
Encryption as an Abstract Datatype:
observations about relating

security protocols and proof search in linear logic

Dale Miller
Inria Saclay and École polytechnique

Outline

1. Security protocols specified using multisets rewriting.

2. Eigenvariables for nonces and session keys.

3. Encrypted data as an abstract datatype.

4. Protocols as linear logic theories.

Reference: “Higher-order quantification and proof search,”
AMAST 2002. Also: Chapter 9 of lecture notes.

A Typical Protocol Specification

The following is a presentation of the Needham-Schroeder Shared
Key Protocol. Alice and Bob make use of a trusted server to help
them establish their own private channel for communications.

Message 1 A −→ S: A,B, nA
Message 2 S −→ A: {nA,B, kAB , {kAB ,A}kBS}kAS
Message 3 A −→ B: {kAB ,A}kBS
Message 4 B −→ A: {nB}kAB
Message 5 A −→ B: {nB − 1}kAB

Here, A, B, and S are agents (Alice, Bob, server), and the k ’s are
encryption keys, and the n’s are nonces.

One of our goals is to replace this specific syntax with one that is
based on a direct use of logic. We will then investigate if logic’s
meta-theory can help in reasoning about security.

Motivating a more declarative specification

The notation A −→ B : M seems to indicate a “three-way
synchronization,” but communication here is asynchronous: Alice
put a message on in a network and Bob picks it up from the
network. An intruder might read/delete/modify the message.

A better syntax is:
A −→ A′ | N(M)

B | N(M) −→ B ′

...
E | N(M) −→ E ′ | N(M)

More generally,

(A Memory)|N(M1)|· · ·|N(Mp) −→ (A′ Memory′)|N(P1)|· · ·|N(Pq)

where p, q ≥ 0. The agent can be missing from the left (agent
creation) or can be missing from the right (agent deletion).

We formalize this using multiset rewriting of atomic formulas.

Dynamic creation of new symbols

New symbols representing nonces (used to help guarantee
“freshness”) and new keys for encryption and session management
are needed also in protocols.

We introduce the syntax:

a1 S −→ new k. a2 〈k ,S〉 | N({M}k)

This new operator looks a bit like a quantifier: it should support
α-conversion and seems to be a bit like reasoning generically. The
scope of new is over the body of this rule.

Static distribution of keys

Consider a protocol containing the following messages.
...

Message i A −→ S: {M}k
Message j S −→ A: {P}k

...
How can we declare that a key, such as k, is only built into two
specific agents. This static declaration is critical for modularity and
for establishing correctness later. A local declaration can be used.

local k.

 A −→ A′ | N({M}k)

S | N({P}k) −→ S ′

This declarations also appears to be similar to a quantifier.

Are these specifications logical expressions?

Can we view the symbols we have introduced as logical
connectives?

| −→ new local empty

disjunctive (Forum) ` ◦− ∀ ∃ ⊥
conjunctive (MSR) ⊗ −◦ ∃ ∀ 1

The disjunctive approach allows protocols to be seen as abstract
logic programs: that is, it fits into the “logic programming as
goal-directed search” paradigm.

Note: Logic is not used here to form judgments about protocol.
Rather, elements of logic are elements of the protocol.

For MSR, see Cervesato, Durgin, Lincoln, Mitchell, Scedrov. “A
Meta-Notation for Protocol Analysis,” Computer Security
Foundations Workshop, 1999.

Encrypted data as an abstract data type

Encryption keys are encoded as symbolic functions on data of type
data→ data. Replace {M}k with (k M).

Since such keys have scope, encrypted data is an abstract datatype.

To insert an encryption key into data, we will use the postfix
coercion constructor (·)◦ of type (data→ data)→ data.

The use of higher-order types means that we will also use the
equations of αβη-conversion (a well studied extension to logic
programming with robust implementations).

∃ k .
[

a1 S ◦− ∀n. a2 〈k◦, S〉` N(k n)
a2 〈k◦, S〉` N(k M) ◦− . . .

]

A Linear Logic Specification of Needham-Schroeder

∃kas∃kbs{
a S ◦− ∀na. a1 〈na,S〉` N(〈a, b, na〉).
a1 〈N,S〉` N(kas〈N, b,K ,En〉) ◦− a2 〈N,K ,S〉` N(En).
a2 〈Na,Key◦,S〉` N(Key Nb) ◦− a3 〈〉` N(Key 〈Nb,S〉).
b 〈〉` N(kbs 〈Key◦, a〉) ◦− ∀nb. b1 〈nb,Key◦〉` N(Key nb).
b1 〈Nb,Key〉` N(Key〈Nb,S〉) ◦− b2 S .
s 〈〉` N(〈a, b,N〉) ◦− ∀k . s 〈〉` N(kas〈N, b, k◦, kbs〈k◦, a〉〉).

