Exam on Miller's Lectures, Sample

This part of the exam is intended to last 90 minutes. It has a total of 10 points, and each question is valued at 2 points. Solutions can be written in English or French. In either case, please write clearly.

Exercise 1 (An I-proof) Give an I-proof of the following sequent.

$$
p \vee \neg p \vdash((p \supset q) \supset p) \supset p
$$

Exercise 2 (A small and a big proof) Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of propositional symbols. Let D_{i} be the propositional Horn clause $D_{i}=\left(\wedge_{j=1}^{i-1} a_{j}\right) \supset a_{i}$. Thus, $D_{1}=a_{1}$, $D_{2}=a_{1} \supset a_{2}, D_{3}=\left(a_{1} \wedge a_{2}\right) \supset a_{3}$, etc. Clearly, the sequent

$$
D_{1}, D_{2}, \ldots, D_{n} \vdash a_{n}
$$

is provable. Using the proof system for classical logic (Section 4.1), find two cut-free proofs for this sequent. One should have size at-most quadratic in n and one should have size exponential in n (size counts the number of occurrences of inference rules). [Hint: consider bottom-up versus top-down search strategies.]

Exercise 3 (Positive) Linear logic connectives can be divided into the positive connectives, namely, $\mathbf{1}, \mathbf{0}, \otimes, \oplus, \exists$ and the negative connectives, namely, $\perp, \top, \mathcal{P}, \&, \forall$. Let B and C be two formulas for which $B \equiv!B$ and $C \equiv!C$. Show that the following equivalences hold for the positive connectives.

$$
\mathbf{1} \equiv!\mathbf{1} \quad \mathbf{0} \equiv!\mathbf{0} \quad B \otimes C \equiv!(B \otimes C) \quad B \oplus C \equiv!(B \oplus C) \quad \exists x \cdot B \equiv!\exists x \cdot B
$$

(Recall that $B \equiv C$ means $\vdash(B \multimap C) \&(C \multimap B)$ in linear logic.)
Exercise 4 (No notconnected) Represent the finite graph $G=(N, E)$, with nodes N and edges $E \subseteq N \times N$, as the set of atomic formulas

$$
\mathcal{G}=\{\operatorname{node}(x) \mid x \in N\} \cup\{\operatorname{edge}(x, y) \mid\langle x, y\rangle \in E\}
$$

Argue why it is impossible to write a logic program \mathcal{P} in first-order hereditary Harrop formulas that specifies the predicate $n c(x, y)$ such that for all $x, y \in N, x$ and y are not connected by a path in the graph G if and only if the sequent $\mathcal{G}, \mathcal{P} \vdash n c(x, y)$ is provable.

Exercise 5 Consider representing the finite graph $G=(N, E)$, with nodes N and edges $E \subseteq N \times N$, as the set of formulas

$$
\mathcal{G}=\{\operatorname{node}(x) \mid x \in N\} \cup\{!\text { edge }(x, y) \mid\langle x, y\rangle \in E\}
$$

(note the use of !). Consider the logic program \mathcal{P} that consists of the following three formulas.

$$
\begin{gathered}
\forall u[\text { connected } \circ-(\operatorname{node}(u) \otimes(n d(u) \Rightarrow \text { loop }))] . \\
\text { loop } . \\
\forall u, v[\operatorname{loop} \circ-(\operatorname{nd}(u) \otimes \operatorname{edge}(u, v) \otimes \operatorname{node}(v) \otimes(\operatorname{nd}(v) \Rightarrow \text { loop }))] .
\end{gathered}
$$

Show that the sequent $\mathcal{G}, \mathcal{P} \vdash$ connected is provable in linear logic (Lolli) if and only if the graph G is connected.

