Finding Unity in Computational Logic

Dale Miller

INRIA-Saclay, France

ISCL: International School on Computational Logic
Bertinoro, 11-15 April 2011

Lecture 1: Some introductory material.

Dale Miller Finding Unity in Computational Logic



Many roles of logic in computation

Computation-as-model: Computations happens, i.e., states
change, communications occur, etc. Logic is used to make
statements about computation. E.g., Hoare triples, modal logics.

Computation-as-deduction: Elements of logic are used to model
elements of computation directly.

Dale Miller Finding Unity in Computational Logic



Many roles of logic in computation

Computation-as-model: Computations happens, i.e., states
change, communications occur, etc. Logic is used to make
statements about computation. E.g., Hoare triples, modal logics.

Computation-as-deduction: Elements of logic are used to model
elements of computation directly.

Proof normalization. Programs are proofs and computation is
proof normalization (\-conversion, cut-elimination). A
foundations for functional programming.

Proof search. Programs are theories and computation is the
search for sequent proofs. A foundations for logic programming.

Dale Miller Finding Unity in Computational Logic



Many logics to address

There are great many “logics” used practice and in research.

Implemented computational logic systems demand selecting one of
two logics: Classical Logic and Intuitionistic Logic.

These two choices covers a large percentage of existing
computational systems based on logic.

[Linear logic lies behind these other two logics.]

Dale Miller Finding Unity in Computational Logic



Many logics to address

There are great many “logics” used practice and in research.

Implemented computational logic systems demand selecting one of
two logics: Classical Logic and Intuitionistic Logic.

These two choices covers a large percentage of existing
computational systems based on logic.

[Linear logic lies behind these other two logics.]
The propositional vs first-order vs higher-order logic divide is not a

problem of unity: HO logic can directly support both propositional
logic and first-order logic.

Dale Miller Finding Unity in Computational Logic



Logics support many activities

We shall use proof search paradigm (and sequent calculus) to
model

e computation (a /a logic programming)
e model checking
e theorem prover

The first two unfold recursive definitions and explore a space by
finite unfoldings.

Theorem proving (with induction and co-induction) attempt to
prove things hold for a possibly infinite domains.

Being part of a common framework allows, for example, mixing

e computation and deduction, and
e model checking and theorem proving.

Dale Miller Finding Unity in Computational Logic



There are many proof systems

e Hilbert systems: linear collection of axioms and inference rules

These are not “analytical” nor “algorithmic”. What axioms to
start with? How does one reverse modus ponens?

Dale Miller Finding Unity in Computational Logic



There are many proof systems

e Hilbert systems: linear collection of axioms and inference rules

These are not “analytical” nor “algorithmic”. What axioms to
start with? How does one reverse modus ponens?

e natural deduction
e sequent calculus

Gentzen wanted to provide analytic proof systems for both classical
and intuitionistic logics: this failed for natural deduction but
succeeded for the sequent calculus.

Dale Miller Finding Unity in Computational Logic



There are many proof systems

e Hilbert systems: linear collection of axioms and inference rules

These are not “analytical” nor “algorithmic”. What axioms to
start with? How does one reverse modus ponens?

e natural deduction
e sequent calculus

Gentzen wanted to provide analytic proof systems for both classical
and intuitionistic logics: this failed for natural deduction but
succeeded for the sequent calculus.

e tableaux
e resolution refutations

Other useful proof systems with simple connections to the sequent
calculus.

Dale Miller Finding Unity in Computational Logic



Overview of these lectures

Lecture 1: introduction, sequent calculus
Lecture 2: classical and intuitionistic logic
Lecture 3: abstract logic programming
Lecture 4: focused proof systems
Lecture 5: inductive definitions

Lecture 6: model checking and inductive theorem proving

Dale Miller Finding Unity in Computational Logic



