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Lecture 1: Some introductory material.
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Many roles of logic in computation

Computation-as-model: Computations happens, i.e., states
change, communications occur, etc. Logic is used to make
statements about computation. E.g., Hoare triples, modal logics.

Computation-as-deduction: Elements of logic are used to model
elements of computation directly.
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Many roles of logic in computation

Computation-as-model: Computations happens, i.e., states
change, communications occur, etc. Logic is used to make
statements about computation. E.g., Hoare triples, modal logics.

Computation-as-deduction: Elements of logic are used to model
elements of computation directly.

Proof normalization. Programs are proofs and computation is
proof normalization (\-conversion, cut-elimination). A
foundations for functional programming.

Proof search. Programs are theories and computation is the
search for sequent proofs. A foundations for logic programming.
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Many logics to address

There are great many “logics” used practice and in research.

Implemented computational logic systems demand selecting one of
two logics: Classical Logic and Intuitionistic Logic.

These two choices covers a large percentage of existing
computational systems based on logic.

[Linear logic lies behind these other two logics.]
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Many logics to address

There are great many “logics” used practice and in research.

Implemented computational logic systems demand selecting one of
two logics: Classical Logic and Intuitionistic Logic.

These two choices covers a large percentage of existing
computational systems based on logic.

[Linear logic lies behind these other two logics.]
The propositional vs first-order vs higher-order logic divide is not a

problem of unity: HO logic can directly support both propositional
logic and first-order logic.
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Logics support many activities

We shall use proof search paradigm (and sequent calculus) to
model

e computation (a /a logic programming)
e model checking
e theorem prover

The first two unfold recursive definitions and explore a space by
finite unfoldings.

Theorem proving (with induction and co-induction) attempt to
prove things hold for a possibly infinite domains.

Being part of a common framework allows, for example, mixing

e computation and deduction, and
e model checking and theorem proving.
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There are many proof systems

e Hilbert systems: linear collection of axioms and inference rules

These are not “analytical” nor “algorithmic”. What axioms to
start with? How does one reverse modus ponens?
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There are many proof systems

e Hilbert systems: linear collection of axioms and inference rules

These are not “analytical” nor “algorithmic”. What axioms to
start with? How does one reverse modus ponens?

e natural deduction
e sequent calculus

Gentzen wanted to provide analytic proof systems for both classical
and intuitionistic logics: this failed for natural deduction but
succeeded for the sequent calculus.
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There are many proof systems

e Hilbert systems: linear collection of axioms and inference rules

These are not “analytical” nor “algorithmic”. What axioms to
start with? How does one reverse modus ponens?

e natural deduction
e sequent calculus

Gentzen wanted to provide analytic proof systems for both classical
and intuitionistic logics: this failed for natural deduction but
succeeded for the sequent calculus.

e tableaux
e resolution refutations

Other useful proof systems with simple connections to the sequent
calculus.
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Overview of these lectures

Lecture 1: introduction, sequent calculus
Lecture 2: classical and intuitionistic logic
Lecture 3: abstract logic programming
Lecture 4: focused proof systems
Lecture 5: inductive definitions

Lecture 6: model checking and inductive theorem proving
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