}

Outermost universal quantifiers around individual clauses have not
been written but are assumed for variables (tokens starting with a
capital letter).

Relating implementation and specification

A property of Needham-Schroeder should be that Alice can
communicate to Bob a secret with the help of a server. That is,
the clause

∀x (a 〈x〉` b 〈〉` s 〈〉 ◦− a3 〈〉` b2 〈x〉` s 〈〉)

can be seen as part of the specification of this protocol.

If we call the above clause SPEC and the formula for
Needham-Schroeder NS, then it is a simple calculation to prove
that NS ` SPEC in linear logic.

Of course, a kind of converse is more interesting and harder. At
least a trivial thing is proved trivially.

Should not logical entailment be a center piece of logical
specifications?

Automation of proof search

Automation of proof search must not include “invention”. The
subformula property is a good guide.

I Lemmas should not be automated: i.e., consider only cut-free
proofs.

I Higher-order predicates substitutions must be “tame”; no
automation of invariants.

Cuts can be avoided since linear logics satisfies the cut elimination
property.

Higher-order substitutions have traditionally been avoided by
restricting to first-order. But this is too draconian! It makes
impossible admitting rich forms of abstractions.

Not all higher-order quantification is hard to automate and even
the most simple forms can be a great asset when reasoning about
logic programs.

Quantification rules

There are two ways ∀ is used in a proof: To prove a ∀, prove a
generic instance of it. To use a ∀ assumption, make any instance
of it.

Σ ` t : τ Σ : Γ,B[t/x] −→ ∆

Σ : Γ, ∀τx .B −→ ∆
∀L

y : τ,Σ : Γ −→ B[y/x],∆

Σ : Γ −→ ∀τx .B,∆ ∀R

If a ∀ appears on the right (positively), then replace it with a new
constant. Even in the higher-order setting, this is a trivial
operation.

If a ∀ appears on the left (negatively), then replace with some
substitution term. The choice of substitution term is generally
determined using unification.

Dual statements can be made for the ∃ quantifier.

Scheme for reasoning about logic programs

Here, higher-order quantification will be featured in two ways.

I During computation (proof search) higher-order quantification
will be “easy”: instantiate with new symbols.

I When reasoning about computations, higher-order
quantification can be hard and require clever substitutions.

One approach to reasoning about logic programs is the following:

P ` G proof search (cut-free)
P ′ ` P reasoning about programs: involves rich substitutions and

lemmas

P ′ ` G after cut-elimination, we have a computation again

Note that P appears both positively and negatively. What
corresponded to “generate a new predicate” corresponds of “find a
logical expression for substitution” when the polarity is shifted.

Can’t we compile away higher-order quantification?

If we simply execute security protocols, then the expressions {M}k
and (k M) can be compiled as first-order expressions such as

(apply k M), or more appropriately, as (encrypt k M).

In order to reason about such a protocol, we need to explain the
meaning of this new non-logical constant. This complicates the
reasoning process somewhat.

Lesson: Do not leave the paradise of Church too soon.

A simple logical equivalence

Consider the following two clauses:

a ◦− ∀k .N(k m) and a ◦− ∀k .N(k m′).

These two clauses show that Alice can take a step that generates a
new encryption key and then outputs either the message m or m′ in
encrypted form. These two clauses seem “observationally similar”.

More surprisingly

a ◦− ∀k .N(k m) a` a ◦− ∀k .N(k m′).

That is, they are logically equivalent! In particular, the sequent

∀k .N(k m) ` ∀k .N(k m′)

is proved by using the eigenvariable c on the right and the term
λw .(c m′) on the left.

More logical equivalences

If we allow local (∃) abstractions of predicates, then other more
interesting logical equivalences are possible.
For example, 3-way synchronization can be implemented using
2-way synchronization with a hidden intermediary.

∃ x .

{
a ` b ◦− x
x ` c ◦− d ` e

}
a` a ` b ` c ◦− d ` e

Intermediate states of an agent can be taken out entirely.

