊢ ⟨Abella 2.0.9,Σex_ab, ex_ab⟩.

Suppose agent K1 signs this translation and that agent K2 signs
the sequent ⊢ ⟨Coq 8.16.1,Σex_coq, ex_coq⟩.

If K1 and K2 are trusted by the user of Abella 2.0.9, then the
formula object ⟨Abella 2.0.9,Σex_ab, ex_ab⟩ can be treated as a
theorem by that user.

31 / 37

Outline

Trust in the digital world

The community of proof checkers

Distributed Assertion Management Framework (DAMF)

Benefits of a move towards DAMF

32 / 37

Cost and Benefits
The potential costs seem clear.

▶ New standards and processes need to be adopted.

▶ Another layer of software is needed (IPFS, Dispatch, etc).

▶ Agents need to sign theorems.

Some potential benefits for the community.

▶ Many existing tools can be used as adapters (e.g., Dedukti).

▶ Non-incumbent theorem provers (such as Abella) can play
their niche role in larger projects.

▶ Specialized proof languages for specialized settings can be
built as adapters: e.g., graphic presentations of commuting
diagrams.

▶ No explicit library structure is imposed. Hierarchies of theories
can become emergent structures.

▶ When adversaries show up, we can keep them out of our
allow-lists.

33 / 37

Cost and Benefits
The potential costs seem clear.

▶ New standards and processes need to be adopted.

▶ Another layer of software is needed (IPFS, Dispatch, etc).

▶ Agents need to sign theorems.

Some potential benefits for the community.

▶ Many existing tools can be used as adapters (e.g., Dedukti).

▶ Non-incumbent theorem provers (such as Abella) can play
their niche role in larger projects.

▶ Specialized proof languages for specialized settings can be
built as adapters: e.g., graphic presentations of commuting
diagrams.

▶ No explicit library structure is imposed. Hierarchies of theories
can become emergent structures.

▶ When adversaries show up, we can keep them out of our
allow-lists.

33 / 37

Benefits for an individual theorem prover

▶ Version control tracking.

▶ Since the emphasis is not on rechecking, the performance of
the kernel can be relaxed and fewer bugs will be introduced.

▶ Features can be added without touching the kernel: e.g.:
polymorphism, higher-order features.

▶ Web-centric theorem provers: IPFS provides a solution to file
persistence.

34 / 37

35 / 37

Conclusions

▶ Trusting a formal proof requires trusting a computer program.

▶ DAMF attempts to explicitly address this notion of trust by

▶ having users sign their assertions and
▶ maintaining all dependencies in a global file system.

▶ Using the Dispatch tool, a prover can be DAMF-aware with
minimal modifications to the printing and parsing subsystems
of a prover.

▶ It is still open if others in the community find DAMF
appealing.

▶ From the perspective of Abella, we see many benefits of using
DAMF.

36 / 37

Thanks

Questions?

Art by Nadia Miller

37 / 37

https://nadiaamiller.wixsite.com/website

	Trust in the digital world
	The community of proof checkers
	Distributed Assertion Management Framework (DAMF)
	Benefits of a move towards DAMF