∃ a2, a3.

a1 ` N(m0) ◦− a2 ` N(m1)
a2 ` N(m2) ◦− a3 ` N(m3)
a3 ` N(m4) ◦− a4 ` N(m5)

 a`

a1 ` N(m0) ◦− (N(m1) ◦− (N(m2) ◦− (N(m3) ◦− (N(m4) ◦− (N(m5) ` a4)))))

This suggests an alternative syntax for agents.

Needham-Schroeder revisited

∃kas∃kbs .[
(Out) ∀na.N(〈alice, bob, na〉)◦−
(In) (∀Kab∀En.N(kas〈na, bob, Kab◦, En〉)◦−
(Out) (N(En)◦−
(In) (∀Nb.N(Kab Nb)◦−
(Out) N(Kab(Nb, secret))))).

(Out) ⊥◦−
(In) (∀Kab.N(kbs(Kab◦, alice))◦−
(Out) (∀nb.N(Kab nb)◦−
(In) (∀S .N(Kab(nb, S))◦−
(Cont) b S))).

(Out) ⊥◦−
(In) (∀N.N(〈alice, bob, N〉)◦−
(Out) (∀key .N(kas〈N, bob, key◦, kbs(key◦, alice)〉))).

]

Two classes of connectives

The logical connectives of linear logic can be classified as

asynchronous ⊥, `, ∀, The right introduction rules for these
are invertible. These rules yield structural
equivalences.

synchronous 1, ⊗, ∃, The right introduction rules for these
are not invertible. These rules yield interaction with
the environment.

These connectives are De Morgan duals of each other.

We shall only write asynchronous connectives but write them on
both sides of the sequent arrow (yielding both behaviors). We also
use implications:

B −◦ C ≡ B⊥ ` C and B ⇒ C ≡ !B −◦ C

Alternation of synchronous and asynchronous connectives

A bipolar formula is a formula in which no asynchronous
connectives is in the scope of a synchronous connective. That is,
there is an outer layer of asynchronous connectives followed by an
inner layer of synchronous connectives.

The multiset rewriting clauses are bipolars, for example,

a ` b ◦− c ` d ≡ a ` b ` (c⊥ ⊗ d⊥).

Andreoli showed how to compile arbitrary alternation of syn/asyn
connectives into bipolars by introducing new predicate symbols. He
also argued for only using bipolars for proof search.

Avoiding bipolars has some advantages

Only one predicate is need, namely, N(·). The other predicates
(used as “line numbers” in a protocol) are not needed.

Agents now resemble process calculus expressions. The formula
a ◦− (b ◦− (c ◦− (d ◦− k))) can denote either

ā || (b. (c̄ || (d))) or a. (b̄ || (c . (d̄ || . . .)))

depending on if it appears on the right or the left of a sequent.
Writing this expression without the implication:

a ` (b⊥⊗ (c ` (d⊥⊗ . . .))) resp, a⊥⊗ (b ` (c⊥⊗ (d ` . . .)))

There is a strict alternation of input and output phases. If an
agent skips a phase, the adjacent phases can be merged:

a ◦− (⊥◦− (b ◦− k)) ≡ (a ` b) ◦− k .

The general setting for specifying agents

A = atomic formulas

H = A |⊥| H ` H | ∀x . H

K = H | H ◦− K | ∀x . K

Let A denote a multiset of atoms (ie, network messages). Let ∆
and Γ be a multiset of “agents” (K -formulas). Since ∆ will appear
on the right, it contains outputting agents and since Γ will appear
on the left, it contains inputting agents.

Two rules related to agents are then given as follows:

Γ,K ` ∆,H,A
Γ ` H ◦− K ,∆,A

H ` A1 Γ ` K ,A2

Γ,H ◦− K ` A1,A2

The left rule can be limited to sequents with atomic rhs.

If in the definition of K -formulas above we write H ◦− H instead
of H ◦− K , we are restricting our selves to bipolars again.

Conclusions

1. Linear logic can be used to specify the execution of security
protocols.

2. Seeing encryption as an abstract datatype seems a powerful
logical device to help reason about hiding information.

3. Abstraction of “continuation predicates” can transform
bipolar (MSR) expressions into non-bipolar (process calculus
expression) expressions.

4. Proof theoretical techniques have a use in reasoning about
protocol correctness.

4.1 Cut-elimination is a basic tool.
4.2 Higher-type quantification makes protocols more declarative

and offer new avenues for reasoning about protocols.

5. Related work: Sumii & Pierce, Logical relations for
encryption, CSFW 2001.

